JP6099932B2 - Freezing method for fluid transport pipelines - Google Patents

Freezing method for fluid transport pipelines Download PDF

Info

Publication number
JP6099932B2
JP6099932B2 JP2012242494A JP2012242494A JP6099932B2 JP 6099932 B2 JP6099932 B2 JP 6099932B2 JP 2012242494 A JP2012242494 A JP 2012242494A JP 2012242494 A JP2012242494 A JP 2012242494A JP 6099932 B2 JP6099932 B2 JP 6099932B2
Authority
JP
Japan
Prior art keywords
pipe
freezing
ice
fluid transport
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012242494A
Other languages
Japanese (ja)
Other versions
JP2014091948A (en
Inventor
太陽 大久保
太陽 大久保
Original Assignee
株式会社大勇フリーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大勇フリーズ filed Critical 株式会社大勇フリーズ
Priority to JP2012242494A priority Critical patent/JP6099932B2/en
Publication of JP2014091948A publication Critical patent/JP2014091948A/en
Application granted granted Critical
Publication of JP6099932B2 publication Critical patent/JP6099932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は流体輸送管路、主として上水道水の管路の凍結工法の改良に関する。   The present invention relates to an improvement in a method for freezing a fluid transport pipe, mainly a tap water pipe.

従来、上水道管の一部が損傷したり、管路に付設されるバルブが不具合となった場合、その管やバルブの修理や交換の作業を行なうため、一時的に断水、それも広範囲における断水が余儀なくされ、大量の上水道水が無駄に廃棄され、工事修了後には管内に侵入した空気抜きを行なう作業が必要とされていた。   Conventionally, when a part of a water supply pipe is damaged or a valve attached to a pipe line becomes defective, the pipe or valve is repaired or replaced, so the water is temporarily cut off. As a result, a large amount of tap water was wasted, and after the completion of the construction work, it was necessary to vent the air that had entered the pipe.

かかる従来の工法の問題点に着目して、近年は断水(止水)を最小限の地域でのものとし、作業時間も短くて済むこととなり、しかも工事修了後の空気抜き作業を不要とする管路の凍結工法が開発され、実質的に実行されている。   Focusing on the problems of the conventional construction method, in recent years, pipes have been designed to minimize water outage (water stoppage) in a minimum area, shorten the work time, and eliminate the need for air venting after completion of construction. Road freezing methods have been developed and are being implemented in practice.

この凍結工法は、管路の一部、特に既設管が溶接配管である場合には、その溶接部から約20cm以上離して、凍結手段となる液体空気や液体窒素のボックスを取り付ける。これは、凍結によって溶接部に亀裂が生じてしまうことを防止するためであり、管の切断や新規溶接はその凍結手段より約50cm以上離す位置で行なう。これは、凍結により生じた霜が解け、溶接にピンホールが生じてしまうことを防止するためである。尚、凍結手段付近で新規溶接を行なう場合は、火花による引火を防ぐため、不活性ガスである窒素100%の液体を使用することとなる。   In this freezing method, when a part of a pipe line, particularly when an existing pipe is a welded pipe, a box of liquid air or liquid nitrogen serving as a freezing means is attached at a distance of about 20 cm or more from the welded part. This is to prevent the weld from cracking due to freezing, and the cutting of the pipe and the new welding are performed at a position about 50 cm or more away from the freezing means. This is to prevent frost generated by freezing from thawing and causing pinholes in welding. In addition, when performing new welding near freezing means, in order to prevent the ignition by a spark, the liquid of 100% of nitrogen which is an inert gas will be used.

この凍結工法にあっては、凍結手段を管の一部に装着し、その装着部分に対応する管内の流体(上水道水)を氷結させ、その氷塊によって一時的に管内の通水を停止させることとしている。しかしながら、近時は管自体の質が良化し、内面も滑面状態となっているため、その氷塊の一次側に加えられる流体(上水道水)の流圧によって押し流されてしまい、止水効果を得ることが困難となってしまっている。   In this freezing method, the freezing means is attached to a part of the pipe, the fluid (tap water) in the pipe corresponding to the attached part is frozen, and the water flow in the pipe is temporarily stopped by the ice block. It is said. However, since the quality of the tube itself has improved recently and the inner surface is also smooth, it is swept away by the fluid pressure of the fluid (water tap water) applied to the primary side of the ice mass, and the water stop effect is achieved. It has become difficult to obtain.

