JP6095601B2 - 3次元幾何学境界を検出する方法 - Google Patents

3次元幾何学境界を検出する方法 Download PDF

Info

Publication number
JP6095601B2
JP6095601B2 JP2014071863A JP2014071863A JP6095601B2 JP 6095601 B2 JP6095601 B2 JP 6095601B2 JP 2014071863 A JP2014071863 A JP 2014071863A JP 2014071863 A JP2014071863 A JP 2014071863A JP 6095601 B2 JP6095601 B2 JP 6095601B2
Authority
JP
Japan
Prior art keywords
images
image
location
scene
illuminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014071863A
Other languages
English (en)
Other versions
JP2014203458A (ja
JP2014203458A5 (ja
Inventor
ティム・ケイ・マークス
オンセル・チュゼル
ファティー・ポリクリ
ジェイ・ソーントン
ジエ・ニ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JP2014203458A publication Critical patent/JP2014203458A/ja
Publication of JP2014203458A5 publication Critical patent/JP2014203458A5/ja
Application granted granted Critical
Publication of JP6095601B2 publication Critical patent/JP6095601B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/586Depth or shape recovery from multiple images from multiple light sources, e.g. photometric stereo
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/60Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Computer Graphics (AREA)

Description

本発明は、包括的にはコンピュータービジョンに関し、より詳細には、照明変動の影響下にあるシーンの画像内の境界を検出することに関する。
エッジ検出は、コンピュータービジョンにおける基本的な問題である。エッジ検出は、多くの用途にとって重要な低レベルの特徴を提供する。シーンの画像内のエッジは、深さの不連続性、面の向きの差異、面テクスチャ、材料特性の変化及び変動する照明を含む様々な原因から生じる可能性がある。
多くの方法は、エッジを、個々の画像内の明度、色及びテクスチャ等の低レベル画像特性の変化としてモデル化する。しかし、面の深さ又は向きにおける別個の変化である3D幾何学境界に対応する画像ピクセルを識別する問題は、あまり注目されてこなかった。
Raskarは、特許文献1において、マルチフラッシュカメラを用いてシャドウに基づく技法を適用することによって深さエッジを検出する。その方法は、深さの不連続性のみに適用され、面法線における変化には適用されず、カメラのレンズを取り囲む制御された1組のライトを必要とする。
3D幾何学境界は、セグメンテーション、シーン分類、3D再構成及びシーンレイアウト復元を含む多岐にわたるタスクの有用な手がかりを提供することができるシーンの特性を正確に表す。
非特許文献1において、Weiss他は、照光変化を受けるシーンの画像シーケンスについて記載している。シーケンス内の各画像は、一定の反射率の単一画像と、画像固有の照光画像との積に因数分解される。
特許文献2は、屋外シーンの低速度撮影写真シーケンスを、シャドウ成分と、照光成分と、反射率成分とに因数分解することを記載しており、これによってシーンのモデル化及び編集への適用を容易にすることができる。その方法は、経時的に平滑的に移動する無限遠の単一点光源(太陽)と、周囲照明成分とを仮定している。
非特許文献2において、Koppal他は、シーンの回りで無限遠光源を振り動かすことによって取得される画像シーケンスについて記載している。次に、これらの画像は同様の面法線を有する領域にクラスタリングされる。その作業も、位置が経時的に平滑的に変動する単一の無限遠光源と、正投影カメラモデルとを仮定している。
