JP6099716B2 - Kneading equipment - Google Patents

Kneading equipment Download PDF

Info

Publication number
JP6099716B2
JP6099716B2 JP2015197559A JP2015197559A JP6099716B2 JP 6099716 B2 JP6099716 B2 JP 6099716B2 JP 2015197559 A JP2015197559 A JP 2015197559A JP 2015197559 A JP2015197559 A JP 2015197559A JP 6099716 B2 JP6099716 B2 JP 6099716B2
Authority
JP
Japan
Prior art keywords
pressure
zone
screw
kneading
molten resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015197559A
Other languages
Japanese (ja)
Other versions
JP2016000535A (en
Inventor
遊佐 敦
敦 遊佐
智史 山本
智史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2015197559A priority Critical patent/JP6099716B2/en
Publication of JP2016000535A publication Critical patent/JP2016000535A/en
Application granted granted Critical
Publication of JP6099716B2 publication Critical patent/JP6099716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Description

本発明は、加圧流体を用いて熱可塑性樹脂成形体を製造するための混練装置に関する。   The present invention relates to a kneading apparatus for producing a thermoplastic resin molded body using a pressurized fluid.

近年、超臨界二酸化炭素などの高圧二酸化炭素を用いた射出成形法や押出成形法が各種検討されている。このような成形法は、非常に高圧の流体が溶融樹脂に導入されるため、種々の機能を有する成形体を製造することができる。例えば、非相溶系のポリマー同士を相溶させるために、溶融樹脂と高圧二酸化炭素とを可塑化シリンダ内で接触混練するポリマーアロイの射出成形法や押出成形法が提案されている(特開2003−94477号公報や成形加工学会第17回秋季大会予稿集,227(2009))。これらの成形法においては、可塑化シリンダ内に内蔵されたスクリュを備える混練装置により、溶融樹脂と高圧二酸化炭素とが接触混練されている。また、熱可塑性樹脂から難揮発成分を除去するために、ベント部を有する押出機の途中で、溶融樹脂に超臨界二酸化炭素を導入する成形法が提案されている(特開平11−292921号公報)。さらに、可塑化シリンダから金型内に熱可塑性樹脂の溶融樹脂を射出充填し、次いで、該金型内に、超臨界二酸化炭素及び有機金属錯体などの機能性材料を含む加圧流体を導入することにより、機能性材料を表面に分散させた熱可塑性樹脂成形体を製造する射出成形法が提案されている(特許第3964447号公報)。   In recent years, various injection molding methods and extrusion molding methods using high-pressure carbon dioxide such as supercritical carbon dioxide have been studied. In such a molding method, since a very high-pressure fluid is introduced into the molten resin, molded articles having various functions can be manufactured. For example, in order to make incompatible polymers compatible with each other, an injection molding method or an extrusion molding method of a polymer alloy in which a molten resin and high-pressure carbon dioxide are contact-kneaded in a plasticizing cylinder has been proposed (Japanese Patent Laid-Open No. 2003). No. -94477 and Proc. Of the 17th Autumn Meeting of the Japan Society for Molding Technology, 227 (2009)). In these molding methods, the molten resin and high-pressure carbon dioxide are contact-kneaded by a kneading apparatus including a screw built in the plasticizing cylinder. Also, a molding method has been proposed in which supercritical carbon dioxide is introduced into a molten resin in the middle of an extruder having a vent portion in order to remove hardly volatile components from a thermoplastic resin (Japanese Patent Laid-Open No. 11-292921). ). Further, a molten resin of thermoplastic resin is injected and filled into the mold from the plasticizing cylinder, and then a pressurized fluid containing a functional material such as supercritical carbon dioxide and an organometallic complex is introduced into the mold. Thus, an injection molding method for manufacturing a thermoplastic resin molded body in which a functional material is dispersed on the surface has been proposed (Japanese Patent No. 3964447).

ところで、高圧二酸化炭素の樹脂に対する溶解度は低く、それゆえ上記のような溶融樹脂と加圧流体とを単発的に接触させる工程を有する成形法では、多量の高圧二酸化炭素と溶融樹脂とを接触混練することが難しい。そのため、高圧二酸化炭素とともに機能性材料を用いた場合も、溶融樹脂に機能性材料が高濃度で導入され難い。かかる観点から、可塑化シリンダの上部側面に加圧流体を導入する導入口を設けるとともに、導入口よりも下流側にベント口を設けた混練装置を用い、可塑化シリンダ内で溶融樹脂と高圧二酸化炭素及び機能性材料を含む加圧流体とを接触混練した後、金型への射出充填前に、溶融樹脂の樹脂内圧を低下させて、ガス化させた二酸化炭素のみを溶融樹脂から分離し、ベント口から二酸化炭素を排気する成形体の製造方法が提案されている(特開2009−298838号公報)。この成形法によれば、溶融樹脂における高圧二酸化炭素の濃度を制御しつつ、溶融樹脂に導入される機能性材料の濃度を向上させることができる。   By the way, the high-pressure carbon dioxide has a low solubility in the resin. Therefore, in the molding method having the step of bringing the molten resin and the pressurized fluid into contact with each other as described above, a large amount of high-pressure carbon dioxide and the molten resin are contact-kneaded. Difficult to do. Therefore, even when a functional material is used together with high-pressure carbon dioxide, it is difficult to introduce the functional material into the molten resin at a high concentration. From such a viewpoint, a kneading apparatus having an inlet for introducing a pressurized fluid into the upper side surface of the plasticizing cylinder and a vent port downstream of the inlet is used, and the molten resin and the high-pressure dioxide in the plasticizing cylinder are used. After contact kneading with a pressurized fluid containing carbon and a functional material, before injection filling into the mold, the resin internal pressure of the molten resin is reduced, and only the gasified carbon dioxide is separated from the molten resin, A method for producing a molded body in which carbon dioxide is exhausted from a vent port has been proposed (Japanese Patent Laid-Open No. 2009-299838). According to this molding method, it is possible to improve the concentration of the functional material introduced into the molten resin while controlling the concentration of high-pressure carbon dioxide in the molten resin.

しかしながら、特開2009−298838号公報に記載されているような混練装置では、溶融樹脂と高圧二酸化炭素を含む加圧流体とを接触混練する高圧混練ゾーンと、溶融樹脂の樹脂内圧を低下させて、加圧流体と接触混練した溶融樹脂からガス化した二酸化炭素を分離する減圧ゾーンとは、溶融樹脂自体によってシールされる。そのため、接触混練時においても、高圧混練ゾーンからガス化した二酸化炭素が減圧ゾーンを介して可塑化シリンダ外へ排気されやすくなり、高圧混練ゾーンにおける樹脂内圧の低下を招きやすい。その結果、溶融樹脂と加圧流体とを高圧状態を維持したまま接触混練することが困難となり、また接触混練時に高圧混練ゾーンにおける加圧流体から高圧二酸化炭素が容易に気化してしまうという問題がある。   However, in a kneading apparatus such as that described in JP-A-2009-29888, a high-pressure kneading zone in which the molten resin and a pressurized fluid containing high-pressure carbon dioxide are contact-kneaded and the internal pressure of the molten resin is reduced. The decompression zone for separating the carbon dioxide gasified from the molten resin kneaded with the pressurized fluid is sealed by the molten resin itself. For this reason, even during contact kneading, carbon dioxide gasified from the high-pressure kneading zone is likely to be exhausted out of the plasticizing cylinder via the decompression zone, and the internal pressure of the resin in the high-pressure kneading zone tends to decrease. As a result, it becomes difficult to knead the molten resin and the pressurized fluid while maintaining a high pressure state, and high pressure carbon dioxide is easily vaporized from the pressurized fluid in the high pressure kneading zone during the contact kneading. is there.

上記観点から、可塑化シリンダと、可塑化シリンダ内を回転及び進退自在に配設されたスクリュとを備える混練装置において、可塑化シリンダ内を、溶融樹脂と加圧流体とを接触混練する第1のエリアと、ガス化した二酸化炭素を排気する第2のエリアとに分離するために、スクリュに第1のエリアと第2のエリアとを貫通する貫通孔を穿設し、該貫通孔にバネによって開閉するポペット弁を配設した混練装置が提案されている(特開2010−253703号公報)。かかる混練装置によれば、第1のエリアの溶融樹脂の圧力がバネの押圧力を超えると、ポペット弁が開いて、第1のエリアの溶融樹脂が第2のエリアに流動するため、可塑化シリンダ内の任意のエリアの溶融樹脂を所望の圧力で維持することができる。   In view of the above, in a kneading apparatus including a plasticizing cylinder and a screw arranged to be able to rotate and advance / retreat in the plasticizing cylinder, the first resin kneading the molten resin and the pressurized fluid in the plasticizing cylinder. In order to separate the gas area into a second area where gasified carbon dioxide is exhausted, a through-hole penetrating the first area and the second area is formed in the screw, and a spring is provided in the through-hole. Has been proposed (Japanese Patent Laid-Open No. 2010-253703). According to such a kneading apparatus, when the pressure of the molten resin in the first area exceeds the pressing force of the spring, the poppet valve opens and the molten resin in the first area flows into the second area. The molten resin in any area in the cylinder can be maintained at a desired pressure.

しかしながら、上記のようなバネによる圧力制御で開閉するポペット弁をシール機構として有する混練装置では、第1のエリアの樹脂内圧がバネ圧を超えないと溶融樹脂がポペット弁を通過しない。そのため、第1のエリアでは、加圧流体を導入する前でもバネ圧によって溶融樹脂が流動抵抗を受けることとなる。そして、加圧流体の溶融樹脂への分散性を考慮すれば、接触混練時にできるだけ高圧状態を維持することが望まれるため、上記の混練装置を用いる場合、第1のエリア内が加圧流体の導入前の圧力に加圧流体の圧力を加えた圧力となっても所定の接触混練の間はポペット弁が開弁しないよう高いバネ圧を有するポペット弁を使用する必要がある。その結果、上記混練装置では、可塑化時にバネ圧によって可塑化能力が低下するだけでなく、接触混練時でも第1のエリアの溶融樹脂の樹脂内圧が高いバネ圧を超えなければ、第1のエリアと第2のエリアとが連通しないため、可塑化能力が低下しやすい。それゆえ、高い粘性を有する樹脂を使用する場合、可塑化計量が不安定になりやすい。また、上記混練装置では、加熱された溶融樹脂がスクリュ内に設けた貫通孔を通過するため、長期の成形機の使用により貫通孔内に配設されたバネが溶融樹脂の熱で劣化し、バネ定数が変化しやすい。その結果、長期に渡って高圧混練ゾーンの圧力を一定に維持することが困難であり、工業生産において安定して成形を行うことができないという問題がある。   However, in the kneading apparatus having as a sealing mechanism a poppet valve that opens and closes by pressure control using a spring as described above, the molten resin does not pass through the poppet valve unless the resin internal pressure in the first area exceeds the spring pressure. Therefore, in the first area, the molten resin is subjected to flow resistance by the spring pressure even before the pressurized fluid is introduced. In consideration of the dispersibility of the pressurized fluid in the molten resin, it is desired to maintain a high pressure state as much as possible during contact kneading. Therefore, when the above kneading apparatus is used, the first area contains the pressurized fluid. Even when the pressure of the pressurized fluid is added to the pressure before introduction, it is necessary to use a poppet valve having a high spring pressure so that the poppet valve does not open during predetermined contact kneading. As a result, in the kneading apparatus, not only the plasticizing ability is reduced by the spring pressure at the time of plasticization, but also if the resin internal pressure of the molten resin in the first area does not exceed the high spring pressure even at the time of contact kneading, Since the area and the second area do not communicate with each other, the plasticizing ability tends to decrease. Therefore, when a resin having a high viscosity is used, the plasticization measurement tends to become unstable. Further, in the kneading apparatus, since the heated molten resin passes through the through-hole provided in the screw, the spring disposed in the through-hole is deteriorated by the heat of the molten resin by using a long-term molding machine, The spring constant is likely to change. As a result, it is difficult to keep the pressure in the high-pressure kneading zone constant over a long period of time, and there is a problem that molding cannot be performed stably in industrial production.

本発明は上記課題を解決するためになされたものであり、本発明の目的は、加圧流体を可塑化シリンダに導入し、可塑化シリンダ内で熱可塑性樹脂を可塑化した溶融樹脂と加圧流体とを接触混練して熱可塑性樹脂成形体を製造する場合に、高い可塑化能力を有するとともに、長期に渡って安定に熱可塑性樹脂成形体を製造することができる混練装置、及び該混練装置を用いた熱可塑性樹脂成形体の製造方法を提供することにある。   The present invention has been made to solve the above-described problems. An object of the present invention is to introduce a pressurized fluid into a plasticizing cylinder, pressurize a molten resin obtained by plasticizing a thermoplastic resin in the plasticizing cylinder, and pressurize. When producing a thermoplastic resin molded body by contact-kneading with a fluid, the kneading apparatus has a high plasticizing ability and can stably produce a thermoplastic resin molded body over a long period of time, and the kneading apparatus Another object of the present invention is to provide a method for producing a thermoplastic resin molded body using the above-mentioned.

本発明の一局面は、可塑化シリンダと、前記可塑化シリンダ内を回転及び進退自在に配設されたスクリュとを備え、前記可塑化シリンダ内で、熱可塑性樹脂が可塑化された溶融樹脂と加圧流体とを接触混練する高圧混練ゾーンと、前記高圧ゾーンに隣接する隣接ゾーンとが形成される混練装置であって、前記高圧混練ゾーンと前記隣接ゾーンとの間に、前記スクリュの回転状態に応じて前記高圧混練ゾーンと前記隣接ゾーンとを連通及び遮断するシール機構を備え、前記シール機構は、前記スクリュの回転状態に応じて、前記高圧混練ゾーンと前記隣接ゾーンとを遮断する機構であり、シール部を有する前記スクリュの縮径部と、前記スクリュの縮径部に軸方向で移動可能に外嵌し、前記シール部と当接する接触面を有するシールリングとを備えており、前記スクリュの回転状態に応じて、前記縮径部のシール部と前記シールリングの接触面とが離間すると、前記高圧混練ゾーンと前記隣接ゾーンとが連通し、前記縮径部のシール部と前記シールリングの接触面とが当接すると、前記高圧混練ゾーンと前記隣接ゾーンとが遮断する。   One aspect of the present invention includes a plasticizing cylinder and a screw disposed in the plasticizing cylinder so as to be rotatable and movable back and forth, and a molten resin obtained by plasticizing a thermoplastic resin in the plasticizing cylinder; A kneading apparatus in which a high-pressure kneading zone for contact-kneading a pressurized fluid and an adjacent zone adjacent to the high-pressure zone is formed, and the rotational state of the screw is between the high-pressure kneading zone and the adjacent zone The high-pressure kneading zone and the adjacent zone are provided with a sealing mechanism that communicates with and shuts off, and the sealing mechanism is a mechanism that shuts off the high-pressure kneading zone and the adjacent zone according to the rotational state of the screw. A reduced-diameter portion of the screw having a seal portion, and a seal ring externally fitted to the reduced-diameter portion of the screw so as to be movable in the axial direction and having a contact surface in contact with the seal portion. When the seal portion of the reduced diameter portion and the contact surface of the seal ring are separated according to the rotation state of the screw, the high pressure kneading zone and the adjacent zone communicate with each other, and the seal of the reduced diameter portion When the part and the contact surface of the seal ring come into contact with each other, the high-pressure kneading zone and the adjacent zone are blocked.

