JP6095209B2 - Deflection measuring machine for paved road surface and method for measuring deflection of paved road surface - Google Patents

Deflection measuring machine for paved road surface and method for measuring deflection of paved road surface Download PDF

Info

Publication number
JP6095209B2
JP6095209B2 JP2012271335A JP2012271335A JP6095209B2 JP 6095209 B2 JP6095209 B2 JP 6095209B2 JP 2012271335 A JP2012271335 A JP 2012271335A JP 2012271335 A JP2012271335 A JP 2012271335A JP 6095209 B2 JP6095209 B2 JP 6095209B2
Authority
JP
Japan
Prior art keywords
deflection
sensor
distance
road surface
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012271335A
Other languages
Japanese (ja)
Other versions
JP2014115241A (en
Inventor
寺田 剛
剛 寺田
和幸 久保
和幸 久保
智司 堀内
智司 堀内
太 川名
太 川名
恵三 神谷
恵三 神谷
竹内 康
康 竹内
邦人 松井
邦人 松井
暉彦 丸山
暉彦 丸山
Original Assignee
国立研究開発法人土木研究所
株式会社高速道路総合技術研究所
東日本高速道路株式会社
中日本高速道路株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人土木研究所, 株式会社高速道路総合技術研究所, 東日本高速道路株式会社, 中日本高速道路株式会社 filed Critical 国立研究開発法人土木研究所
Priority to JP2012271335A priority Critical patent/JP6095209B2/en
Publication of JP2014115241A publication Critical patent/JP2014115241A/en
Application granted granted Critical
Publication of JP6095209B2 publication Critical patent/JP6095209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、車体に取付け、移動しながら舗装路面のたわみを測定する舗装路面のたわみ測定機及び舗装路面のたわみ測定方法に関する。   The present invention relates to a pavement surface deflection measuring machine and a pavement surface deflection measuring method for measuring a pavement surface deflection while being attached to a vehicle body and moving.

近年、道路の舗装路面は、橋梁と同様、新設から維持修繕の時代に移行しており、迅速かつ的確に舗装路面の健全度を評価する方法が求められている。舗装路面の健全化にとって、わだち掘れ、ひび割れ等の破損が少ないことが必要であるが、この他に舗装路面の支持力が設計値を満足することが必要である。即ち、舗装路面には、車両の走行等に伴う繰り返し荷重による路盤、路床の損傷や、地震動のような偶発的な作用や地下水の影響等により、路盤、路床、路体に空洞や不等沈下といった変状が生ずるため、その支持力を測定することにより、こうした変状を把握し、舗装路面の健全度を維持していく必要がある。そのため、この舗装路面の支持力を非破壊的に測定する舗装路面の健全度評価方法が必要とされている。   In recent years, the paved road surface of a road has shifted from the new construction to the maintenance and repairing era, like a bridge, and a method for quickly and accurately evaluating the soundness of the paved road surface is required. For the soundness of the paved road surface, it is necessary that there is little damage such as rutting, cracking, etc. In addition to this, it is necessary that the bearing capacity of the paved road surface satisfies the design value. In other words, on the pavement, the roadbed, roadbed, and road body have cavities and imperfections due to damage to the roadbed and roadbed due to repeated loads caused by traveling of the vehicle, accidental effects such as earthquake motion, and the effects of groundwater. Deformation such as equal subsidence occurs, so it is necessary to grasp such deformation and maintain the soundness of the paved road surface by measuring the bearing capacity. Therefore, there is a need for a method for evaluating the degree of soundness of a paved road surface that nondestructively measures the bearing capacity of the paved road surface.

舗装路面の健全度評価に用いられる非破壊式測定機として、車載型たわみ測定機であるFWD(Falling Weight Deflector)が広く用いられている。このFWDは、静止した状態で重錘を舗装路面に落下させ、その衝撃荷重で変形する路面の形状を測定する装置に係り、衝撃荷重を測定する荷重計、路面のたわみ量を測定する変位計で構成され、これらの計測器の測定結果に基づき、舗装路面の健全度を評価することができる。
しかしながら、FWDは、舗装路面のたわみを測定地点ごとに計測することから、舗装路面のたわみを連続的に評価することができない。したがって、広域に亘る舗装路面全体の健全度を評価する場合には、地点ごとの測定を繰り返し行う必要があり、その都度、FWDの移動、再設置、たわみ測定が必要となることから、莫大な時間と費用を要する。また、FWDによる測定は、静止状態で行うため交通規制が必要となり、路面管理の負担が大きい。更に、漏れのない評価を行うためには、測定地点を狭間隔に設定してたわみの測定を行うこととなるが、その測定にも限界があり、局所的な変状を確認できない可能性もある。
As a non-destructive measuring machine used for evaluating the soundness of a paved road surface, an FWD (Falling Weight Defect) which is a vehicle-mounted deflection measuring machine is widely used. This FWD is related to a device that drops a weight onto a paved road surface in a stationary state and measures the shape of the road surface that is deformed by the impact load, a load meter that measures the impact load, and a displacement meter that measures the deflection amount of the road surface. The soundness of the paved road surface can be evaluated based on the measurement results of these measuring instruments.
However, since FWD measures the deflection of the paved road surface for each measurement point, it cannot continuously evaluate the deflection of the paved road surface. Therefore, when assessing the soundness of the entire paved road surface over a wide area, it is necessary to repeat the measurement for each point, and each time it is necessary to move, re-install, and measure the deflection of the FWD. It takes time and money. Moreover, since the measurement by FWD is performed in a stationary state, traffic regulation is required, and the burden of road surface management is large. Furthermore, in order to perform an evaluation without leakage, measurement of deflection is performed with the measurement points set at narrow intervals. However, there is a limit to the measurement, and local deformation may not be confirmed. is there.

こうしたことから、移動しながら連続的に舗装路面のたわみを測定する測定装置として、移動式たわみ測定装置が提案されている(例えば、特許文献1参照)。
この移動式たわみ測定装置は、走行車両の車体に搭載した変位センサやドップラーセンサを用いて、センサ−路面間の距離を測定することにより、移動しながら連続的に舗装路面のたわみ量等を計測している。
ところで、車両が凹凸のある舗装路面上を走行する場合、その凹凸に起因して車体に生じる衝撃的な振動の影響を受ける。この衝撃的な振動は、車体のサスペンション及び重量による免震効果により、比較的周期の長い振動に変換され、振動ノイズとなる。この振動ノイズは、車体や路面の走行環境に応じて、車両位置ごとに異なって現れるため、複数の位置にセンサを設置してたわみを測定する方法では、それぞれの車両位置における振動の影響が測定結果に不規則に含まれることになり、振動ノイズを除去することが困難である。
したがって、凹凸のある現実的な舗装路面の健全性を評価するにあたり、この移動式たわみ測定装置では、センサ−路面間の正確な測定ができず、評価結果に支障を来すという問題がある。
For these reasons, a mobile deflection measuring device has been proposed as a measuring device that continuously measures the deflection of a paved road surface while moving (see, for example, Patent Document 1).
This mobile deflection measurement device uses a displacement sensor or Doppler sensor mounted on the body of a traveling vehicle to measure the distance between the sensor and the road surface, thereby continuously measuring the amount of deflection of the paved road surface while moving. doing.
By the way, when the vehicle travels on an uneven paved road surface, it is affected by shocking vibration generated in the vehicle body due to the unevenness. This shocking vibration is converted into vibration having a relatively long period by the seismic isolation effect due to the suspension and weight of the vehicle body and becomes vibration noise. This vibration noise appears differently for each vehicle position depending on the driving environment of the vehicle body and road surface. Therefore, the method of measuring deflection by installing sensors at multiple positions measures the effect of vibration at each vehicle position. The result is irregularly included, and it is difficult to remove vibration noise.
Therefore, when evaluating the soundness of a realistic pavement road surface with unevenness, this mobile deflection measuring device cannot accurately measure between the sensor and the road surface, causing a problem in the evaluation result.

こうしたことから、センサを車体に取り付けて、舗装路面のたわみを計測する場合、センサを取り付けた架台に制振装置を付けるなどの工夫がされている(例えば、非特許文献1、2参照)。
しかしながら、制振装置を搭載するためには、特殊な大型車両を用いる必要があり、測定系の構築が大掛かりになる問題がある。また、このような大型車両が進入できない入り組んだ道路では、舗装路面の健全性を評価することができない問題がある。
For this reason, when the sensor is attached to the vehicle body and the deflection of the pavement road surface is measured, a device such as attaching a vibration control device to the mount to which the sensor is attached has been devised (for example, see Non-Patent Documents 1 and 2).
However, in order to mount the vibration damping device, it is necessary to use a special large vehicle, and there is a problem that the construction of a measurement system becomes large. Moreover, there is a problem that the soundness of the paved road surface cannot be evaluated on such an intricate road where a large vehicle cannot enter.