米国特許第7,295,720号明細書 米国特許第7,756,356号明細書
Weiss他「Deriving intrinsic images from image sequences」ICCV 2001, Volume: 2, Page(s): 68 − 75 vol.2 Koppal他「Appearance derivatives for isonormal clustering of scenes」IEEE TPAMI, 31(8):1375-1385, 2009
本発明は、変動する照光条件下で固定カメラによって取得される固定シーン(屋内環境又は屋外環境にあることができる)の画像の組を検討する。本発明の1つの目的は、画像の組から3D幾何学境界を検出することである。
本発明の別の目的は、これらの画像を基底画像の組に因数分解することである。これらの用途において、光源の位置は知られておらず、ライトは必ずしも点光源であるとは限らず、ライト(及びカメラ)からシーンまでの距離は、必ずしもシーンの大きさよりもはるかに大きい(すなわち1桁又は複数桁大きい)とは限らないので、無限遠であると仮定することができない。これによって、測光立体視、構造化光及び等法線クラスタリング等の変動する照明下で2D画像から3D構造を復元する既存の方法、並びに因数分解された低速度撮影ビデオ及び固有画像等の画像の組から照光の効果を因数分解する既存の方法の仮定が崩れる。
本発明の実施形態は、未知の変動する照光条件下で、固定のカメラ視点を用いて捕捉された静止シーンの画像の組において3D幾何学境界を検出する方法を提供する。いくつかの実施形態では、照明基底画像は復元される。
いくつかの実施形態の1つの目的は、未知の変化する照光の影響下にある静的シーン(屋内環境にあることができる)の2D画像の組において3D幾何学境界を特定することである。本明細書において厳密に定義されるように、シーンの画像内で観察されるような3D幾何学境界は、シーン内の2つの面を分離する輪郭であり、この輪郭において、3D深さ不連続性又は面の向きの大きな変化が存在する。これらの境界は、シーンの3Dレイアウトを理解するのに効果的に用いることができる。3D幾何学境界は、テクスチャエッジ又はシャドウエッジ等の2Dエッジと異なる。
3D幾何学境界を2Dテクスチャエッジと区別するために、本発明のいくつかの実施形態は、各画像ロケーションにおける局所外観の照光部分空間を解析する。これは、非鏡面、例えばランバート面の場合、同じ平滑な3D面上の近傍ピクセルが、それらのピクセルが異なる色、すなわちアルベド又は反射係数を有する場合があるにもかかわらず、照明に対し同じ相対感度を有する傾向があるという認識に基づく。その理由は、小さな近傍領域において、3D面は局所的に平面であり、隣接するピクセルに対応する面上の2つの点は、概ね同じ法線を有するためである。これらの2つの点間の距離は通常、光源及びカメラのいずれに対する距離よりもはるかに小さい。
この認識に基づいて、3D幾何学境界検出方法は、3D幾何学境界に関連付けられたピクセル、すなわち、画像内のその直接近傍が面法線又は深さにおいて不連続性を含むピクセルを、その近傍がシャープなテクスチャ又は輝度境界を含む場合があるが単一の面に対応するピクセルと区別することができる。
本方法は、各ピクセルロケーションにおいて局所外観の照光部分空間を解析することによって、ピクセルごとの分類問題として3D幾何学境界検出を定式化する。特に、本方法は、照光部分空間の次元を用いて3D幾何学境界の存在を示す。
本発明の1つの目的は、固定光源の組の組合せに起因して未知で変化する照光の影響下にある静的シーンの画像の組から照明基底画像の組を求めることである。照明基底画像とは、シーンが個々の光源のうちの1つによって照光されているときに形成される画像である。光源は点光源である必要はない。基底画像は、従来技術と比較して質的及び量的改善を伴ってシーンの自然で簡潔な表現を提供し、シーン編集(再照明等)並びにシャドウエッジの識別及び除去を可能にする。
本発明のいくつかの実施形態では、照明基底画像を復元する方法は、準バイナリ非負行列因数分解(SBNMF:semi−binary nonnegative matrix factorization)を用いる。SBNMFは非負行列因数分解(NMF:nonnegative matrix factorization)に関係する。NMFは、非負データ行列を、2つの非負行列の積に因数分解する。このための多くの技法が知られている。
NMFと異なり、SBNMFは非負データ行列を因数分解して非負行列とバイナリ行列との積にする。ここで、バイナリ行列は、各要素が0又は1のいずれかである行列である。すなわち、本方法は、画像を含む非負行列を、照明基底画像の非負行列と、画像ごとにいずれの光源がオン又はオフであるかを示すバイナリ重み行列とに因数分解する。照明基底画像の復元された組は、変動する照明下のシーンのコンパクトな表現を提供する。