また、本発明の他の局面は、上記に記載の混練装置であって、前記スクリュは、係止部を備え、前記シールリングは、前記スクリュの係止部と係合及び係脱する被係止部を備えており、前記スクリュが所定回転数以上で逆回転している場合に、前記スクリュの係止部と前記シールリングの被係止部とが係合し、前記スクリュと前記シールリングとが共回りすることにより、前記縮径部のシール部と前記シールリングの接触面との当接状態が維持される。   Another aspect of the present invention is the kneading apparatus described above, wherein the screw includes a locking portion, and the seal ring engages and disengages with the locking portion of the screw. When the screw is reversely rotated at a predetermined rotational speed or more, the screw locking portion and the seal ring locked portion are engaged with each other, and the screw and the seal ring are provided. , The contact state between the seal portion of the reduced diameter portion and the contact surface of the seal ring is maintained.

本発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。   The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.

図1は、本発明の実施の形態に係る混練装置の一例を示す要部概略断面図であり、高圧混練ゾーンと減圧ゾーンとが連通している状態を示す。FIG. 1 is a schematic cross-sectional view of an essential part showing an example of a kneading apparatus according to an embodiment of the present invention, showing a state where a high-pressure kneading zone and a depressurization zone are in communication. 図2は、本発明の実施の形態に係る混練装置の一例を示す要部概略断面図であり、高圧混練ゾーンと減圧ゾーンとが遮断している状態を示す。FIG. 2 is a schematic cross-sectional view showing a main part of an example of the kneading apparatus according to the embodiment of the present invention, and shows a state where the high-pressure kneading zone and the decompression zone are blocked. 図3は、本発明の実施の形態に係る混練装置のシール機構の一例を示す概略斜視図である。FIG. 3 is a schematic perspective view showing an example of a sealing mechanism of the kneading apparatus according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る混練装置のシール機構の一例を示す要部概略拡大断面図である。FIG. 4 is a main part schematic enlarged cross-sectional view showing an example of the sealing mechanism of the kneading apparatus according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る混練装置のシール機構の他の一例を示す要部概略拡大断面図である。FIG. 5 is a main part schematic enlarged cross-sectional view showing another example of the sealing mechanism of the kneading apparatus according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る成形機の一例を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing an example of a molding machine according to the embodiment of the present invention.

以下、図面を参照しながら、本発明の実施の形態に係る混練装置及び該混練装置を用いた熱可塑性樹脂成形体の製造方法について説明する。   Hereinafter, a kneading apparatus according to an embodiment of the present invention and a method for producing a thermoplastic resin molded body using the kneading apparatus will be described with reference to the drawings.

図1及び図2は、本発明の実施の形態に係る混練装置の一例を示す要部概略断面図であり、図1は、高圧混練ゾーンと減圧ゾーンとが連通している状態を、図2は、高圧混練ゾーンと減圧ゾーンとが遮断している状態を示す。また、図3は、図1及び図2におけるシール機構を示す概略斜視図である。   1 and 2 are schematic cross-sectional views of the main part showing an example of a kneading apparatus according to an embodiment of the present invention. FIG. 1 shows a state in which a high-pressure kneading zone and a reduced-pressure zone communicate with each other. Indicates a state where the high-pressure kneading zone and the decompression zone are blocked. FIG. 3 is a schematic perspective view showing the sealing mechanism in FIGS. 1 and 2.

混練装置200は、可塑化シリンダ210と、可塑化シリンダ210内に回転及び進退自在に配設されたスクリュ20とを備えている。また、図示しないが、可塑化シリンダ210の上流側の後端部には、スクリュ20を回転させる回転モータなどの回転駆動手段と、スクリュ20を前後進させるためのボールネジ及びそれを駆動させるモータなどの移動手段とが接続されており、下流側の先端部には、溶融樹脂を射出するノズル部が接続されている。なお、図1及び図2に示すように、本実施の形態の混練装置200は、従来公知の混練装置の構成と同様に、可塑化シリンダ210の後方側から見た場合に、スクリュ20を反時計回りに回転させると溶融樹脂を前方(ノズル部側)に送る正回転をし、時計回りに回転させると逆回転するように構成されている。   The kneading apparatus 200 includes a plasticizing cylinder 210 and a screw 20 disposed in the plasticizing cylinder 210 so as to be rotatable and advanceable / retractable. Further, although not shown in the drawing, at the rear end portion on the upstream side of the plasticizing cylinder 210, a rotation driving means such as a rotation motor for rotating the screw 20, a ball screw for moving the screw 20 forward and backward, a motor for driving the same, and the like And a nozzle portion for injecting molten resin is connected to the downstream end portion. As shown in FIG. 1 and FIG. 2, the kneading apparatus 200 of the present embodiment has a screw 20 that is not bent when viewed from the rear side of the plasticizing cylinder 210, as in the configuration of a conventionally known kneading apparatus. When it is rotated clockwise, the resin is forwardly rotated forward (nozzle side), and when it is rotated clockwise, it is reversely rotated.

可塑化シリンダ210の上部側面には、上流側から順に、熱可塑性樹脂を可塑化シリンダ210に供給するための樹脂供給口201、高圧二酸化炭素を含む加圧流体を可塑化シリンダ210内に導入するための導入口202、及び可塑化シリンダ210内からガス化した二酸化炭素を排気するためのベント口203が形成されている。後述するように、これらの樹脂供給口201、及び導入口202にはそれぞれ、樹脂供給用ホッパ211、及び導入バルブ212が配設されており、ベント口203には、バッファ容器219を介して真空ポンプ220が接続されている。また、可塑化シリンダ210の外壁面には、バンドヒータ(図示せず)が配設されており、これにより可塑化シリンダ210が加熱されて、熱可塑性樹脂が可塑化される。さらに、可塑化シリンダ210の下部側面の導入口202と対向する位置及びベント口203に対向する位置にはそれぞれ、図示しない圧力計及び温度センサが設けられている。   A plastic supply port 201 for supplying a thermoplastic resin to the plasticizing cylinder 210 and a pressurized fluid containing high-pressure carbon dioxide are introduced into the plasticizing cylinder 210 in order from the upstream side on the upper side surface of the plasticizing cylinder 210. For this purpose, there are formed an inlet port 202 and a vent port 203 for exhausting gasified carbon dioxide from the plasticizing cylinder 210. As will be described later, a resin supply hopper 211 and an introduction valve 212 are disposed in the resin supply port 201 and the introduction port 202, respectively, and the vent port 203 is evacuated via a buffer container 219. A pump 220 is connected. In addition, a band heater (not shown) is disposed on the outer wall surface of the plasticizing cylinder 210, whereby the plasticizing cylinder 210 is heated to plasticize the thermoplastic resin. Further, a pressure gauge and a temperature sensor (not shown) are provided at a position facing the introduction port 202 and a position facing the vent port 203 on the lower side surface of the plasticizing cylinder 210, respectively.

従って、本実施の形態の混練装置200では、スクリュ20が正回転することにより、樹脂供給口201から可塑化シリンダ210内に熱可塑性樹脂が供給され、熱可塑性樹脂がバンドヒータによって可塑化されて溶融樹脂となり、前方に送られる。そして、導入口202近傍まで送られた溶融樹脂は導入された加圧流体と高圧下、接触混練される。次いで、加圧流体と接触混練された溶融樹脂の樹脂内圧を低下させることにより、ガス化した二酸化炭素が溶融樹脂から分離し、ベント口203からこのガス化した二酸化炭素が排気される。そして、さらに前方に送られた溶融樹脂はスクリュ20の先端部に押し出され、溶融樹脂の圧力がスクリュ20に対する反力となり、該反力でスクリュ20が後退することにより計量が行われる。これにより、可塑化シリンダ210内では、上流側から順に、熱可塑性樹脂を可塑化して溶融樹脂とする可塑化ゾーン21、溶融樹脂と導入口202から導入される加圧流体とを高圧下、接触混練する高圧混練ゾーン22、及び加圧流体と接触混練した溶融樹脂の樹脂内圧を低下させることにより、溶融樹脂から分離された二酸化炭素をベント口203から排気する減圧ゾーン23が形成される。なお、溶融樹脂と加圧流体との接触混練を効率的に行うため、可塑化シリンダ210に導入口202及びベント口203をそれぞれ複数設け、可塑化シリンダ210内に高圧混練ゾーン22及び減圧ゾーン23がそれぞれ複数形成されてもよい。   Therefore, in the kneading apparatus 200 of the present embodiment, when the screw 20 is rotated forward, thermoplastic resin is supplied from the resin supply port 201 into the plasticizing cylinder 210, and the thermoplastic resin is plasticized by the band heater. It becomes molten resin and is sent forward. The molten resin sent to the vicinity of the introduction port 202 is contact-kneaded with the introduced pressurized fluid under high pressure. Next, by reducing the internal pressure of the molten resin that has been contact-kneaded with the pressurized fluid, the gasified carbon dioxide is separated from the molten resin, and the gasified carbon dioxide is exhausted from the vent port 203. The molten resin sent further forward is pushed out to the tip of the screw 20, and the pressure of the molten resin becomes a reaction force against the screw 20, and the screw 20 moves backward by the reaction force to perform measurement. Thereby, in the plasticizing cylinder 210, in order from the upstream side, the plasticizing zone 21 that plasticizes the thermoplastic resin into the molten resin, the molten resin and the pressurized fluid introduced from the inlet 202 are brought into contact under high pressure. A high pressure kneading zone 22 for kneading and a pressure reducing zone 23 for exhausting carbon dioxide separated from the molten resin from the vent port 203 are formed by lowering the internal pressure of the molten resin kneaded in contact with the pressurized fluid. In order to efficiently perform contact kneading between the molten resin and the pressurized fluid, a plurality of introduction ports 202 and vent ports 203 are provided in the plasticizing cylinder 210, and the high pressure kneading zone 22 and the decompression zone 23 are provided in the plasticizing cylinder 210. A plurality of each may be formed.

図1及び2に示すように、上記可塑化ゾーン21、高圧混練ゾーン22、及び減圧ゾーン23の間にはそれぞれ、これらのゾーン21,22,23をスクリュ20の回転状態に応じて連通及び遮断する上流側シール機構S1及び下流側シール機構S2が配設されている。これにより、加圧流体を高圧混練ゾーン22に導入した際に、スクリュ20の回転状態に応じて機械的に高圧混練ゾーン22の上流側及び下流側がシールされるから、確実に高圧混練ゾーン22と隣接するゾーン21,23とを遮断できる。また、本実施の形態のシール機構S1,S2によれば、圧力制御によらず、スクリュ20の回転状態に応じて高圧混練ゾーン22と隣接するゾーン21,23とを連通及び遮断できるから、溶融樹脂の流動抵抗が小さい。さらに、スクリュ20の回転状態に応じて高圧混練ゾーン22を隣接するゾーン21,23からシールできるから、任意のタイミングで高圧混練ゾーン22の圧力を維持できる。それゆえ、高い粘性を有する樹脂を接触混練しても、高い可塑化能力を維持することができる。そして、このようなスクリュ20の回転状態に応じてシール性能を発揮する機械的なシール機構S1,S2を用いれば、高温の溶融樹脂がシール機構S1,S2を通過しても、シール性能の劣化が少ないため、成形機を長期間稼動させた後でも、高圧混練ゾーン22の圧力の変化が少なく、それゆえ長期に安定して熱可塑性樹脂成形体を製造することができる。また、これらのシール機構S1,S2はスクリュ20の回転状態に応じて高圧混練ゾーン22と隣接するゾーン21,23とを連通及び遮断するから、例えば、スクリュ20の正回転及び逆回転を任意のタイミングで行えば、高圧混練ゾーン22に溶融樹脂を滞留させた状態で、加圧流体と接触混練した溶融樹脂の樹脂内圧を低下させて、溶融樹脂からガス化した二酸化炭素を分離することができる。その結果、溶融樹脂を前方に送ることなく、高圧二酸化炭素の濃度の低くなった溶融樹脂と加圧流体とを繰り返し接触混練することができる。また、機能性材料を含む加圧流体を用いる場合、高濃度で機能性材料を分散させた成形体を製造することができる。   As shown in FIGS. 1 and 2, the zones 21, 22, and 23 are communicated and blocked between the plasticizing zone 21, the high-pressure kneading zone 22, and the decompression zone 23 according to the rotational state of the screw 20. An upstream seal mechanism S1 and a downstream seal mechanism S2 are disposed. Thereby, when the pressurized fluid is introduced into the high-pressure kneading zone 22, the upstream side and the downstream side of the high-pressure kneading zone 22 are mechanically sealed according to the rotation state of the screw 20, so The adjacent zones 21 and 23 can be blocked. In addition, according to the sealing mechanisms S1 and S2 of the present embodiment, the high pressure kneading zone 22 and the adjacent zones 21 and 23 can be communicated and blocked according to the rotational state of the screw 20 without depending on the pressure control. Low flow resistance of resin. Furthermore, since the high-pressure kneading zone 22 can be sealed from the adjacent zones 21 and 23 according to the rotational state of the screw 20, the pressure in the high-pressure kneading zone 22 can be maintained at an arbitrary timing. Therefore, even when a resin having a high viscosity is contact-kneaded, a high plasticizing ability can be maintained. And if mechanical seal mechanism S1, S2 which exhibits sealing performance according to the rotation state of such a screw 20 is used, even if high temperature molten resin passes sealing mechanism S1, S2, degradation of sealing performance will be carried out. Therefore, even after the molding machine is operated for a long period of time, there is little change in the pressure of the high-pressure kneading zone 22, and therefore a thermoplastic resin molded body can be produced stably over a long period of time. Further, since these sealing mechanisms S1 and S2 communicate and block the high-pressure kneading zone 22 and the adjacent zones 21 and 23 according to the rotational state of the screw 20, for example, forward rotation and reverse rotation of the screw 20 can be performed arbitrarily. If it is performed at the timing, the internal pressure of the molten resin contact-kneaded with the pressurized fluid can be reduced in a state where the molten resin is retained in the high-pressure kneading zone 22, and the gasified carbon dioxide can be separated from the molten resin. . As a result, the molten resin having a low concentration of high-pressure carbon dioxide and the pressurized fluid can be repeatedly contact-kneaded without sending the molten resin forward. In addition, when a pressurized fluid containing a functional material is used, a molded body in which the functional material is dispersed at a high concentration can be manufactured.

本実施の形態の混練装置200において、上記スクリュ20の回転状態に応じて高圧混練ゾーン22と隣接する他のゾーン21,23とを連通及び遮断するシール機構は、少なくとも高圧混練ゾーン22の下流側に設けられていることが好ましく、高圧混練ゾーン22の上流側及び下流側の両方に設けられていることがより好ましい。すなわち、図1及び図2から理解されるように、高圧混練ゾーン22への加圧流体の導入により、高圧混練ゾーン22の上流側においては、高圧の加圧流体が可塑化ゾーン21と高圧混練ゾーン22とを遮断するように上流側シール機構S1に働くのに対し、高圧混練ゾーン22の下流側においては、加圧流体及び上流側から流動する溶融樹脂が高圧混練ゾーン22と減圧ゾーン23とを連通させるように下流側シール機構S2に働く。また、高圧混練ゾーン22の上流側には通常、溶融樹脂が充填されているため、加圧流体が漏洩し難い。従って、高圧混練ゾーン22の上流側には低いバネ圧を有する逆流防止弁などの簡便なシール機構を配設し、少なくとも高圧混練ゾーン22の下流側にスクリュ20の回転状態に応じて高圧混練ゾーン22と減圧ゾーン23とを連通及び遮断する下流側シール機構S2を配設すれば、シール性の低下しやすい高圧混練ゾーン22と減圧ゾーン23とを確実に遮断でき、接触混練時に高圧混練ゾーン22の高圧状態を維持することができる。なお、本実施の形態において、上流側シール機構S1と下流側シール機構S2とは基本的に同一の構成を有するものが用いられているため、以下では、下流側シール機構S2について主として説明する。   In the kneading apparatus 200 according to the present embodiment, the seal mechanism that communicates and blocks the high-pressure kneading zone 22 and the other adjacent zones 21 and 23 according to the rotational state of the screw 20 is at least downstream of the high-pressure kneading zone 22. It is preferable to be provided at both the upstream side and the downstream side of the high-pressure kneading zone 22. That is, as understood from FIGS. 1 and 2, the introduction of the pressurized fluid into the high-pressure kneading zone 22 causes the high-pressure pressurized fluid to flow into the plasticizing zone 21 and the high-pressure kneading upstream of the high-pressure kneading zone 22. On the downstream side of the high-pressure kneading zone 22, the pressurized fluid and the molten resin flowing from the upstream side are connected to the high-pressure kneading zone 22 and the decompression zone 23. Acts on the downstream seal mechanism S2 so as to communicate with each other. Moreover, since the molten resin is usually filled in the upstream side of the high-pressure kneading zone 22, the pressurized fluid hardly leaks. Therefore, a simple sealing mechanism such as a backflow prevention valve having a low spring pressure is disposed upstream of the high-pressure kneading zone 22, and at least downstream of the high-pressure kneading zone 22 according to the rotational state of the screw 20. If the downstream side seal mechanism S2 that communicates and blocks the pressure reduction zone 23 and the pressure reduction zone 23 is provided, the high pressure kneading zone 22 and the pressure reduction zone 23, which are likely to deteriorate the sealing performance, can be reliably blocked, and the high pressure kneading zone 22 during contact kneading The high pressure state can be maintained. In this embodiment, since the upstream side seal mechanism S1 and the downstream side seal mechanism S2 have basically the same configuration, the downstream side seal mechanism S2 will be mainly described below.