特表平11−503520号公報Japanese National Patent Publication No. 11-503520

Samer W.Katicha et al.,Estimation of Pavement TSD Slope Measurements Repeatability from a Single Measurement Series,TRB 2012 Annual MeetingSamer W. Katicha et al. , Estimation of Pavement TSD Slope Measurements Repeatability from a Single Measurement Series, TRB 2012 Annual Meeting Soren,Rasmussen et al.,A comparison of two years of network level measurements with the Traffic Speed Deflectometer,TRA Europe 2008,LjubljanaSoren, Rasmussen et al. , A comparison of two years of network level measurements with the Traffic Speed Defectometer, TRA Europe 2008, Ljubljana

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、簡便かつ効率的に舗装路面の健全性を正確に評価可能な舗装路面のたわみ測定機及び舗装路面のたわみ測定方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, an object of the present invention is to provide a pavement surface deflection measuring machine and a pavement surface deflection measuring method capable of accurately evaluating the soundness of a pavement surface simply and efficiently.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 車両の走行方向における前記車両の車軸位置に配され、前記走行方向と直交方向の舗装路面との距離を測定するたわみ測定変位センサを支持するセンサ支持部と、前記車軸に軸装され、前記車軸の回転に対して非回転状態で前記センサ支持部を支持可能とする軸受部と、前記センサ支持部が車両の走行方向に延設されるセンサ架台と、を有し、更に、前記たわみ測定変位センサを中心とした前記走行方向の前後位置であり、かつ、前記車輪の半径Rに対して1R未満の距離だけ前記たわみ測定変位センサから離れた位置に、少なくとも2つずつ前記走行方向と前記直交方向の前記舗装路面との距離を測定するたわみ状態測定変位センサが配されることを特徴とする舗装路面のたわみ測定機。
<2> センサ支持部が車両の走行方向に延設されるセンサ架台を有し、前記センサ架台に対して、たわみ測定変位センサと、前記走行方向において前記たわみ測定変位センサを中心とする対称位置であり、かつ、車軸に取り付けられる車輪の半径Rに対して0.4R〜5Rの距離だけ前記たわみ測定変位センサから離れた位置に、前記走行方向と直交方向の舗装路面との距離を測定する一対の組変位センサとが配される前記<1>に記載の舗装路面のたわみ測定機
> センサ支持部が、軸受部に支持され鉛直方向に垂設される板状の第1フレーム部と、前記第1フレーム部に対してその頂部から車輪方向に略L字屈曲させて延設される板状の第2フレーム部とを有するハンガーフレームと、前記第1フレーム部の底部側に支持され、車輪の外周位置に、水平状態で、かつ、二辺が走行方向と並行状態で輪設される矩形状の枠台と、前記枠台の前記二辺のうちの一辺であるか、又は、前記枠台の前記走行方向と直交する他の二辺を架け渡すように配される長板状の部材であるセンサ架台と、前記ハンガーフレームに吊り下げ支持され、その吊り下げ端側で前記センサ架台の両端部側の位置における前記枠台を吊持するハンガー部と、を有する前記<1>から<2>のいずれかに記載の舗装路面のたわみ測定機。
> 前記<1>に記載の舗装路面のたわみ測定機を用いて前記舗装路面のたわみを測定する方法であって、たわみ測定センサで測定される前記たわみ測定センサ−前記舗装路面間の距離と基準距離との差分を算出する差分算出ステップと、各たわみ状態測定変位センサから、前記舗装路面の最大たわみ位置を推定し、前記たわみ測定センサ−前記舗装路面間の距離を、前記最大たわみ位置における前記たわみ測定センサ−前記舗装路面間の距離に補正する最大たわみ補正ステップと、を含むことを特徴とする舗装路面のたわみ測定方法。
> 前記<2>に記載の舗装路面のたわみ測定機を用いて前記舗装路面のたわみを測定する方法であって、たわみ測定センサで測定される前記たわみ測定センサ−前記舗装路面間の距離と基準距離との差分を算出する差分算出ステップと、各たわみ状態測定変位センサから、前記舗装路面の最大たわみ位置を推定し、前記たわみ測定センサ−前記舗装路面間の距離を、前記最大たわみ位置における前記たわみ測定センサ−前記舗装路面間の距離に補正する最大たわみ補正ステップと、一対の組変位センサのうち一の前記組変位センサで測定される前記組変位センサ−前記舗装路面間の距離をd2とし、他の前記組変位センサで測定される前記組変位センサ−前記舗装路面間の距離をd3としたとき、次式、d2−(d2−d3)/2で表される長さで前記基準距離を校正する基準距離校正ステップと、を含むことを特徴とする舗装路面のたわみ測定方法
Means for solving the problems are as follows. That is,
<1> A sensor support portion that is disposed at an axle position of the vehicle in the traveling direction of the vehicle and supports a deflection measurement displacement sensor that measures a distance between the traveling direction and a pavement road surface orthogonal to the traveling direction, and is mounted on the axle. , possess a bearing section which allows supporting the sensor support in a non-rotating state with respect to the rotation of the axle, and the sensor mount to the sensor support is extended in the running direction of the vehicle, and further, the At least two each of the travel directions at the front and rear positions in the travel direction around the deflection measurement displacement sensor and at a distance of less than 1R with respect to the radius R of the wheel from the deflection measurement displacement sensor. It said distance deflected state measuring displacement sensor for measuring the said pavement surface in the perpendicular direction is disposed deflection measuring machine pavement surface, characterized in Rukoto with.
<2> The sensor support portion includes a sensor mount that extends in the traveling direction of the vehicle, and a deflection measurement displacement sensor with respect to the sensor mount, and a symmetrical position about the deflection measurement displacement sensor in the travel direction. And the distance between the traveling direction and the pavement surface perpendicular to the traveling direction is measured at a position separated from the deflection measurement displacement sensor by a distance of 0.4R to 5R with respect to a radius R of a wheel attached to the axle. The pavement surface deflection measuring device according to <1>, wherein the pair of displacement sensors are arranged .
< 3 > A plate-shaped first frame portion supported by the bearing portion and vertically suspended in the bearing portion, and a sensor support portion that is bent substantially L-shaped from the top to the wheel direction with respect to the first frame portion. A hanger frame having a plate-like second frame portion provided, and supported on the bottom side of the first frame portion, in a horizontal state at the outer peripheral position of the wheel, and with two sides parallel to the traveling direction It is arranged so as to span a rectangular frame to be installed and one of the two sides of the frame or the other two sides orthogonal to the traveling direction of the frame. A sensor base that is a long plate-like member, and a hanger part that is suspended and supported by the hanger frame and that suspends the frame base at positions on both ends of the sensor base at the suspension end side. deflection <1> from the paved road surface according to any one of <2> Joki.
< 4 > A method for measuring the deflection of the pavement surface using the pavement surface deflection measuring device according to <1>, wherein the distance between the deflection measurement sensor and the pavement surface measured by the deflection measurement sensor. A difference calculation step for calculating a difference between the reference distance and a deflection state measurement displacement sensor, the maximum deflection position of the paved road surface is estimated, and the distance between the deflection measurement sensor and the paved road surface is determined as the maximum deflection position. A deflection measurement method for a pavement road surface, comprising: a maximum deflection correction step for correcting the deflection measurement sensor to a distance between the pavement road surface.
< 5 > A method for measuring the deflection of the pavement surface using the pavement surface deflection measuring machine according to <2>, wherein the distance between the deflection measurement sensor and the pavement surface measured by the deflection measurement sensor. A difference calculation step for calculating a difference between the reference distance and a deflection state measurement displacement sensor, the maximum deflection position of the paved road surface is estimated, and the distance between the deflection measurement sensor and the paved road surface is determined as the maximum deflection position. A maximum deflection correction step for correcting the distance between the deflection measurement sensor and the paved road surface in the step, and a distance between the set displacement sensor and the paved road surface measured by one of the pair of set displacement sensors. When d2 is d3 and the distance between the set displacement sensor and the pavement road surface measured by the other set displacement sensor is d3, the following equation is expressed by d2- (d2-d3) / 2. Deflection measurement method of pavement surface, characterized in that it comprises a reference distance calibration step of calibrating said reference distance in length as.

本発明によれば、従来における前記諸問題を解決することができ、簡便かつ効率的に舗装路面の健全性を正確に評価可能な舗装路面のたわみ測定機及び舗装路面のたわみ測定方法を提供することができる。   According to the present invention, there are provided a pavement surface deflection measuring machine and a pavement surface deflection measuring method capable of solving the above-described problems and easily and efficiently accurately evaluating the soundness of the pavement surface. be able to.