いくつかの実施形態では、基底画像を、3D幾何学境界検出方法と併せて用いて、シャドウエッジを真の3D幾何学エッジと区別することができる。
本発明のいくつかの実施形態による、1組の画像を1組の照明基底画像に因数分解する方法の概略図である。 準バイナリ非負行列因数分解を用いた図1の方法のブロック図である。 図2の方法の概略図である。 準バイナリ非負行列因数分解(SBNMF)の擬似コードのブロック図である。 本発明のいくつかの実施形態によって用いられるランバート面の概略図である。 本発明のいくつかの実施形態による幾何学境界検出方法の擬似コードのブロック図である。 本発明のいくつかの実施形態による、シャドウエッジが除去される幾何学境界検出方法の擬似コードのブロック図である。 本発明の一実施形態による、シーン編集用途のブロック図である。
図1に示すように、本発明のいくつかの実施形態は、変動する照明条件の影響下にあるシーンから取得された画像の組Y101を因数分解して照明基底画像の組V102にする方法110を提供する。シーンは複数の光源によって照明され、それらの光源のそれぞれは、特定の画像についてオン又はオフにすることができる。組V内の各基底画像は、単一の光源(例えば、ライト1、ライト2、...、又はライト5)のみがオンであるときのシーンの外観に対応する。Y内の画像は、任意の時点に又はシーケンスでビデオカメラによって取得することができることを理解すべきである。また、「照明」は、赤外線(IR:infrared)、紫外線(UV:ultraviolet)及び電磁スペクトル内の他の周波数等の他の形式の加法性の「照光」様式を含むことができることも理解すべきである。
図2に示すように、本発明のいくつかの実施形態の場合、画像の組101は、準バイナリ非負行列因数分解(SBNMF)を用いて、非負の照明基底画像V201と、バイナリ照明指標行列W202とに因数分解される(210)。図3は因数分解を概略的に示している。
生成的画像モデル
シーンを照光するl個の光源が存在し、各光源は独立したオン/オフスイッチによって制御される。一緒に全てがオンであるか又は全てがオフである2つ以上のライトからなるグループが存在する(グループ内のライトのうちの1つがオンである一方、そのグループ内の別のライトがオフである入力画像が存在しないようになっている)場合、ライトのグループは単一の光源であるとみなされる。例えば、同じスイッチによって制御される2つのライトは単一の光源とみなされる。
各光源iの状態を示すバイナリ変数wを割り当てる。次に、基底画像
Figure 0006095601
を、i番目のライトのみがオンであるときに形成される画像として定義する。式中、
Figure 0006095601
は、非負の実数を表す。l個の光源の任意の組合せによって照光される画像yを所与とすると、画像は個々の基底画像の重ね合わせとして表すことができる。
Figure 0006095601
ここで、画像内の全てのピクセルの値を単一の列にスタックすることによって形成される列ベクトルとして全ての画像を表す。
l個の光源の様々なバイナリ組合せによって照明されるm個の画像の組Yを取得し、画像データを配列して以下の行列にする。
Figure 0006095601
式(1)に従って、このデータ行列は以下のように因数分解することができる。
Figure 0006095601
式中、
Figure 0006095601
の列はl個の基底画像vに対応し、W∈{0,1}l×mはバイナリ指標行列であり、このバイナリ指標行列において、各エントリWijは、図2及び図3に示すように、j番目の入力画像に対するi番目の光源の寄与を表す指標係数である。すなわち、全ての入力画像はm個の照明基底画像のバイナリの組合せである。
シーン内に周囲照明(全ての画像内に存在する光)が存在する場合、本発明によるモデルにおいて、これは追加の基底画像(行列V内の追加の列)と、要素が全て1である指標行列Wの対応する追加の行とによってモデル化することができることに留意されたい。
いくつかの実施形態において、2つの入力画像が取得される時点間に単一の光源が異なる位置に移される場合、その光源を2つの別個の光源とみなす。例えば、数時間離れて取得された2つの入力画像がともに太陽によって照光されているとき、第1の画像における太陽を第1の光源とみなし、第2の画像における太陽を第2の光源とみなす。
SBNMFによる基底画像の復元
いくつかの実施形態では、SBNMFを用いて入力画像の組から照明基底画像及び指標行列を復元する。真の照明基底画像が線形に独立しており、かつ十分な照光変動性を観測する、すなわち真の指標行列Wの階数がライト数以上である場合、シーン内のライト数lは、データ行列Yの階数によって与えられる。
基底画像及び指標行列の復元を、制約された最適化問題として定式化する。
Figure 0006095601
