JP6097986B1 - Carbonated water production equipment - Google Patents

Carbonated water production equipment Download PDF

Info

Publication number
JP6097986B1
JP6097986B1 JP2016157196A JP2016157196A JP6097986B1 JP 6097986 B1 JP6097986 B1 JP 6097986B1 JP 2016157196 A JP2016157196 A JP 2016157196A JP 2016157196 A JP2016157196 A JP 2016157196A JP 6097986 B1 JP6097986 B1 JP 6097986B1
Authority
JP
Japan
Prior art keywords
water
pressure
pressure vessel
carbon dioxide
carbonated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016157196A
Other languages
Japanese (ja)
Other versions
JP2018023928A (en
Inventor
純市郎 瀬川
純市郎 瀬川
克己 梶原
克己 梶原
尚哉 佐藤
尚哉 佐藤
Original Assignee
株式会社ジェ・スク
東北エア・ウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェ・スク, 東北エア・ウォーター株式会社 filed Critical 株式会社ジェ・スク
Priority to JP2016157196A priority Critical patent/JP6097986B1/en
Application granted granted Critical
Publication of JP6097986B1 publication Critical patent/JP6097986B1/en
Publication of JP2018023928A publication Critical patent/JP2018023928A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】炭酸ガスの溶解度が高い炭酸水製造方法を提供すると共に、その方法を簡易かつ低コストな構成で実現可能な炭酸水製造装置を提供する。【解決手段】まず、炭酸水製造方法は、耐圧容器内に水を所定水位まで貯留すると共に、容器内を気密にした後に、貯留水内へ炭酸ガスを注入して炭酸水を製造する方法において、炭酸ガスの注入過程時に、貯留水の水面上に形成された上部空間の圧力を所定回数だけ可変させるものである。上部空間の圧力可変は、リリーフ弁による大気開放によるものとする。炭酸水製造装置1は、注水管31と供給管41を備えた気密可能な耐圧容器2と、該耐圧容器内に配置して貯留水の水位を検知する水位センサ6と、貯留水内に炭酸ガスを注入するノズル5と、耐圧容器の上部空間と連通させたリリーフ弁72と、耐圧容器の内周面に沿って上下方向へ連続して形成した複数の案内板22と、から構成する。【選択図】図1The present invention provides a carbonated water production method having a high solubility of carbon dioxide gas and a carbonated water production apparatus capable of realizing the method with a simple and low-cost configuration. First, a method for producing carbonated water is a method of producing carbonated water by storing water up to a predetermined water level in a pressure-resistant vessel and making the inside of the vessel airtight and then injecting carbon dioxide into the stored water. During the carbon dioxide injection process, the pressure in the upper space formed on the surface of the stored water is varied a predetermined number of times. The pressure change in the upper space is caused by opening the atmosphere with a relief valve. The carbonated water production apparatus 1 includes an airtight pressure-resistant container 2 provided with a water injection pipe 31 and a supply pipe 41, a water level sensor 6 that is disposed in the pressure-resistant container and detects the water level of the stored water, and carbonated in the stored water. It comprises a nozzle 5 for injecting gas, a relief valve 72 communicating with the upper space of the pressure vessel, and a plurality of guide plates 22 formed continuously in the vertical direction along the inner peripheral surface of the pressure vessel. [Selection] Figure 1

Description

本願発明は、水に炭酸ガスを高濃度に溶解させる炭酸水製造装置に関する。   The present invention relates to a carbonated water production apparatus for dissolving carbon dioxide gas in water at a high concentration.

昨今、水に炭酸ガスを高濃度に溶解させた炭酸水は、人体に対して様々な効能があることが判明している。例えば、飲料による場合には、疲労回復の効果、糖尿病・痛風・貧血症の改善などがあり、洗顔や入浴による場合には、皮膚から浸透して血行促進,老廃物の排出、むくみの解消などが挙げられる。
また、炭酸水はそのまま飲用することはもちろん、各種の原液ソース(例えば、果汁、アルコール、お酢、等)を割るために広く利用されている。
Recently, it has been found that carbonated water in which carbon dioxide gas is dissolved in water at a high concentration has various effects on the human body. For example, in the case of drinks, there is an effect of recovery from fatigue, improvement in diabetes, gout, anemia, etc. In the case of face washing and bathing, penetration through the skin promotes blood circulation, discharges waste products, eliminates swelling, etc. Is mentioned.
Moreover, carbonated water is widely used not only for drinking as it is, but also for breaking various raw sauces (for example, fruit juice, alcohol, vinegar, etc.).

かかる背景もあり、業務用だけでなく自宅でも簡易に炭酸水を利用したいとの需要が高まり、一般家庭でも利用可能な様々な形態の炭酸水製造装置が開発されていた。   Against this background, there is an increasing demand for simply using carbonated water not only for business use but also at home, and various forms of carbonated water production apparatuses that can be used at home have been developed.

例えば、非特許文献1では、水を貯めたボトルに炭酸ガスを噴出するノズルを挿入し、このノズルの先端から炭酸ガスを噴出させた後、所定時間経過後にボトルを適宜に縦方向に振ることにより(ミキシング)、水と炭酸ガスを混合させ、炭酸水を得る家庭用の炭酸水製造装置、商品名「ソーダマシーン」が販売されていた。   For example, in Non-Patent Document 1, a nozzle that ejects carbon dioxide gas is inserted into a bottle that stores water, carbon dioxide gas is ejected from the tip of the nozzle, and then the bottle is appropriately shaken in the vertical direction after a predetermined time has elapsed. According to (mixing), a household carbonated water production apparatus for obtaining carbonated water by mixing water and carbon dioxide gas, the product name “Soda Machine” was sold.

また、特許文献1には、耐圧容器内に炭酸ガスを充満して炭酸ガス雰囲気を成し、この雰囲気内に飲用水を旋回させつつ噴射し、炭酸ガスと飲料水とを混合させて炭酸水を生成する炭酸水製造装置が開示されていた。この装置は、炭酸水生成方式においてスプレーノズル方式と呼ばれ、上記「ソーダマシーン」の飲料水内に炭酸ガスを噴出するジェットノズル方式に比べて炭酸ガスの溶解度が良好となる面があった。   Patent Document 1 discloses that a pressure-resistant container is filled with carbon dioxide gas to form a carbon dioxide atmosphere, and drinking water is sprayed while swirling in the atmosphere, and carbon dioxide and drinking water are mixed to produce carbonated water. An apparatus for producing carbonated water that generates water has been disclosed. This apparatus is called a spray nozzle system in the carbonated water generation system, and has a surface in which the solubility of carbon dioxide gas is better than that of the jet nozzle system that ejects carbon dioxide gas into the drinking water of the “soda machine”.

他にも、特許文献2では、飲料水が所定ケース内部を通過するとき、別設置のボンベ内の炭酸ガスが多孔質体を介してケースに供給され、これによって水に炭酸水を溶解させて炭酸水を生成し、その後に外部へと供給する飲料水サーバが開示されていた。   In addition, in Patent Document 2, when drinking water passes through the inside of a predetermined case, carbon dioxide gas in a separately installed cylinder is supplied to the case through the porous body, thereby dissolving the carbonated water in the water. A drinking water server that generates carbonated water and then supplies the carbonated water to the outside has been disclosed.

特開2014−23979号公報JP 2014-23979 A 特開2014−144788号公報JP 2014-144788 A

URL:http://idea-onlineshop.jp/?pg=product_detail&am=06910758   URL: http://idea-onlineshop.jp/?pg=product_detail&am=06910758

しかし、非特許文献1で示す「ソーダマシーン」は、全行程が手動式であるために煩雑である上、ガス噴出後の待ち時間、ボトルの振り方、などの要素によっていわゆる強炭酸水(炭酸ガスの溶解度2700ppm以上)に至らないばかりか、それ以下の弱炭酸水の範囲内であっても炭酸の強弱にバラツキが発生することがあった。   However, the “soda machine” shown in Non-Patent Document 1 is complicated because the whole process is manual, and so-called strong carbonated water (carbonic acid carbonate) depends on factors such as the waiting time after gas ejection and how to shake the bottle. Not only does the gas solubility not lower than 2700 ppm), but there is a case where variations in the strength of carbonic acid occur even in the range of weak carbonated water below that.