特開2009−127206号公報JP 2009-127206 A

本願発明が解決しようとする問題点は、従前の流体輸送管路の凍結工法にあって、管路の一部を凍結してその対応する部位の管内に管路内の流体を凍結して氷結させた氷塊は一次側からの流体圧力に押され、二次側は無圧のため流されてしまい、目的とする止水効果を得ることができなくなってしまったという点である。   The problem to be solved by the present invention lies in the conventional method for freezing a fluid transport pipe, in which a part of the pipe is frozen and the fluid in the pipe is frozen in the corresponding portion of the pipe to freeze. The ice block thus made is pushed by the fluid pressure from the primary side, and the secondary side is washed away because of no pressure, and the intended water stop effect cannot be obtained.

上記した問題点を解決するために、本願に係る流体輸送管路の凍結工法は、流体輸送管の少なくとも二箇所に、対象となる管径に応じ数cmから数10cmの間隔で管内を流通する流体を凍結させるための凍結手段を配置した流体輸送管路の凍結工法であって、前記した流体は上水道水とし、凍結手段は液体空気ボックスもしくは液体窒素ボックスとしてあることとし、前記した輸送管はダクタイル鋳鉄管とし、内面をモルタルライニングあるいは粉体塗装が施されていることとし、前記した各々の凍結手段と対応する管内部分に管壁側から徐々に冷熱を伝えることで断面鼓形とした第一及び第二の氷塊を形成させ、前記した二つの凍結手段からの超低温を両側から伝熱し、その伝熱を相乗的に作用させて徐々に第一及び第二の氷塊間に外側面が膨出曲面状となる第三の氷塊を形成させる流体輸送管路の凍結工法において、前記した第一、第二、第三の氷塊を一体化させ、この一体化された氷塊の芯となる第三の氷塊の中心から直交する方向で流体輸送管の内壁面を押圧させることを特徴としている。 In order to solve the above-described problems, the fluid transport pipe freezing method according to the present application distributes through the pipe at intervals of several centimeters to several tens of centimeters depending on the target pipe diameter in at least two places of the fluid transport pipe. A freezing method for a fluid transportation pipeline in which freezing means for freezing fluid is arranged , wherein the fluid is water supply water, the freezing means is a liquid air box or a liquid nitrogen box, and the transportation pipe is The ductile cast iron pipe has a mortar lining or powder coating on the inner surface, and gradually transmits cold heat from the pipe wall side to each of the freezing means and the corresponding pipe inner part. to form a first and second ice blocks, conducts the heat to very low temperature from both sides from the two frozen means described above, the outer between gradually first and second ice blocks to synergistically act the heat transfer In There freezing method of fluid transport conduit to form a third block of ice to be bulging curved first and the second, it is integrated third ice block, the core of the integrated ice blocks The inner wall surface of the fluid transport pipe is pressed in a direction orthogonal to the center of the third ice block .

本願発明に係る流体輸送管路の凍結工法は上記のように構成されている。少なくとも凍結手段と対応する管内には徐々に冷熱が伝わり、略鼓形をした第一及び第二の氷塊を形成し、次いで、その第一と第二の氷塊間に外側面を膨出曲面状とする第三の氷塊を形成するので、凍結箇所には都合三つの氷塊が形成され、第三の氷塊を芯としてその三つの氷塊が氷着一体化することになり、これらの氷塊は体積的に膨張しており、管路内壁面を内側から押圧する力が生じており、壁内壁に強く踏ん張るため、例え一次側の流体圧力や衝撃が加えられても作業に必要な時間内に押し流されたり、位置移動をしてしまうことはなくなり、作業の安全性も確保され十分に止水効果を発揮することができることとなるのである。   The freezing method of the fluid transport pipeline according to the present invention is configured as described above. Cold heat is gradually transmitted at least in the pipe corresponding to the freezing means to form first and second ice blocks having a substantially drum shape, and then the outer surface is bulged and curved between the first and second ice blocks. The three ice blocks are conveniently formed at the freezing point, and the three ice blocks are integrated into the ice centered on the third ice block, and these ice blocks are volumetric. Since the pressure that presses the inner wall of the pipe line from the inside is generated and it strungs strongly against the inner wall of the pipe, it is swept away within the time required for the work even if fluid pressure or impact on the primary side is applied. The position is not moved, the work safety is ensured, and the water stop effect can be sufficiently exhibited.