本実施の形態のスクリュ20は、図1〜図3に示すように、高圧混練ゾーン22と減圧ゾーン23との境界領域において、この境界領域と隣接する領域に比べて縮径された縮径部50を有している。また、縮径部50には、縮径部50の範囲で軸方向(前後方向)に移動可能となるように遊嵌状態で下流側シールリング60が外嵌している。これら縮径部50と下流側シールリング60とで、下流側シール機構S2が構成されている。なお、上流側及び下流側シールリング40,60を縮径部30,50に外嵌させるために、スクリュ20は、上流側から順に、第1スクリュ部20a、第2スクリュ部20b、及び第3スクリュ部20cに分割されており、これらが縮径部30,50で図示しない螺子によって螺止めされている。   As shown in FIGS. 1 to 3, the screw 20 of the present embodiment has a reduced diameter portion that is reduced in diameter in the boundary region between the high-pressure kneading zone 22 and the decompression zone 23 as compared with the region adjacent to the boundary region. 50. Further, a downstream seal ring 60 is externally fitted to the reduced diameter portion 50 in a loosely fitted state so as to be movable in the axial direction (front-rear direction) within the range of the reduced diameter portion 50. The reduced diameter portion 50 and the downstream seal ring 60 constitute a downstream seal mechanism S2. In order to externally fit the upstream and downstream seal rings 40 and 60 to the reduced diameter portions 30 and 50, the screw 20 includes, in order from the upstream side, the first screw portion 20a, the second screw portion 20b, and the third screw portion. The screw part 20c is divided into parts, and these are reduced diameter parts 30 and 50 by screws not shown.

高圧混練ゾーン22と減圧ゾーン23との間に配置される縮径部50は、上流側の第2スクリュ部20bから連接し、前方に向かって傾斜するテーパ面を有する円錐台部(シール部)51と、円錐台部51から連接し、軸方向に水平に延びる水平面を有する円筒部52とで構成されている。また、下流側の第3スクリュ部20cの端面54には、下流側シールリング60を回り止めするための係止部として突起部54aが周方向に所定間隔で複数箇所形成されている。なお、縮径部50の構造は、高圧混練ゾーン22と減圧ゾーン23とを連通及び遮断できるものであれば特に限定されない。例えば、縮径部50は直径の異なる円筒部が連接された構造を有していてもよいし、円錐台部51が下流側に配設された構造を有していてもよい。   The reduced diameter portion 50 disposed between the high-pressure kneading zone 22 and the decompression zone 23 is connected to the upstream second screw portion 20b and has a truncated cone portion (seal portion) having a tapered surface inclined forward. 51 and a cylindrical portion 52 having a horizontal plane that is connected from the truncated cone portion 51 and extends horizontally in the axial direction. Further, on the end surface 54 of the downstream third screw portion 20c, a plurality of protrusions 54a are formed at predetermined intervals in the circumferential direction as locking portions for preventing the downstream seal ring 60 from rotating. The structure of the reduced diameter portion 50 is not particularly limited as long as it can communicate and block the high-pressure kneading zone 22 and the decompression zone 23. For example, the reduced diameter portion 50 may have a structure in which cylindrical portions having different diameters are connected, or may have a structure in which the truncated cone portion 51 is disposed on the downstream side.

図3に示すように、下流側シールリング60は、スクリュ20の縮径部50を外嵌するように貫通孔61を有している。また、図1及び図2に示すように、該貫通孔61は、上流側に、前方に向かって縮径するテーパ面(接触面)を有するテーパ部62と、テーパ部62から前方に向かって水平に延在する環状部63とが連接されて構成されている。このテーパ部62のテーパ面は円錐台部51のテーパ面の少なくとも一部と密着状態で当接するように形成されている。なお、貫通孔61の構造は、高圧混練ゾーン22と減圧ゾーン23とを連通及び遮断できるものであれば特に限定されない。例えば、貫通孔61は内径の異なる環状部が複数形成された構造を有していてもよいし、テーパ部62が下流側に配設された構造を有していてもよい。さらに、下流側シールリング60がスクリュ20の縮径部50の範囲で軸方向に移動可能なように、貫通孔61の環状部63の内径は上記縮径部50の円筒部52の直径よりも大きく形成されている。そして、下流側シールリング60の下流側リング面66には、被係止部として、下流側から見たときに、時計方向に深くなるように傾斜する切欠き67が周方向に複数箇所形成されている。これにより、下流側シールリング60は、スクリュ20の回転状態に応じて、スクリュ20に対し切欠き67の深さの範囲で軸方向に移動し、突起部54aが切欠き67と係合すると、スクリュ20に対して下流側シールリング60はそれ以上の軸方向の移動が規制される。   As shown in FIG. 3, the downstream seal ring 60 has a through hole 61 so as to externally fit the reduced diameter portion 50 of the screw 20. As shown in FIGS. 1 and 2, the through-hole 61 has a tapered portion 62 having a tapered surface (contact surface) whose diameter decreases toward the front on the upstream side, and forward from the tapered portion 62. An annular portion 63 that extends horizontally is connected to each other. The tapered surface of the tapered portion 62 is formed so as to abut on at least a part of the tapered surface of the truncated cone portion 51 in a close contact state. The structure of the through hole 61 is not particularly limited as long as it can communicate and block the high pressure kneading zone 22 and the decompression zone 23. For example, the through hole 61 may have a structure in which a plurality of annular portions having different inner diameters are formed, or may have a structure in which the tapered portion 62 is disposed on the downstream side. Furthermore, the inner diameter of the annular portion 63 of the through hole 61 is larger than the diameter of the cylindrical portion 52 of the reduced diameter portion 50 so that the downstream seal ring 60 can move in the axial direction within the range of the reduced diameter portion 50 of the screw 20. Largely formed. The downstream ring surface 66 of the downstream seal ring 60 is provided with a plurality of notches 67 in the circumferential direction, which are inclined so as to be deep in the clockwise direction when viewed from the downstream side, as locked portions. ing. Thereby, the downstream seal ring 60 moves in the axial direction within the depth range of the notch 67 with respect to the screw 20 according to the rotational state of the screw 20, and when the protrusion 54 a is engaged with the notch 67, Further axial movement of the downstream seal ring 60 with respect to the screw 20 is restricted.

従って、スクリュ20に対して下流側シールリング60が下流側に移動すると、円錐台部51のテーパ面とテーパ部62のテーパ面とが離間して、溶融樹脂及び高圧二酸化炭素の湯道となる隙間Gが下流側シールリング60の内周面とスクリュ20の縮径部50の外周面との間で開口する。一方、スクリュ20に対して下流側シールリング60が上流側に移動すると、円錐台部51のテーパ面とテーパ部62のテーパ面とが当接して、下流側シールリング60の内周面とスクリュ20の縮径部50の外周面との間の隙間Gが閉口する。そして、下流側シールリング60が上流側に移動して、突起部54aと切欠き67とが係合すると、下流側シールリング60の移動が規制されるから、下流側シールリング60がスクリュ20と共回りする。これにより、接触混練の間、円錐台部51のテーパ面とテーパ部62のテーパ面との当接状態が維持され、確実に高圧混練ゾーン22をシールすることができる。ただし、可塑化ゾーン21と高圧混練ゾーン22、及び高圧混練ゾーン22と減圧ゾーン23とが連通する場合、円錐台部31,51のテーパ面とテーパ部42,62のテーパ面とが離間した状態となり、隙間Gには上流側から溶融樹脂あるいはさらに加圧流体が進入してくる。従って、上流側及び下流側シールリング40,60が下流側に移動した場合、上流側及び下流側シールリング40,60がスクリュ20と共回りしなくても、円錐台部31,51のテーパ面とテーパ部42,62のテーパ面とが当接し難いため、高圧混練ゾーン22と、隣接するゾーン21,23との連通状態を維持することができる。なお、スクリュ20、並びに上流側及び下流側シールリング40,60にそれぞれ設けられる係止部及び被係止部は、これらが係合したときに、上流側及び下流側シールリング40,60が回り止め状態でスクリュ20と共回りできる構造であれば任意の構造を採用することができる。例えば、係止部あるいは被係止部としてピンが用いられてもよい。また、円錐台部51やテーパ部62の構造に合せて、係止部を第2スクリュ部20bの下流側に、非係止部を下流側シールリング60の上流側に設けてもよい。   Therefore, when the downstream seal ring 60 moves downstream with respect to the screw 20, the tapered surface of the truncated cone part 51 and the tapered surface of the tapered part 62 are separated from each other, and a runway for molten resin and high-pressure carbon dioxide is formed. The gap G opens between the inner peripheral surface of the downstream seal ring 60 and the outer peripheral surface of the reduced diameter portion 50 of the screw 20. On the other hand, when the downstream seal ring 60 moves upstream with respect to the screw 20, the tapered surface of the truncated cone portion 51 and the tapered surface of the tapered portion 62 come into contact with each other, and the inner peripheral surface of the downstream seal ring 60 and the screw are in contact with each other. The gap G between the 20 outer diameter surfaces of the reduced diameter portion 50 is closed. Then, when the downstream seal ring 60 moves to the upstream side and the protrusion 54a and the notch 67 engage with each other, the movement of the downstream seal ring 60 is restricted. Rotate together. Thereby, the contact state of the taper surface of the truncated cone part 51 and the taper surface of the taper part 62 is maintained during contact kneading, and the high-pressure kneading zone 22 can be reliably sealed. However, when the plasticizing zone 21 and the high pressure kneading zone 22 and the high pressure kneading zone 22 and the decompression zone 23 communicate with each other, the tapered surfaces of the truncated cone portions 31 and 51 and the tapered surfaces of the tapered portions 42 and 62 are separated from each other. Thus, molten resin or further pressurized fluid enters the gap G from the upstream side. Therefore, when the upstream and downstream seal rings 40 and 60 move to the downstream side, the tapered surfaces of the truncated cone portions 31 and 51 can be obtained even if the upstream and downstream seal rings 40 and 60 do not rotate with the screw 20. Therefore, the high pressure kneading zone 22 and the adjacent zones 21 and 23 can be maintained in communication with each other. The locking portion and the locked portion provided on the screw 20 and the upstream side and downstream side seal rings 40, 60 respectively rotate the upstream side and downstream side seal rings 40, 60 when they are engaged. Any structure can be adopted as long as it can rotate together with the screw 20 in the stopped state. For example, a pin may be used as the locking portion or the locked portion. Further, the locking portion may be provided on the downstream side of the second screw portion 20 b and the non-locking portion may be provided on the upstream side of the downstream seal ring 60 in accordance with the structure of the truncated cone portion 51 and the tapered portion 62.

下流側シールリング60の外周面には、下流側シールリング60の外周面から突出するように金属製の外側シール部材70が嵌合している。これにより、下流側シールリング60と可塑化シリンダ210との間のシール性が確保される。なお、樹脂製の外側シール部材が用いられてもよい。また、本実施の形態の下流側シールリング60では、図4に示すように、上流側リング面64の外径が対向する上流側の第2スクリュ部20bの直径よりも大きく形成されている。そのため、高圧混練ゾーン22と減圧ゾーン23とを遮断すると、下流側シールリング60は、上流側において、第2スクリュ部20bから径方向で若干突出する態様で配置される。しかしながら、図5に示すように、上流側リング面64の外径は対向する上流側の第2スクリュ部20bの直径と略同一あるいはそれより小さく形成されていてもよい。すなわち、高圧混練ゾーン22では導入口202から高圧の加圧流体が導入されるため、上流側リング面64の外径が対向する上流側の第2スクリュ部20bの直径よりも大きければ、スクリュ20から突出した上流側リング面64が加圧流体による圧力で前方に押され、それによってスクリュ20を正回転させることなく、スクリュ20の回転の停止あるいは逆回転の回転数を低下させることにより、直ちに高圧混練ゾーン22と減圧ゾーン23とを連通させることができる。一方、上流側リング面64の外径が対向する上流側の第2スクリュ部20bの直径と略同一あるいはそれより小さければ、加圧流体による圧力が上流側リング面64に付与されないから、接触混練時に、より確実に高圧混練ゾーン22と減圧ゾーン23とを遮断することができる。   A metal outer seal member 70 is fitted on the outer peripheral surface of the downstream seal ring 60 so as to protrude from the outer peripheral surface of the downstream seal ring 60. Thereby, the sealing performance between the downstream seal ring 60 and the plasticizing cylinder 210 is ensured. A resin outer seal member may be used. Further, in the downstream seal ring 60 of the present embodiment, as shown in FIG. 4, the outer ring surface 64 has an outer diameter that is larger than the diameter of the second upstream screw portion 20 b facing each other. Therefore, when the high-pressure kneading zone 22 and the decompression zone 23 are shut off, the downstream seal ring 60 is arranged in a mode in which it slightly protrudes in the radial direction from the second screw portion 20b on the upstream side. However, as shown in FIG. 5, the outer diameter of the upstream ring surface 64 may be formed to be substantially the same as or smaller than the diameter of the opposing second screw portion 20b. That is, since a high-pressure pressurized fluid is introduced from the introduction port 202 in the high-pressure kneading zone 22, if the outer diameter of the upstream ring surface 64 is larger than the diameter of the second upstream screw portion 20 b facing each other, the screw 20. The upstream ring surface 64 protruding from the front is pushed forward by the pressure of the pressurized fluid, thereby immediately stopping the rotation of the screw 20 or reducing the rotational speed of the reverse rotation without causing the screw 20 to rotate forward. The high pressure kneading zone 22 and the decompression zone 23 can be communicated with each other. On the other hand, if the outer diameter of the upstream ring surface 64 is substantially the same as or smaller than the diameter of the opposing second screw portion 20b, the pressure by the pressurized fluid is not applied to the upstream ring surface 64, so contact kneading. Sometimes, the high-pressure kneading zone 22 and the decompression zone 23 can be shut off more reliably.