また、余った炭酸水は専用ボトル(1000ml程度)と専用キャップで封止して冷蔵庫で保存するが、一般家庭用のために気密性が弱く炭酸が抜け易いため、短時間で大量の炭酸水を消費する大家族向けならともかく、単身や少人数の家庭では使い勝手が悪いものであった。   The remaining carbonated water is sealed with a special bottle (about 1000 ml) and a special cap and stored in a refrigerator. However, for general household use, the carbonated water is weak and easy to remove carbonic acid. It is not easy to use in single or small-sized households.

一方、特許文献1の炭酸水製造装置は、炭酸ガス雰囲気中にノズルから水を旋回流として噴射して強炭酸水の製造を図っているが、基本構成がスプレーノズル方式であるため、大型かつ高価な給水ポンプを必要とするものであった。このため、設備が大型化するだけでなくコストアップとなり、この点を鑑みると業務用はともかく家庭用には不向きであった。   On the other hand, the carbonated water production apparatus of Patent Document 1 is designed to produce strong carbonated water by jetting water as a swirling flow from a nozzle into a carbon dioxide gas atmosphere. An expensive water supply pump was required. For this reason, the equipment is not only increased in size but also increased in cost, and in view of this point, it is not suitable for home use regardless of business use.

また、特許文献2の飲料水サーバは、主に家庭用飲料水に水素ガスを溶解させることに主眼をおいた構成点であるため、炭酸ガスの溶解に必要な混合・撹拌手段を備えるものではなかった。このため、水素ガスを炭酸ガスに変更した場合には、炭酸ガスの水への溶解性が悪く、特に強炭酸水の製造には不向きであった。   Moreover, since the drinking water server of patent document 2 is a component point which mainly focused on dissolving hydrogen gas in domestic drinking water, it does not include a mixing / stirring means necessary for dissolving carbon dioxide gas. There wasn't. For this reason, when hydrogen gas is changed to carbon dioxide, the solubility of carbon dioxide in water is poor, and it is particularly unsuitable for the production of strong carbonated water.

そこで、本願発明は上記問題点に鑑み為されたものであって、炭酸ガスの溶解度が高、簡易かつ低コストな構成で実現可能とする炭酸水製造装置を提供する。 Accordingly, the present invention was made in view of the above problems, the solubility of carbon dioxide rather high, to provide a carbonated water manufacturing apparatus capable of realizing a simple and low-cost configuration.

上記の課題を解決するため、本願発明に係る炭酸水製造装置は、以下のように構成している。 In order to solve the above-described problems, the carbonated water production apparatus according to the present invention is configured as follows.

すなわち、耐圧容器内に水を所定水位まで貯留した後に気密にした容器内の貯留水内へ炭酸ガスを注入する過程において、前記貯留水の水面上に形成された上部空間の圧力を所定の回数だけ大気開放によって可変させて炭酸水を製造する炭酸水製造装置であって、注水手段と供給手段を備えた気密可能な耐圧容器と、該耐圧容器内に配置して貯留水の水位を検知する水位センサと、貯留水内に炭酸ガスを注入するノズル手段と、前記耐圧容器の上部空間と連通させたリリーフ弁と、耐圧容器の内周面に沿って上下方向へ連続して形成した1又は複数の案内板と、から成ることを特徴としている。 That is, in the process of injecting carbon dioxide gas into the water-tight stored water after the water is stored in the pressure-resistant container to a predetermined water level, the pressure of the upper space formed on the water surface of the stored water is determined a predetermined number of times. This is a carbonated water production apparatus that produces carbonated water by varying it only by opening to the atmosphere, and is equipped with an airtight pressure-resistant container equipped with water injection means and supply means, and disposed in the pressure-resistant container to detect the level of stored water A water level sensor, nozzle means for injecting carbon dioxide gas into the stored water, a relief valve communicating with the upper space of the pressure vessel, and a 1 or formed continuously in the vertical direction along the inner peripheral surface of the pressure vessel It is characterized by comprising a plurality of guide plates.

上記の耐圧容器の供給手段としては、耐圧容器内を大気開放した後に再度気密化し、内部の炭酸水を強制的に排出する手段、例えば、エアポンプを接続して構成すれば良い。The pressure vessel supplying means may be configured by connecting a means such as an air pump for forcibly discharging the inside carbonated water after the inside of the pressure vessel is opened to the atmosphere and forcibly discharging the carbonated water.

また、耐圧容器の案内板は貯留水内に発生する炭酸ガスの泡を上下方向に強制的に誘導し、それによる縦方向の水流速度を増加させるように作用する。The guide plate of the pressure vessel acts to forcibly induce carbon dioxide bubbles generated in the stored water in the vertical direction and thereby increase the vertical water flow velocity.

さらに、耐圧容器内の底面部に炭酸ガスの拡散手段を配設したことを特徴としている。拡散手段は、ノズル手段から噴射された炭酸ガスの気泡が、耐圧容器の底部の一部分に偏ることなく全体に拡散させるように作用する。Further, the carbon dioxide diffusion means is disposed on the bottom surface in the pressure vessel. The diffusing means acts so that the bubbles of the carbon dioxide gas injected from the nozzle means are diffused to the whole without being biased to a part of the bottom of the pressure vessel.

なお、この拡散手段としては、所定網目を有する格子体に形成することが好適であるが、格子体の網目は円形、三角形、六角形、等に変更しても良い。さらにまた、拡散手段は拡散機能を発揮するなら、放射状、傘状、同心多重円状、等に変更しても良い。The diffusing means is preferably formed in a lattice having a predetermined mesh, but the mesh of the lattice may be changed to a circle, a triangle, a hexagon, or the like. Furthermore, the diffusing means may be changed to a radial shape, an umbrella shape, a concentric multiple circle shape, or the like as long as it exhibits a diffusing function.

加えて、耐圧容器は、外側面を冷却する冷却手段を備えることを特徴としている。冷却手段としては、例えば、冷媒が流通する冷却パイプを耐圧容器に周回させて構成すれば良い。ただし、この冷却手段は、耐圧容器の水源側に設置している場合は省略することも可能である。In addition, the pressure vessel is characterized by comprising a cooling means for cooling the outer surface. As the cooling means, for example, a cooling pipe through which a refrigerant circulates may be configured around the pressure vessel. However, this cooling means can be omitted if it is installed on the water source side of the pressure vessel.

次に、上記構成の炭酸水製造装置は、以下のように作用させて炭酸水を製造している。 Next, the carbonated water production apparatus having the above configuration produces carbonated water by acting as follows.

まず、上述したように、耐圧容器内に水を所定水位まで貯留して容器内を気密にした後、ノズル手段による炭酸ガスの注入過程において、貯留水の水面上に形成された上部空間の圧力を所定の回数だけ、リリーフ弁による大気開放によって可変させている。First, as described above, after the water is stored in the pressure resistant container up to a predetermined water level and the inside of the container is airtight, the pressure of the upper space formed on the surface of the stored water in the carbon dioxide injection process by the nozzle means Is varied a predetermined number of times by opening the atmosphere with a relief valve.

この大気開放のリリーフ圧は、耐圧容器内の上部空間内の圧力が0.6Mpa〜0.99Mpaの範囲としている。The relief pressure for opening to the atmosphere is such that the pressure in the upper space in the pressure resistant vessel is in the range of 0.6 Mpa to 0.99 Mpa.

また、炭酸ガスの注入過程は、定圧での連続注入としている。ここで、炭酸ガスの注入圧力を定圧とする一方で、炭酸ガスの溶解度を変更したい場合には、注入時間を適宜に変更させて調整するしている。したがって、上記の大気開放する耐圧容器内の上部空間の圧力(以下、「空間圧力」と称する。)については、炭酸ガスの注入圧力及び注入時間の関係によって適宜に選択している。The carbon dioxide gas injection process is continuous injection at a constant pressure. Here, when the carbon dioxide gas injection pressure is set to a constant pressure and the carbon dioxide solubility is to be changed, the injection time is appropriately changed and adjusted. Therefore, the pressure in the upper space (hereinafter referred to as “space pressure”) in the pressure-resistant container opened to the atmosphere is appropriately selected depending on the relationship between the injection pressure of carbon dioxide gas and the injection time.