本発明を実施した状態を示す断面図である。It is sectional drawing which shows the state which implemented this invention. 凍結手段であるボックスの取付状態を示す図である。It is a figure which shows the attachment state of the box which is a freezing means.

図面として示し、実施例で説明したように構成することで実現した。   This was realized by configuring as illustrated in the drawings and described in the examples.

次に、本発明の好ましい実施の一例を図面を参照して説明する。図1は本発明を実施した状態を示す断面図、図2は同じく凍結手段であるボックスの取付状態を示す図である。   Next, an example of a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a state in which the present invention is implemented, and FIG. 2 is a view showing an attached state of a box which is also a freezing means.

これらの図にあって1は通常、上水道水が通水され、水道設備に水を供給するための上水道管を示している。この上水道管1は、近時内壁面が不純物の付着や錆の生じる事が無いよう加工された滑面状態のもの、具体的にはモルタルライニング加工や樹脂粉体塗装のものが使用されている。   In these drawings, reference numeral 1 indicates a water supply pipe for supplying water to a water supply facility. The water supply pipe 1 is used in a smooth state in which the inner wall surface is processed so as not to cause adhesion of impurities or rust, specifically, mortar lining or resin powder coating is used. .

この上水道管1の一部で、管の修理や交換等の施工を行なう部分の一次側に少なくとも二以上の冷凍手段、例えば液体空気ボックス2a、2bもしくは液体窒素ボックスが近接距離、例えば数cm〜数10cmの間隔を置いてセットされる。この間隔距離は上水道管1の管径によって設定される。尚、図1中で上水道水は、上水道管1のいずれの方向から流れるものでもよい。   At least two or more refrigeration means such as liquid air boxes 2a and 2b or a liquid nitrogen box are provided on the primary side of a part of the water pipe 1 where the pipe is repaired or replaced, for example, a close distance, for example, several cm to It is set with an interval of several tens of centimeters. This distance is set by the pipe diameter of the water supply pipe 1. In FIG. 1, the tap water may flow from any direction of the tap water pipe 1.

この液体空気ボックス2a、2bは発泡スチロールで成形され、超低温にも耐えるものとした直方体のもので、内部は中空とされている。この液体空気ボックス2a、2bはその下方寄りの部分に、前記した上水道管1が貫通する状態で装着される。換言すると、下方寄り部分に上水道管1の管径と合わせた連通孔を穿設して上水道管1に挿通し、この連通孔と上水道管1の外表面との間には漏れ防止用の固着剤(コーキング剤)を塗布しておくこととなる。   The liquid air boxes 2a and 2b are formed of styrene foam and have a rectangular parallelepiped shape that can withstand ultra-low temperatures, and the inside is hollow. The liquid air boxes 2a and 2b are attached to the lower portion of the liquid air boxes 2a in a state where the above-described water supply pipe 1 passes therethrough. In other words, a communication hole matched with the pipe diameter of the water supply pipe 1 is drilled in the lower portion and inserted into the water supply pipe 1, and the leakage prevention is fixed between the communication hole and the outer surface of the water supply pipe 1. An agent (caulking agent) must be applied.

また、前記した液体空気ボックス2a、2bは上面が開口されたものとなっており、この上面開口から、例えば30リットル、50リットル等のボンベに詰められた液体空気3を現場で注入することとなる。また、上面開口は必要に応じて施蓋される。   Also, the liquid air boxes 2a and 2b described above are opened on the upper surface, and liquid air 3 filled in a cylinder of, for example, 30 liters, 50 liters, etc. is injected from the upper surface opening on site. Become. Further, the upper surface opening is covered as necessary.