なお、上流側シール機構S1の構成は、上記下流側シール機構S2のそれと同様であり、図1及び図2に示すように、可塑化ゾーン21と高圧混練ゾーン22との間に、円錐台部(シール部)31を有する縮径部30が配設されており、第2スクリュ部20bの上流側の端面34には突起部34aが設けられている。また、縮径部30には、上流側シールリング40が縮径部30の範囲で軸方向(前後方向)に移動可能なように遊嵌状態で外嵌している。さらに、上流側シールリング40の貫通孔には、テーパ面(接触面)を有するテーパ部42と、円筒部32の直径よりも大径の環状部43とが形成されている。そして、上流側シールリング40の下流側リング面46には、第2スクリュ部20bの端面34に設けられた突起部34aと係合する切欠き47が周方向に複数箇所形成されている。これにより、下流側シール機構S2と同様に、スクリュ20に対して上流側シールリング40が下流側に移動すると、円錐台部31のテーパ面とテーパ部42のテーパ面とが離間して、上流側シールリング40の内周面と縮径部30の外周面との間の隙間Gが開口する。一方、スクリュ20に対して上流側シールリング40が上流側に移動すると、円錐台部31のテーパ面とテーパ部42のテーパ面とが当接して、上流側シールリング40の内周面と縮径部30の外周面との間の隙間Gが閉口する。そして、突起部34aが切欠き47と係合すると、上流側シールリング40がスクリュ20と共回りする。   The structure of the upstream side seal mechanism S1 is the same as that of the downstream side seal mechanism S2, and a truncated cone portion is provided between the plasticizing zone 21 and the high-pressure kneading zone 22 as shown in FIGS. A reduced diameter portion 30 having a (seal portion) 31 is disposed, and a protruding portion 34a is provided on the upstream end surface 34 of the second screw portion 20b. Further, the upstream-side seal ring 40 is externally fitted to the reduced diameter portion 30 in a loosely fit state so as to be movable in the axial direction (front-rear direction) within the range of the reduced diameter portion 30. Furthermore, a tapered portion 42 having a tapered surface (contact surface) and an annular portion 43 having a diameter larger than the diameter of the cylindrical portion 32 are formed in the through hole of the upstream seal ring 40. And the notch 47 which engages with the projection part 34a provided in the end surface 34 of the 2nd screw part 20b is formed in the circumferential direction in the downstream ring surface 46 of the upstream seal ring 40 at multiple places. Thus, similarly to the downstream seal mechanism S2, when the upstream seal ring 40 moves downstream with respect to the screw 20, the tapered surface of the truncated cone portion 31 and the tapered surface of the tapered portion 42 are separated from each other, and A gap G between the inner peripheral surface of the side seal ring 40 and the outer peripheral surface of the reduced diameter portion 30 is opened. On the other hand, when the upstream seal ring 40 moves upstream with respect to the screw 20, the tapered surface of the truncated cone portion 31 and the tapered surface of the tapered portion 42 come into contact with each other, and the inner peripheral surface of the upstream seal ring 40 is contracted. A gap G between the outer peripheral surface of the diameter portion 30 is closed. When the protrusion 34 a is engaged with the notch 47, the upstream seal ring 40 rotates with the screw 20.

次に、上記シール機構S1,S2の動作について混練装置200で行われる工程に従って説明する。図1に示すように、スクリュ20を正回転(反時計回り)させると、上流側及び下流側シールリング40,60はそれぞれ縮径部30,50の範囲を下流側に移動する。これにより、円錐台部31のテーパ面とテーパ部42のテーパ面とが離間して、上流側シールリング40の内周面とスクリュ20の縮径部30の外周面との間の隙間Gが開口し、可塑化ゾーン21及び高圧混練ゾーン22が連通する。そして、突起部34aと切欠き47とが係合すると、上流側シールリング40がスクリュ20と共回りする。これにより、可塑化ゾーン21と高圧混練ゾーン22との連通状態が維持されるため、可塑化ゾーン21から高圧混練ゾーン22に円滑に溶融樹脂を送ることができる。   Next, the operation of the sealing mechanisms S1 and S2 will be described according to the steps performed in the kneading apparatus 200. As shown in FIG. 1, when the screw 20 is rotated forward (counterclockwise), the upstream and downstream seal rings 40 and 60 move to the downstream side of the reduced diameter portions 30 and 50, respectively. Thereby, the taper surface of the truncated cone part 31 and the taper surface of the taper part 42 are separated from each other, and a gap G between the inner peripheral surface of the upstream seal ring 40 and the outer peripheral surface of the reduced diameter part 30 of the screw 20 is formed. The plasticizing zone 21 and the high-pressure kneading zone 22 communicate with each other. When the protrusion 34 a and the notch 47 are engaged, the upstream seal ring 40 rotates together with the screw 20. Thereby, since the communication state of the plasticization zone 21 and the high pressure kneading zone 22 is maintained, the molten resin can be smoothly fed from the plasticizing zone 21 to the high pressure kneading zone 22.

一定量の溶融樹脂が高圧混練ゾーン22に送られると、図2に示すように、回転駆動手段によりスクリュ20を所定回転数以上で逆回転(時計回り)させる。すると、スクリュ20の逆回転に伴って上流側及び下流側シールリング40,60が上流側に移動するため、円錐台部31,51のテーパ面とテーパ部42,62のテーパ面とが当接し、上流側及び下流側シールリング40,60の内周面と縮径部30,50の外周面との間に形成されていた隙間Gが閉口する。そして、スクリュ20の突起部34a,54aと、上流側及び下流側シールリング40,60の切欠き47,67とが係合すると、上流側及び下流側シールリング40,60がスクリュ20と共回りする。これにより、高圧混練ゾーン22と減圧ゾーン23との遮断状態が維持されるから、高圧の加圧流体を高圧混練ゾーン22へ導入しても、溶融樹脂及び加圧流体の高圧混練ゾーン22から隣接するゾーン21,23への流動が防止され、高圧下で、溶融樹脂と加圧流体とを接触混練することができる。   When a certain amount of the molten resin is sent to the high-pressure kneading zone 22, as shown in FIG. Then, the upstream and downstream seal rings 40 and 60 move upstream as the screw 20 rotates in reverse, so that the tapered surfaces of the truncated cone portions 31 and 51 abut against the tapered surfaces of the tapered portions 42 and 62. The gap G formed between the inner peripheral surface of the upstream and downstream seal rings 40, 60 and the outer peripheral surface of the reduced diameter portions 30, 50 is closed. When the protrusions 34a and 54a of the screw 20 engage with the notches 47 and 67 of the upstream and downstream seal rings 40 and 60, the upstream and downstream seal rings 40 and 60 rotate together with the screw 20. To do. As a result, the high-pressure kneading zone 22 and the decompression zone 23 are maintained in a shut-off state. Therefore, the molten resin and the pressurized fluid can be contact-kneaded under high pressure.

高圧混練ゾーン22と隣接するゾーン21,23とを上流側及び下流側シール機構S1,S2でシールして、溶融樹脂を加圧流体と接触混練させると、次いで、溶融樹脂の樹脂内圧を低下させるために、再度、回転駆動手段によりスクリュ20を正回転させる。すると、突起部34a,54aと、切欠き47,67とが係脱し、スクリュ20の正回転に伴って上流側及び下流側シールリング40,60が下流側に移動するため、円錐台部31,51のテーパ面とテーパ部42,62のテーパ面とが離間し、上流側及び下流側シールリング40,60の内周面と縮径部30,50の外周面との間の隙間Gが開口する。これにより、高圧混練ゾーン22と減圧ゾーン23とが連通し、溶融樹脂の樹脂内圧が低下するため、溶融樹脂からガス化した二酸化炭素が分離して、減圧ゾーン23に設けられたベント口203からガス化した二酸化炭素を排気することができる。なお、既述したように、高圧混練ゾーン22で溶融樹脂と加圧流体とを接触混練した後では、下流側シールリング60は溶融樹脂及び加圧流体の圧力を受けているため、スクリュ20の回転の停止あるいはスクリュ20の逆回転の回転数の低下によっても、高圧混練ゾーン22と減圧ゾーン23とを連通させることができる。   When the high-pressure kneading zone 22 and the adjacent zones 21 and 23 are sealed by the upstream and downstream sealing mechanisms S1 and S2, and the molten resin is contact-kneaded with the pressurized fluid, the internal pressure of the molten resin is then lowered. Therefore, the screw 20 is again rotated forward by the rotation driving means. Then, the protrusions 34a and 54a and the notches 47 and 67 are engaged and disengaged, and the upstream and downstream seal rings 40 and 60 move downstream as the screw 20 rotates forward. The taper surface 51 and the taper surfaces 42 and 62 are separated from each other, and a gap G between the inner peripheral surface of the upstream and downstream seal rings 40 and 60 and the outer peripheral surface of the reduced diameter portions 30 and 50 is opened. To do. As a result, the high pressure kneading zone 22 and the decompression zone 23 communicate with each other, and the resin internal pressure of the molten resin decreases, so that the carbon dioxide gasified from the molten resin is separated from the vent port 203 provided in the decompression zone 23. Gasified carbon dioxide can be exhausted. As described above, after the molten resin and the pressurized fluid are contact-kneaded in the high-pressure kneading zone 22, the downstream seal ring 60 receives the pressure of the molten resin and the pressurized fluid. The high-pressure kneading zone 22 and the pressure-reducing zone 23 can be communicated also by stopping the rotation or decreasing the rotational speed of the screw 20 in the reverse rotation.

次に、本実施の形態の混練装置200を用いた熱可塑性樹脂成形体の製造方法について具体的に説明する。   Next, a method for producing a thermoplastic resin molded body using the kneading apparatus 200 of the present embodiment will be specifically described.

本実施の形態の熱可塑性樹脂成形体の製造方法においては、熱可塑性樹脂を可塑化シリンダ210に供給し、スクリュ20を回転させることにより、可塑化ゾーン21で熱可塑性樹脂を可塑化して溶融樹脂とする可塑化工程がまず行われる。   In the method for producing a thermoplastic resin molded body of the present embodiment, the thermoplastic resin is supplied to the plasticizing cylinder 210 and the screw 20 is rotated, so that the thermoplastic resin is plasticized in the plasticizing zone 21 to be a molten resin. The plasticizing process is first performed.

熱可塑性樹脂としては、目的とする樹脂成形体の種類に応じて種々の樹脂を使用することができる。具体的には、例えば、ポリプロピレン、ポリメチルメタクリレート、ポリアミド、ポリカーボネート、アモルファスポリオレフィン、ポリエーテルイミド、ポリエチレンテレフタレート、ポリエーテルエーテルケトン、ABS系樹脂、ポリフェニレンサルファイド、ポリアミドイミド、ポリ乳酸、ポリカプロラクトンなどの熱可塑性樹脂、及びこれらの複合材料を用いることができる。また、これらの熱可塑性樹脂にガラス繊維、タルク、カーボン繊維などの各種無機フィラーを混練したものを用いることもできる。   As the thermoplastic resin, various resins can be used depending on the type of the target resin molding. Specifically, for example, heat of polypropylene, polymethyl methacrylate, polyamide, polycarbonate, amorphous polyolefin, polyether imide, polyethylene terephthalate, polyether ether ketone, ABS resin, polyphenylene sulfide, polyamide imide, polylactic acid, polycaprolactone, etc. Plastic resins and composite materials thereof can be used. Moreover, what knead | mixed various inorganic fillers, such as glass fiber, a talc, and a carbon fiber, can also be used for these thermoplastic resins.

次に、高圧混練ゾーン22で、溶融樹脂と、高圧二酸化炭素を含む加圧流体とを接触混練する混練工程が行われる。本実施の形態の混練装置200では、高圧混練ゾーン22と隣接するゾーン21,23とが上流側及び下流側シール機構S1,S2により遮断された状態で、溶融樹脂と加圧流体とを接触混練することができるため、高圧混練ゾーン22からの加圧流体の漏洩が抑えられ、高圧状態を維持したまま加圧流体を溶融樹脂に導入することができる。なお、接触混練時の高圧混練ゾーン22の圧力及び温度は、使用する熱可塑樹脂や加圧流体の種類に応じ、加圧流体が溶融樹脂に良好に分散される範囲で適宜選択することができる。   Next, in the high-pressure kneading zone 22, a kneading process is performed in which the molten resin and the pressurized fluid containing high-pressure carbon dioxide are contact-kneaded. In the kneading apparatus 200 of the present embodiment, the molten resin and the pressurized fluid are contact-kneaded in a state where the high-pressure kneading zone 22 and the adjacent zones 21 and 23 are blocked by the upstream and downstream sealing mechanisms S1 and S2. Therefore, leakage of the pressurized fluid from the high-pressure kneading zone 22 is suppressed, and the pressurized fluid can be introduced into the molten resin while maintaining the high-pressure state. The pressure and temperature of the high-pressure kneading zone 22 at the time of contact kneading can be appropriately selected within the range in which the pressurized fluid is well dispersed in the molten resin, depending on the type of thermoplastic resin and pressurized fluid used. .

高圧二酸化炭素としては、液体状態、ガス状態、または超臨界状態の高圧二酸化炭素を用いることができる。これらの高圧二酸化炭素は、人体に無害であり、また溶融樹脂への拡散性に優れ、しかも溶融樹脂から容易に除去可能な、可塑剤、溶媒あるいは相溶化剤として機能する。高圧二酸化炭素の圧力、及び温度は、その目的に応じて適宜選択することができる。例えば、高圧二酸化炭素を可塑剤や相溶化剤として用いる場合、高圧二酸化炭素が低密度となる3〜5MPaの圧力のものを使用することができる。また、機能性材料を利用する場合には、加圧流体中の機能性材料の濃度を高めるために高密度を有する高圧二酸化炭素が好ましく使用される。例えば、機能性材料を用いる場合、圧力を4MPa以上、好ましくは5〜25MPaとし、温度を0℃以上、好ましくは5〜100℃として、0.6g/cm以上の密度を有する高圧二酸化炭素が好ましく用いられる。 As high-pressure carbon dioxide, high-pressure carbon dioxide in a liquid state, a gas state, or a supercritical state can be used. These high-pressure carbon dioxide functions as a plasticizer, a solvent, or a compatibilizing agent that is harmless to the human body, has excellent diffusibility to the molten resin, and can be easily removed from the molten resin. The pressure and temperature of the high-pressure carbon dioxide can be appropriately selected according to the purpose. For example, when high-pressure carbon dioxide is used as a plasticizer or a compatibilizing agent, one having a pressure of 3 to 5 MPa at which the high-pressure carbon dioxide has a low density can be used. Moreover, when utilizing a functional material, in order to raise the density | concentration of the functional material in a pressurized fluid, the high pressure carbon dioxide which has a high density is used preferably. For example, when a functional material is used, the pressure is 4 MPa or more, preferably 5 to 25 MPa, the temperature is 0 ° C. or more, preferably 5 to 100 ° C., and high-pressure carbon dioxide having a density of 0.6 g / cm 3 or more. Preferably used.

加圧流体は、機能性材料を含有してもよい。機能性材料としては、高圧二酸化炭素に分散でき、得られる成形体に所期の機能を付与できるものであれば特に制限されることなく使用することができる。このような機能性材料としては、具体的には、例えば、各種樹脂のアロイ化を促進させるための相溶化剤、界面活性剤、有機金属錯体、金属アルコキシド、染料、ナノカーボンなどが挙げられる。また、高圧二酸化炭素はそれ自身、低圧でも溶融樹脂に対する可塑剤として機能するが、可塑化効果を促進させるためにアルコールなどの各種溶媒や可塑剤を使用してもよい。機能性材料を用いる場合、加圧流体中の機能性材料の濃度は、使用する機能性材料の種類、目的とする成形体の機能を考慮して適宜選択することができ、特に制限されないが、溶融樹脂への浸透性や加圧流体中の機能性材料の凝集を考慮すれば、好ましくは飽和濃度以下である。   The pressurized fluid may contain a functional material. Any functional material can be used without particular limitation as long as it can be dispersed in high-pressure carbon dioxide and can give the desired function to the obtained molded body. Specific examples of such functional materials include compatibilizers, surfactants, organometallic complexes, metal alkoxides, dyes, and nanocarbons for promoting the alloying of various resins. In addition, high pressure carbon dioxide itself functions as a plasticizer for the molten resin even at a low pressure, but various solvents such as alcohol and plasticizers may be used to promote the plasticizing effect. When using a functional material, the concentration of the functional material in the pressurized fluid can be appropriately selected in consideration of the type of the functional material to be used and the function of the target molded body, and is not particularly limited. Considering the permeability to the molten resin and the aggregation of the functional material in the pressurized fluid, the saturation concentration is preferred.