上記のように作用させた場合、耐圧容器内の空間圧力が大気開放によって大気圧まで至らないまでも急激に低下する一方で、継続する炭酸ガスの注入で再度上昇する。When operated as described above, the space pressure in the pressure-resistant vessel rapidly decreases even if it does not reach atmospheric pressure due to release to the atmosphere, while it rises again with continued carbon dioxide gas injection.

つまり、耐圧容器内の空間圧力は、炭酸ガス注入過程において、一定の上昇と急激な下降を繰り返すこととなる。これによって一定量の炭酸ガスが溶解した貯留水が刺激され、一端は溶解した炭酸ガスの一部が気泡となり、これが貯留水全体に急激な上昇流を引き起こさせることになる。That is, the space pressure in the pressure vessel repeats a constant increase and a rapid decrease in the carbon dioxide injection process. As a result, the stored water in which a certain amount of carbon dioxide gas is dissolved is stimulated, and at one end, a part of the dissolved carbon dioxide gas becomes bubbles, which causes a sudden upward flow in the entire stored water.

そして、この貯留水の急激な上昇流が、耐圧容器内の上部空間と貯留水とを混合・撹拌させる作用となり、上部空間の炭酸ガスの貯留水へ溶解をさらに促進させる。別言すれば、耐圧容器を上下方向にミキシング(縦振り)したことと同等の作用がなされる。Then, this rapid rising flow of the stored water acts to mix and agitate the upper space in the pressure vessel and the stored water, and further promote the dissolution of the carbon dioxide gas in the upper space into the stored water. In other words, an action equivalent to that of mixing (vertically swinging) the pressure vessel in the vertical direction is performed.

上記構成の炭酸水製造装置は、炭酸ガス注入過程の耐圧容器内の空間圧力の変化によって貯留水に気泡による縦方向の急激な上昇流を発生させ、これをもって貯留水と耐圧容器の上部空間の炭酸ガスの混合及び撹拌を誘発させる。この結果、上部空間の炭酸ガスの貯留水への溶解を促進し、いわゆる強炭酸水を得ることが可能となる。 The carbonated water production apparatus having the above configuration generates a sudden vertical upward flow due to bubbles in the stored water due to a change in the space pressure in the pressure vessel during the carbon dioxide injection process, and this causes the storage water and the upper space of the pressure vessel to Induce carbon dioxide mixing and agitation. As a result, dissolution of the carbon dioxide gas in the upper space into the stored water can be promoted, and so-called strong carbonated water can be obtained.

また、耐圧容器を物理的に上下方向に振ったり、駆動源を別途必要とする撹拌手段を耐圧容器の内部に備えたりする必要が無いため、製造装置の構造を簡略化できる。 In addition , since it is not necessary to physically shake the pressure vessel in the vertical direction or to provide stirring means that requires a separate drive source inside the pressure vessel, the structure of the manufacturing apparatus can be simplified.

さらに、炭酸水製造装置は、耐圧容器、貯留量を確認する水位センサ、炭酸ガスを噴射するノズル手段、大気開放するリリーフ弁、耐圧容器の内周面に沿って形成した案内板の要素が最低限あれば構築可能である。 Further , the carbonated water production apparatus has a pressure vessel, a water level sensor for confirming the storage amount, a nozzle means for injecting carbon dioxide gas, a relief valve for opening to the atmosphere, and elements of a guide plate formed along the inner peripheral surface of the pressure vessel. If it is limited, it can be constructed.

そして、付加する構成要素も噴射された炭酸ガスを容器内に拡散させる格子体、等を配置する簡略な構成である。   And the component to add is also a simple structure which arrange | positions the lattice body etc. which diffuse the injected carbon dioxide gas in a container.

この結果、炭酸水製造装置の製造コストだけでなく、維持管理コストの大幅な抑制が可能となり、一般家庭向けに安価に炭酸水製造装置が提供できる。他にも、現行の炭酸飲料水供給装置(いわゆるカップ提供型の自動販売機)の炭酸水生成用のアッセンブルユニットとしても採用することができ、その用途は広いものである。   As a result, not only the production cost of the carbonated water production apparatus but also the maintenance cost can be greatly suppressed, and the carbonated water production apparatus can be provided at low cost for ordinary households. In addition, it can also be used as an assembly unit for generating carbonated water of a current carbonated beverage supply apparatus (so-called cup-providing vending machine), and its application is wide.

本願発明に係る炭酸水製造装置を一部切り欠いて示す斜視図である。It is a perspective view which cuts off and shows the carbonated water manufacturing apparatus based on this invention partially. 図1のA矢視図である。It is A arrow directional view of FIG. 図2のBB線断面図である。It is BB sectional drawing of FIG. 本願発明に係る炭酸水製造装置の回路図である。It is a circuit diagram of the carbonated water manufacturing apparatus concerning this invention. 本願発明に係る炭酸水製造装置の格子体の変形例を示す平面図(A)、(B)と斜視図(C)である。It is the top view (A) and (B) and perspective view (C) which show the modification of the grid | lattice body of the carbonated water manufacturing apparatus which concerns on this invention. 本願発明に係る炭酸水製造装置による炭酸水製造工程を示すフローチャートである。It is a flowchart which shows the carbonated water manufacturing process by the carbonated water manufacturing apparatus which concerns on this invention. 本願発明に係る炭酸水製造装置の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the carbonated water manufacturing apparatus which concerns on this invention.

次に、本願発明に係る炭酸水製造装置(以下、「本装置」と称する。)の具体的実施形態の一例について、図面に基づき詳細に説明する。 Then, carbonated water manufacturing apparatus according to the present invention (hereinafter, referred to as "device".) An example of a specific embodiment of, it will be described with reference to the drawings in detail.

なお、以下説明では、便宜上、図面上の上側部分を「上部」と下側部分を「下部」と称して用いる。   In the following description, for convenience, the upper part of the drawing is referred to as “upper part” and the lower part is referred to as “lower part”.

図1は、本装置1の構成を示す一部切欠き斜視図である。本装置1は、耐圧容器2を主要構成要素とし、この耐圧容器2の上部側に注水管31、開放管7を接続すると共に下部に供給管41を接続し、内部にはノズル5及び水位センサ6を配置して構成している。   FIG. 1 is a partially cutaway perspective view showing the configuration of the apparatus 1. The apparatus 1 has a pressure vessel 2 as a main component, and a water injection pipe 31 and an open pipe 7 are connected to the upper side of the pressure vessel 2 and a supply pipe 41 is connected to the lower side, and a nozzle 5 and a water level sensor are provided inside. 6 is arranged.

まず、耐圧容器2は所定耐圧を有する上下を閉塞した円筒状を成す筐体21をもって気密形成され、内部には所定量の水を貯留可能としている。本実施例の耐圧容器2は、耐圧2Mpa、容量1000mlの仕様である。なお、通常、流通する家庭若しくは小規模業務用の耐圧容器としては、同耐圧で約容量7000ml程度までが一般的である。なお、耐圧容器2は、金属製、樹脂製を問わない。   First, the pressure vessel 2 is hermetically formed with a cylindrical casing 21 having a predetermined pressure resistance and closed at the top and bottom, so that a predetermined amount of water can be stored therein. The pressure vessel 2 of the present embodiment has a specification of a pressure resistance of 2 Mpa and a capacity of 1000 ml. In general, as a pressure-resistant container for distribution at home or small-scale business, the pressure resistance is generally up to about 7000 ml with the same pressure resistance. The pressure vessel 2 may be made of metal or resin.