これをSBNMFと呼ぶ。これは、非凸目的関数とWに対するバイナリ制約とに起因して困難な問題である。したがって、最初に以下の連続緩和を解く。
Figure 0006095601
ここで、Wijに対するバイナリ制約は、上界及び下界の単純なボックス制約に置き換えられる。これは、交互方向乗数法(ADMM: alternating direction method of multipliers)を用いて解く両凸問題である。ADMMは従来の拡張ラグランジュ法の一変形である。以下を参照されたい。
補助変数Xを用いて式(4)を書き換え、正値性制約及びボックス制約を指標関数と置き換える。
Figure 0006095601
式中、指標関数I(x)は、x∈Sの場合に値0をとり、他の全ての場合に∞に等しい。
次に、以下の拡張ラグランジュを形成する。
Figure 0006095601
式中、Uはスケーリングされた双対変数であり、μは拡張ラグランジュパラメーターである。拡張ラグランジュ関数のスケーリングされた形式を用いる。ここではスケーリングされたラグランジュ乗数がU=Z/μとして再定義される。式中、Zは元のラグランジュ乗数である。
ADMMは、凸部分問題の組によって拡張ラグランジュ双対関数を解く。ここで、両凸関数は以下に分離される。
Figure 0006095601
これらの部分問題は、主残余及び双対残余の収束まで反復して解かれる。
それに続いて、行列Wの各エントリを{0,1}に丸め、非負最小二乗を用いてバイナリ指標行列に基づいて基底画像Vを求める。
Figure 0006095601
最適化(10)においてWは定数であるので、問題は凸であることに留意されたい。
図4は、本発明による因数分解手順の擬似コードを示している。擬似コードとして示されるこの手順及び他の手順における擬似コードにおいて参照される変数及び式は、全て本明細書において詳述される。
他の実施形態において、個々の光源はオン又はオフのみに制約されず、光源の輝度は連続的に変化することができる(例えばディマースイッチが用いられる)ことに留意されたい。この場合、指標行列Wにおける指標係数は、バイナリ値{0,1}に制約されるのではなく、任意の非負の実数とすることができる。この場合、全ての入力画像はm個の照明基底画像の非負の線形結合である。そのような場合、因数分解は従来の非負行列因数分解を用いて行うことができる。
3D幾何学境界の検出
いくつかの実施形態において、シーンから取得された画像の組において3D幾何学境界を検出する。シーンの画像において観察されるように、3D幾何学境界は、シーン内の2つの面を分離する輪郭であり、この輪郭において、3D深さの不連続性が存在するか、又は面法線の大きな変化が存在する。通常の屋内シーンの場合、無限遠照明の仮定は有効でない。近傍の照明を考慮するには、一度に1つの小さな画像パッチを検討し、複数の照明条件とともにそのパッチの局所外観がどのように変動するかを解析する。本方法は、多岐にわたる形状及び大きさを有するパッチを用いることができる。例えば、各画像ピクセルを中心とする固定の直径(例えば7ピクセル)を有する正方形又は円形のパッチを検討することができる。
パッチ内の全てのピクセルがシーン内の単一の平滑な面から生じる場合、変動する照明にわたるパッチ外観は1次元部分空間を形成する。パッチが3D幾何学境界を含む場合、パッチの外観部分空間は、概して2以上の次元を有する。
局所外観の照光部分空間
簡単にするために、本方法を、直接照明成分のみを有するランバート面について証明するが、類似した議論が、より広い種類の反射率関数及び間接照明、例えば複数の反射に適用される。説明を簡単にするために、点光源についてのみ説明する。なぜなら、拡張等方性光源は、複数の点光源の重ね合わせとして適宜良好に近似することができるためである。
図5(A)、図5(B)及び図5(C)は、カメラ500によって観察されるような3つのランバート面501〜503を概略的に示している。これらのランバート面はそれぞれ2つの点光源A及びBによって照光される。3つ全ての面について、カメラによって取得される画像内の点1及び2に対応するピクセルは互いに近くにある。図5(A)において、面501内に3D幾何学境界は存在しない。図5(B)において、面502の面法線において不連続性が存在する。図5(C)において、カメラの視点から面503の深さの不連続性が存在する。
光源Aの場合の本発明者らの表記を説明し、光源Bの場合の表記は類似している。点iにおける面法線は
Figure 0006095601
であり、点iからライトAへのベクトルはr (対応する単位ベクトルは
Figure 0006095601
)である。面の点iに対応する画像平面上の点の輝度はI (光源Aの場合)又はI (光源Bの場合)である。
Figure 0006095601
ここで、
Figure 0006095601
は、
Figure 0006095601