図1は、たわみ量の測定原理の概要を示す説明図である。FIG. 1 is an explanatory diagram showing an outline of the measurement principle of the deflection amount. 図2(a)は、たわみ測定機の概要を示す模式図である。FIG. 2A is a schematic diagram showing an outline of a deflection measuring machine. 図2(b)は、各変位センサの配置状況を示す模式図である。FIG. 2B is a schematic diagram showing an arrangement state of each displacement sensor. センサ架台が傾いた状態を示す模式図である。It is a schematic diagram which shows the state in which the sensor mount was inclined. たわみ測定方法におけるデータ処理の一例を示すブロック図である。It is a block diagram which shows an example of the data processing in a deflection measuring method. たわみ状況とその測定結果の例を示す図である。It is a figure which shows the example of a bending condition and its measurement result. 本発明の一実施形態に係るたわみ測定機の斜視図である。It is a perspective view of the deflection measuring machine which concerns on one Embodiment of this invention. 車両に取り付けた状態での図6におけるA−A線断面図である。It is the sectional view on the AA line in FIG. 6 in the state attached to the vehicle. たわみを測定した結果を示す図である。It is a figure which shows the result of having measured the deflection.

本発明の舗装路面のたわみ測定機は、車両の走行方向における前記車両の車軸位置に配され、前記走行方向と直交方向の舗装路面との距離を測定するたわみ測定変位センサを支持するセンサ支持部と、前記車軸に軸装され、前記車軸の回転に対して非回転状態で前記センサ支持部を支持可能とする軸受部と、を有する。
また、本発明の舗装路面のたわみ測定方法は、前記舗装路面のたわみ測定機を用いて前記舗装路面のたわみを測定する方法であって、前記たわみ測定センサで測定される前記たわみ測定センサ−前記舗装路面間の距離と基準距離との差分から、前記舗装路面のたわみ量を測定する方法に係る。
このように本発明によるたわみ測定によれば、前記車両の前記車軸に直接前記たわみ測定機が取り付けられるため、サスペンション等による間接的な振動影響を受けることなく、前記舗装路面の凹凸に起因する振動の影響を直接的に含む状態で、前記舗装路面のたわみを測定することができる。したがって、測定結果には、前記舗装路面の凹凸に起因する規則的な振動ノイズが一様に含まれることとなり、前記測定結果から前記振動ノイズを除去することを簡便化することができる。
The pavement surface deflection measuring device according to the present invention is a sensor support unit that supports a deflection measurement displacement sensor that is disposed at an axle position of the vehicle in the traveling direction of the vehicle and measures a distance between the traveling direction and the pavement surface orthogonal to the traveling direction. And a bearing portion that is mounted on the axle and that can support the sensor support portion in a non-rotating state with respect to the rotation of the axle.
Further, the method for measuring the deflection of the paved road surface according to the present invention is a method for measuring the deflection of the paved road surface using a deflection measuring machine of the paved road surface, wherein the deflection measuring sensor is measured by the deflection measuring sensor- According to the method of measuring the amount of deflection of the paved road surface from the difference between the distance between the paved road surface and the reference distance.
As described above, according to the deflection measurement according to the present invention, since the deflection measuring machine is directly attached to the axle of the vehicle, the vibration caused by the unevenness of the paved road surface without being indirectly influenced by the suspension or the like. The deflection of the paved road surface can be measured in a state that directly includes the influence of the above. Therefore, regular vibration noise due to the unevenness of the paved road surface is uniformly included in the measurement result, and it is possible to simplify the removal of the vibration noise from the measurement result.

(測定原理)
前記舗装路面のたわみ測定方法による前記舗装路面のたわみ量の測定原理を図1を用いて説明する。図1は、たわみ量の測定原理の概要を示す説明図である。
図1中、車両は、x軸方向に速度vで進行するものとする。いま、舗装路面に凹凸や傾斜がなく、また、車体自体の振動や傾きもない理想的な状況を考えると、車軸直下のたわみは、下記式(1)で与えられる。なお、図1中のRは、前記車輪の半径を示す。
(Measurement principle)
The principle of measuring the amount of deflection of the paved road surface by the method of measuring the deflection of the paved road surface will be described with reference to FIG. FIG. 1 is an explanatory diagram showing an outline of the measurement principle of the deflection amount.
In FIG. 1, it is assumed that the vehicle travels at a speed v in the x-axis direction. Considering an ideal situation where there is no unevenness or inclination on the paved road surface, and there is no vibration or inclination of the vehicle body itself, the deflection just below the axle is given by the following equation (1). Note that R in FIG. 1 indicates the radius of the wheel.

ただし、前記式(1)中、wは、前記車体の重量負荷時における前記車軸下(x=0)の前記舗装路面のたわみを示し、Δは、前記車体の重量負荷時における前記x軸と直交するy軸方向の変位センサ位置−前記舗装路面間の距離を示し、Δは、前記車軸位置から前記x軸方向に離れた位置(x=d)における前記y軸方向の前記変位センサ位置−前記舗装路面間の距離を示す。
Δは、たわみ測定に際して、基準となる距離を示すものであり、前記重量負荷により生ずる前記舗装路面のたわみ量を含む距離Δとの差をとることで、たわみ量wを測定することができる。
In the formula (1), w 0 represents the deflection of the paved road surface under the axle (x = 0) when the vehicle body is loaded with weight, and Δ 0 is the x when the vehicle body is loaded with weight. A displacement sensor position in the y-axis direction orthogonal to the axis—a distance between the pavement road surface and Δ d indicates the displacement in the y-axis direction at a position away from the axle position in the x-axis direction (x = d). Sensor position-indicates the distance between the paved road surface.
Δ d indicates a reference distance in the deflection measurement, and the deflection amount w 0 is measured by taking a difference from the distance Δ 0 including the deflection amount of the paved road surface caused by the weight load. Can do.

本発明の一実施形態に係る舗装路面のたわみ測定機を図面を参照しつつ説明する。図2(a)に示すように、たわみ測定機1は、車両100の後輪110に取り付けられる。なお、図2(a)は、たわみ測定機の概要を示す模式図である。
このたわみ測定機1には、図2(b)に示すように、D1〜D7の各変位センサが車両100の走行方向に並設されるようにセンサ架台に支持されている。この変位センサとしては、公知のレーザ式、レーダ式の変位センサを適用でき、例えば、公知のレーザ式変位計を好適に用いることができる。なお、図2(b)は、各変位センサの配置状況を示す模式図である。
A pavement surface deflection measuring machine according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 2A, the deflection measuring device 1 is attached to the rear wheel 110 of the vehicle 100. FIG. 2A is a schematic diagram showing an outline of a deflection measuring machine.
In this deflection measuring machine 1, as shown in FIG. 2B, the displacement sensors D1 to D7 are supported by a sensor base so as to be arranged in parallel in the traveling direction of the vehicle 100. As this displacement sensor, a known laser type or radar type displacement sensor can be applied. For example, a known laser displacement meter can be suitably used. FIG. 2B is a schematic diagram showing the arrangement of each displacement sensor.

ここで、変位センサD1は、車両100の走行方向における後輪110の車軸位置に配され、走行方向と直交方向の舗装路面との距離(以下、第1距離と略すことがある)を測定する前記たわみ測定センサに係る。   Here, the displacement sensor D1 is disposed at the axle position of the rear wheel 110 in the traveling direction of the vehicle 100, and measures the distance between the traveling direction and the paved road surface orthogonal to the traveling direction (hereinafter sometimes abbreviated as the first distance). The present invention relates to the deflection measuring sensor.

また、変位センサD2は、前記車軸に取り付けられる車輪の半径Rに対して変位センサD1から走行方向に所定距離だけ離れた位置に配される変位センサに係る。
この変位センサD2は、前記基準距離を測定する役割を有し、変位センサD1から離す距離の下限としては、0.4R以上が好ましく、2R以上がより好ましい。
前記下限が0.4R未満であると、前記第1距離と変位センサD2で測定される前記基準距離との差分が小さく、有意なたわみ測定を実施できないことがある。
また、前記下限を2R以上とすれば、前記車輪の荷重負荷によるたわみがないか、該たわみが無視できる程少ない十分離れた位置における変位センサ−前記舗装路面間の距離を前記基準距離とすることができ、前記第1距離−前記基準距離間の差分をとることで、絶対的な前記舗装路面のたわみ量を測定することができる。
Further, the displacement sensor D2 relates to a displacement sensor disposed at a position away from the displacement sensor D1 by a predetermined distance in the traveling direction with respect to a radius R of a wheel attached to the axle.
The displacement sensor D2 has a role of measuring the reference distance, and the lower limit of the distance away from the displacement sensor D1 is preferably 0.4R or more, and more preferably 2R or more.
When the lower limit is less than 0.4R, the difference between the first distance and the reference distance measured by the displacement sensor D2 is small, and a significant deflection measurement may not be performed.
If the lower limit is set to 2R or more, the reference distance is the distance between the displacement sensor and the pavement surface at a sufficiently separated position where there is no deflection due to the load applied to the wheel or the deflection is negligible. The absolute deflection amount of the paved road surface can be measured by taking the difference between the first distance and the reference distance.