また、耐圧容器2の内周面には、矩形板状の4枚の案内板22を配設している。案内板22は軸中心方向に突出すると共に、耐圧容器2の上下方向に沿って配設している。案内板22の幅は耐圧容器内部の半径の半分程であり、長さは耐圧容器内部の上下に耐圧容器全長の1〜2割程度の隙間を残す程度に設定している。特に下端側は、後述する格子体23との干渉を回避する長さに調整している。   In addition, four rectangular plate-like guide plates 22 are disposed on the inner peripheral surface of the pressure vessel 2. The guide plate 22 protrudes in the axial center direction and is disposed along the vertical direction of the pressure vessel 2. The width of the guide plate 22 is about half of the radius inside the pressure vessel, and the length is set so as to leave a gap of about 10 to 20% of the total length of the pressure vessel above and below the pressure vessel. In particular, the lower end side is adjusted to a length that avoids interference with the lattice body 23 described later.

案内板22の耐圧容器内周面に対する配置箇所は4箇所であり、軸中心に90度の角度間隔をもって配置している。また、後述する注水口3、供給口4と重畳しない位置であり、かつ、ノズル5、水位センサ6の何れとも干渉しない位置としている。なお、案内板22の数は、その配置数によって耐圧容器内の構造自体が変更となるため、耐圧容器2の容量や貯留水量等によって適宜に変更しても良いが、少なくとも1枚は配置する。また、案内板22はリブとしても機能するため、耐圧容器2の剛性向上にも資する。   The guide plate 22 is arranged at four locations with respect to the inner peripheral surface of the pressure vessel, and is arranged at an angular interval of 90 degrees about the axis center. Moreover, it is a position which does not overlap with the water injection port 3 and the supply port 4 which are mentioned later, and is a position which does not interfere with any of the nozzle 5 and the water level sensor 6. In addition, since the structure itself in a pressure vessel changes according to the number of arrangement | positioning, the number of the guide plates 22 may be changed suitably according to the capacity | capacitance of the pressure vessel 2, the amount of stored water, etc., but at least 1 piece is arrange | positioned. . Moreover, since the guide plate 22 functions also as a rib, it contributes to the rigidity improvement of the pressure vessel 2.

耐圧容器内の底部には格子体23を配置している。この格子体23は、所定寸法の網目を有し、耐圧容器2の底面からは若干浮いた配置としている。また、耐圧容器2の中央底部に形成した供給管41と連通する供給口4の部分を避けた形状にしている。   A lattice body 23 is disposed at the bottom of the pressure vessel. The lattice body 23 has a mesh of a predetermined size and is arranged slightly floating from the bottom surface of the pressure vessel 2. Moreover, it is made into the shape which avoided the part of the supply port 4 connected with the supply pipe | tube 41 formed in the center bottom part of the pressure | voltage resistant container 2. As shown in FIG.

格子体23の網目寸法は、小さい程好適であるが、本実施例では後述するノズル5の外径寸法よりも、やや小さめの寸法に設定している。また、高さ寸法としては、耐圧容器2の全長の1〜2割程度とし、上記案内板22との干渉を回避する寸法としている。   The mesh size of the lattice body 23 is preferably as small as possible, but in this embodiment, it is set to be slightly smaller than the outer diameter size of the nozzle 5 described later. Further, the height dimension is set to about 10 to 20% of the entire length of the pressure vessel 2 so as to avoid the interference with the guide plate 22.

この格子体23は、後述するノズル5から噴射される炭酸ガスを周囲に拡散することを主な目的とした拡散手段として配設している。したがって、炭酸ガスを水平方向に拡散させる機能を発揮するものであれば良く、例えば、図5に示すように、円形の他、三角形、六角形と適宜に変形させても良い。他にも、放射直線状、同心多重円、これらの組合せ、中央部を高くした傘状、等に適宜に変更しても良い。   The lattice body 23 is disposed as a diffusing unit whose main purpose is to diffuse carbon dioxide sprayed from a nozzle 5 to be described later. Therefore, it may be anything as long as it exhibits the function of diffusing carbon dioxide in the horizontal direction. For example, as shown in FIG. In addition, the shape may be appropriately changed to a linear radial shape, concentric multiple circles, a combination thereof, an umbrella shape with a raised central portion, or the like.

さらに、耐圧容器2の外周位には、内部に冷媒が流通する冷却管24を周回させて耐圧容器2を冷却している。これは、炭酸ガスは15℃以下のいわゆる冷水に対して溶解度が増すからであり、耐圧容器周囲を適宜に冷却して温度管理を行っている。これにより、一定濃度の炭酸水生成に資すると共に、貯留水及び生成後の炭酸水の品質の維持も可能となる。   Furthermore, the pressure vessel 2 is cooled by circulating a cooling pipe 24 around which refrigerant flows in the outer periphery of the pressure vessel 2. This is because carbon dioxide gas has a higher solubility in so-called cold water of 15 ° C. or lower, and the temperature is controlled by appropriately cooling the periphery of the pressure vessel. Thereby, while contributing to the production | generation of carbonated water of a fixed density | concentration, the maintenance of the quality of stored water and the carbonated water after production | generation is also attained.

耐圧容器2の上部には、内部と連通する注水口3を介して注水管31を接続している。注水管31は、水源Wsから水を耐圧容器内部へ注水する機能を担っている。注水管31には耐圧容器側に近い順番に逆止弁32、送水ポンプ33、注水管31を開閉する空気作動弁34を連結している。なお、水源Wsの水は外部の冷却手段によって15℃以下に維持しておくことが望ましい。   A water injection pipe 31 is connected to the upper portion of the pressure vessel 2 through a water injection port 3 communicating with the inside. The water injection pipe 31 has a function of injecting water from the water source Ws into the pressure vessel. A check valve 32, a water supply pump 33, and an air operating valve 34 that opens and closes the water injection pipe 31 are connected to the water injection pipe 31 in the order close to the pressure vessel side. In addition, it is desirable to maintain the water of the water source Ws at 15 ° C. or less by an external cooling means.

一方、耐圧容器2の下部には、内部と連通する供給口4を介して供給管41を接続している。供給管41は、耐圧容器内で生成された炭酸水を外部へと供給する機能を担っている。供給管41に電動弁42が連結し、これをもって製造後の炭酸水の外部への供給を制御している。   On the other hand, a supply pipe 41 is connected to the lower part of the pressure vessel 2 through a supply port 4 communicating with the inside. The supply pipe 41 has a function of supplying carbonated water generated in the pressure vessel to the outside. An electric valve 42 is connected to the supply pipe 41, and this controls the supply of carbonated water to the outside after production.

ノズル5は、貯留水内に炭酸ガスを注入するノズル手段であり、筒状を成すと共に耐圧容器2の内部に垂下状に配設している。ノズル5の下端側は耐圧容器2の長さ寸法の半分より若干上方位置まで延出し、その先端側に外径寸法の1割以下の寸法の噴射口51を形成している。一方、上端側は耐圧容器2の上部側の筐体21を貫通してガス管52に接続している。ガス管52には耐圧容器側に近い順番に逆止弁53、電動弁54、炭酸ガスを貯蔵したガスボンベGbと連結している。なお、ノズル5の外径や噴射口51は、先端に向かって実施例のように暫時縮径させる形態が好適であるが、この形態に限定するものではなく直線状でも良い。   The nozzle 5 is a nozzle means for injecting carbon dioxide gas into the stored water. The nozzle 5 has a cylindrical shape and is arranged in a hanging shape inside the pressure-resistant vessel 2. The lower end side of the nozzle 5 extends to a position slightly above half of the length of the pressure vessel 2, and an injection port 51 having a size of 10% or less of the outer diameter is formed on the tip side. On the other hand, the upper end side passes through the housing 21 on the upper side of the pressure vessel 2 and is connected to the gas pipe 52. The gas pipe 52 is connected to a check valve 53, an electric valve 54, and a gas cylinder Gb storing carbon dioxide gas in the order close to the pressure vessel side. The outer diameter of the nozzle 5 and the injection port 51 are suitably reduced in diameter toward the tip as in the embodiment, but are not limited to this form and may be linear.