加圧流体は、さらに溶媒を含有してもよい。例えば、水を、高圧二酸化炭素及び水溶性の界面活性剤とともに使用することにより、乳濁液(エマルジョン)として得られる加圧流体を用いることができる。高圧二酸化炭素に溶解する材料は限られているので、このような溶媒を用いることにより、水溶性の材料を、二酸化炭素が持つ樹脂に対する拡散性や相溶性を利用して溶融樹脂に導入することができる。また、水のみを溶融樹脂と接触混練すると、成形体に水分が残留して加水分解などの悪影響が懸念されるが、高圧二酸化炭素とのエマルジョンとして水を溶融樹脂に導入した場合、速やかに二酸化炭素とともに水を溶融樹脂から分離でき、上記のような悪影響を防止できる。さらに、機能性材料を用いる場合、加圧流体は機能性材料を溶解する溶媒を含有してもよい。例えば、有機金属錯体を使用する場合、加圧流体中の有機金属錯体の濃度を高めるため、パーフルオロペンチルアミンなどのフッ素系有機溶媒を用いてもよい。   The pressurized fluid may further contain a solvent. For example, by using water together with high-pressure carbon dioxide and a water-soluble surfactant, a pressurized fluid obtained as an emulsion (emulsion) can be used. Since materials that dissolve in high-pressure carbon dioxide are limited, by using such a solvent, water-soluble materials can be introduced into the molten resin using the diffusibility and compatibility of carbon dioxide with the resin. Can do. In addition, if only water is kneaded with the molten resin, water may remain in the molded body, which may cause adverse effects such as hydrolysis.However, when water is introduced into the molten resin as an emulsion with high-pressure carbon dioxide, the carbon dioxide is rapidly absorbed. Water together with carbon can be separated from the molten resin, and the above adverse effects can be prevented. Furthermore, when a functional material is used, the pressurized fluid may contain a solvent that dissolves the functional material. For example, when using an organometallic complex, a fluorine-based organic solvent such as perfluoropentylamine may be used to increase the concentration of the organometallic complex in the pressurized fluid.

高圧二酸化炭素を含む加圧流体を調製する方法としては、特に限定されず、従来公知の方法を使用することができる。例えば、シリンジポンプなどの加圧手段により液体二酸化炭素を加圧することにより加圧流体を調製できる。また、高圧二酸化炭素及び機能性材料を含む加圧流体を調製する場合、高圧二酸化炭素と機能性材料とを混合撹拌することによって加圧流体を調製できる。さらに、機能性材料を溶媒に溶解させた溶液を用いる場合、高圧二酸化炭素と、加圧手段により所定圧力まで加圧した溶液とを混合することによって加圧流体を調製できる。   A method for preparing a pressurized fluid containing high-pressure carbon dioxide is not particularly limited, and a conventionally known method can be used. For example, a pressurized fluid can be prepared by pressurizing liquid carbon dioxide with a pressurizing means such as a syringe pump. Moreover, when preparing the pressurized fluid containing a high pressure carbon dioxide and a functional material, a pressurized fluid can be prepared by mixing and stirring high pressure carbon dioxide and a functional material. Furthermore, when using a solution in which a functional material is dissolved in a solvent, a pressurized fluid can be prepared by mixing high-pressure carbon dioxide and a solution pressurized to a predetermined pressure by a pressurizing means.

加圧流体を高圧混練ゾーン22に導入する方法は任意の方法を使用することができる。例えば、加圧流体は、高圧混練ゾーン22に間欠的に導入されてもよいし、連続的に導入されてもよい。また、加圧流体の導入は、安定な送液が行えるシリンジポンプを利用し、導入量を制御することが好ましい。シリンジポンプを用いて加圧流体を導入する場合、高密度でも安定な液体状態の高圧二酸化炭素が好ましく使用される。   Any method can be used as a method for introducing the pressurized fluid into the high-pressure kneading zone 22. For example, the pressurized fluid may be introduced intermittently into the high-pressure kneading zone 22 or may be introduced continuously. In addition, the introduction of the pressurized fluid is preferably controlled by using a syringe pump capable of stable liquid feeding. When a pressurized fluid is introduced using a syringe pump, high-pressure carbon dioxide in a liquid state that is stable even at high density is preferably used.

次に、高圧混練ゾーン22と減圧ゾーン23とを連通させ、加圧流体と接触混練させた溶融樹脂の樹脂内圧を低下させることにより、溶融樹脂からガス化した二酸化炭素を分離する分離工程が行われる。本実施の形態では、高圧混練ゾーン22と減圧ゾーン23とをスクリュ20の回転状態に応じて連通させるシール機構S2が用いられているから、高圧混練ゾーン22の圧力に依存せず、速やかに溶融樹脂に導入した加圧流体中の高圧二酸化炭素をガス化でき、ガス化した二酸化炭素を可塑化シリンダ210外に排気することができる。減圧ゾーン23の圧力は、高圧混練ゾーン22の圧力よりも低ければ、樹脂内圧が低減されるため、特に制限されない。なお、ガス化した二酸化炭素を効率的に排気するために、真空ポンプを用いてもよい。   Next, a separation step is performed in which the high pressure kneading zone 22 and the decompression zone 23 communicate with each other and the internal pressure of the molten resin that has been kneaded in contact with the pressurized fluid is reduced to separate the gasified carbon dioxide from the molten resin. Is called. In the present embodiment, since the seal mechanism S2 that communicates the high-pressure kneading zone 22 and the decompression zone 23 in accordance with the rotational state of the screw 20 is used, it does not depend on the pressure in the high-pressure kneading zone 22 and quickly melts. The high-pressure carbon dioxide in the pressurized fluid introduced into the resin can be gasified, and the gasified carbon dioxide can be exhausted out of the plasticizing cylinder 210. If the pressure in the decompression zone 23 is lower than the pressure in the high-pressure kneading zone 22, the internal pressure of the resin is reduced, so that it is not particularly limited. A vacuum pump may be used to efficiently exhaust the gasified carbon dioxide.

また、溶融樹脂からガス化した二酸化炭素を分離するにあたっては、溶融樹脂を減圧ゾーン23に送りながら二酸化炭素を分離してもよいし、溶融樹脂を高圧混練ゾーン22に滞留させた状態で、二酸化炭素を分離してもよい。すなわち、本実施の形態の混練装置200では、スクリュ20の回転状態に応じて高圧混練ゾーン22と減圧ゾーン23とを連通及び遮断する下流側シール機構S2が設けられているから、溶融樹脂が減圧ゾーン23に送られなくても、高圧混練ゾーン22と減圧ゾーン23とを連通させれば、高圧混練ゾーン22に溶融樹脂を滞留させた状態で、該溶融樹脂の樹脂内圧を低下でき、それによって高圧混練ゾーン22の高圧二酸化炭素の一部がガス化し、ガス化した二酸化炭素を減圧ゾーン23から排気することができる。例えば、スクリュ20を逆回転させて溶融樹脂が前方に送られない状態でスクリュ20の回転数を制御し、円錐台部51のテーパ面とテーパ部62のテーパ面とを離間させることにより、隙間Gを僅かに開口させればよい。これにより、高圧二酸化炭素の濃度の低くなった高圧混練ゾーン22の溶融樹脂に再度、加圧流体を接触させて、加圧流体を溶融樹脂にさらに導入することができる。しかも、高圧混練ゾーン22の圧力が可塑化ゾーン21における樹脂内圧よりも高い場合、上流側シール機構S1が可塑化ゾーン21と高圧混練ゾーン22とを遮断する方向に移動しやすくなるため、可塑化ゾーン21から高圧混練ゾーン22への新たな溶融樹脂の流動が抑えられるとともに、加圧流体の可塑化ゾーン21への漏洩も防止することができる。従って、本実施の形態の混練装置200を用いた製造方法によれば、高圧混練ゾーン22に溶融樹脂を滞留させた状態で混練工程及び分離工程を繰り返し行うことができる。これにより、例えば、機能性材料を含む加圧流体を用いる場合、高圧二酸化炭素への溶解度が低い機能性材料であっても、高濃度で機能性材料が分散された熱可塑性樹脂成形体を得ることができる。このとき、既述したように、高圧混練ゾーン22と減圧ゾーン23との連通及び遮断を繰り返すために、スクリュ20の正回転と逆回転とを小刻みに繰り返してもよいし、スクリュ20の所定回転数以上の逆回転と、スクリュ20の回転の停止あるいはスクリュ20の逆回転の回転数の低下とを小刻みに繰り返してもよい。   Further, when separating the gasified carbon dioxide from the molten resin, the carbon dioxide may be separated while sending the molten resin to the decompression zone 23, or in a state where the molten resin is retained in the high pressure kneading zone 22. Carbon may be separated. That is, in the kneading apparatus 200 according to the present embodiment, the downstream sealing mechanism S2 that connects and blocks the high-pressure kneading zone 22 and the pressure-reducing zone 23 according to the rotational state of the screw 20 is provided. Even if the high pressure kneading zone 22 and the decompression zone 23 are communicated with each other even if they are not sent to the zone 23, the resin internal pressure of the molten resin can be lowered while the molten resin is retained in the high pressure kneading zone 22, thereby Part of the high-pressure carbon dioxide in the high-pressure kneading zone 22 is gasified, and the gasified carbon dioxide can be exhausted from the decompression zone 23. For example, by rotating the screw 20 in the reverse direction and controlling the number of rotations of the screw 20 in a state in which the molten resin is not sent forward, the taper surface of the truncated cone part 51 and the taper surface of the taper part 62 are separated from each other. What is necessary is just to open G slightly. Thereby, the pressurized fluid can be again brought into contact with the molten resin in the high-pressure kneading zone 22 in which the concentration of high-pressure carbon dioxide is lowered, and the pressurized fluid can be further introduced into the molten resin. Moreover, when the pressure in the high-pressure kneading zone 22 is higher than the internal pressure of the resin in the plasticizing zone 21, the upstream side seal mechanism S1 is likely to move in a direction to shut off the plasticizing zone 21 and the high-pressure kneading zone 22. The flow of new molten resin from the zone 21 to the high-pressure kneading zone 22 is suppressed, and leakage of the pressurized fluid to the plasticizing zone 21 can be prevented. Therefore, according to the manufacturing method using the kneading apparatus 200 of the present embodiment, the kneading step and the separation step can be repeatedly performed while the molten resin is retained in the high-pressure kneading zone 22. Thus, for example, when a pressurized fluid containing a functional material is used, a thermoplastic resin molded body in which the functional material is dispersed at a high concentration is obtained even if the functional material has low solubility in high-pressure carbon dioxide. be able to. At this time, as described above, in order to repeat the communication and blocking between the high-pressure kneading zone 22 and the decompression zone 23, the forward rotation and reverse rotation of the screw 20 may be repeated in small increments, or the predetermined rotation of the screw 20 The reverse rotation of several or more and the stop of the rotation of the screw 20 or the decrease of the reverse rotation of the screw 20 may be repeated in small increments.

ガス化した二酸化炭素が溶融樹脂から分離されると、溶融樹脂はスクリュ20の先端部に送られる。そして、可塑化シリンダ210の先端部から射出される溶融樹脂を所望の形状に成形する成形工程が行われる。本実施の形態で使用される成形工程としては、目的とする成形体の種類に応じて、従来公知の射出成形法や押出成形法を使用できる。射出成形法を利用する場合、可塑化計量が終了した後、可塑化シリンダ210の後端部に接続された移動手段によりスクリュ20を前進させ、所定の内部形状を有する金型内に溶融樹脂を射出充填することにより熱可塑性樹脂成形体を製造することができる。また、押出成形法を利用する場合、可塑化シリンダ210から所定の内部形状を有する押出ダイに溶融樹脂を射出することにより、例えば、ペレット状、チューブ状、シート状など形状を有する成形体を製造することができる。   When the gasified carbon dioxide is separated from the molten resin, the molten resin is sent to the tip of the screw 20. And the shaping | molding process which shape | molds the molten resin inject | emitted from the front-end | tip part of the plasticizing cylinder 210 in a desired shape is performed. As the molding step used in the present embodiment, a conventionally known injection molding method or extrusion molding method can be used according to the type of the target molded body. When the injection molding method is used, after the plasticizing measurement is completed, the screw 20 is advanced by moving means connected to the rear end portion of the plasticizing cylinder 210, and the molten resin is put into a mold having a predetermined internal shape. A thermoplastic resin molding can be produced by injection filling. In addition, when using the extrusion molding method, a molded body having a shape such as a pellet shape, a tube shape, or a sheet shape is manufactured by injecting a molten resin from the plasticizing cylinder 210 to an extrusion die having a predetermined internal shape. can do.

以下、実施例に基づきさらに具体的に本発明を説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these Examples.

(実施例1)
本実施例では、上流側及び下流側シール機構S1,S2として図4の形態を有するシール機構を備えた混練装置200を用いて、機能性材料を分散させた熱可塑性樹脂成形体を射出成形により製造した。熱可塑性樹脂としてはガラス繊維が30質量%添加されたナイロン6(東レ製,アミランCM1011G30)を、機能性材料としては有機金属錯体であるヘキサフルオロアセチルアセトナパラジウム(II)を、溶媒としてはパーフルオロペンチルアミンを用いた。なお、1ショットごとの溶融樹脂の質量に対し、二酸化炭素の濃度が約2質量%、有機金属錯体の濃度が約100ppmとなるように導入量を調整した。
Example 1
In the present embodiment, a thermoplastic resin molded body in which a functional material is dispersed is obtained by injection molding using a kneading apparatus 200 having a sealing mechanism having the form of FIG. 4 as the upstream and downstream sealing mechanisms S1, S2. Manufactured. Nylon 6 (Toray, Amilan CM1011G30) added with 30% by mass of glass fiber is used as the thermoplastic resin, hexafluoroacetylacetona palladium (II), which is an organometallic complex, is used as the functional material, and par Fluoropentylamine was used. The introduction amount was adjusted so that the concentration of carbon dioxide was about 2% by mass and the concentration of the organometallic complex was about 100 ppm with respect to the mass of the molten resin for each shot.

図6は、本実施例で使用した成形機を示す概略断面図である。図6に示すように、この成形機1000は、高圧二酸化炭素と有機金属錯体をフッ素系有機溶媒に溶解させた溶液Cとを混合して加圧流体を調製し、該調製された加圧流体を可塑化シリンダ210に供給する加圧流体供給装置100と、既述した混練装置200と、金型を有する射出成形装置250とを備えている。これら加圧流体供給装置100、混練装置200、及び射出成形装置250は図示しない制御装置で動作制御される。   FIG. 6 is a schematic cross-sectional view showing the molding machine used in this example. As shown in FIG. 6, this molding machine 1000 prepares a pressurized fluid by mixing high-pressure carbon dioxide and a solution C in which an organometallic complex is dissolved in a fluorinated organic solvent, and the prepared pressurized fluid. Is provided with the pressurized fluid supply device 100 that supplies the plasticizing cylinder 210, the kneading device 200 described above, and the injection molding device 250 having a mold. Operation of the pressurized fluid supply device 100, the kneading device 200, and the injection molding device 250 is controlled by a control device (not shown).