一方、変位センサD2の変位センサD1から離す距離の上限としては、5R以下が好ましく、4R以下がより好ましい。
前記上限が5Rを超えると、変位センサD2を設置する前記センサ架台の長さが長くなり、該センサ架台の自重によるたわみにより、前記基準距離を正しく測定することができなくなることがある。なお、前記上限に関し、たわみ測定機1を取り付ける車輪(例えば、後輪)と異なる車輪(例えば、前輪)から受ける荷重により発生するたわみの影響を排除するため、更に、前輪−後輪間距離の1/2以下であることが好ましい。
On the other hand, the upper limit of the distance of the displacement sensor D2 from the displacement sensor D1 is preferably 5R or less, and more preferably 4R or less.
When the upper limit exceeds 5R, the length of the sensor mount on which the displacement sensor D2 is installed becomes long, and the reference distance may not be correctly measured due to deflection due to the weight of the sensor mount. In addition, regarding the upper limit, in order to eliminate the influence of deflection caused by a load received from a wheel (for example, the front wheel) different from the wheel (for example, the rear wheel) to which the deflection measuring device 1 is attached, the distance between the front wheel and the rear wheel is further reduced. It is preferable that it is 1/2 or less.

本実施形態では、前記基準距離を変位センサD2で測定することとしている。このように前記基準距離を前記センサ架台中に配される変位センサで測定することとすれば、前記舗装路面の状態に応じて正確に測定することができるとともに、容易にたわみ測定を行うことができる。
ただし、前記基準距離としては、必ずしも、変位センサD2で測定する必要はなく、変位センサD1−前記舗装路面間の距離との差として、たわみ量を評価できる距離であればよい。例えば、鋼板などに前記車両を停止し、変位センサD1でたわみがない状態で測定される変位センサD1−前記鋼板間の距離を前記基準距離としてもよい。また、変位センサD1から走行方向に十分離れた位置(例えば、前輪−後輪間の車体中央部)に他の変位センサを取り付け、前記車両を静止した状態で該変位センサ−前記舗装路面間の距離を測定し、これを前記基準距離としてもよい。
In the present embodiment, the reference distance is measured by the displacement sensor D2. As described above, if the reference distance is measured by the displacement sensor arranged in the sensor mount, it can be accurately measured according to the state of the paved road surface, and the deflection measurement can be easily performed. it can.
However, the reference distance does not necessarily need to be measured by the displacement sensor D2, and may be any distance as long as the deflection amount can be evaluated as a difference from the distance between the displacement sensor D1 and the pavement surface. For example, the vehicle may be stopped on a steel plate or the like, and the distance between the displacement sensor D1 and the steel plate measured in a state where there is no deflection by the displacement sensor D1 may be used as the reference distance. Further, another displacement sensor is attached to a position sufficiently separated from the displacement sensor D1 in the traveling direction (for example, the vehicle body middle portion between the front wheel and the rear wheel), and the vehicle is stationary and the displacement sensor is placed between the paved road surface. A distance may be measured, and this may be used as the reference distance.

ところで、前記車両の走行時に前記センサ架台は、前記車軸と同様、前記舗装路面の状態、前記車輪の回転運動に応じて、前記走行方向と直交する方向に振動し(縦揺れ)、前記走行方向の左右方向に振動する(横揺れ)ことに加え、前記車両の減速、加速による前記舗装路面に対する荷重負荷状況及び前記車両の曲折運動による前記車軸のねじれにより、前記舗装路面に対する位置が水平な状態から傾斜して変動する。例えば、走行中の前記車両を減速すれば、重心が前記車両の前方にシフトして前記センサ架台が前記走行方向に対して右肩下がりに傾き、前記車両を加速すれば、重心が前記車両の後方にシフトして前記センサ架台が前記走行方向に対して右肩上がりに傾く。
したがって、変位センサD2の測定に基づく前記基準距離は、走行中、常に変化するため、ある時刻における前記基準距離を、その都度、設定する必要がある。また、変位センサD2から測定される前記基準距離から前記センサ架台の傾斜変動の影響を排除するように前記基準距離を校正する必要がある。
By the way, when the vehicle travels, the sensor mount vibrates in the direction orthogonal to the travel direction (pitch) according to the state of the paved road surface and the rotational movement of the wheels, like the axle, and the travel direction. In addition to vibrating in the left-right direction (rolling), the load on the pavement road surface due to deceleration and acceleration of the vehicle and the twisted state of the axle due to the bending motion of the vehicle are in a horizontal position relative to the pavement road surface Inclined and fluctuates. For example, if the vehicle being driven is decelerated, the center of gravity shifts to the front of the vehicle, the sensor mount tilts downward in the direction of travel, and if the vehicle is accelerated, the center of gravity is Shifting backward, the sensor mount tilts to the right with respect to the traveling direction.
Therefore, since the reference distance based on the measurement of the displacement sensor D2 always changes during traveling, it is necessary to set the reference distance at a certain time each time. Further, it is necessary to calibrate the reference distance so as to eliminate the influence of the tilt change of the sensor mount from the reference distance measured from the displacement sensor D2.

そのため、本実施形態では、前記走行方向において変位センサD1(前記たわみ測定変位センサ)を中心として変位センサD2と対称位置に変位センサD3を配することとしている。
即ち、図3に示すように、変位センサD2,D3を一対の組変位センサとし、一対の組変位センサのうち一の前記組変位センサ(変位センサD2)で測定される前記組変位センサ−前記舗装路面間の距離をd2とし、他の前記組変位センサ(変位センサD3)で測定される前記組変位センサ−前記舗装路面間の距離をd3としたとき、次式、d2−(d2−d3)/2で表される長さが、前記センサ架台の傾斜変動の影響であることから、この長さで前記基準距離を校正することとする。
したがって、この場合のたわみwは、変位センサD1で測定される変位センサD1−前記舗装路面間の距離(前記第1距離)をd1として、w=d1−{d2−(d2−d3)/2}により算出される。
Therefore, in this embodiment, the displacement sensor D3 is arranged at a position symmetrical to the displacement sensor D2 around the displacement sensor D1 (the deflection measurement displacement sensor) in the traveling direction.
That is, as shown in FIG. 3, the displacement sensors D2 and D3 are a pair of pair displacement sensors, and the pair displacement sensor measured by one of the pair of pair displacement sensors (displacement sensor D2)- When the distance between the paved road surfaces is d2, and the distance between the set displacement sensor and the paved road surface measured by the other set displacement sensor (displacement sensor D3) is d3, the following equation is given: d2- (d2-d3) ) / 2 is the influence of the tilt variation of the sensor mount, and the reference distance is calibrated with this length.
Therefore, the deflection w 0 in this case is expressed as follows: w 0 = d 1 − {d 2 − (d 2 −d 3 ), where d 1 is the distance between the displacement sensor D 1 measured by the displacement sensor D 1 and the pavement surface (the first distance). / 2}.

また、前記車両が停止している場合、前記舗装路面のたわみは、前記車軸を通る鉛直軸を中心として軸対称に生じ、その最大たわみは、前記車軸直下で生じる。一方、前記車両が走行している場合には、最大たわみ位置は、前記車両の走行速度、前記舗装路面の堅さ、舗装の種類で異なるものの、通常、前記車軸直下ではなく、前記鉛直軸に対する前記車両の後部側で生じる。また、たわみの発生状況は、前記鉛直軸に対する前記車両の前部側及び後部側で異なり、非対称となる。   Further, when the vehicle is stopped, the deflection of the paved road surface is axisymmetric with respect to a vertical axis passing through the axle, and the maximum deflection occurs immediately below the axle. On the other hand, when the vehicle is traveling, the maximum deflection position differs depending on the traveling speed of the vehicle, the hardness of the paved road surface, and the type of paving, but is usually not directly below the axle but with respect to the vertical axis. It occurs on the rear side of the vehicle. Further, the occurrence of deflection differs between the front side and the rear side of the vehicle with respect to the vertical axis, and is asymmetric.

そこで、前記最大たわみ位置を推定するため、本実施形態においては、たわみ状態測定変位センサとして変位センサD4〜D7を配し、前記最大たわみ位置でのたわみ量を測定する。
即ち、図5に示すように、座標軸上で変位センサD2,D4,D5の測定結果に基づく近似直線(又は近似曲線)と、変位センサD3,D6,D7の測定結果に基づく近似直線(又は近似曲線)とを算出し、これら近似直線(又は近似曲線)の交点を最大たわみ位置と推定し、変位センサD1から前記最大たわみ位置との距離で、変位センサD1−前記舗装路面間の距離(第1距離)を補正し、前記最大たわみ位置でのたわみ量を測定する。
Therefore, in order to estimate the maximum deflection position, in this embodiment, displacement sensors D4 to D7 are arranged as the deflection state measurement displacement sensors, and the deflection amount at the maximum deflection position is measured.
That is, as shown in FIG. 5, on the coordinate axis, an approximate straight line (or approximate curve) based on the measurement results of the displacement sensors D2, D4, D5 and an approximate straight line (or approximation based on the measurement results of the displacement sensors D3, D6, D7). Curve), the intersection of these approximate straight lines (or approximate curves) is estimated as the maximum deflection position, and the distance between the displacement sensor D1 and the pavement surface (the first) is the distance from the displacement sensor D1 to the maximum deflection position. 1 distance) is corrected, and the amount of deflection at the maximum deflection position is measured.