水位センサ6は、耐圧容器内の貯留水の水位を確認している。この水位センサ6からの検知情報に基づいてノズル5に連結する電動弁54を制御し、炭酸ガスをノズル5から噴射している。本実施例の水位センサ6は棒状を成し、その上端側を耐圧容器2の上部に配設したコネクタ部に接続すると共に、下端側は耐圧容器2の内部でノズル5と平行を成して垂下状に配設している。また、本実施例の水位センサ6は耐圧容器内部の下部付近まで延出する下限センサ61、中間付近まで延出する適量センサ62、耐圧容器内部の上部付近で止まる上限センサ63、から3本1組で構成している。各センサ61、62、63は、下端部分を貯留水に接触させることによって検知情報を得ている。   The water level sensor 6 confirms the water level of the stored water in the pressure vessel. Based on the detection information from the water level sensor 6, the motor-operated valve 54 connected to the nozzle 5 is controlled to inject carbon dioxide from the nozzle 5. The water level sensor 6 of the present embodiment has a rod shape, and its upper end side is connected to a connector portion disposed on the upper portion of the pressure vessel 2, and its lower end side is parallel to the nozzle 5 inside the pressure vessel 2. It is arranged in a hanging shape. Further, the water level sensor 6 of the present embodiment has three sensors 1 from a lower limit sensor 61 extending near the lower part inside the pressure vessel, an appropriate amount sensor 62 extending near the middle, and an upper limit sensor 63 stopping near the upper part inside the pressure vessel 1 It consists of a set. Each sensor 61, 62, 63 obtains detection information by bringing the lower end portion into contact with the stored water.

耐圧容器2の上部には、内部と連通する開放管7を配設している。開放管7の端部側に開放電動弁71を連結している。この構成により、注水管31の空気動作弁34、供給管41の電動弁42、開放管7の開放電動弁71を閉じた状態では、耐圧容器内部の気密状態を確保できることとなる。   An open tube 7 communicating with the inside is disposed at the upper portion of the pressure vessel 2. An open motor-operated valve 71 is connected to the end portion side of the open pipe 7. With this configuration, when the air operation valve 34 of the water injection pipe 31, the electric valve 42 of the supply pipe 41, and the open electric valve 71 of the open pipe 7 are closed, an airtight state inside the pressure vessel can be secured.

開放管7の途中経路にはリリーフ弁72を配設している。リリーフ弁72は、耐圧容器2の貯留水を除く上部空間の空間圧力が所定値を超えたとき、大気開放するように作動して空間圧力を低下させている。このリリーフ弁72には、大気開放時における騒音を低下させる消音機72aを配設している。消音機72aは、キャップ状の樹脂製本体の頭部側に複数の開孔を形成すると共に内部に綿を配置して成り、25db以上の消音を可能としている。なお、本実施例のリリーフ弁72は、リリーフ圧(大気開放圧力)を最大1Mpまで設定できる。   A relief valve 72 is disposed in the middle path of the open pipe 7. The relief valve 72 operates to open to the atmosphere to reduce the space pressure when the space pressure in the upper space excluding the stored water in the pressure-resistant vessel 2 exceeds a predetermined value. The relief valve 72 is provided with a silencer 72a that reduces noise when the atmosphere is open. The silencer 72a is formed by forming a plurality of apertures on the head side of the cap-shaped resin main body and arranging cotton inside, thereby enabling noise reduction of 25 db or more. In addition, the relief valve 72 of a present Example can set relief pressure (atmospheric open pressure) to a maximum of 1 Mp.

開放管7のリリーフ弁72と開放電動弁71との途中経路には、分岐して順に電動弁73とエアポンプ74を連結している。このエアポンプ74は耐圧容器内から炭酸水のほぼ全てを排出する場合に用いる。他にも、供給口4が本実施例と異なり、耐圧容器2の側面や上部側に変更になった場合、又は供給管41の末端が耐圧容器2より上方に位置する場合に、内部圧力を高めて炭酸水を強制排出するものである。別言すれば、エアポンプ74は、炭酸水の外部供給手段である。一方、本実施例のように供給口4や供給管41の末端が耐圧容器2の下部に位置する場合は、炭酸水は重力で抜けるのでエアポンプ74と電動弁73は省略することも可能である。
なお、開放電動弁71の開放末端側やエアポンプ74には、食品衛生法に準拠するフィルター(図示省略)を配設し、外部からごみや粉塵等が耐圧容器内に侵入すること防止している。
作用の説明]
The motor valve 73 and the air pump 74 are sequentially connected to the intermediate path between the relief valve 72 and the open motor valve 71 of the open pipe 7. The air pump 74 is used when almost all carbonated water is discharged from the pressure vessel. In addition, unlike the present embodiment, when the supply port 4 is changed to the side surface or the upper side of the pressure vessel 2 or when the end of the supply pipe 41 is located above the pressure vessel 2, the internal pressure is changed. This is to forcibly discharge carbonated water. In other words, the air pump 74 is an external supply means for carbonated water. On the other hand, when the ends of the supply port 4 and the supply pipe 41 are located at the lower part of the pressure vessel 2 as in the present embodiment, since the carbonated water is removed by gravity, the air pump 74 and the electric valve 73 can be omitted. .
A filter (not shown) conforming to the Food Sanitation Law is provided on the open end side of the open motor-operated valve 71 and the air pump 74 to prevent dust, dust, etc. from entering the pressure vessel from the outside. .
[Description of action ]

次に、上記構成の本装置1の作用を説明する。本作用は、図6のフローチャート、及び図7の作用説明図に従って説明する。 Next, the operation of the apparatus 1 having the above configuration will be described. This operation will be described with reference to the flowchart of FIG. 6 and the operation explanatory diagram of FIG.

まず、耐圧容器2が初期状態として正常であるか確認する。初期状態としては、例えば、耐圧容器内に残留する炭酸水や貯留水が無いこと、及び気密状態となっているかである。残留の炭酸水等は、各水位センサ61、62、63の検知情報で確認し、異常を検知した場合には後の動作を強制的に終了させ、別途復帰を図る。また、気密状態の確認は、空気作動弁34、開放電動弁71、各電動弁42、54、73が閉じた状態であることによって行う。
[耐圧容器の気密解除]
First, it is confirmed whether the pressure vessel 2 is normal as an initial state. As an initial state, for example, there is no carbonated water or stored water remaining in the pressure-resistant container, and whether it is in an airtight state. Residual carbonated water or the like is confirmed by the detection information of each of the water level sensors 61, 62, and 63. If an abnormality is detected, the subsequent operation is forcibly terminated and separately restored. The airtight state is confirmed by checking that the air operating valve 34, the open motorized valve 71, and the motorized valves 42, 54, 73 are closed.
[Airtight release of pressure vessel]

正常な初期状態を確認したら、開放電動弁71を開いて耐圧容器内を大気開放して気密状態を解除する。
[注水]
When the normal initial state is confirmed, the open motor-operated valve 71 is opened, the pressure-resistant container is opened to the atmosphere, and the airtight state is released.
[Water injection]

次に、注水管31の送水ポンプ33を起動すると共に、空気作動弁34を開いて、耐圧容器内に注水口3を介して所定量の水を注水する(矢印a)。設定時間の注水を行った後、空気作動弁34を閉じると共に送水ポンプ33を停止する。
[貯留量適否の判断]
Next, while starting the water supply pump 33 of the water injection pipe 31, the air operation valve 34 is opened, and a predetermined amount of water is injected into the pressure resistant container through the water injection port 3 (arrow a). After water injection for a set time, the air operation valve 34 is closed and the water pump 33 is stopped.
[Judgment of appropriateness of storage volume]

注水停止後の耐圧容器内の貯留量が適量であるかは、水位センサ6の適量センサ62の検知情報にて確認する。   Whether or not the amount stored in the pressure vessel after stopping the water injection is appropriate is confirmed by the detection information of the appropriate amount sensor 62 of the water level sensor 6.