とr との間の角度のコサインである。Eは光源Aの放射輝度であり、ρは点iにおける面アルベドである。点iが光源Aによって照光されている場合、バイナリ値γ =1であるのに対し、点iが陰(attached shadow)又は影(cast shadow)に起因して光源Aによって照光されていない場合、γ =0である。
3つの面のそれぞれについて、点1及び点2はカメラの観点から互いの近くにあり、このため、これらの点はともに同じ小さな画像パッチ内に含まれる。図5(A)において、パッチは法線の急な変化を含まず、深さの不連続性を含まない。このため、点1と点2との間の3D距離は、各点から各ライトへの距離と比較して小さく、このため、以下の近似等式が得られる。
Figure 0006095601
パッチ内の全ての点がほぼ同じ法線及び各光源への同じベクトルを共有するので、式(11)における上付き文字iを消去し、パッチ内の全ての点について、
Figure 0006095601
、r及びrを用いることができる。今のところ、パッチ内の全ての点iがγ の単一の値(本発明者らはγと呼ぶ)を共有し、γ の単一の値γを共有すると仮定する。これは、光源ごとに、パッチ全体が照光されるか又はその光の影/陰になる(shadowed)、すなわちパッチがシャドウエッジを含まないことを意味する。以下においてシャドウエッジを検討する。
及びPが、それぞれライトAのみ及びライトBのみの下で撮像されたパッチのピクセル輝度のベクトルを表すものとする。図5(A)の場合、近似等式P=kρを有する。
Figure 0006095601
式中、スカラーkはパッチ内の全てのピクセルの定数であり、ρはパッチ内の全てのピクセル面アルベドのベクトルである。光源B下の同じパッチの場合、類似した式:P=kρを有する。
このため、パッチが法線においても深さにおいても急な変化を含まない(そしてシャドウエッジを含まない)場合、任意の光源下のピクセル輝度は、ρのスカラー倍に等しい。換言すれば,全ての光源下でその局所パッチの外観が広がる部分空間(局所外観の照光部分空間と呼ぶ)は1次元(1D:one−dimensional)である。これは、面テクスチャ(アルベド)に関わらず真であることに留意されたい。パッチの面アルベドが高コントラストのテクスチャエッジを含む場合であっても、局所外観のその照光部分空間は依然として1Dである。
この実現は、幾何学エッジを見つける本発明による方法の核心となっている。なぜなら、パッチが3D幾何学エッジを含む場合、同じことは概ね当てはまらないためである。
例えば、図5(B)に示すように、パッチが法線において急激な変化を含む場合、式(12)における第1の概算は成り立たず、パッチ内の各点の輝度は、その面法線と、光源へのその方向との間の角度のコサインに依拠する。パッチが異なるタイプの3D幾何学境界、図5(C)におけるような深さの不連続性を含む場合、(12)における最後の2つの近似は成り立たず(光が無限遠でないため)、パッチ内の各点の輝度は、その面法線と、光源へのその方向との間の角度のコサインに依拠する。概して、パッチが3D幾何学エッジを含む場合、局所外観のその照光部分空間は2以上の次元を有する。
3D幾何学境界の信頼度マップ
いくつかの実施形態では、局所外観の照光部分空間が2以上の次元を有するパッチを特定することによって幾何学境界を検出する。ピクセルロケーションごとに、m個全ての入力画像(m個のライト組合せ)から、そのロケーションを中心としたτピクセルパッチを抽出し、これらのパッチを、τ×mの行列Z内の列ベクトルとして配列する。
Figure 0006095601
式中、ベクトルP(i)は、そのピクセルロケーションにおいて画像iから抽出したパッチのτ個全てのピクセル(色又は輝度)値を含む。そのパッチロケーションの局所外観の照光部分空間の階数を求めるために、Zに特異値分解(SVD: singular value decomposition)を適用し、特異値{σ }(降順に順序付けされる)を得る。雑音がない場合、1次元照光部分空間は1つのみの非ゼロ特異値σ をもたらし、ここでσ =0である。画像内の雑音に起因して、σ は正確に0でないが、概ね0である。局所外観の照光部分空間が階数1を有するか否かを判断するために、雑音の存在下で正確であることの信頼値を用いる。
いくつかの実施形態では、ピクセルロケーションごとに、対応するパッチが3D幾何学境界を含むことの信頼値を、そのロケーションを中心とするパッチについて、第1の特異値に対する第2の特異値の割合として求める。
Figure 0006095601
式(15)を用いて信頼度マップを得る。信頼度マップとは、各ピクセルの輝度が、そのピクセルロケーションについて求められた信頼値である画像である。
他の実施形態では、局所外観の照光部分空間が2以上の階数を有することの信頼値を、式(15)以外の方法で計算することができる。例えば、c(P)に、c(P)=σ /k等の特異値の何らかの他の関数を定義することができ、式中、kは全てのパッチの照光部分空間の特異値から求められた正規化係数である。本発明者らの3D幾何学境界検出手順の擬似コードは図6に示される。