前記近似直線は、前記たわみ測定変位センサ(変位センサD1)を中心とした前記走行方向の前後位置に少なくとも2つずつ前記たわみ状態変位測定センサを配することで得られる。
また、前記たわみ状態測定変位センサとしては、前記走行方向において前記車輪の半径Rに対して1R未満の距離だけ前記たわみ測定変位センサから離れた位置に配されることが好ましい。1R以上の位置に配すると、たわみが少ない位置での測定となり、前記近似直線(又は前記近似曲線)による前記最大たわみ位置の推定が困難になることがある。
なお、前記距離が1R未満であれば、前記組変位センサ(変位センサD2,D3)は、前記たわみ状態測定変位センサとしての機能を兼ねることができる。
The approximate straight line can be obtained by arranging at least two deflection state displacement measurement sensors at front and rear positions in the traveling direction around the deflection measurement displacement sensor (displacement sensor D1).
Further, the deflection state measurement displacement sensor is preferably arranged at a position away from the deflection measurement displacement sensor by a distance of less than 1R with respect to the radius R of the wheel in the traveling direction. If it is arranged at a position of 1R or more, the measurement is performed at a position where there is little deflection, and it may be difficult to estimate the maximum deflection position using the approximate straight line (or the approximate curve).
If the distance is less than 1R, the combined displacement sensor (displacement sensors D2 and D3) can also function as the deflection state measurement displacement sensor.

前記近似曲線により前記最大たわみ位置の推定を行う場合、前記たわみ状態測定変位センサを密に配することで、例えば、前記座標軸上で前記舗装路面のたわみ形状に応じた下に凸の高次関数又は特殊関数による近似曲線を算出し、その最底部の位置情報からより正確な最大たわみ位置を推定することとしてもよい。
また、前記たわみ状態測定変位センサを前記走行方向において前記たわみ測定変位センサ(変位センサD1)を中心とする対称位置に配することで、より正確な最大たわみ位置を推定することができる。
なお、前記車輪から受ける荷重負荷の大きさに応じて1R以上の位置に有意なたわみが存在する場合には、高精度の近似曲線を得る等の観点から、1R未満の位置の前記たわみ状態測定センサに加えて、1R以上の位置に前記たわみ状態測定センサを配することができる。ただし、この場合も、前記最大たわみ位置を正しく推定する観点から、前記走行方向の前後位置で、1R未満の位置に少なくとも2つずつ前記たわみ状態測定センサを配することが好ましい。
When estimating the maximum deflection position by the approximate curve, by arranging the deflection state measurement displacement sensor densely, for example, a downwardly convex high-order function corresponding to the deflection shape of the paved road surface on the coordinate axis Alternatively, an approximate curve by a special function may be calculated, and a more accurate maximum deflection position may be estimated from position information at the bottom.
Further, by disposing the deflection state measurement displacement sensor at a symmetrical position with the deflection measurement displacement sensor (displacement sensor D1) as the center in the traveling direction, a more accurate maximum deflection position can be estimated.
When there is a significant deflection at a position of 1R or more depending on the magnitude of the load applied from the wheel, the deflection state measurement at a position of less than 1R is performed from the viewpoint of obtaining a highly accurate approximate curve. In addition to the sensor, the deflection state measuring sensor can be arranged at a position of 1R or more. However, also in this case, from the viewpoint of correctly estimating the maximum deflection position, it is preferable to arrange at least two deflection state measurement sensors at positions less than 1R at the front and rear positions in the traveling direction.

なお、本発明によるたわみ測定においては、車両100にロータリーエンコーダ等の測距離計90を設ける(図2(a)参照)ことで、たわみの測定と、そのたわみが生じた位置情報を同期させて、舗装路面のたわみ情報を得ることができる。   In the deflection measurement according to the present invention, the vehicle 100 is provided with a distance measuring device 90 such as a rotary encoder (see FIG. 2A) to synchronize the measurement of the deflection and the position information where the deflection has occurred. It is possible to obtain deflection information on the paved road surface.

前記舗装路面のたわみ量と位置情報とを一定の時間間隔で同時計測することで、測定位置に対応したたわみ情報が得られる。ここで、前記たわみ情報には、定常的なノイズが含まれるが、本発明のたわみ測定機を用いたたわみ測定方法によれば、前記定常的なノイズを除去することができる。
即ち、前記定常的なノイズは、前記たわみ測定機が前記車軸に支持されるため、前記車軸の振動や前記車両の回転運動等に伴う規則的な振動ノイズに制限することができ、この振動ノイズは、ある適切な区間で平均することで、除去することができる。
例えば、一定のサンプリング周波数により得られた複数地点のたわみ量測定結果を走行距離10m間隔で区間平均し、その区間を代表する1つの区間平均値を求める。この際、前記振動ノイズは、前記たわみ量の大きさを増減させるように含まれるが、規則的なノイズとして、前記複数地点のたわみ量測定結果に一様に存在するため、前記区間平均をとることで、その増減がキャンセルされ、前記振動ノイズを除去することができる。
By simultaneously measuring the deflection amount and position information of the paved road surface at regular time intervals, deflection information corresponding to the measurement position can be obtained. Here, the deflection information includes stationary noise, but according to the deflection measuring method using the deflection measuring apparatus of the present invention, the stationary noise can be removed.
That is, the stationary noise can be limited to regular vibration noise associated with vibration of the axle or rotational movement of the vehicle since the deflection measuring machine is supported on the axle. Can be removed by averaging over some appropriate interval.
For example, the deflection amount measurement results at a plurality of points obtained at a constant sampling frequency are averaged at intervals of a traveling distance of 10 m, and one average value representing the interval is obtained. At this time, the vibration noise is included so as to increase or decrease the amount of deflection. However, since the vibration noise is uniformly present in the deflection amount measurement results of the plurality of points as the regular noise, the section average is taken. Thus, the increase / decrease is canceled and the vibration noise can be removed.

本発明のたわみ測定方法による情報処理の一例を図4に示す。なお、図4は、たわみ測定方法におけるデータ処理の一例を示すブロック図である。
先ず、前記舗装路面のたわみデータと位置データとを、時系列データとして同期させて、測定位置ごとにおけるたわみデータとして取得される。
このたわみデータは、一定のサンプリング周波数で複数取得される。この複数のたわみ量データに対し、ある特定区間で区間平均をとり、その区間における区間平均値を算出する。この区間平均値は、各変位センサで測定される距離情報に対して算出される。この区間平均値は、例えば、図5に示すような座標軸で算出される。なお、図5は、たわみ状況とその測定結果の例を示す図である。
前記一対の組変位センサである変位センサD2に基づき、前記基準距離(基準位置)を設定する。この際、変位センサD3の測定結果に基づき、前記センサ架台の傾斜変動の影響を排除するように、d2−(d2−d3)/2で表される長さで前記基準距離を校正することができる。
この基準距離と、変位センサD1の区間平均値で差分をとり、w=d1−{d2−(d2−d3)/2}として、ある特定区間における前記舗装路面のたわみ量wを算出する。
なお、この際、変位センサD2〜D7から得られる各区間平均値に基づき、最大たわみ位置を推定し、この最大たわみ位置におけるたわみ量で、変位センサD1から得られる区間平均値を補正してもよい。また、前記データの処理は、電子計算機等により実行することができる。
以上により、前記舗装路面のたわみ量を測定することができる。
An example of information processing by the deflection measuring method of the present invention is shown in FIG. FIG. 4 is a block diagram illustrating an example of data processing in the deflection measurement method.
First, the deflection data and position data of the paved road surface are synchronized as time series data and acquired as deflection data for each measurement position.
A plurality of the deflection data are acquired at a constant sampling frequency. For the plurality of deflection amount data, a section average is calculated in a specific section, and a section average value in the section is calculated. This section average value is calculated for distance information measured by each displacement sensor. This section average value is calculated with, for example, coordinate axes as shown in FIG. FIG. 5 is a diagram illustrating an example of the deflection state and the measurement result.
The reference distance (reference position) is set based on the displacement sensor D2 that is the pair of paired displacement sensors. At this time, based on the measurement result of the displacement sensor D3, the reference distance may be calibrated with a length represented by d2- (d2-d3) / 2 so as to eliminate the influence of the tilt variation of the sensor mount. it can.
The difference between the reference distance and the section average value of the displacement sensor D1 is calculated, and w 0 = d1− {d2− (d2−d3) / 2} is calculated, and the amount of deflection w 0 of the paved road surface in a specific section is calculated. .
At this time, even if the maximum deflection position is estimated based on each section average value obtained from the displacement sensors D2 to D7, and the section average value obtained from the displacement sensor D1 is corrected by the deflection amount at the maximum deflection position. Good. The data processing can be executed by an electronic computer or the like.
As described above, the amount of deflection of the paved road surface can be measured.