こうして、二つの液体空気ボックス2a、2bに液体空気、場合によっては液体窒素が注入されると、その注入された部分の上水道管1は超低温に冷却され、その冷熱の上水道管1からの伝熱により、内部の上水道水は徐々に氷結していき、断面を略鼓形として第一の氷塊4a及び第二の氷塊4bを形成する。   Thus, when liquid air, or in some cases liquid nitrogen, is injected into the two liquid air boxes 2a and 2b, the water supply pipe 1 in the injected part is cooled to an ultra-low temperature, and the heat transfer from the cold water supply pipe 1 is performed. As a result, the internal tap water gradually freezes to form the first ice block 4a and the second ice block 4b with the cross-section being substantially drum-shaped.

この実施例にあって、液体空気ボックス2a、2bに挟まれた上水道管1の内部は、この液体空気ボックス2a、2bからの超低温が両側から伝熱され、この伝熱が相乗的に作用して徐々に第一の氷塊4aと第二の氷塊4bの間に、外側面を膨出曲面状とした即ち、第一の氷塊4aと第二の氷塊4bの外側面と合致した第三の氷塊4cを形成し、この三つの氷塊4a、4b、4cが一体化される。
In this embodiment, inside the water pipe 1 sandwiched between the liquid air boxes 2a and 2b, the ultra-low temperature from the liquid air boxes 2a and 2b is transferred from both sides, and the heat transfer acts synergistically. during gradually first ice block 4a and the second ice blocks 4b Te was the outer surface and the bulging curved, i.e., the third matching the outer surface of the first ice block 4a and the second ice blocks 4b An ice block 4c is formed, and the three ice blocks 4a, 4b, 4c are integrated.

この氷塊4a、4b、4cは上水道管1の内径内に密に形成されることとなり、また、水が氷結してその体積が増加されることで、この氷塊4a、4b、4cは上水道管1の内径を押圧する。この押圧は特に一体化の芯となる氷塊4cの中心から直交する方向で上水道管1の内壁面に対して作用することとなる(図1中の矢印参照)。   The ice blocks 4a, 4b, and 4c are densely formed within the inner diameter of the water supply pipe 1, and the ice blocks 4a, 4b, and 4c are formed in the water supply pipe 1 by freezing water and increasing its volume. Press the inner diameter of. This pressing particularly acts on the inner wall surface of the water supply pipe 1 in a direction perpendicular to the center of the ice block 4c which is an integral core (see arrow in FIG. 1).

この作用によって、氷塊4a、4b、4cは一時的に上水道管1内の通水を止めることとなり、水の流圧によって押し流されてしまうこともない。また、この氷塊4a、4b、4cは一体化され、押圧力は上水道管1の軸芯方向にも作用することで分散され、上水道管1を破裂させたり、亀裂を生じさせたりしてしまうことはない。   By this action, the ice blocks 4a, 4b, and 4c temporarily stop the water flow in the water supply pipe 1, and are not swept away by the water flow pressure. Also, the ice blocks 4a, 4b, 4c are integrated, and the pressing force is dispersed by acting also in the axial direction of the water supply pipe 1, causing the water supply pipe 1 to rupture or cause cracks. There is no.

本願に係る流体伝送管路の凍結工法はこのように構成されている。その為、管路内を流通する流体で形成した氷塊によって少なくとも工事作業に必要な時間は止通(水)効果が得られ、これによって、従来のような広域の断水はなくなり、工事後は空気抜きも必要なく、しかも極めて短時間で、かつ、経費も低廉なもので済む工事を実行する事が出来る。   The freezing method of the fluid transmission pipeline according to the present application is configured in this way. Therefore, the ice block formed by the fluid flowing in the pipe line provides a water shutoff effect for at least the time required for construction work, which eliminates the need for wide-area water breaks as in the past, and removes air after construction. Therefore, it is possible to carry out a construction that requires only a very short time and is inexpensive.

ここで、この実施例による凍結工法を用いた耐圧実験の結果を、モルタルライニングの場合を表1とし、粉体塗装の場合を表2として各々を示す。その結果、いずれの場合でも氷塊4a、4b、4cの一体化したものの管内移動はなかった。管径200mm以下に関しては概ね2.5MPaの耐圧が得られ、施工上の問題はなく、管径250mmの場合は設備の都合上、安全のため、1.75MPaを最大耐圧とした。   Here, the results of the pressure resistance experiment using the freezing method according to this example are shown in Table 1 for mortar lining and Table 2 for powder coating, respectively. As a result, in any case, the ice blocks 4a, 4b and 4c were integrated, but there was no movement within the tube. For a tube diameter of 200 mm or less, a pressure resistance of approximately 2.5 MPa was obtained, and there was no problem in construction. In the case of a tube diameter of 250 mm, 1.75 MPa was set as the maximum pressure resistance for safety reasons due to facilities.