加圧流体供給装置100は、液体二酸化炭素ボンベ101と、液体二酸化炭素を所定の圧力に加圧して高圧二酸化炭素を供給するための二酸化炭素用シリンジポンプ102と、有機金属錯体を溶媒に溶解した溶液Cを調製するための溶液槽111と、溶液Cを所定の圧力に加圧し、送液するための溶液用シリンジポンプ112とを備えている。液体二酸化炭素ボンベ101と二酸化炭素用シリンジポンプ102とを接続する配管及び二酸化炭素用シリンジポンプ102と可塑化シリンダ210とを接続する配管にはそれぞれ、吸引用エアオペレートバルブ104及び供給用エアオペレートバルブ105が配設されている。また、溶液槽111と溶液用シリンジポンプ112とを接続する配管及び溶液用シリンジポンプ112と可塑化シリンダ210とを接続する配管にはそれぞれ、吸引用エアオペレートバルブ114及び供給用エアオペレートバルブ115が配設されている。   The pressurized fluid supply apparatus 100 includes a liquid carbon dioxide cylinder 101, a carbon dioxide syringe pump 102 for supplying high-pressure carbon dioxide by pressurizing the liquid carbon dioxide to a predetermined pressure, and an organometallic complex dissolved in a solvent. A solution tank 111 for preparing the solution C and a solution syringe pump 112 for pressurizing and feeding the solution C to a predetermined pressure are provided. The piping connecting the liquid carbon dioxide cylinder 101 and the carbon dioxide syringe pump 102 and the piping connecting the carbon dioxide syringe pump 102 and the plasticizing cylinder 210 are respectively the suction air operated valve 104 and the supply air operated valve. 105 is arranged. In addition, a suction air operated valve 114 and a supply air operated valve 115 are connected to a pipe connecting the solution tank 111 and the solution syringe pump 112 and a pipe connecting the solution syringe pump 112 and the plasticizing cylinder 210, respectively. It is arranged.

加圧流体を調製する場合、まず、吸引用エアオペレートバルブ104を開放して、液体二酸化炭素ボンベ101から液体二酸化炭素を吸引する。次に、二酸化炭素用シリンジポンプ102の圧力制御により所定圧力まで液体二酸化炭素を加圧する。本実施例では、圧力が10MPa、温度が10℃の高圧二酸化炭素を供給した。   When preparing a pressurized fluid, first, the suction air operated valve 104 is opened, and liquid carbon dioxide is sucked from the liquid carbon dioxide cylinder 101. Next, liquid carbon dioxide is pressurized to a predetermined pressure by pressure control of the carbon dioxide syringe pump 102. In this example, high-pressure carbon dioxide having a pressure of 10 MPa and a temperature of 10 ° C. was supplied.

一方、溶液用シリンジポンプ112側の吸引用エアオペレートバルブ114を開放して、溶液槽111から溶媒に有機金属錯体を溶解させた溶液Cをフィルタ113を介して常温で吸引し、溶液用シリンジポンプ112の圧力制御により所定圧力まで溶液Cを加圧する。本実施例では、溶液Cを10MPaに加圧した。   On the other hand, the suction air operated valve 114 on the solution syringe pump 112 side is opened, and the solution C in which the organometallic complex is dissolved in the solvent is sucked from the solution tank 111 through the filter 113 at room temperature, and the solution syringe pump The solution C is pressurized to a predetermined pressure by the pressure control of 112. In this example, the solution C was pressurized to 10 MPa.

次に、供給用エアオペレートバルブ105,115を開放した後、二酸化炭素用シリンジポンプ102及び溶液用シリンジポンプ112を圧力制御から流量制御に切替え、高圧二酸化炭素と加圧した溶液Cとを所定の流量比となるように流動させる。これにより、配管内で高圧二酸化炭素と溶液Cとが混合される。本実施例では、高圧二酸化炭素と溶液Cとの供給容積比を5:1に設定した。なお、高圧二酸化炭素と溶液Cとの容積比が一定範囲(1:1〜10:1)の加圧流体を用いれば、混練工程において高圧二酸化炭素により有機金属錯体の熱分解を防止でき、また高圧二酸化炭素を溶融樹脂への有機金属錯体の分散を補助する相溶化剤として機能させることができる。   Next, after the supply air operated valves 105 and 115 are opened, the carbon dioxide syringe pump 102 and the solution syringe pump 112 are switched from the pressure control to the flow rate control, and the high pressure carbon dioxide and the pressurized solution C are supplied with a predetermined amount. It is made to flow so that it may become a flow ratio. Thereby, the high pressure carbon dioxide and the solution C are mixed in the pipe. In this example, the supply volume ratio between the high-pressure carbon dioxide and the solution C was set to 5: 1. If a pressurized fluid having a volume ratio of high-pressure carbon dioxide to solution C in a certain range (1: 1 to 10: 1) is used, thermal decomposition of the organometallic complex can be prevented by high-pressure carbon dioxide in the kneading step, and High-pressure carbon dioxide can function as a compatibilizing agent that assists the dispersion of the organometallic complex in the molten resin.

一方、混練装置200において、樹脂供給用ホッパ211から供給された熱可塑性樹脂は、可塑化シリンダ210の外壁面に設けられたバンドヒータ(図示せず)で可塑化シリンダ210を加熱し、スクリュ20を正回転することにより混練され、溶融される。本実施例では、樹脂温度が210〜240℃となるように可塑化シリンダ210を加熱した。   On the other hand, in the kneading apparatus 200, the thermoplastic resin supplied from the resin supply hopper 211 heats the plasticizing cylinder 210 with a band heater (not shown) provided on the outer wall surface of the plasticizing cylinder 210, and the screw 20. Are kneaded and melted by rotating them forward. In this example, the plasticizing cylinder 210 was heated so that the resin temperature was 210 to 240 ° C.

溶融樹脂が高圧混練ゾーン22に送られると、高圧混練ゾーン22と、減圧ゾーン23及び可塑化ゾーン21とを遮断するため、可塑化計量完了位置よりも20mm手前(金型側位置)でスクリュ20の回転を一旦停止した後、スクリュ20を逆回転させた(回転数:50rpm)。これにより、上流側及び下流側シールリング40,60を上流側に移動させて、円錐台部31,51のテーパ面とテーパ部42,62のテーパ面とを当接させ、さらに上流側及び下流側シールリング40,60をスクリュ20と共回りさせることにより、上流側及び下流側シールリング40,60の内周面とスクリュ20の外周面との間の隙間Gを閉口し、高圧混練ゾーン22と、減圧ゾーン23及び可塑化ゾーン21とを遮断した。   When the molten resin is sent to the high-pressure kneading zone 22, the screw 20 is positioned 20 mm before the plasticizing and metering completion position (die side position) to shut off the high-pressure kneading zone 22, the decompression zone 23, and the plasticizing zone 21. Then, the screw 20 was rotated in the reverse direction (rotation speed: 50 rpm). As a result, the upstream and downstream seal rings 40, 60 are moved upstream to bring the tapered surfaces of the truncated cone parts 31, 51 into contact with the tapered surfaces of the tapered parts 42, 62, and further upstream and downstream. By rotating the side seal rings 40, 60 together with the screw 20, the gap G between the inner peripheral surface of the upstream and downstream seal rings 40, 60 and the outer peripheral surface of the screw 20 is closed, and the high-pressure kneading zone 22 is closed. And the decompression zone 23 and the plasticizing zone 21 were shut off.

図6に示すように、可塑化シリンダ210の導入口202には、加圧流体を導入するための導入バルブ212が設けられている。この導入バルブ212は、可塑化シリンダ210の導入口202と連結された基端部に流体供給口218を有するとともに、内部に導入ピストン217を有している。従って、導入ピストン217で流体供給口218を開放することによって、加圧流体供給装置100から可塑化シリンダ210に加圧流体が導入される。本実施例では、上流側及び下流側シール機構S1,S2によって高圧混練ゾーン22をシールした後、加圧流体が高圧混練ゾーン22に1秒間滞留するように、流量制御にてショットごと間欠的に加圧流体を導入し、溶融樹脂と加圧流体とを接触混練した。加圧流体の導入前の樹脂内圧は0.1MPaであり、加圧流体の導入後の接触混練時の樹脂内圧は1〜8MPaであった。なお、バネ圧によって開閉するポペット弁をスクリュ内に設けた従来の混練装置を用い、同一の可塑化計量条件で成形を行った場合、加圧流体の導入前の樹脂内圧は8MPa、接触混練時の樹脂内圧は13〜14MPaであった。従って、本実施例の混練装置は従来のシール機構を有する混練装置に比べて低圧で溶融樹脂を可塑化計量することができ、高い可塑化能力を有していることが確認された。   As shown in FIG. 6, an introduction valve 212 for introducing a pressurized fluid is provided at the introduction port 202 of the plasticizing cylinder 210. The introduction valve 212 has a fluid supply port 218 at the base end connected to the introduction port 202 of the plasticizing cylinder 210 and an introduction piston 217 inside. Therefore, the pressurized fluid is introduced from the pressurized fluid supply device 100 to the plasticizing cylinder 210 by opening the fluid supply port 218 with the introduction piston 217. In this embodiment, after the high-pressure kneading zone 22 is sealed by the upstream and downstream sealing mechanisms S1, S2, the shot is intermittently shot by shot by flow control so that the pressurized fluid stays in the high-pressure kneading zone 22 for 1 second. A pressurized fluid was introduced, and the molten resin and the pressurized fluid were contact-kneaded. The resin internal pressure before introduction of the pressurized fluid was 0.1 MPa, and the resin internal pressure at the time of contact kneading after introduction of the pressurized fluid was 1 to 8 MPa. In addition, when molding is performed under the same plasticization metering conditions using a conventional kneading device provided with a poppet valve that opens and closes by spring pressure in the screw, the internal pressure of the resin before introduction of the pressurized fluid is 8 MPa. The internal pressure of the resin was 13-14 MPa. Therefore, it was confirmed that the kneading apparatus of this example can plasticize and measure the molten resin at a low pressure as compared with the kneading apparatus having the conventional sealing mechanism, and has a high plasticizing ability.

可塑化シリンダ210のベント口203は、バッファ容器219を介して真空ポンプ220と排気管で接続されている。従って、高圧混練ゾーン22と減圧ゾーン23とを連通させ、真空ポンプ220を作動させることにより、可塑化シリンダ210の内部が減圧される。本実施例では、加圧流体を高圧混練ゾーン22に滞留させた後、スクリュ20の逆回転の回転数を低下させて(回転数:30rpm)、上流側及び下流側シールリング40,60を元の下流側の位置に戻し、円錐台部31,51のテーパ面とテーパ部42,62のテーパ面とを離間させ、上流側及び下流側シールリング40,60の内周面とスクリュ20の外周面との間の隙間Gを開口させて、ガス化した二酸化炭素をベント口203から排気した。このとき、ベント口203から樹脂のベントアップは生じなかった。   The vent port 203 of the plasticizing cylinder 210 is connected to the vacuum pump 220 and the exhaust pipe via the buffer container 219. Therefore, the inside of the plasticizing cylinder 210 is depressurized by connecting the high-pressure kneading zone 22 and the depressurizing zone 23 and operating the vacuum pump 220. In this embodiment, after the pressurized fluid is retained in the high-pressure kneading zone 22, the number of reverse rotations of the screw 20 is reduced (the number of rotations: 30 rpm), and the upstream and downstream seal rings 40, 60 are restored. , The tapered surfaces of the truncated cone portions 31 and 51 and the tapered surfaces of the tapered portions 42 and 62 are separated from each other, and the inner peripheral surfaces of the upstream and downstream seal rings 40 and 60 and the outer periphery of the screw 20 are separated. The gap G between the surfaces was opened, and the gasified carbon dioxide was exhausted from the vent port 203. At this time, resin vent-up did not occur from the vent port 203.

次いで、スクリュ20を正回転に戻し、溶融樹脂をスクリュ20の先端部に送り、可塑化計量を完了させてキャビティ253内に溶融樹脂を射出充填した。得られた成形体は茶色に着色されていたことから、有機金属錯体が溶融樹脂に導入されたことが確認された。また、成形体に有機金属錯体が良好に分散されていることを確認するため、得られた成形体にめっき処理を行った。めっき処理は、まず、成形体の表面を膨潤させるため、1,3−ブタンジオールを50体積%含む80℃の水溶液に5分間、成形体を浸漬させた。次いで、この成形体に汎用のNiP無電解めっき処理を施して全面に金属膜を形成した。さらに、金属膜上に、連続して順に、20μmの電解銅めっき膜、10μmの電解ニッケルめっき膜、及び0.5μmの電解クロムめっき膜を形成した。得られためっき品を、120℃で1時間保持した後、−40℃で1時間保持するサイクルを100サイクル繰り返す熱衝撃試験に供した。試験後、目視により外観検査を行った。その結果、めっき膜に膨れや割れは発生せず、密着性に優れるめっき膜が形成されていることが確認された。   Next, the screw 20 was returned to the normal rotation, and the molten resin was sent to the tip of the screw 20 to complete the plasticization measurement, and the molten resin was injected and filled into the cavity 253. Since the obtained molded body was colored brown, it was confirmed that the organometallic complex was introduced into the molten resin. Moreover, in order to confirm that the organometallic complex was well dispersed in the molded body, the obtained molded body was plated. In the plating treatment, in order to swell the surface of the molded body, the molded body was immersed in an 80 ° C. aqueous solution containing 50% by volume of 1,3-butanediol for 5 minutes. Next, a general-purpose NiP electroless plating process was performed on the molded body to form a metal film on the entire surface. Furthermore, a 20 μm electrolytic copper plating film, a 10 μm electrolytic nickel plating film, and a 0.5 μm electrolytic chrome plating film were successively formed on the metal film in order. The obtained plated product was held at 120 ° C. for 1 hour, and then subjected to a thermal shock test in which a cycle of holding at −40 ° C. for 1 hour was repeated 100 times. After the test, visual inspection was performed visually. As a result, it was confirmed that a plating film having excellent adhesion was formed without causing swelling or cracking in the plating film.

また、上記の成形を繰り返し、1000ショット目の接触混練時の高圧混練ゾーン22の樹脂内圧を測定したところ、1〜8MPaであり、1ショット目の圧力と同一の圧力であった。従って、本実施例によれば、長期に安定して熱可塑性樹脂成形体を製造できることが確認された。   Moreover, when the above molding was repeated and the internal pressure of the resin in the high-pressure kneading zone 22 at the time of contact kneading on the 1000th shot was measured, it was 1 to 8 MPa, which was the same pressure as the pressure on the first shot. Therefore, according to the present Example, it was confirmed that a thermoplastic resin molding can be manufactured stably for a long period of time.

(実施例2)
本実施例では、実施例1と同様の混練装置200及び成形機1000を用いて、機能性材料を分散させた熱可塑性樹脂成形体を射出成形により製造した。熱可塑性樹脂としては非晶性ナイロン(ジャパンンエムスケミー製,グリボリTR55)を、機能性材料としては抗菌剤であるヘプタフルオロ酪酸銀塩(I)を、溶媒としてはエタノールを用いた。なお、1ショットごとの溶融樹脂の質量に対し、二酸化炭素の濃度が約6質量%、抗菌剤の濃度が400ppmとなるように導入量を調整した。
(Example 2)
In this example, a thermoplastic resin molded body in which a functional material was dispersed was manufactured by injection molding using the same kneading apparatus 200 and molding machine 1000 as in Example 1. Amorphous nylon (manufactured by Japan M Chemie, Glibori TR55) was used as the thermoplastic resin, heptafluorobutyric acid silver salt (I) as an antibacterial agent was used as the functional material, and ethanol was used as the solvent. The introduction amount was adjusted so that the concentration of carbon dioxide was about 6% by mass and the concentration of the antibacterial agent was 400 ppm with respect to the mass of the molten resin for each shot.