この時点において、水位センサ6の上限センサ63に検知情報があれば、異常を通知し、その後の動作を停止させた後、別途復帰を図る。したがって、耐圧容器内の上部には、少なくとも上限センサ63が検知しない程度の上部空間が確保されている。なお、本実施例では、耐圧容器2の最大容量1000mlにおいて、700〜750ml程注水する仕様としている
[耐圧容器の気密化]
At this time, if there is detection information in the upper limit sensor 63 of the water level sensor 6, an abnormality is notified, and the subsequent operation is stopped, and then the return is made separately. Therefore, at least the upper space that is not detected by the upper limit sensor 63 is secured in the upper part of the pressure vessel. In this embodiment, in the maximum capacity 1000 ml of the pressure vessel 2, about 700 to 750 ml is injected [airtightness of the pressure vessel]

耐圧容器内の貯留水が適量であるかの確認後、開放電動弁71を閉じて耐圧容器内を気密状態とする。
[炭酸ガス噴出]
After confirming whether the amount of stored water in the pressure vessel is appropriate, the open motor-operated valve 71 is closed to make the inside of the pressure vessel airtight.
[CO2 emission]

次に、ノズル5に連結する電動弁54を開けて炭酸ガスGを貯留水に所定時間に亘って噴射する(矢印b)。なお、噴射圧力は事前に調整するものであり、本実施例での耐圧容器2の耐圧値が2Mpaであるので、関連法規等を考慮して0.99Mpa以下に設定している。   Next, the motor-operated valve 54 connected to the nozzle 5 is opened, and the carbon dioxide gas G is injected into the stored water over a predetermined time (arrow b). The injection pressure is adjusted in advance. Since the pressure resistance value of the pressure resistant container 2 in this embodiment is 2 Mpa, it is set to 0.99 Mpa or less in consideration of related laws and regulations.

ここで、噴出された炭酸ガスGは一部が貯留水に溶解しつつも、残りは気泡となって下降して格子体23に衝突する。この衝突時においても炭酸ガスGの溶解が促進される一方で、残りの気泡は耐圧容器底部の周囲に放射状に拡散する(矢印c)。また、気泡と共に格子体23に衝突する貯留水の一部は、格子体23によって細分化され、炭酸水の溶解の促進に資する。   Here, a part of the ejected carbon dioxide G dissolves in the stored water, but the rest falls as bubbles and collides with the lattice body 23. Even during the collision, the dissolution of the carbon dioxide G is promoted, while the remaining bubbles diffuse radially around the bottom of the pressure vessel (arrow c). In addition, a part of the stored water that collides with the lattice body 23 together with the bubbles is subdivided by the lattice body 23 and contributes to the promotion of dissolution of carbonated water.

拡散後の炭酸ガスGの気泡は、耐圧容器の底面の全面から上昇に転じるが(矢印d)、案内板22によって周回方向の移動が制限されて上昇方向への速度が増す。この上昇過程においても炭酸ガスGの溶解が進むと共に、気泡の一部が案内板22の壁面にも衝突するため、これによっても溶解が促進する。なお、上記の速度増進は炭酸水生成時間の短縮にも資する。   The bubbles of the carbon dioxide gas G after the diffusion start to rise from the entire bottom surface of the pressure vessel (arrow d), but the movement in the circumferential direction is restricted by the guide plate 22 and the speed in the upward direction increases. Even in this ascending process, the dissolution of the carbon dioxide gas G progresses, and some of the bubbles also collide with the wall surface of the guide plate 22, which also promotes the dissolution. In addition, said speed increase contributes also to shortening of carbonated water production | generation time.

そして、貯留水に溶解しきれなかった気泡は耐圧容器内の上部空間で弾ける。これにより、上部空間の炭酸ガス濃度が増すと共に、空間圧力が上昇することになる。   And the bubble which was not able to melt | dissolve in stored water bounces in the upper space in a pressure vessel. As a result, the carbon dioxide gas concentration in the upper space increases and the space pressure increases.

上述のように炭酸ガスGの噴射は所定時間に亘って継続している。この所定時間内において、上部側の空間圧力が所定値(本実施例では0.65Mpa)を超えたら、リリーフ弁72が作動して大気開放がなされる(矢印e)。この大気開放によって、耐圧容器2の空間圧力は一気に低下する。この急激な圧力低下が刺激となって、貯留水に過飽和に溶けていた炭酸ガスGの一部が急激に気体化して大量の気泡が発生すると共に上方に向かうため、耐圧容器全体で急激な上昇流が形成される(矢印f)。なお、上記の大気開放では、空間圧力が大気圧までは降下しない設定としている。また、この時の大気開放音は、リリーフ弁72の消音機72aによって低下している。   As described above, the injection of carbon dioxide G continues for a predetermined time. If the space pressure on the upper side exceeds a predetermined value (0.65 Mpa in this embodiment) within this predetermined time, the relief valve 72 is actuated to release the atmosphere (arrow e). Due to this release to the atmosphere, the space pressure of the pressure-resistant vessel 2 decreases at a stretch. This sudden pressure drop stimulates a part of the carbon dioxide G dissolved in the supersaturation in the stored water to rapidly gasify, generating a large amount of bubbles and moving upward. A flow is formed (arrow f). In the above-described opening to the atmosphere, the space pressure is set not to drop to atmospheric pressure. At this time, the air release sound is lowered by the silencer 72 a of the relief valve 72.

この上昇流は、案内板22によって旋回が制限されて上下方向に制限されるために、言わば耐圧容器2に対して強力な縦方向の作用、別言すれば「縦振り」が付加される。これにより、一部の炭酸ガスGが溶解して炭酸水化した貯留水と上部空間の炭酸ガスGの混合及び撹拌が促進され、さらに多くの炭酸ガスGを溶解させることとなる。その一方で、ノズル5からは継続して炭酸ガスGが噴射しているので、格子体23や案内板22による炭酸ガスの溶解作用も継続されると共に、空間圧力は再度上昇していく。   Since the upward flow is restricted by the guide plate 22 in the vertical direction, a strong vertical action, in other words, “vertical swing” is added to the pressure vessel 2. As a result, mixing and stirring of the carbon dioxide gas G in the upper space and the stored water carbonated by partial dissolution of the carbon dioxide gas G and the carbon dioxide gas in the upper space are promoted, and more carbon dioxide gas G is dissolved. On the other hand, since the carbon dioxide gas G is continuously ejected from the nozzle 5, the dissolving action of the carbon dioxide gas by the lattice body 23 and the guide plate 22 is also continued, and the space pressure rises again.

このリリーフ弁72による大気開放は、耐圧容器2に対して上記した主に縦方向の混合及び撹拌作用を付加するため、炭酸ガスGの継続噴射と相まって炭酸ガスGの貯留水への溶解をさらに促進させることになる。別言すれば、リリーフ弁72の作動回数が多い方が、炭酸ガスGの溶解度は増し、より強炭酸水を得ることが可能となる。   Opening the atmosphere by the relief valve 72 adds the above-described mainly longitudinal mixing and stirring action to the pressure-resistant vessel 2, so that the carbon dioxide G is further dissolved in the stored water in combination with the continuous injection of the carbon dioxide G. It will be promoted. In other words, as the relief valve 72 is operated more frequently, the solubility of the carbon dioxide gas G increases and it becomes possible to obtain stronger carbonated water.

リリーフ弁72の作動回数は、リリーフ弁72のリリーフ圧の設定、耐圧容器2の容量、貯留量、炭酸ガスGの噴射圧力、噴射時間によって調整する。本実施例の場合、炭酸ガスGの噴出時間の設定を11秒、リリーフ圧を0.65Mpaに設定した場合には、リリーフ弁72の作動回数は3回であることを確認している。   The number of operations of the relief valve 72 is adjusted by setting the relief pressure of the relief valve 72, the capacity of the pressure-resistant container 2, the storage amount, the injection pressure of the carbon dioxide G, and the injection time. In the case of the present embodiment, when the carbon dioxide gas ejection time is set to 11 seconds and the relief pressure is set to 0.65 Mpa, it is confirmed that the relief valve 72 is operated three times.