続いて、前述のように各変位センサが配されるたわみ測定機1の具体的な構成及び車両100に対する取付け状態を図6、図7を参照しつつ、説明する。
なお、図6は、本発明の一実施形態に係るたわみ測定機の斜視図である。また、図7は、車両に取り付けた状態での図6におけるA−A線断面図である。
Next, a specific configuration of the deflection measuring machine 1 in which each displacement sensor is arranged as described above and a state of attachment to the vehicle 100 will be described with reference to FIGS. 6 and 7.
FIG. 6 is a perspective view of a deflection measuring machine according to an embodiment of the present invention. FIG. 7 is a cross-sectional view taken along line AA in FIG. 6 in a state of being attached to the vehicle.

たわみ測定機1は、図6に示すように、センサ支持部としてのハンガーフレーム20、枠台30、センサ架台40、ハンガー部50A,50Bと、軸受部としてのベアリングハウジング10とで構成される。   As shown in FIG. 6, the deflection measuring machine 1 includes a hanger frame 20 as a sensor support portion, a frame base 30, a sensor mount 40, hanger portions 50A and 50B, and a bearing housing 10 as a bearing portion.

ハンガーフレーム20は、ベアリングハウジング10に支持され鉛直方向に垂設される板状の第1フレーム部20Aと、第1フレーム部20Aに対してその頂部から車輪方向に略L字屈曲させて延設される板状の第2フレーム部20Bとを有する。   The hanger frame 20 is supported by the bearing housing 10 and extends in a plate-like first frame portion 20A vertically suspended from the top of the first frame portion 20A with a substantially L-shape bent in the wheel direction from the top. And a plate-like second frame portion 20B.

枠台30は、第1フレーム部20Bの底部側に支持され、車輪の外周位置に、水平状態で、かつ、二辺が走行方向Xに並行状態で輪設される矩形状の枠台として構成される。このような枠台30を配することで、走行時におけるセンサ架台40の縦揺れ、横揺れを抑制することができる。   The frame base 30 is supported on the bottom side of the first frame portion 20B, and is configured as a rectangular frame base that is installed in a horizontal state and two sides parallel to the traveling direction X at the outer peripheral position of the wheel. Is done. By disposing such a frame 30, it is possible to suppress the pitching and rolling of the sensor mount 40 during traveling.

センサ架台40は、枠台30の走行方向Xと直交する他の二辺を架け渡すように配される長板状の部材として構成され、各変位センサD1〜D7が胴部の所定位置に配される。
ここで、本実施形態では、車両による前記舗装路面に対する荷重負荷が最も大きくなるWタイヤの中間位置でのたわみ測定を行うために、センサ架台40を枠台30における走行方向Xと直交する前記他の二辺の略中間位置間を架け渡すように配するように構成している。ただし、特に制限はなく、別の位置にセンサ架台40を掛け渡してもよく、或いは、枠台30の走行方向Xに並行に配される一辺をセンサ架台として構成してもよい。
なお、センサ架台40の走行方向Xにおける長さとしては、長すぎると自重によるたわみが生ずるため、各変位センサD1〜D7を配するのに必要十分な長さとすることが好ましく、このセンサ架台40の長さに応じて、枠台30の大きさを設定する。
The sensor mount 40 is configured as a long plate-like member that is arranged so as to bridge over the other two sides orthogonal to the traveling direction X of the frame 30, and each of the displacement sensors D1 to D7 is arranged at a predetermined position of the trunk portion. Is done.
Here, in this embodiment, in order to perform the deflection measurement at the intermediate position of the W tire where the load load on the paved road surface by the vehicle is the largest, the sensor frame 40 is orthogonal to the traveling direction X on the frame base 30. These are arranged so as to bridge between the substantially middle positions of the two sides. However, there is no particular limitation, and the sensor mount 40 may be extended to another position, or one side arranged in parallel with the traveling direction X of the frame base 30 may be configured as the sensor mount.
The length of the sensor base 40 in the running direction X is preferably too long to provide the displacement sensors D1 to D7, because if the length is too long, deflection due to its own weight occurs. The size of the frame 30 is set according to the length of the frame.

ハンガー部50Aは、ハンガーフレーム20に吊り下げ支持され、その吊り下げ端側でセンサ架台40の両端部側の位置における枠台30を吊持するように構成される。このようにハンガー部50Aを配することで、枠台30の吊持を通じて間接的にセンサ架台40の自重によるたわみを軽減させることができる。
また、ハンガー部50Bも同様にハンガーフレーム20に吊り下げ支持され、その吊り下げ端側で枠台30を吊持するように構成される。このハンガー部50Bは、枠台30を配することで、第1フレーム部20A、ハンガー部50Aとともに安定的に支持し、枠台30の走行時の影響による歪みや自重によるたわみを軽減させることができる。
The hanger part 50 </ b> A is suspended and supported by the hanger frame 20, and is configured to suspend the frame 30 at positions on both ends of the sensor mount 40 on the suspended end side. By arranging the hanger portion 50 </ b> A in this way, it is possible to reduce the deflection due to the weight of the sensor mount 40 indirectly through the suspension of the frame base 30.
Similarly, the hanger portion 50B is also supported by being suspended from the hanger frame 20, and is configured to suspend the frame base 30 on the suspended end side. The hanger part 50B can support the first frame part 20A and the hanger part 50A stably by arranging the frame base 30 and reduce the distortion due to the influence of the frame base 30 during traveling and the deflection due to its own weight. it can.

なお、第1フレーム部20A、ハンガー部50A,50Bの枠台30に対する取り付けとしては、特に図示しないが、留め部の留め位置を高さ方向にスライド可能とすることで、高さ位置を調整可能とすることが好ましい。このような高さ調整手段を有することで、径の異なるタイヤに対しても適切にたわみ測定機1を設置することができる。   The first frame 20A and the hangers 50A and 50B are attached to the frame base 30, although not particularly shown, the height position can be adjusted by allowing the fastening position of the fastening part to slide in the height direction. It is preferable that By having such height adjusting means, the deflection measuring device 1 can be appropriately installed even for tires having different diameters.

また、ハンガーフレーム20、枠台30、センサ架台40、ハンガー部50A,50Bは、走行時の影響による歪みや自重によるたわみを軽減するため、ステンレス鋼材等の剛性の高い材料で形成されることが好ましい。   In addition, the hanger frame 20, the frame base 30, the sensor base 40, and the hanger portions 50A and 50B may be formed of a highly rigid material such as a stainless steel material in order to reduce distortion due to influence during traveling and deflection due to its own weight. preferable.

ベアリングハウジング10は、図7に示すように、車軸82に固定可能なハウジング部11とベアリング12と固定軸13とで構成される。車軸82の回転運動に対して固定軸13は非回転状態とされ、この固定軸13とハンガーフレーム20の第1フレーム部とを係止させることで、前記センサ支持部を車軸82の回転運動に対して非回転状態で支持する。   As shown in FIG. 7, the bearing housing 10 includes a housing portion 11 that can be fixed to an axle 82, a bearing 12, and a fixed shaft 13. The fixed shaft 13 is brought into a non-rotating state with respect to the rotational movement of the axle 82, and the sensor support portion is made to rotate on the axle 82 by engaging the fixed shaft 13 with the first frame portion of the hanger frame 20. On the other hand, it is supported in a non-rotating state.

ところで、たわみ測定機1では、センサ架台40の傾斜方向の安定性が不十分となることがあるため、車軸82による支持に加えて、車両側の車軸支持部材81に支持されるように構成されることが好ましい。
そのため、第2フレーム部20Bでは、車輪方向に略L字屈曲させて延設される延設端側を更に屈曲させて支持部21を形成し、車軸支持部材81に支持させるようにしている。これにより、車軸82による支持と合わせて、たわみ測定機1を安定的に車両に取付け可能とされる。また、内輪側の枠台30を車軸支持部材81に係止させて支持させることとしてもよい。
この車軸支持部材81は、車両の種類により異なるが、車軸82に直接軸支される部材として、サスペンション振動や車軸82以外の車体振動の影響を受けない部材が該当し、例えば、スプリングシート等の板バネやエアサスペンションを取り付けるためのブラケットなどが挙げられる。
なお、図中の符号80A〜80Dは、タイヤを示し、符号83は、車軸ヘッドを示す。
By the way, the deflection measuring machine 1 is configured to be supported by the axle support member 81 on the vehicle side in addition to the support by the axle 82 because the stability in the tilt direction of the sensor mount 40 may be insufficient. It is preferable.
Therefore, in the second frame portion 20 </ b> B, the extended end side that is extended by being bent substantially L-shaped in the wheel direction is further bent to form the support portion 21 and supported by the axle support member 81. Thereby, in combination with the support by the axle 82, the deflection measuring device 1 can be stably attached to the vehicle. Alternatively, the inner ring-side frame base 30 may be locked to and supported by the axle support member 81.
The axle support member 81 differs depending on the type of vehicle, but as a member that is directly supported by the axle 82, a member that is not affected by suspension vibration or vehicle body vibration other than the axle 82 is applicable. Examples include a leaf spring and a bracket for attaching an air suspension.
In addition, the code | symbol 80A-80D in FIG. 7 shows a tire, and the code | symbol 83 shows an axle head.