まず、実施例1と同様にして加圧流体供給装置100で加圧流体を調製するとともに、混練装置200で熱可塑性樹脂を溶融した。溶融樹脂が高圧混練ゾーン22に送られると、実施例1と同様にして、スクリュ20を一旦停止した後、スクリュ20を逆回転(回転数:50rpm)させて、上流側及び下流側シールリング40,60を上流側に移動させ、円錐台部31,51のテーパ面とテーパ部42,62のテーパ面とを当接させて、高圧混練ゾーン22と、減圧ゾーン23及び可塑化ゾーン21とを遮断した。   First, the pressurized fluid was prepared by the pressurized fluid supply device 100 in the same manner as in Example 1, and the thermoplastic resin was melted by the kneading device 200. When the molten resin is sent to the high-pressure kneading zone 22, the screw 20 is temporarily stopped in the same manner as in the first embodiment, and then the screw 20 is rotated in the reverse direction (rotation speed: 50 rpm), so that the upstream side and downstream side seal rings 40. , 60 are moved to the upstream side so that the tapered surfaces of the truncated cone portions 31, 51 and the tapered surfaces of the tapered portions 42, 62 are brought into contact with each other, so that the high-pressure kneading zone 22, the decompression zone 23, and the plasticizing zone 21 are Shut off.

次いで、本実施例では、流量制御にて加圧流体を連続的に導入しながら、スクリュ20の逆回転の回転数を低下させて(回転数:20rpm)、上流側及び下流側シールリング40,60を僅かに下流側に移動させることにより、円錐台部31,51のテーパ面とテーパ部42,62のテーパ面とを離間させた。これにより上流側及び下流側シールリング40,60の内周面とスクリュ20の外周面との間の隙間Gを僅かに開口させ、ガス化した二酸化炭素を排気した。さらに、スクリュ20の逆回転の回転数を小刻みに変化させることにより(回転数:20〜50rpm)、高圧混練ゾーン22と減圧ゾーン23との連通及び遮断を繰り返した。このとき、高圧混練ゾーン22の樹脂内圧は、5〜10MPaの範囲で変動した。また、ベント口203から樹脂のベントアップは生じなかった。   Next, in this embodiment, while continuously introducing the pressurized fluid by the flow rate control, the reverse rotation speed of the screw 20 is decreased (rotation speed: 20 rpm), and the upstream and downstream seal rings 40, By slightly moving 60 to the downstream side, the tapered surfaces of the truncated cone portions 31 and 51 and the tapered surfaces of the tapered portions 42 and 62 were separated from each other. As a result, the gap G between the inner peripheral surfaces of the upstream and downstream seal rings 40 and 60 and the outer peripheral surface of the screw 20 was slightly opened, and the gasified carbon dioxide was exhausted. Furthermore, the high-pressure kneading zone 22 and the pressure-reducing zone 23 were repeatedly connected and disconnected by changing the reverse rotation speed of the screw 20 in small increments (rotation speed: 20 to 50 rpm). At this time, the resin internal pressure of the high-pressure kneading zone 22 fluctuated in the range of 5 to 10 MPa. Further, resin vent-up did not occur from the vent port 203.

次いで、実施例1と同様にして、スクリュ20を正回転に戻し、溶融樹脂をスクリュ20の先端部に送り、可塑化計量を完了させてキャビティ253内に溶融樹脂を射出充填した。得られた成形体について、黄色ブドウ球菌及び大腸菌を用い、統一試験法(JIS
Z 2911)で抗菌評価を行った。その結果、成形体は高い抗菌作用を有しており、成形体に抗菌剤が良好に分散されていることが確認された。従って、本実施例によれば、高圧混練ゾーン22の樹脂内圧が過剰に高くなることを抑制しつつ、溶融樹脂と加圧流体とを繰り返し接触混練することができる。また、上流から高圧混練ゾーン22への溶融樹脂の供給が抑制された状態においても、高圧混練ゾーン22と減圧ゾーン23とを連通させることにより、高圧混練ゾーン22の高圧二酸化炭素の一部がガス化し、ガス化した二酸化炭素を減圧ゾーン23から排気することができる。これにより、高圧二酸化炭素及び機能性材料を含む加圧流体を用いる場合、減圧ゾーン23近傍の高圧混練ゾーン22では、減圧により高圧二酸化炭素に不溶となった機能性材料を溶融樹脂の内部に残存させていくことができる。従って、溶融樹脂と加圧流体との繰り返しの接触混練により機能性材料を高濃度で溶融樹脂に導入することができる。
Next, in the same manner as in Example 1, the screw 20 was returned to the normal rotation, the molten resin was sent to the tip of the screw 20, the plasticizing measurement was completed, and the cavity 253 was injected and filled with the molten resin. About the obtained molded object, using a Staphylococcus aureus and Escherichia coli, unified test method (JIS)
Antibacterial evaluation was performed at Z 2911). As a result, the molded product had a high antibacterial action, and it was confirmed that the antibacterial agent was well dispersed in the molded product. Therefore, according to the present embodiment, the molten resin and the pressurized fluid can be repeatedly contact-kneaded while suppressing the resin internal pressure in the high-pressure kneading zone 22 from becoming excessively high. Even in a state where the supply of the molten resin from the upstream to the high-pressure kneading zone 22 is suppressed, by connecting the high-pressure kneading zone 22 and the decompression zone 23, a part of the high-pressure carbon dioxide in the high-pressure kneading zone 22 is gas. The gasified carbonized carbon dioxide can be exhausted from the decompression zone 23. As a result, when a pressurized fluid containing high-pressure carbon dioxide and a functional material is used, in the high-pressure kneading zone 22 near the decompression zone 23, the functional material that has become insoluble in high-pressure carbon dioxide due to decompression remains in the molten resin. I can let you. Therefore, the functional material can be introduced into the molten resin at a high concentration by repeated contact kneading between the molten resin and the pressurized fluid.

また、上記の成形を繰り返し、1000ショット目の接触混練時の高圧混練ゾーン22の樹脂内圧を測定したところ、5〜10MPaであり、1ショット目の圧力と同一の圧力であった。従って、本実施例によれば、長期に安定して熱可塑性樹脂成形体を製造できることが確認された。   The above molding was repeated, and the internal pressure of the resin in the high-pressure kneading zone 22 at the time of contact kneading on the 1000th shot was 5 to 10 MPa, which was the same pressure as the pressure on the first shot. Therefore, according to the present Example, it was confirmed that a thermoplastic resin molding can be manufactured stably for a long period of time.

(実施例3)
本実施例では、上流側及び下流側シール機構S1,S2として図5の形態を有するシール機構を備えた混練装置200及び図6に示す成形機1000を用い、機能性材料を分散させた熱可塑性樹脂成形体を射出成形により製造した。また、熱可塑性樹脂、機能性材料、及び溶媒は実施例1と同様のものを用い、二酸化炭素及び機能性材料の導入量も実施例1と同様に調整した。
(Example 3)
In the present embodiment, thermoplasticity in which functional materials are dispersed using the kneading apparatus 200 having the sealing mechanism having the form of FIG. 5 as the upstream and downstream sealing mechanisms S1 and S2 and the molding machine 1000 shown in FIG. A resin molding was produced by injection molding. Further, the same thermoplastic resin, functional material, and solvent as those in Example 1 were used, and the amounts of carbon dioxide and functional material introduced were also adjusted in the same manner as in Example 1.

まず、実施例1と同様にして加圧流体供給装置100で加圧流体を調製するとともに、混練装置200で熱可塑性樹脂を溶融した。溶融樹脂が高圧混練ゾーン22に送られると、スクリュ20の回転を一旦停止した後、スクリュ20を逆回転させて、上流側及び下流側シールリング40,60を上流側に移動させた。これにより、円錐台部31,51のテーパ面とテーパ部42,62のテーパ面とを当接させ、高圧混練ゾーン22と、減圧ゾーン23及び可塑化ゾーン21とを遮断した。   First, the pressurized fluid was prepared by the pressurized fluid supply device 100 in the same manner as in Example 1, and the thermoplastic resin was melted by the kneading device 200. When the molten resin was sent to the high-pressure kneading zone 22, the rotation of the screw 20 was temporarily stopped, and then the screw 20 was reversely rotated to move the upstream and downstream seal rings 40, 60 to the upstream side. As a result, the tapered surfaces of the truncated cone portions 31 and 51 and the tapered surfaces of the tapered portions 42 and 62 were brought into contact with each other, and the high-pressure kneading zone 22, the decompression zone 23, and the plasticizing zone 21 were blocked.

次いで、本実施例では、加圧流体が高圧混練ゾーン22に1秒間滞留するように、流量制御にて間欠的に加圧流体を導入し、溶融樹脂と加圧流体とを接触混練した後、スクリュ20を正回転に戻し、上流側及び下流側シールリング40,60を下流側に移動させることにより、円錐台部31,51のテーパ面とテーパ部42,62のテーパ面とを離間させ、上流側及び下流側シールリング40,60の内周面とスクリュ20の外周面との間の隙間Gを開口した。接触混練時の樹脂内圧は1〜8MPaであった。そして、溶融樹脂を減圧ゾーン23に送りながらガス化した二酸化炭素を排気した後、実施例1と同様にして、可塑化計量を完了させてキャビティ253内に溶融樹脂を射出充填した。得られた成形体を用いて、実施例1と同様にして、めっき品を作製したところ、密着性に優れるめっき膜が形成されていることが確認された。   Next, in this example, the pressurized fluid is intermittently introduced by the flow rate control so that the pressurized fluid stays in the high-pressure kneading zone 22 for 1 second, and after the molten resin and the pressurized fluid are contact-kneaded, The screw 20 is returned to the normal rotation, and the upstream and downstream seal rings 40, 60 are moved downstream to separate the tapered surfaces of the truncated cone parts 31, 51 from the tapered surfaces of the tapered parts 42, 62, A gap G between the inner peripheral surface of the upstream and downstream seal rings 40 and 60 and the outer peripheral surface of the screw 20 was opened. The resin internal pressure during contact kneading was 1 to 8 MPa. Then, after the gasified carbon dioxide was exhausted while the molten resin was being sent to the decompression zone 23, the plasticization measurement was completed in the same manner as in Example 1, and the molten resin was injected and filled into the cavity 253. When a plated product was produced using the obtained molded body in the same manner as in Example 1, it was confirmed that a plating film having excellent adhesion was formed.

また、上記の成形を繰り返し、1000ショット目の接触混練時の高圧混練ゾーン22の樹脂内圧を測定したところ、1〜8MPaであり、1ショット目の圧力と同一の圧力であった。従って、本実施例によれば、長期に安定して熱可塑性樹脂成形体を製造できることが確認された。   Moreover, when the above molding was repeated and the internal pressure of the resin in the high-pressure kneading zone 22 at the time of contact kneading on the 1000th shot was measured, it was 1 to 8 MPa, which was the same pressure as the pressure on the first shot. Therefore, according to the present Example, it was confirmed that a thermoplastic resin molding can be manufactured stably for a long period of time.

以上詳細に本発明を説明したが、上記の実施の形態から本発明について要約すると、以下のようになる。   Although the present invention has been described in detail above, the present invention can be summarized as follows from the above embodiments.

本発明の一局面は、可塑化シリンダと、前記可塑化シリンダ内を回転及び進退自在に配設されたスクリュとを備え、前記可塑化シリンダ内で、熱可塑性樹脂が可塑化された溶融樹脂と高圧二酸化炭素を含む加圧流体とを接触混練する高圧混練ゾーンと、樹脂内圧を減圧することにより、前記加圧流体が接触混練された溶融樹脂からガス化した二酸化炭素を分離する減圧ゾーンとが上流側からこの順に隣接して形成される混練装置であって、
前記高圧混練ゾーンと前記減圧ゾーンとの間に、前記スクリュの回転状態に応じて前記高圧混練ゾーンと前記減圧ゾーンとを連通及び遮断する下流側シール機構を備える。
One aspect of the present invention includes a plasticizing cylinder and a screw disposed in the plasticizing cylinder so as to be rotatable and movable back and forth, and a molten resin obtained by plasticizing a thermoplastic resin in the plasticizing cylinder; A high-pressure kneading zone for contact-kneading a pressurized fluid containing high-pressure carbon dioxide, and a decompression zone for separating the gasified carbon dioxide from the molten resin in which the pressurized fluid is contact-kneaded by reducing the internal pressure of the resin. A kneading device formed adjacent in this order from the upstream side,
A downstream seal mechanism is provided between the high-pressure kneading zone and the pressure-reducing zone to communicate and block the high-pressure kneading zone and the pressure-reducing zone according to the rotational state of the screw.

上記混練装置によれば、高圧混練ゾーンと減圧ゾーンとの間に、スクリュの回転状態に応じて高圧混練ゾーンと減圧ゾーンとを連通及び遮断する下流側シール機構が設けられており、高圧混練ゾーンと減圧ゾーンとの間でバネによる反力が生じないから、高い可塑化能力を得ることができる。また、下流側シール機構がスクリュの回転状態に応じて高圧混練ゾーンと減圧ゾーンとを連通及び遮断するから、長期使用によってもシール性能が劣化することもない。   According to the above kneading apparatus, the downstream side seal mechanism for connecting and blocking the high pressure kneading zone and the reduced pressure zone according to the rotational state of the screw is provided between the high pressure kneading zone and the reduced pressure zone. Since no reaction force is generated by the spring between the pressure reducing zone and the decompression zone, a high plasticizing ability can be obtained. Further, since the downstream seal mechanism communicates and blocks the high-pressure kneading zone and the decompression zone according to the rotational state of the screw, the sealing performance does not deteriorate even when used for a long time.

上記下流側シール機構は、前記スクリュの逆回転により、前記高圧混練ゾーンと前記減圧ゾーンとを遮断してもよい。また、上記下流側シール機構は、前記スクリュの正回転、前記スクリュの回転の停止、または前記スクリュの逆回転の回転数の低下のいずれかによって、前記高圧混練ゾーンと前記減圧ゾーンとを連通してもよい。   The downstream seal mechanism may block the high-pressure kneading zone and the decompression zone by reverse rotation of the screw. Further, the downstream side seal mechanism communicates the high pressure kneading zone and the pressure reduction zone by either forward rotation of the screw, stoppage of rotation of the screw, or reduction in the rotational speed of reverse rotation of the screw. May be.

上記混練装置によれば、スクリュの回転状態に応じて、所望のタイミングで高圧混練ゾーンと減圧ゾーンとを連通及び遮断することができる。   According to the kneading apparatus, the high-pressure kneading zone and the decompression zone can be communicated and blocked at a desired timing according to the rotational state of the screw.

好ましくは、上記混練装置において、
前記下流側シール機構は、前記高圧混練ゾーンと前記減圧ゾーンとの間に配置され、シール部を有する前記スクリュの縮径部と、前記スクリュの縮径部に軸方向で移動可能に外嵌し、前記シール部と当接する接触面を有するシールリングとを備えており、
前記スクリュの回転状態に応じて、前記縮径部のシール部と前記シールリングの接触面とが離間すると、前記高圧混練ゾーンと前記減圧ゾーンとが連通し、前記縮径部のシール部と前記シールリングの接触面とが当接すると、前記高圧混練ゾーンと前記減圧ゾーンとが遮断する。
Preferably, in the kneading apparatus,
The downstream-side seal mechanism is disposed between the high-pressure kneading zone and the pressure-reducing zone, and has a reduced diameter portion of the screw having a seal portion, and is fitted on the reduced diameter portion of the screw so as to be movable in the axial direction. A seal ring having a contact surface in contact with the seal portion,
When the seal portion of the reduced diameter portion and the contact surface of the seal ring are separated according to the rotation state of the screw, the high pressure kneading zone and the reduced pressure zone communicate with each other, and the seal portion of the reduced diameter portion and the When the contact surface of the seal ring comes into contact, the high-pressure kneading zone and the decompression zone are blocked.