また、凍結後のモルタル状態は凍結中にボックス2a、2bを固定する固着剤(コーキング剤)によって液漏れが無いことから管の外径寸法に変化はなく、凍結後に亀裂等の損傷もなかった。安全基準として、静水圧0.5MPaに推定水撃圧0.5MPaを加え、さらに安全率として1.5〜2.0を考慮した「耐圧1.5MPa以上」を実験結果のすべてにおいて満たしており、本工法が適切で有効なものと解る。尚、表1、表2にあって「ダブル」の表記は凍結手段(ボックス)を二つ用いたことを意味する。   In addition, since the mortar state after freezing does not leak due to the adhesive (caulking agent) that fixes the boxes 2a and 2b during freezing, there was no change in the outer diameter of the tube, and there was no damage such as cracks after freezing. . As a safety standard, an estimated water hammer pressure of 0.5 MPa is added to a hydrostatic pressure of 0.5 MPa, and a safety factor of 1.5 to 2.0 is considered in all of the experimental results. This method is understood to be appropriate and effective. In Tables 1 and 2, the notation “double” means that two freezing means (boxes) are used.

Figure 0006099932
Figure 0006099932

Figure 0006099932
Figure 0006099932

上記実施例は上水道管1について説明したが、本発明はこの上水道管1に限定して実施されるものではなく、他の液体や気体に関してもその流体が氷結可能なものであれば実行する事が出来るもので、多くの化学設備、プラント等に対し、バルブ等を閉め、管内を空にする作業を必要とせず、管路や付設されるバルブの修理、交換が可能となる。   Although the said Example demonstrated the water supply pipe 1, this invention is not limited to this water supply pipe 1, and if the fluid can be frozen about other liquids and gas, it will be performed. In many chemical facilities, plants, etc., it is possible to repair and replace pipes and attached valves without the need to close valves and empty pipes.

尚、凍結手段は二以上を適宜間隔で配置することもできるものとなるが、凍結手段を管の軸方向に沿って長大に形成しても、得られる氷塊の耐圧は実施例で用いたサイズのもの1つの場合と変わりはなく、実効性はないことが実験で判明している。   Two or more freezing means can be arranged at appropriate intervals, but even if the freezing means is formed long along the axial direction of the tube, the pressure resistance of the ice block obtained is the size used in the examples. Experiments have shown that it is no different from one case.

1 上水道管
2a 液体空気ボックス
2b 液体空気ボックス
3 液体空気
4a 第一の氷塊
4b 第二の氷塊
4c 第三の氷塊
1 Water supply pipe 2a Liquid air box 2b Liquid air box 3 Liquid air 4a First ice block 4b Second ice block 4c Third ice block

Claims (1)