本実施形態では、Wタイヤの車両に取り付ける構成としたが、枠台30の大きさや、センサ架台40、ハンガー部50A,50Bの構成を適宜変更することで、シングルタイヤの車両に取り付ける構成としてもよい。また、センサ架台40の傾斜変動を変位センサD2,D3で計測することとしたが、ジャイロセンサにより前記傾斜変動を計測する構成としてもよい。或いは、図示しない加速度センサを配することで、センサ架台40に生じる加速度を計測し、2階積分を行って、変位量を算定し、変位センサの記録からセンサ架台40の変位を減ずることで、センサ架台40の傾斜変動の影響を除去することとしてもよい。
なお、本実施形態は、本発明の実施形態の一例を示すものであり、本発明の技術的思想は、本実施形態に限定されるものではない。
In this embodiment, although it was set as the structure attached to the vehicle of a W tire, as a structure attached to the vehicle of a single tire by changing suitably the magnitude | size of the frame 30 and the structure of the sensor mount 40 and hanger part 50A, 50B. Good. In addition, although the tilt variation of the sensor mount 40 is measured by the displacement sensors D2 and D3, the tilt variation may be measured by a gyro sensor. Alternatively, by arranging an acceleration sensor (not shown), the acceleration generated in the sensor mount 40 is measured, the second order integration is performed, the displacement amount is calculated, and the displacement of the sensor mount 40 is reduced from the record of the displacement sensor. It is also possible to remove the influence of the tilt variation of the sensor mount 40.
In addition, this embodiment shows an example of embodiment of this invention, and the technical idea of this invention is not limited to this embodiment.

前述した第1実施形態に係るたわみ測定機1において、変位センサとして変位センサD1〜D3を配したたわみ測定機を車両の後輪に取り付け、舗装路面のたわみを測定した。
ここで、変位センサD1〜D3の配置は、図2(b)中、S1及びS1’を450mmとした。なお、前記後輪の半径Rは、500mmである。
舗装路面としては、独立行政法人国土技術総合研究所及び独立行政法人土木研究所の構内に設置されている試験走路を測定対象とした。
また、たわみの大きさを左右する荷重として、ここでは、後輪軸荷重で98kNを作用させ、前記車両の走行速度は、60km/hとし、変位データのサンプリング周波数は、2,000Hzとした。
以上の条件で、実施例に係る舗装路面のたわみを測定した。
In the deflection measuring device 1 according to the first embodiment described above, a deflection measuring device provided with displacement sensors D1 to D3 as displacement sensors was attached to the rear wheel of the vehicle, and the deflection of the paved road surface was measured.
Here, regarding the arrangement of the displacement sensors D1 to D3, S1 and S1 ′ are 450 mm in FIG. The radius R of the rear wheel is 500 mm.
As the pavement surface, the test runway installed on the premises of the National Institute of Advanced Industrial Science and Technology and the Public Works Research Institute was measured.
In addition, as a load that affects the magnitude of deflection, 98 kN is applied as a rear wheel axle load, the vehicle traveling speed is 60 km / h, and the sampling frequency of displacement data is 2,000 Hz.
Under the above conditions, the deflection of the paved road surface according to the example was measured.

一方、比較例として、変位センサD1〜D3が取り付けられたセンサ支持部を車体側面のボディに取り付けたこと以外は、実施例と同じ条件で、舗装路面を測定した。   On the other hand, as a comparative example, the paved road surface was measured under the same conditions as in the example except that the sensor support portion to which the displacement sensors D1 to D3 were attached was attached to the body on the side surface of the vehicle body.

これらの系でたわみを測定した結果を図8に示す。この図8から理解されるように、比較例では、測定位置によって変位に差があり、変位の中心も異なっている。また、変位の大きな周期の長い変位波形が観測される。
これに対し、実施例では、測定位置によって変位に差があるものの、いずれの位置でも変位0mm付近を基準に変位している。また、変位波形の周期は、ほぼ一定で、周期の長い変位波形が観測されない。
このような結果から、実施例では、比較例に対し、前記舗装路面の凹凸に基づく振動ノイズを低減させることができていると評価することができる。
したがって、本発明によるたわみ測定では、簡便かつ効率的に舗装路面の健全性を正確に評価することができる。
The results of measuring the deflection with these systems are shown in FIG. As can be understood from FIG. 8, in the comparative example, there is a difference in displacement depending on the measurement position, and the center of displacement is also different. In addition, a long displacement waveform with a large displacement is observed.
On the other hand, in the embodiment, although there is a difference in displacement depending on the measurement position, the displacement is based on the vicinity of 0 mm displacement at any position. Further, the period of the displacement waveform is substantially constant, and a displacement waveform having a long period is not observed.
From such a result, in an Example, it can be evaluated that the vibration noise based on the unevenness | corrugation of the said pavement road surface can be reduced with respect to a comparative example.
Therefore, in the deflection measurement according to the present invention, the soundness of the paved road surface can be accurately evaluated simply and efficiently.

1 たわみ測定機
10 ベアリングハウジング
11 ハウジング部
12 ベアリング
13 固定軸
20 ハンガーフレーム
20A 第1フレーム部
20B 第2フレーム部
21 支持部
30 枠台
40 センサ架台
50A,50B ハンガー部
80A〜80D タイヤ
81 車軸支持部材
82 車軸
83 車軸ヘッド
90 測距離器
100 車両
110 後輪
D1〜D7 変位センサ
X 走行方向
DESCRIPTION OF SYMBOLS 1 Deflection measuring machine 10 Bearing housing 11 Housing part 12 Bearing 13 Fixed shaft 20 Hanger frame 20A 1st frame part 20B 2nd frame part 21 Support part 30 Frame base 40 Sensor mount 50A, 50B Hanger part 80A-80D Tire 81 Axle support member 82 Axle 83 Axle head 90 Distance measuring device 100 Vehicle 110 Rear wheel D1 to D7 Displacement sensor X Traveling direction

Claims (5)