炭酸ガスGの噴射が設定した所定時間を経過した後、ノズル5に連結する電動弁54を閉じる。
[炭酸水の安定待ち]
After the predetermined time set by the injection of carbon dioxide G has elapsed, the motor-operated valve 54 connected to the nozzle 5 is closed.
[Stabilization of carbonated water]

炭酸ガスGの噴射が終わり、製造された炭酸水が安定状態(気泡発生が落ち着いた状態)となるまで所定時間(本実施例では0.5〜3.0秒)について待つ。
[耐圧容器の気密解除]
Waiting for a predetermined time (0.5 to 3.0 seconds in this embodiment) until the injection of the carbon dioxide gas G is finished and the produced carbonated water is in a stable state (a state in which the generation of bubbles is settled).
[Airtight release of pressure vessel]

待ち時間の経過後は、開放電動弁71を開けて耐圧容器2の内部を大気開放し、上部空間の炭酸ガスGを排出して耐圧容器内の気密状態を解除する。この耐圧容器2の気密解除においては、開放電動弁71の開き時間を調整し、耐圧容器2の空間圧力を大気圧よりも高い状態に維持し、炭酸水の供給(排出)を補助するようにしても良い。
[外部供給]
After the elapse of the waiting time, the open electric valve 71 is opened to open the inside of the pressure vessel 2 to the atmosphere, and the carbon dioxide gas G in the upper space is discharged to release the airtight state in the pressure vessel. In releasing the airtightness of the pressure vessel 2, the opening time of the open motor-operated valve 71 is adjusted, the space pressure of the pressure vessel 2 is maintained at a state higher than the atmospheric pressure, and the supply (discharge) of carbonated water is assisted. May be.
[External supply]

次に、供給管41の電動弁42を開け、供給口4を介して炭酸水を外部へと供給する(矢印g)。なお、供給管41の端部が耐圧容器2より上部にある場合、又は供給口41を耐圧容器2の上部側に変更した場合には、いったん開放電動弁71を閉じ、エアポンプ74を起動させると共にそれに付随する電動弁73を開いて、炭酸水を強制的に耐圧容器2から排出させる。また、上述の気密解除において、開放電動弁71の開き時間の調整で内部圧力を高めに調整し、エアポンプ74と同等の機能を発揮させても良い。
[残留量適否の判断]
Next, the electric valve 42 of the supply pipe 41 is opened, and carbonated water is supplied to the outside through the supply port 4 (arrow g). When the end of the supply pipe 41 is above the pressure vessel 2 or when the supply port 41 is changed to the upper side of the pressure vessel 2, the open electric valve 71 is once closed and the air pump 74 is activated. The motorized valve 73 associated therewith is opened to forcibly discharge the carbonated water from the pressure vessel 2. Further, in the above-described airtight release, the internal pressure may be adjusted to be higher by adjusting the opening time of the open electric valve 71 so that the same function as the air pump 74 may be exhibited.
[Judgment of suitability of residual amount]

炭酸水の外部への供給後は、耐圧容器内に残留する炭酸水が適量であるか確認する。供給モードによっては、炭酸水の全てを供給しない場合もあるからである。なお、残留の炭酸水は、各水位センサ61、62、63の検知情報で確認し、異常を検知した場合には後の動作を強制的に終了させ、別途復帰を図る。
[耐圧容器の気密化]
After supplying carbonated water to the outside, check whether the amount of carbonated water remaining in the pressure vessel is appropriate. This is because not all carbonated water may be supplied depending on the supply mode. The remaining carbonated water is confirmed by the detection information of each of the water level sensors 61, 62, 63, and when an abnormality is detected, the subsequent operation is forcibly terminated and separately restored.
[Airtightness of pressure vessel]

炭酸水の外部への供給が完了したら、供給管41の電動弁42、次いで開放電動弁71を閉じて耐圧容器内を気密状態として炭酸水製造を終了する。なお、この状態は正常適否の判断を待つ初期状態であるため、次の炭酸水製造を開始できる。
[実証データ]
When the supply of carbonated water to the outside is completed, the motor-operated valve 42 of the supply pipe 41 and then the open motor-operated valve 71 are closed to make the inside of the pressure vessel airtight and the production of carbonated water is terminated. In addition, since this state is an initial state waiting for the judgment of normal suitability, the next carbonated water production can be started.
[Verification data]

上記の本実施例の本装置の構成及び作用により、以下の炭酸溶解度の炭酸水を得た。まず、耐圧容器2において最大1000mlの容量に700〜750mlの注水量、炭酸ガスの噴射圧力0.90Mpa、噴射時間11秒、リリーフ弁72のリリーフ圧(大気開放圧力)0.65Mp、リリーフ弁72の作動回数3によって製造した炭酸水は、その炭酸ガス溶解度が3390ppmであった。
また、注水量と噴射圧力を固定すると共に、炭酸ガスの噴射時間を適宜に変更した場合に測定したリリーフ弁72の作動回数、炭酸ガス溶解度、及び炭酸消費量のデータを、参考として表1に示す。

Figure 0006097986
[他の実施例] Carbonated water having the following carbonic acid solubility was obtained by the configuration and action of the apparatus of the above-described Example. First, in the pressure vessel 2, a water injection amount of 700 to 750 ml, a carbon dioxide injection pressure of 0.90 Mpa, an injection time of 11 seconds, a relief pressure of the relief valve 72 (atmospheric pressure) 0.65 Mp, a relief valve 72. The carbonated water produced by the number of operations 3 had a carbon dioxide solubility of 3390 ppm.
In addition, the data on the number of actuations of the relief valve 72, the solubility of carbon dioxide gas, and the amount of carbon dioxide consumption measured when the water injection amount and the injection pressure are fixed and the carbon dioxide gas injection time is appropriately changed are shown in Table 1 as a reference. Show.
Figure 0006097986
[Other embodiments]

本実施例の水位センサ6は、耐圧容器内の貯留量を検知するために、下限センサ61、適量センサ62、上限センサ63と3個で1組の態様であるが、かかる態様に限定するものではなく、例えば、レーザー等で水面高さをリアルタイムで計測するセンサに変更しても良い。その場合、耐圧容器内の注水量を監視、水源用の空気作動弁34をフィードバック制御するようにしても良い。
また、耐圧容器内に配設する案内板22は、炭酸ガスと接触する面積が増加することによって溶解が促進するため、波板状にしたり、表面に凹凸を形成したりしても良い。
The water level sensor 6 of the present embodiment is a mode of three sets of a lower limit sensor 61, an appropriate amount sensor 62, and an upper limit sensor 63 in order to detect the storage amount in the pressure resistant container, but is limited to such a mode. Instead, for example, the sensor may be changed to a sensor that measures the water surface height in real time with a laser or the like. In that case, the amount of water injected into the pressure vessel may be monitored, and the air operating valve 34 for the water source may be feedback controlled.
In addition, the guide plate 22 disposed in the pressure vessel may be formed into a corrugated plate or may have irregularities on the surface thereof because dissolution is promoted by increasing the area in contact with the carbon dioxide gas.