1つの実施形態では、m個の元の入力画像からパッチを抽出するのではなく、上記で説明したl個の非負の照明基底画像からパッチを抽出する。これは、入力画像の組が不平衡である場合、例えば、多数の入力画像が単一の照明条件から生じ、他の照明条件から生じる入力画像が僅かしかない場合、より安定した手法となることができる。
シャドウエッジの除去
本発明による方法は、双方のタイプの3D幾何学境界、すなわち法線における不連続性及び深さにおける不連続性の検出に成功する。本明細書において、双方のタイプが「境界」として特徴付けられる。加えて、本発明による方法は、テクスチャエッジによって混乱しない。しかしながら、図6に概説した方法によって、シャドウエッジが誤検出3D幾何学境界として検出される可能性がある。光源のうちの1つについて、パッチのいくつかのピクセルが照光され、他のピクセルが影/陰になっている(in shadow)場合、パッチはシャドウエッジを含む。
ほとんどの場合に、各シャドウエッジは単一の光源にのみによって生じる。この観測に基づいて、シーンの画像の組を単一光源照明基底画像に因数分解する本発明による機能を用いて、シャドウエッジによって生じた誤検出のほとんどを取り除くことができる。
画像の組Yから基底画像vを減算することによって、光源iによって生成されるシャドウを取り除くことができる。
Figure 0006095601
式中、wは照明指標行列Wのi番目の行であり、Y(i)は、ライトiがオフにされた状態で再レンダリングされるシーン画像を表す。
本発明による境界検出技法をY(i)に適用すると、結果として境界信頼度マップC(i)が得られる。境界信頼度マップC(i)では、i番目の光源の結果得られるシャドウエッジが取り除かれている。最終的な信頼度マップは、
Figure 0006095601
の全ての信頼度マップの中で各ピクセルロケーションにおいて最小値をとることによって集約され、それによって、光源のうちの任意の1つが除去されたときにシャドウエッジが消える場合、そのエッジは最終信頼度マップ内に存在しないことになる。
シャドウエッジが除去された本発明による境界検出手順の擬似コードが図7に示される。
一実施形態では、式(16)を用いてY(i)を元の画像の再レンダリングされたバージョンに等しく設定するのではなく、代わりに、iごとに、Y(i)を照明基底画像i以外の全ての照明基底画像の組に等しく設定する。この実施形態では、iごとに、照明基底画像の低減された組Y(i)はl−1個の照明基底画像を含む。これは、入力画像の組が不平衡である場合、例えば、多数の入力画像が単一の照明条件から生じ、他の照明条件から生じる入力画像が僅かしかない場合、より安定した手法となることができる。
シーン編集
図8に示すように、本発明の実施形態を用いることができる1つの用途はシーン編集である。照明基底画像102は、取得(入力)画像ではなく、個々の照明基底画像を直接変更することによるシーン編集を可能にする。
個々の照明基底画像を編集して、スケーリング等の線形関数、又はヒストグラム等化、γ補正、トーンマッピング、若しくは明度及びコントラスト調整等の非線形関数とすることができる編集関数710を適用することによって編集された基底画像712を生成することができる。加えて、オブジェクトの挿入又はテクスチャの変更等、照明基底画像の領域を編集することが可能である。出力画像720は、線形結合等のマージ関数715を編集された基底画像に適用することによって構築される。編集関数は、照明基底画像の全て又は一部に適用することができる。
別の用途において、照明基底画像内のシャドウ領域及びハイライト領域は、照明基底画像内でほとんど黒色の領域及び飽和領域をそれぞれ見つけることによって検出することができる。そのような領域の輝度(色)値は、値が黒でなく、飽和もしていない、異なる照明基底画像内の同一のロケーションからコピーすることができる。次に、値は、画像値が元のシャドウ境界及びハイライト境界をまたがって連続するように変更される。この手法は、画像全体を飽和させることも暗くすることもなく、シーン内の暗いシャドウ領域及びハイライト領域を取り除くことができる。
検出されたシャドウ領域を用いて、照光情報に従いながら、面のテクスチャを異なるテクスチャと置き換えることができる。新たなテクスチャのうち、影/陰になっている(under shadow)部分の明度はシャドウ情報に合致するように暗くされる。
本明細書において説明し示した方法のステップは、当該技術分野において既知のメモリ及び入/出力インタフェースに接続されたプロセッサにおいて実行することができる。通常のデジタル画像は、何百万ものピクセルを含み、この多大な量の輝度又は色値を頭の中で処理することは不可能であることが理解される。