上記混練装置によれば、スクリュの縮径部のシール部とシールリングの接触面とがスクリュの回転状態に応じて離間及び当接することにより、高圧混練ゾーンと減圧ゾーンとを連通及び遮断することができる。   According to the kneading apparatus, the high-pressure kneading zone and the depressurization zone are communicated with each other and blocked by the seal portion of the reduced diameter portion of the screw and the contact surface of the seal ring being separated and brought into contact in accordance with the rotational state of the screw. Can do.

好ましくは、上記混練装置において、
前記スクリュは、係止部を備え、前記シールリングは、前記スクリュの係止部と係合及び係脱する被係止部を備えており、
前記スクリュが所定回転数以上で逆回転している場合に、前記スクリュの係止部と前記シールリングの被係止部とが係合し、前記スクリュと前記シールリングとが共回りすることにより、前記縮径部のシール部と前記シールリングの接触面との当接状態が維持される。
Preferably, in the kneading apparatus,
The screw includes a locking portion, and the seal ring includes a locked portion that engages and disengages with the locking portion of the screw.
When the screw is reversely rotated at a predetermined rotational speed or more, the locking portion of the screw and the locked portion of the seal ring are engaged, and the screw and the seal ring rotate together. The contact state between the seal portion of the reduced diameter portion and the contact surface of the seal ring is maintained.

上記混練装置によれば、スクリュが所定回転数以上で逆回転している間、シールリングとスクリュとが係合状態で共回りするから、高圧混練ゾーンと減圧ゾーンとを確実に遮断することができる。また、スクリュの回転数に応じて、高圧混練ゾーンと減圧ゾーンとを連通及び遮断することができる。   According to the above kneading apparatus, since the seal ring and the screw rotate together in an engaged state while the screw is rotating in the reverse direction at a predetermined rotational speed or more, the high-pressure kneading zone and the decompression zone can be reliably shut off. it can. Moreover, according to the rotation speed of a screw, a high pressure kneading zone and a pressure reduction zone can be connected and interrupted | blocked.

上記可塑化シリンダ内で、前記高圧混練ゾーンの上流側に隣接して、前記熱可塑性樹脂を可塑化して溶融樹脂とする可塑化ゾーンが形成される場合、
好ましくは、上記混練装置は、前記可塑化ゾーンと前記高圧混練ゾーンとの間に、前記スクリュの回転状態に応じて前記可塑化ゾーンと前記高圧混練ゾーンとを連通及び遮断する上流側シール機構を備える。
In the plasticizing cylinder, when a plasticizing zone is formed adjacent to the upstream side of the high-pressure kneading zone to plasticize the thermoplastic resin into a molten resin,
Preferably, the kneading device includes an upstream side sealing mechanism that communicates and blocks the plasticizing zone and the high-pressure kneading zone between the plasticizing zone and the high-pressure kneading zone according to a rotational state of the screw. Prepare.

上記混練装置によれば、高圧混練ゾーンの上流側にも可塑化ゾーンと高圧混練ゾーンとを連通及び遮断する上流側シール機構が設けられているから、さらに高圧混練ゾーンのシール性を高めることができる。   According to the above kneading apparatus, since the upstream side sealing mechanism for connecting and blocking the plasticizing zone and the high pressure kneading zone is also provided upstream of the high pressure kneading zone, the sealing performance of the high pressure kneading zone can be further improved. it can.

また、本発明の他の局面は、上記に記載の混練装置を用いる熱可塑性樹脂成形体の製造方法であって、
前記下流側シール機構で前記高圧混練ゾーンと前記減圧ゾーンとを遮断し、高圧下、前記溶融樹脂と前記加圧流体とを接触混練する混練工程と、
前記下流側シール機構で前記高圧混練ゾーンと前記減圧ゾーンとを連通させ、前記加圧流体が接触混練された溶融樹脂の樹脂内圧を低下させて、前記加圧流体が接触混練された溶融樹脂からガス化した二酸化炭素を分離する分離工程とを有する。
Another aspect of the present invention is a method for producing a thermoplastic resin molded body using the kneading apparatus described above,
A kneading step of shutting off the high-pressure kneading zone and the decompression zone with the downstream-side seal mechanism, and contacting and kneading the molten resin and the pressurized fluid under high pressure;
From the molten resin in which the pressurized fluid is contact-kneaded by causing the downstream-side seal mechanism to communicate the high-pressure kneading zone and the pressure-reducing zone to reduce the resin internal pressure of the molten resin in which the pressurized fluid is contact-kneaded. A separation step of separating the gasified carbon dioxide.

上記製造方法によれば、混練工程では、高圧混練ゾーンの高いシール性を確保した状態で溶融樹脂と加圧流体とを接触混練することができる。また、分離工程では、速やかに樹脂内圧を低下でき、円滑にガス化した二酸化炭素を溶融樹脂から分離し、排気することができる。   According to the above production method, in the kneading step, the molten resin and the pressurized fluid can be contact-kneaded in a state where high sealing performance of the high-pressure kneading zone is ensured. In the separation step, the internal pressure of the resin can be quickly reduced, and the smoothly gasified carbon dioxide can be separated from the molten resin and exhausted.

好ましくは、上記熱可塑性樹脂成形体の製造方法において、
前記高圧混練ゾーンに前記溶融樹脂を滞留させた状態で、前記混練工程及び前記分離工程が複数回繰り返されてもよい。
Preferably, in the method for producing the thermoplastic resin molded body,
The kneading step and the separating step may be repeated a plurality of times while the molten resin is retained in the high-pressure kneading zone.

上記製造方法によれば、分離工程により高圧二酸化炭素の濃度の低くなった溶融樹脂と加圧流体とを繰り返し接触混練することができる。そのため、溶融樹脂に対する高圧二酸化炭素の溶解度が低くても、多量の高圧二酸化炭素を溶融樹脂に導入することができる。また、機能性材料を含む加圧流体を用いる場合、多量の機能性材料を溶融樹脂に導入することができる。   According to the above production method, the molten resin having a low concentration of high-pressure carbon dioxide and the pressurized fluid can be repeatedly contact-kneaded by the separation step. Therefore, even if the solubility of high-pressure carbon dioxide in the molten resin is low, a large amount of high-pressure carbon dioxide can be introduced into the molten resin. Further, when a pressurized fluid containing a functional material is used, a large amount of the functional material can be introduced into the molten resin.

上記製造方法において、前記加圧流体は、機能性材料を含んでもよい。上記製造方法によれば、機能性材料が良好に分散された熱可塑性樹脂成形体を製造することができる。   In the manufacturing method, the pressurized fluid may include a functional material. According to the said manufacturing method, the thermoplastic resin molding in which the functional material was disperse | distributed favorably can be manufactured.

以上のように、本発明によれば、高圧二酸化炭素を含む加圧流体を可塑化シリンダに導入し、可塑化シリンダ内で加圧流体と熱可塑性樹脂を可塑化した溶融樹脂とを接触混練して熱可塑性樹脂を製造する場合に、高い可塑化能力が得られるとともに、長期に渡って安定に熱可塑性樹脂成形体を製造することができる混練装置、及び熱可塑性樹脂成形体の製造方法を提供することができる。   As described above, according to the present invention, a pressurized fluid containing high-pressure carbon dioxide is introduced into a plasticizing cylinder, and the pressurized fluid and the molten resin obtained by plasticizing the thermoplastic resin are contact-kneaded in the plasticizing cylinder. When producing thermoplastic resins, a kneading apparatus capable of obtaining a high plasticizing ability and stably producing a thermoplastic resin molded article for a long period of time and a method for producing a thermoplastic resin molded article are provided. can do.

以上、実施の形態、及び実施例を参照して本発明を説明したが、本発明は上記実施の形態、及び実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解しうる様々な変更をすることができる。   As mentioned above, although this invention was demonstrated with reference to embodiment and an Example, this invention is not limited to the said embodiment and Example. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

本発明によれば、高圧二酸化炭素を含む加圧流体を用いて熱可塑性樹脂成形体を製造する場合に、溶融樹脂と加圧流体とを接触混練する高圧混練ゾーンの高圧状態を長期に渡って安定に維持することができる。従って、本発明によれば、高圧二酸化炭素を用いて改質された成形体、残留溶剤を低下させた成形体、アロイ化された成形体、及び機能性材料を分散させた成形体などの各種熱可塑性樹脂成形体を工業的に安定して製造することができる。
According to the present invention, when a thermoplastic resin molded body is produced using a pressurized fluid containing high-pressure carbon dioxide, the high-pressure state of the high-pressure kneading zone in which the molten resin and the pressurized fluid are contact-kneaded is maintained over a long period of time. It can be kept stable. Therefore, according to the present invention, various types such as a molded body modified with high-pressure carbon dioxide, a molded body with a reduced residual solvent, an alloyed molded body, and a molded body with a functional material dispersed therein, etc. A thermoplastic resin molding can be manufactured industrially stably.

Claims (3)

可塑化シリンダと、前記可塑化シリンダ内を回転及び進退自在に配設されたスクリュとを備え、前記可塑化シリンダ内で、熱可塑性樹脂が可塑化された溶融樹脂と加圧流体とを接触混練する高圧混練ゾーンと、前記高圧ゾーンに隣接する隣接ゾーンとが形成される混練装置であって、
前記高圧混練ゾーンと前記隣接ゾーンとの間に、前記スクリュの回転状態に応じて前記高圧混練ゾーンと前記隣接ゾーンとを連通及び遮断するシール機構を備え、
前記シール機構は、前記スクリュの回転状態に応じて、前記高圧混練ゾーンと前記隣接ゾーンとを遮断する機構であり、シール部を有する前記スクリュの縮径部と、前記スクリュの縮径部に軸方向で移動可能に外嵌し、前記シール部と当接する接触面を有するシールリングとを備えており、
前記スクリュの回転状態に応じて、前記縮径部のシール部と前記シールリングの接触面とが離間すると、前記高圧混練ゾーンと前記隣接ゾーンとが連通し、前記縮径部のシール部と前記シールリングの接触面とが当接すると、前記高圧混練ゾーンと前記隣接ゾーンとが遮断する混練装置。
A plasticizing cylinder; and a screw disposed in the plasticizing cylinder so as to be rotatable and movable back and forth. In the plasticizing cylinder, a molten resin obtained by plasticizing a thermoplastic resin and a pressurized fluid are contact-kneaded. A kneading apparatus in which a high-pressure kneading zone and an adjacent zone adjacent to the high-pressure zone are formed,
A seal mechanism is provided between the high-pressure kneading zone and the adjacent zone to communicate and block the high-pressure kneading zone and the adjacent zone according to the rotational state of the screw.
The seal mechanism is a mechanism that blocks the high-pressure kneading zone and the adjacent zone according to the rotational state of the screw, and has a reduced diameter portion of the screw having a seal portion, and a reduced diameter portion of the screw. A seal ring that has a contact surface that is movably fitted in a direction and abuts against the seal portion;
When the seal portion of the reduced diameter portion and the contact surface of the seal ring are separated according to the rotation state of the screw, the high pressure kneading zone and the adjacent zone communicate with each other, and the seal portion of the reduced diameter portion and the A kneading device in which the high-pressure kneading zone and the adjacent zone are shut off when the contact surface of the seal ring comes into contact.
請求項1に記載の混練装置であって、
前記スクリュは、係止部を備え、前記シールリングは、前記スクリュの係止部と係合及び係脱する被係止部を備えており、
前記スクリュが所定回転数以上で逆回転している場合に、前記スクリュの係止部と前記シールリングの被係止部とが係合し、前記スクリュと前記シールリングとが共回りすることにより、前記縮径部のシール部と前記シールリングの接触面との当接状態が維持される混練装置。
The kneading apparatus according to claim 1,
The screw includes a locking portion, and the seal ring includes a locked portion that engages and disengages with the locking portion of the screw.
When the screw is reversely rotated at a predetermined rotational speed or more, the locking portion of the screw and the locked portion of the seal ring are engaged, and the screw and the seal ring rotate together. The kneading apparatus in which the contact state between the seal portion of the reduced diameter portion and the contact surface of the seal ring is maintained.
前記シール機構は、前記スクリュの逆回転により、前記高圧混練ゾーンと前記隣接ゾーンとを遮断する機構である請求項1又は2に記載の混練装置。  The kneading apparatus according to claim 1 or 2, wherein the sealing mechanism is a mechanism that blocks the high-pressure kneading zone and the adjacent zone by reverse rotation of the screw.
JP2015197559A 2015-10-05 2015-10-05 Kneading equipment Active JP6099716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015197559A JP6099716B2 (en) 2015-10-05 2015-10-05 Kneading equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015197559A JP6099716B2 (en) 2015-10-05 2015-10-05 Kneading equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014260363A Division JP5823015B2 (en) 2014-12-24 2014-12-24 Kneading apparatus and method for producing thermoplastic resin molded body

Publications (2)

Publication Number Publication Date
JP2016000535A JP2016000535A (en) 2016-01-07
JP6099716B2 true JP6099716B2 (en) 2017-03-22

Family

ID=55076384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197559A Active JP6099716B2 (en) 2015-10-05 2015-10-05 Kneading equipment

Country Status (1)

Country Link
JP (1) JP6099716B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6533009B2 (en) * 2016-03-15 2019-06-19 マクセル株式会社 METHOD AND APPARATUS FOR MANUFACTURING FOAM MOLDED BODY

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211946B2 (en) * 1997-07-22 2001-09-25 株式会社新潟鉄工所 Injection molding machine for foam molding
US7172333B2 (en) * 1999-04-02 2007-02-06 Southco, Inc. Injection molding screw
US6322347B1 (en) * 1999-04-02 2001-11-27 Trexel, Inc. Methods for manufacturing foam material including systems with pressure restriction element
US7318713B2 (en) * 2002-07-18 2008-01-15 Trexel, Inc. Polymer processing systems including screws

Also Published As

Publication number Publication date
JP2016000535A (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP5675956B2 (en) Kneading apparatus and method for producing thermoplastic resin molded body
JP5226904B1 (en) Kneading apparatus and method for producing thermoplastic resin molding
US9884439B2 (en) Method for producing foamed molded product
JP4758732B2 (en) Thermoplastic injection molding method using supercritical fluid
US9421704B2 (en) Method for producing molded product, method for producing molded product having plating film, method for producing resin pellet, foam molded product having plating film, foam injection molding method, nozzle unit, and injection molding apparatus
JP6099716B2 (en) Kneading equipment
JP2014200937A (en) Vent-up prevention device, production method of compact, and molding apparatus of compact
JP2012232558A (en) Injection device of foam injection molding machine
WO2015133553A1 (en) Screw for extrusion molding machine, and extrusion molding machine
JP5823015B2 (en) Kneading apparatus and method for producing thermoplastic resin molded body
JP2013208843A (en) Kneader and method for manufacturing thermoplastic resin molding
WO2019003748A1 (en) Method for manufacturing foam molded body and foam molded body
JP3598017B2 (en) Injection molding equipment for thermoplastic resin molded products
JP3851439B2 (en) Manufacturing method of difficult-to-mold resin molded products
JP2013166304A (en) Manufacturing method for resin molding having plating film and resin molding having plating film
JP2005246958A (en) Injection molding method and cured fluorine rubber
JP2014200936A (en) Vent-up prevention device, production method of compact, and molding apparatus of compact
JP2011079223A (en) Screw of plastication apparatus and plastication apparatus
JP2017024333A (en) Injection molding process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170221

R150 Certificate of patent or registration of utility model

Ref document number: 6099716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250