車両の走行方向における前記車両の車軸位置に配され、前記走行方向と直交方向の舗装路面との距離を測定するたわみ測定変位センサを支持するセンサ支持部と、
前記車軸に軸装され、前記車軸の回転に対して非回転状態で前記センサ支持部を支持可能とする軸受部と、
前記センサ支持部が車両の走行方向に延設されるセンサ架台と、を有し、
更に、前記たわみ測定変位センサを中心とした前記走行方向の前後位置であり、かつ、前記車輪の半径Rに対して1R未満の距離だけ前記たわみ測定変位センサから離れた位置に、少なくとも2つずつ前記走行方向と前記直交方向の前記舗装路面との距離を測定するたわみ状態測定変位センサが配されることを特徴とする舗装路面のたわみ測定機。
A sensor support that supports a deflection measurement displacement sensor that is disposed at an axle position of the vehicle in a traveling direction of the vehicle and that measures a distance between the traveling direction and a pavement surface orthogonal to the traveling direction;
A bearing that is mounted on the axle and that can support the sensor support in a non-rotating state with respect to rotation of the axle;
Have a, a sensor mount to the sensor support is extended in the running direction of the vehicle,
Further, at least two each of the front and rear positions in the traveling direction around the deflection measurement displacement sensor and at a distance from the deflection measurement displacement sensor by a distance of less than 1R with respect to the radius R of the wheel. the traveling direction and the distance deflected state measuring displacement sensor for measuring the said pavement surface in the perpendicular direction is disposed deflection measuring machine pavement surface, characterized in Rukoto.
センサ支持部が車両の走行方向に延設されるセンサ架台を有し、前記センサ架台に対して、たわみ測定変位センサと、前記走行方向において前記たわみ測定変位センサを中心とする対称位置であり、かつ、車軸に取り付けられる車輪の半径Rに対して0.4R〜5Rの距離だけ前記たわみ測定変位センサから離れた位置に、前記走行方向と直交方向の舗装路面との距離を測定する一対の組変位センサとが配される請求項1に記載の舗装路面のたわみ測定機。   The sensor support has a sensor frame extending in the traveling direction of the vehicle, and is a symmetric position about the deflection measuring displacement sensor and the deflection measuring displacement sensor in the traveling direction with respect to the sensor frame; And a pair of pairs for measuring the distance between the traveling direction and the pavement surface orthogonal to the direction of travel at a position separated from the deflection measurement displacement sensor by a distance of 0.4R to 5R with respect to the radius R of the wheel attached to the axle. The pavement surface deflection measuring machine according to claim 1, wherein a displacement sensor is arranged. センサ支持部が、軸受部に支持され鉛直方向に垂設される板状の第1フレーム部と、前記第1フレーム部に対してその頂部から車輪方向に略L字屈曲させて延設される板状の第2フレーム部とを有するハンガーフレームと、  A sensor support part is supported by a bearing part and extends in a plate-like first frame part vertically suspended from the top part of the first frame part so as to be bent substantially L-shaped in the wheel direction. A hanger frame having a plate-like second frame part;
前記第1フレーム部の底部側に支持され、車輪の外周位置に、水平状態で、かつ、二辺が走行方向と並行状態で輪設される矩形状の枠台と、  A rectangular frame that is supported on the bottom side of the first frame part, is horizontally installed at the outer peripheral position of the wheel, and two sides are installed in parallel with the traveling direction;
前記枠台の前記二辺のうちの一辺であるか、又は、前記枠台の前記走行方向と直交する他の二辺を架け渡すように配される長板状の部材であるセンサ架台と、  A sensor base that is one of the two sides of the frame base, or a long plate-like member that is arranged to bridge over the other two sides orthogonal to the traveling direction of the frame base;
前記ハンガーフレームに吊り下げ支持され、その吊り下げ端側で前記センサ架台の両端部側の位置における前記枠台を吊持するハンガー部と、  A hanger part that is supported by being suspended from the hanger frame and that suspends the frame base at the positions of both ends of the sensor frame on the suspension end side thereof,
を有する請求項1から2のいずれかに記載の舗装路面のたわみ測定機。  The pavement surface deflection measuring apparatus according to claim 1, comprising:
請求項1に記載の舗装路面のたわみ測定機を用いて前記舗装路面のたわみを測定する方法であって、  A method for measuring the deflection of the pavement surface using the pavement surface deflection measuring device according to claim 1,
たわみ測定センサで測定される前記たわみ測定センサ−前記舗装路面間の距離と基準距離との差分を算出する差分算出ステップと、  A difference calculating step for calculating a difference between a reference distance and a distance between the deflection measurement sensor and the paved road surface measured by a deflection measurement sensor;
各たわみ状態測定変位センサから、前記舗装路面の最大たわみ位置を推定し、前記たわみ測定センサ−前記舗装路面間の距離を、前記最大たわみ位置における前記たわみ測定センサ−前記舗装路面間の距離に補正する最大たわみ補正ステップと、  The maximum deflection position of the paved road surface is estimated from each deflection state measurement displacement sensor, and the distance between the deflection measurement sensor and the paved road surface is corrected to the distance between the deflection measurement sensor and the paved road surface at the maximum deflection position. A maximum deflection correction step,
を含むことを特徴とする舗装路面のたわみ測定方法。  A method for measuring the deflection of a paved road surface, comprising:
請求項2に記載の舗装路面のたわみ測定機を用いて前記舗装路面のたわみを測定する方法であって、  A method for measuring the deflection of the pavement surface using the pavement surface deflection measuring device according to claim 2,
たわみ測定センサで測定される前記たわみ測定センサ−前記舗装路面間の距離と基準距離との差分を算出する差分算出ステップと、  A difference calculating step for calculating a difference between a reference distance and a distance between the deflection measurement sensor and the paved road surface measured by a deflection measurement sensor;
各たわみ状態測定変位センサから、前記舗装路面の最大たわみ位置を推定し、前記たわみ測定センサ−前記舗装路面間の距離を、前記最大たわみ位置における前記たわみ測定センサ−前記舗装路面間の距離に補正する最大たわみ補正ステップと、  The maximum deflection position of the paved road surface is estimated from each deflection state measurement displacement sensor, and the distance between the deflection measurement sensor and the paved road surface is corrected to the distance between the deflection measurement sensor and the paved road surface at the maximum deflection position. A maximum deflection correction step,
一対の組変位センサのうち一の前記組変位センサで測定される前記組変位センサ−前記舗装路面間の距離をd2とし、他の前記組変位センサで測定される前記組変位センサ−前記舗装路面間の距離をd3としたとき、次式、d2−(d2−d3)/2で表される長さで前記基準距離を校正する基準距離校正ステップと、  Of the pair of pair displacement sensors, the distance between the pair displacement sensor measured by one of the pair displacement sensors and the pavement surface is d2, and the pair displacement sensor measured by the other pair displacement sensor is the pavement surface. A reference distance calibration step for calibrating the reference distance with a length represented by the following formula: d2- (d2-d3) / 2, where d3 is a distance between
を含むことを特徴とする舗装路面のたわみ測定方法。  A method for measuring the deflection of a paved road surface, comprising:
JP2012271335A 2012-12-12 2012-12-12 Deflection measuring machine for paved road surface and method for measuring deflection of paved road surface Active JP6095209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012271335A JP6095209B2 (en) 2012-12-12 2012-12-12 Deflection measuring machine for paved road surface and method for measuring deflection of paved road surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012271335A JP6095209B2 (en) 2012-12-12 2012-12-12 Deflection measuring machine for paved road surface and method for measuring deflection of paved road surface

Publications (2)

Publication Number Publication Date
JP2014115241A JP2014115241A (en) 2014-06-26
JP6095209B2 true JP6095209B2 (en) 2017-03-15

Family

ID=51171383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012271335A Active JP6095209B2 (en) 2012-12-12 2012-12-12 Deflection measuring machine for paved road surface and method for measuring deflection of paved road surface

Country Status (1)

Country Link
JP (1) JP6095209B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347078B2 (en) * 2014-07-24 2018-06-27 国立研究開発法人土木研究所 Deflection measuring method and deflection measuring apparatus
CN109403191B (en) * 2018-10-29 2024-01-09 河南交院工程技术集团有限公司 Road deflection value measuring wheel and deflection value measuring device
CN113465496B (en) * 2021-07-24 2022-10-21 石铁科技(河北)有限公司 Be applied to road construction quality detection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3129509B2 (en) * 1992-03-19 2001-01-31 株式会社三陽電機製作所 Fare indicator and alighting reservation device
JPH07248221A (en) * 1994-03-09 1995-09-26 Gaiaato Kumagai:Kk Apparatus for measuring flection of road surface
JP3121816B1 (en) * 2000-02-08 2001-01-09 川崎重工業株式会社 Metal distillation apparatus and method

Also Published As

Publication number Publication date
JP2014115241A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP4220929B2 (en) Road surface flatness measuring device
JP6298313B2 (en) Ground stiffness measuring device, compaction machine, and ground stiffness measuring method
JP6347078B2 (en) Deflection measuring method and deflection measuring apparatus
CA2679645C (en) A method and machine for the lowering of a track
CN101619970B (en) Method for measuring vertical section of road surface
JP6095209B2 (en) Deflection measuring machine for paved road surface and method for measuring deflection of paved road surface
JP2013002278A (en) Road paving machine with layer thickness measuring device
EA014154B1 (en) System for detecting the pressure in a vehicle tyre and/or speed of the vehicle
JP2021148523A (en) Measuring method, measuring device, measuring system, and measuring program
US20150308926A1 (en) Vibration analysis method and vibration analysis device of vehicle
KR20100068595A (en) System for measuring cross-level irregularity of track using inertial sensor, and method thereof
JP7146814B2 (en) Track Inspection Vehicles and Methods for Detecting Vertical Track Position
JP2018177070A (en) Center-of-mass height estimation device
JP2012191778A (en) Malfunction detection method of dynamic characteristic of pantograph
ITTO20110255A1 (en) METHOD OF DETERMINING THE STRESSES THAT MUST BE APPLIED TO A TIRE DURING A TEST OF COVERED DURATION CARRIED OUT IN A TEST BENCH
JP6170443B2 (en) Method and apparatus for estimating trolley wire static height
JP7097094B2 (en) Method and device for detecting the weight of a load moving on a scale
JP6607004B2 (en) Vehicle center of gravity estimation system and vehicle center of gravity estimation method
JP2016148221A (en) Track support rigidity evaluation device using multistage loading system
JP2001270668A (en) Installation accuracy measuring device for guide rail and installation accuracy measuring method
US7581329B2 (en) Dynamic percent grade measurement device
ITTO20110262A1 (en) METHOD TO DETERMINE THE STRESSES THAT MUST BE APPLIED TO A TIRE DURING A HIGH EFFICIENCY COVERAGE TEST DURATION
KR101265221B1 (en) Profile measuring instrument of road and profiling method using the same
JP6644598B2 (en) Method and apparatus for measuring the angle of attack between a wheel and a rail of a railway vehicle
JP6034387B2 (en) Chassis dynamometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6095209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250