Claims (16)

  1. 2つ以上の光源の組によって照光されたシーンの、単一の固定非立体イメージングカメラによって取得される2つ以上の入力画像の組から3次元幾何学境界を検出する方法であって、前記入力画像のそれぞれにおいて、前記シーンは前記光源の組合せによって照光され、前記入力画像の組内の少なくとも2つの画像が前記光源の異なる組合せによって照光され、照光条件は、次のもの、すなわち未知のライト位置、未知のライト輝度、未知のライト組合せの1つ以上において、未知であり、前記方法は、
    ピクセルロケーションごとにパッチの組を得るステップであって、前記組内の前記パッチのそれぞれは、前記組からの異なる入力画像の同一の領域から抽出され、前記領域は前記ピクセルロケーションを含み、全ての前記入力画像内の前記ロケーションにおけるピクセルは前記シーン内の同じ点に対応する、ステップと、
    前記ピクセルロケーションごとに、前記ロケーションが前記3次元幾何学境界上にあることの信頼値を求めるステップであって、
    前記ロケーションごとに求めるステップは、
    前記パッチの組のピクセル輝度または色値をτ×mの行列内に配列するステップであって、ここで、τは各パッチのピクセルの数であり、mは前記入力画像の数であり、前記行列の各列が1つのパッチを表すようにする、ステップと、
    前記行列に特異値分解(SVD)を適用して特異値を得る、適用するステップと、
    前記ピクセルロケーションの前記信頼値を前記特異値の関数として求めるステップと、
    を更に含む、ステップと、
    を含み、
    前記ステップはプロセッサにおいて実行される、
    法。
  2. 前記ピクセルロケーションごとの前記信頼値は、最大の特異値に対する2番目に大きな特異値の割合である、
    請求項に記載の方法。
  3. 前記ピクセルロケーションごとの前記信頼値は、2番目に大きな特異値を正規化係数で除算した大きさである、
    請求項に記載の方法。
  4. 前記ピクセルロケーションの前記信頼値から信頼度マップを形成して、前記ピクセルロケーションのそれぞれが前記3次元幾何学境界上に位置する尤度を示す、形成するステップを更に含む、
    請求項1に記載の方法。
  5. 前記光源のそれぞれは固定されている、
    請求項1に記載の方法。
  6. 前記光源の組における2つ以上の光源は、異なる位置に移された単一の光源に対応する、
    請求項1に記載の方法。
  7. 前記ピクセルロケーションごとに、前記領域は前記ピクセルロケーションを中心としている、
    請求項1に記載の方法。
  8. 前記画像の組は、低速度撮影写真を用いて取得される、
    請求項1に記載の方法。
  9. 前記画像の組は、ビデオカメラによって取得されたビデオからの画像を含む、
    請求項1に記載の方法。
  10. 前記入力画像の組は照明基底画像の組であり、前記照明基底画像のそれぞれは、前記光源のうちの1つのみによって照光された前記シーンの外観に対応する非負の画像である、
    請求項1に記載の方法。
  11. 前記シーンは屋内環境にある、
    請求項1に記載の方法。
  12. 前記シーンは屋外環境にある、
    請求項1に記載の方法。
  13. 2つ以上の光源の組によって照光されたシーンの2つ以上の入力画像の組から3次元幾何学境界を検出する方法であって、前記入力画像の組は単一の固定非立体イメージングカメラによって取得され、前記入力画像のそれぞれにおいて、前記シーンは前記光源の組合せによって照光され、前記入力画像の組内の少なくとも2つの画像が前記光源の異なる組合せによって照光され、照光条件は、次のもの、すなわち未知のライト位置、未知のライト輝度、未知のライト組合せの1つ以上において、未知であり、前記方法は、
    前記入力画像の組を照明基底画像の組と指標係数の組とに分解するステップであって、前記照明基底画像のそれぞれは、前記光源のうちの1つのみによって照光された前記シーンの外観に対応する非負の画像であり、前記指標係数のそれぞれは、前記入力画像のうちの1つに対する前記光源のうちの1つの寄与を示す、ステップと、
    前記照明基底画像iごとに、前記照明基底画像iの前記寄与が除去された画像の組Y(i)を得るステップと、
    前記画像の組Y(i)ごとにかつロケーションごとに、パッチの組を求めるステップであって、前記組内の前記パッチのそれぞれは、Y(i)内の異なる画像の同一の領域から抽出され、前記領域は前記ロケーションを含み、全ての前記入力画像内の前記ロケーションにおけるピクセルは前記シーン内の同じ点に対応する、ステップと、
    前記画像の組Y(i)ごとにかつ前記ロケーションごとに、前記ロケーションが前記3次元幾何学境界上にあることの信頼値を求めるステップと、
    前記画像の組Y(i)ごとに、前記ロケーションから求められた前記信頼値から信頼度マップC(i)を形成するステップと、
    前記ロケーションごとに、前記ロケーションにおける前記値の全ての信頼度マップC(i)にわたる最小値を求めることによって最終信頼値を求めるステップであって、前記最小値は、前記ロケーションが前記3次元幾何学境界上にある尤度を示す前記最終信頼値である、ステップと、
    を含み、
    前記ステップはプロセッサにおいて実行される、
    法。
  14. 前記ロケーションの前記最終信頼値から、前記ロケーションのそれぞれが前記3次元幾何学境界上にある尤度を示す最終信頼度マップを形成するステップを更に含む、
    請求項13に記載の方法。
  15. 前記得るステップは、
    前記照明基底画像iごとに、前記入力画像の組Y内の全ての前記入力画像から前記照明基底画像の前記寄与を減算して前記画像の組Y(i)を得る、減算するステップを更に含む、
    請求項13に記載の方法。
  16. 前記得るステップは、
    前記照明基底画像iごとに、前記照明基底画像を前記照明基底画像の組から除去して前記画像の組Y(i)を得る、除去するステップを更に含む、
    請求項13に記載の方法。
JP2014071863A 2013-04-03 2014-03-31 3次元幾何学境界を検出する方法 Expired - Fee Related JP6095601B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/855,808 2013-04-03
US13/855,808 US9418434B2 (en) 2013-04-03 2013-04-03 Method for detecting 3D geometric boundaries in images of scenes subject to varying lighting