1 本装置
2 耐圧容器
21 筐体
22 案内板
23 格子体
24 冷却管
3 注水口
31 注水管
32 逆止弁
33 送水ポンプ
34 空気作動弁
4 供給口
41 供給管
42 電動弁
5 ノズル
51 噴射口
52 ガス管
53 逆止弁
54 電動弁
6 水位センサ
61 下限センサ
62 適量センサ
63 上限センサ
7 開放管
71 開放電動弁
72 リリーフ弁
72a 消音機
73 電動弁
74 エアポンプ
G 炭酸ガス
Gb ガスボンベ
Ws 水源
DESCRIPTION OF SYMBOLS 1 This apparatus 2 Pressure-resistant container 21 Case 22 Guide plate 23 Grid body 24 Cooling pipe 3 Water inlet 31 Water inlet pipe 32 Check valve 33 Water supply pump 34 Air operation valve 4 Supply port 41 Supply pipe 42 Electric valve 5 Nozzle 51 Injection port 52 Gas pipe 53 Check valve 54 Electric valve 6 Water level sensor 61 Lower limit sensor 62 Appropriate sensor 63 Upper limit sensor 7 Open pipe 71 Open electric valve 72 Relief valve 72a Silencer 73 Electric valve 74 Air pump G Carbon dioxide Gb Gas cylinder Ws Water source

Claims (5)

耐圧容器内に水を所定水位まで貯留した後に気密にした容器内の貯留水内へ炭酸ガスを注入する過程において、前記貯留水の水面上に形成された上部空間の圧力を所定の回数だけ大気開放によって可変させて炭酸水を製造する炭酸水製造装置であって、In the process of injecting carbon dioxide gas into the water storage in an airtight container after the water is stored in the pressure vessel to a predetermined water level, the pressure of the upper space formed on the surface of the stored water is reduced to the atmospheric air a predetermined number of times. A carbonated water production device that produces carbonated water by varying the opening,
注水手段と供給手段を備えた気密可能な耐圧容器と、An airtight pressure-resistant container equipped with water injection means and supply means;
該耐圧容器内に配置して貯留水の水位を検知する水位センサと、A water level sensor arranged in the pressure vessel to detect the level of stored water;
前記貯留水内に炭酸ガスを注入するノズル手段と、Nozzle means for injecting carbon dioxide into the stored water;
前記耐圧容器の上部空間と連通させたリリーフ弁と、A relief valve in communication with the upper space of the pressure vessel;
耐圧容器の内周面に沿って上下方向へ連続して形成した1又は複数の案内板と、One or more guide plates formed continuously in the vertical direction along the inner peripheral surface of the pressure vessel;
から成ることを特徴とする炭酸水製造装置。An apparatus for producing carbonated water, comprising:
前記案内板が、The guide plate is
耐圧容器の内周面から軸中心側に突出した形状であることを特徴とする請求項1記載の炭酸水製造装置。2. The carbonated water production apparatus according to claim 1, wherein the apparatus is a shape protruding from the inner peripheral surface of the pressure vessel toward the axial center.
耐圧容器内の底面部に炭酸ガスの拡散手段を配設したことを特徴とする請求項1、又は2記載の炭酸水製造装置。3. The carbonated water producing apparatus according to claim 1, wherein a carbon dioxide gas diffusing means is disposed on the bottom surface of the pressure vessel. 上記炭酸ガスの拡散手段は、所定網目を有する格子体に形成したことを特徴とする請求項3記載の炭酸水製造装置。4. The carbonated water production apparatus according to claim 3, wherein the carbon dioxide diffusion means is formed in a lattice having a predetermined mesh. 耐圧容器は、外側面を冷却する冷却手段を備えることを特徴とする請求項1、2、3、又は4記載の炭酸水製造装置。5. The carbonated water production apparatus according to claim 1, wherein the pressure vessel comprises a cooling means for cooling the outer surface.
JP2016157196A 2016-08-10 2016-08-10 Carbonated water production equipment Active JP6097986B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016157196A JP6097986B1 (en) 2016-08-10 2016-08-10 Carbonated water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157196A JP6097986B1 (en) 2016-08-10 2016-08-10 Carbonated water production equipment

Publications (2)

Publication Number Publication Date
JP6097986B1 true JP6097986B1 (en) 2017-03-22
JP2018023928A JP2018023928A (en) 2018-02-15

Family

ID=58363089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157196A Active JP6097986B1 (en) 2016-08-10 2016-08-10 Carbonated water production equipment

Country Status (1)

Country Link
JP (1) JP6097986B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477110A (en) * 2021-06-17 2021-10-08 泉州季星饮料设备制造有限公司 Carbonated water producing apparatus
WO2023046100A1 (en) * 2021-09-26 2023-03-30 青岛海尔电冰箱有限公司 Sparkling water mixing assembly and refrigerator having same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164282U (en) * 1984-04-05 1985-10-31 富士電機株式会社 Beverage supply circuit of beverage vending machine
JPS644889A (en) * 1987-06-02 1989-01-10 Coca Cola Co System of improving carbonation for post- mixing dispenser carbonator
US20040022698A1 (en) * 2002-08-01 2004-02-05 Uhrie John L. Apparatus for processing elemental sulfur-bearing materials to produce sulfuric acid and methods of using same
JP2005144429A (en) * 2003-11-18 2005-06-09 Nippon Intech:Kk Device for producing highly concentrated carbon dioxide gas water
JP2007000770A (en) * 2005-06-23 2007-01-11 Fuji Electric Retail Systems Co Ltd Carbonated water production apparatus
JP2007289492A (en) * 2006-04-26 2007-11-08 Toshiyuki Naito Method and device of manufacturing carbonated hot spring
JP2011230066A (en) * 2010-04-28 2011-11-17 Marine Biomass Organization Foundation Carbon dioxide dissolving device, carbon dioxide separation device and marine algae plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164282U (en) * 1984-04-05 1985-10-31 富士電機株式会社 Beverage supply circuit of beverage vending machine
JPS644889A (en) * 1987-06-02 1989-01-10 Coca Cola Co System of improving carbonation for post- mixing dispenser carbonator
US20040022698A1 (en) * 2002-08-01 2004-02-05 Uhrie John L. Apparatus for processing elemental sulfur-bearing materials to produce sulfuric acid and methods of using same
JP2005144429A (en) * 2003-11-18 2005-06-09 Nippon Intech:Kk Device for producing highly concentrated carbon dioxide gas water
JP2007000770A (en) * 2005-06-23 2007-01-11 Fuji Electric Retail Systems Co Ltd Carbonated water production apparatus
JP2007289492A (en) * 2006-04-26 2007-11-08 Toshiyuki Naito Method and device of manufacturing carbonated hot spring
JP2011230066A (en) * 2010-04-28 2011-11-17 Marine Biomass Organization Foundation Carbon dioxide dissolving device, carbon dioxide separation device and marine algae plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477110A (en) * 2021-06-17 2021-10-08 泉州季星饮料设备制造有限公司 Carbonated water producing apparatus
WO2023046100A1 (en) * 2021-09-26 2023-03-30 青岛海尔电冰箱有限公司 Sparkling water mixing assembly and refrigerator having same

Also Published As

Publication number Publication date
JP2018023928A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6483303B2 (en) Gas-liquid dissolution tank and fine bubble generator
WO2015147048A1 (en) Nanobubble-producing device
JP6097986B1 (en) Carbonated water production equipment
JP2015186781A5 (en)
JP6859573B2 (en) Water supply pumpless hydrogen water production equipment and hydrogen water production method
CN105705223B (en) Carbonator
JP2018065095A (en) Bubble-containing liquid manufacturing apparatus and bubble-containing liquid manufacturing method
JP2007190466A (en) Microbubble generating apparatus and gas-liquid mixing tank
JP2014014796A (en) Fluid circulation mixing device
JP4868939B2 (en) Gas solution manufacturing apparatus and gas solution manufacturing method
JP2010155192A (en) Gas-liquid separator and gas dissolving vessel equipped therewith
JP6727163B2 (en) Gas dissolver
WO2016122718A1 (en) Method and apparatus for rapid carbonation of a fluid
JP2005144320A (en) Fluid mixing apparatus
KR101875128B1 (en) Apparatus for producing carbonated water and the control method
CN110301818B (en) Equipment and method for extracting solid internal components by utilizing nano bubbles
JP2018065124A (en) Bubble-containing liquid manufacturing apparatus and bubble-containing liquid manufacturing method
KR101402369B1 (en) Gas-liquid mixing device of high concentrations using a rotating spray nozzle
JPH08323171A (en) Carbonate water producing device
KR20120084134A (en) Micro bubble head and apparatus for generating microbubble including the same
JP2008178780A (en) Microbubble generating apparatus
JPH10180064A (en) Carbonated water manufacturing device
KR101910632B1 (en) An Apparatus for Manufacturing Hydrogen Water
JP2007000770A (en) Carbonated water production apparatus
WO2024065164A1 (en) Micro-droplet enhanced carbon dioxide absorption system and method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170201

R150 Certificate of patent or registration of utility model

Ref document number: 6097986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250