流体輸送管の少なくとも二箇所に、対象となる管径に応じ数cmから数10cmの間隔で管内を流通する流体を凍結させるための凍結手段を配置した流体輸送管路の凍結工法であって、前記した流体は上水道水とし、凍結手段は液体空気ボックスもしくは液体窒素ボックスとしてあることとし、前記した輸送管はダクタイル鋳鉄管とし、内面をモルタルライニングあるいは粉体塗装が施されていることとし、前記した各々の凍結手段と対応する管内部分に管壁側から徐々に冷熱を伝えることで断面鼓形とした第一及び第二の氷塊を形成させ、前記した二つの凍結手段からの超低温を両側から伝熱し、その伝熱を相乗的に作用させて徐々に第一及び第二の氷塊間に外側面が膨出曲面状となる第三の氷塊を形成させる流体輸送管路の凍結工法において、前記した第一、第二、第三の氷塊を一体化させ、この一体化された氷塊の芯となる第三の氷塊の中心から直交する方向で流体輸送管の内壁面を押圧させることを特徴とする流体輸送管路の凍結工法。 A fluid transport pipe freezing method in which freezing means for freezing a fluid flowing through the pipe at intervals of several centimeters to several tens of centimeters according to a target pipe diameter is disposed in at least two places of the fluid transport pipe , The above-mentioned fluid is tap water, the freezing means is a liquid air box or a liquid nitrogen box, the transport pipe is a ductile iron pipe, and the inner surface is mortar-lined or powder-coated, First and second ice blocks having a drum shape in cross section are formed by gradually transmitting cold heat from the tube wall side to the corresponding pipe inner portion corresponding to each freezing means, and the ultra-low temperature from the two freezing means described above is generated from both sides. heat transfer, contact freezing method of fluid transport conduit outer surface to form a third block of ice as a bulging curved between the heat transfer to synergistically act gradually first and second ice cubes The first, second, and third ice blocks are integrated, and the inner wall surface of the fluid transport pipe is pressed in a direction orthogonal to the center of the third ice block that becomes the core of the integrated ice block. freezing method of fluid transport conduit according to claim.
JP2012242494A 2012-11-02 2012-11-02 Freezing method for fluid transport pipelines Active JP6099932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242494A JP6099932B2 (en) 2012-11-02 2012-11-02 Freezing method for fluid transport pipelines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242494A JP6099932B2 (en) 2012-11-02 2012-11-02 Freezing method for fluid transport pipelines

Publications (2)

Publication Number Publication Date
JP2014091948A JP2014091948A (en) 2014-05-19
JP6099932B2 true JP6099932B2 (en) 2017-03-22

Family

ID=50936252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242494A Active JP6099932B2 (en) 2012-11-02 2012-11-02 Freezing method for fluid transport pipelines

Country Status (1)

Country Link
JP (1) JP6099932B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927329B2 (en) * 1994-12-13 1999-07-28 株式会社クボタ Stirring tube and method for producing the same
JP2000065281A (en) * 1998-08-18 2000-03-03 Hitachi Plant Eng & Constr Co Ltd Determining method for ice plug completion in piping freezing construction method
JP2009127206A (en) * 2007-11-20 2009-06-11 Daiyu Freeze:Kk Freezing method of fluid transport pipe line
JP4972595B2 (en) * 2008-03-31 2012-07-11 日立Geニュークリア・エナジー株式会社 Method for inhibiting crack growth in piping

Also Published As

Publication number Publication date
JP2014091948A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP4683010B2 (en) Pipe desorption assembly with double valve
KR200399091Y1 (en) Fitting for intercepting fluid flow in the pipe
JP4938479B2 (en) Gas shutoff method for gas piping
JP6960305B2 (en) Freezing pipe and freezing method
US2483082A (en) Repairing water pipes and equipment for use therein
CN103899877A (en) Temporary blocking method for welding large oil transportation pipelines
CN203115384U (en) Water supply and drainage pipeline leakage on-line processing device
JP6099932B2 (en) Freezing method for fluid transport pipelines
JP2009127206A (en) Freezing method of fluid transport pipe line
CN100357652C (en) Pipeline route changer and pipeline route changing method therewith
JP2000065281A (en) Determining method for ice plug completion in piping freezing construction method
CN109555970A (en) Middle lower pressure coal gas pipe liquid nitrogen frozen disconnecting device and application method
CN103364331B (en) The corrosion monitoring process that a kind of line fluid does not stop production
JP6134883B2 (en) Water pipe water stop device and water stop method
KR20140130978A (en) The valve-housing
US2194266A (en) Noncorrosive insert seat
CN203907114U (en) Pipeline pressure-bearing leak-repairing device
KR101771034B1 (en) Apparatus for removing residual coal tar inside the pipe
US10024479B2 (en) System and method for providing upkeep and maintenance to piping systems
CN100375857C (en) Strong magnetic blocking device and its blocking method
JP2009221727A (en) Freezing method for ground around existing small-scale underground structure
JP2016017608A (en) Pipe unit
CN212839832U (en) Anti-freezing valve pipe fitting
JP2011089587A (en) Gas takeoff unit for bulk reservoir, and the bulk reservoir
CN107687550A (en) Line with rubber pressure vessels for the chemical industry outlet reducing adapter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170222

R150 Certificate of patent or registration of utility model

Ref document number: 6099932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250