Publications (3)

Publication Number Publication Date
JP2014203458A JP2014203458A (ja) 2014-10-27
JP2014203458A5 JP2014203458A5 (ja) 2017-01-19
JP6095601B2 true JP6095601B2 (ja) 2017-03-15

Family

ID=51654097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071863A Expired - Fee Related JP6095601B2 (ja) 2013-04-03 2014-03-31 3次元幾何学境界を検出する方法

Country Status (2)

Country Link
US (1) US9418434B2 (ja)
JP (1) JP6095601B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9483815B2 (en) * 2013-10-23 2016-11-01 Cornell University Systems and methods for computational lighting
JP6697986B2 (ja) * 2016-09-07 2020-05-27 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置および画像領域分割方法
US11317028B2 (en) * 2017-01-06 2022-04-26 Appsure Inc. Capture and display device
US20230107110A1 (en) * 2017-04-10 2023-04-06 Eys3D Microelectronics, Co. Depth processing system and operational method thereof
CN110891659B (zh) * 2017-06-09 2021-01-29 索尼互动娱乐股份有限公司 对注视点渲染系统中的粒子和模拟模型的优化的延迟照明和中心凹调适
WO2019044123A1 (ja) * 2017-08-30 2019-03-07 ソニー株式会社 情報処理装置、情報処理方法、及び記録媒体
US10460512B2 (en) * 2017-11-07 2019-10-29 Microsoft Technology Licensing, Llc 3D skeletonization using truncated epipolar lines

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950104B1 (en) * 2000-08-30 2005-09-27 Microsoft Corporation Methods and systems for animating facial features, and methods and systems for expression transformation
US7206449B2 (en) 2003-03-19 2007-04-17 Mitsubishi Electric Research Laboratories, Inc. Detecting silhouette edges in images
US7738725B2 (en) 2003-03-19 2010-06-15 Mitsubishi Electric Research Laboratories, Inc. Stylized rendering using a multi-flash camera
US7295720B2 (en) 2003-03-19 2007-11-13 Mitsubishi Electric Research Laboratories Non-photorealistic camera
US7747067B2 (en) * 2003-10-08 2010-06-29 Purdue Research Foundation System and method for three dimensional modeling
JP4230525B2 (ja) * 2005-05-12 2009-02-25 有限会社テクノドリーム二十一 3次元形状計測方法およびその装置
US7756356B2 (en) * 2007-03-08 2010-07-13 Mitsubishi Electric Research Laboratories, Inc. System and method for factorizing light in a sequence of images
WO2009097618A1 (en) * 2008-01-31 2009-08-06 University Of Southern California Practical modeling and acquisition layered facial reflectance
JP5461064B2 (ja) * 2009-05-21 2014-04-02 日機装株式会社 形状推定システム、形状推定方法、プログラム及び記録媒体

Also Published As

Publication number Publication date
US9418434B2 (en) 2016-08-16
US20140300600A1 (en) 2014-10-09
JP2014203458A (ja) 2014-10-27

Similar Documents

Publication Publication Date Title
JP6095601B2 (ja) 3次元幾何学境界を検出する方法
US10699155B2 (en) Enhanced contrast for object detection and characterization by optical imaging based on differences between images
KR102674646B1 (ko) 뷰로부터 거리 정보를 획득하는 장치 및 방법
JP4783795B2 (ja) 照明および反射境界の区別
CN106228507B (zh) 一种基于光场的深度图像处理方法
US7295720B2 (en) Non-photorealistic camera
JP4077869B2 (ja) 光源推定装置、光源推定システムおよび光源推定方法、並びに、画像高解像度化装置および画像高解像度化方法
US7359562B2 (en) Enhancing low quality videos of illuminated scenes
US7206449B2 (en) Detecting silhouette edges in images
US7103227B2 (en) Enhancing low quality images of naturally illuminated scenes
US7218792B2 (en) Stylized imaging using variable controlled illumination
Riess et al. Scene illumination as an indicator of image manipulation
Zhang et al. Multiple illuminant direction detection with application to image synthesis
JP6153134B2 (ja) 2つ以上の光源の組によって照光されたシーンの2つ以上の入力画像の組から照明基底画像の組を復元する方法
JP2014515587A (ja) デジタル画像装置用の画像処理パイプラインの学習
CN114627227B (zh) 基于pbr材质的物体重建方法、设备及计算机可读存储介质
JP2010067221A (ja) 画像分類装置
US11417024B2 (en) Systems and methods for hue based encoding of a digital image
US20170347080A1 (en) Lighting and material editing using flash photography
Ono et al. Practical BRDF reconstruction using reliable geometric regions from multi-view stereo
Pintus et al. Exploiting local shape and material similarity for effective sv-brdf reconstruction from sparse multi-light image collections
Ramanath et al. Blackbody Radiation
Dana Bidirectional Texture Function and 3D Texture
Nirmalkar et al. Illumination Color Classification Based Image Forgery Detection: A Review
Baccega An Implicit Neural Representation for Reflectance Transformation Imaging (RTI)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161201

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161201

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170214

R150 Certificate of patent or registration of utility model

Ref document number: 6095601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees