JP6095164B2 - Density estimation method of solvent with paint drying - Google Patents
Density estimation method of solvent with paint drying Download PDFInfo
- Publication number
- JP6095164B2 JP6095164B2 JP2013088594A JP2013088594A JP6095164B2 JP 6095164 B2 JP6095164 B2 JP 6095164B2 JP 2013088594 A JP2013088594 A JP 2013088594A JP 2013088594 A JP2013088594 A JP 2013088594A JP 6095164 B2 JP6095164 B2 JP 6095164B2
- Authority
- JP
- Japan
- Prior art keywords
- change
- density
- paint
- measuring
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003973 paint Substances 0.000 title claims description 67
- 238000000034 method Methods 0.000 title claims description 31
- 239000002904 solvent Substances 0.000 title claims description 22
- 238000001035 drying Methods 0.000 title description 15
- 230000008859 change Effects 0.000 claims description 66
- 238000005259 measurement Methods 0.000 claims description 17
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 238000001093 holography Methods 0.000 claims description 6
- 230000004580 weight loss Effects 0.000 claims description 4
- 239000013585 weight reducing agent Substances 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 3
- 238000000576 coating method Methods 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 18
- 238000011156 evaluation Methods 0.000 description 12
- 239000010408 film Substances 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 5
- 238000001739 density measurement Methods 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 231100000647 material safety data sheet Toxicity 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 101001074841 Allium cepa Bifunctional 6(G)-fructosyltransferase/2,1-fructan:2,1-fructan 1-fructosyltransferase Proteins 0.000 description 1
- 241001422033 Thestylus Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000007591 painting process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
本発明は、揮発塗料の密度変化の測定方法に関し、特に、新たな特性や機能を付加した新規塗料等の乾燥評価ないし揮発評価に資することが可能な密度変化測定方法に関する。 The present invention relates to a method for measuring density change of a volatile paint, and more particularly, to a density change measurement method that can contribute to drying evaluation or volatilization evaluation of a new paint or the like with new characteristics and functions added.
従来、多くの工業製品に対して、見た目の向上や艶出し、強度や耐水性の向上、錆の防止などの目的で塗装が施されている。また近年では、多くの分野で高品質で低コスト、環境対策を目的とした新しい塗料の開発などが行われている。 Conventionally, many industrial products have been painted for the purpose of improving appearance and glazing, improving strength and water resistance, and preventing rust. In recent years, new paints have been developed in many fields for the purpose of high quality, low cost and environmental measures.
そのため、塗料の乾燥、揮発に関する情報を取得することは、塗装工程の検討や、硬化状態の把握、更なる塗料開発の観点から非常に重要である。特に近年の塗料は単一の溶剤成分ではなく、複数種の溶剤をブレンドして機能付加させるのが一般的であるので、乾燥、揮発の評価は重要である。 Therefore, it is very important to obtain information on the drying and volatilization of paints from the viewpoint of studying the painting process, grasping the cured state, and further developing paints. In particular, recent paints are not a single solvent component, but are generally added with a function by blending a plurality of types of solvents. Therefore, evaluation of drying and volatilization is important.
塗料の乾燥、揮発を調べる方法はいくつか知られている。しかしながら、例えば、触針式の方法では塗装面に傷をつけてしまい、塗料の重量変化を調べる重量法では低感度であって乾燥、揮発のばらつきを測定できないといった問題点があった。また、揮発速度が速い溶剤成分がある場合などは、表面が一様に沈降せず、動的な変化をみせるものも多い。 Several methods are known for examining the drying and volatilization of paints. However, for example, the stylus type method scratches the painted surface, and the gravimetric method for examining the change in the weight of the paint has a problem that the sensitivity is low and variation in drying and volatilization cannot be measured. In addition, when there is a solvent component having a high volatilization rate, there are many cases where the surface does not settle uniformly and changes dynamically.
近年では、紫外線パルスレーザ光を塗装面に照射したときに生じる赤外放射光の減衰から乾燥等を測定する方法や、テラヘルツ光を用いて塗装面の膜厚を測定する方法等も研究されているものの、現段階では光源や受光素子が特殊で非実用的である。また、粗面からのレーザ反射光中に生じるスペックルパターンの変化を利用し乾燥過程、揮発過程を観察する方法も知られているが、この方法では、乾燥(揮発)分布や深度のある3次元物体、表面が動的に変化する場合に対しての適用が困難であるという問題点があった。 In recent years, research has also been conducted on methods such as measuring dryness from the attenuation of infrared radiation generated when an ultraviolet pulsed laser beam is applied to a paint surface, and methods for measuring the thickness of a paint surface using terahertz light. However, at this stage, light sources and light receiving elements are special and impractical. In addition, a method of observing the drying process and volatilization process using changes in the speckle pattern generated in the laser reflected light from the rough surface is also known, but this method has a dry (volatile) distribution and depth 3 There is a problem that it is difficult to apply to a case where a three-dimensional object and a surface change dynamically.
本発明は上記に鑑みてなされたものであって、表面が揮発等により動的に変化する塗料であっても非接触で密度の時間変化を測定でき、塗装工程の検討や、硬化状態の把握、更なる塗料開発に資する評価も可能とする技術を提供することを目的とする。 The present invention has been made in view of the above, and even with a paint whose surface dynamically changes due to volatilization or the like, it is possible to measure a change in density with time without contact, and to examine a coating process and grasp a cured state. It aims to provide a technology that enables evaluation that contributes to further paint development.
請求項1に記載の揮発塗料の密度変化測定方法は、対象揮発塗料を塗布した試料表面の経時的な位相変化をデジタルホログラフィを用いて測定する位相変化測定工程と、位相変化測定工程により測定された位相変化に基づき対象揮発塗料の体積減を算出する体積変化算出工程と、試料の経時的な重量減を測定する重量測定工程と、体積変化算出工程により算出された体積減と重量測定工程により測定された重量減とに基づいて、対象揮発塗料の経時的な密度変化を算出する算出工程と、算出工程により算出された経時的な密度変化を出力する出力工程と、を含んだことを特徴とする。 The density change measurement method for a volatile paint according to claim 1 is measured by a phase change measurement process for measuring a phase change over time of a sample surface coated with the target volatile paint using digital holography, and a phase change measurement process. The volume change calculation step for calculating the volume reduction of the target volatile paint based on the phase change, the weight measurement step for measuring the weight loss over time of the sample, and the volume reduction and weight measurement step calculated by the volume change calculation step. A calculation step for calculating a change in density of the target volatile paint over time based on the measured weight loss, and an output step for outputting the change in density over time calculated by the calculation step. And
すなわち、請求項1によれば、これまで塗料評価に用いられていないデジタルホログラフィを利用した位相変化測定に基づいて密度測定をおこなうことができ、複数溶剤下での揮発評価や塗料の乾燥評価をおこなうことができる。 That is, according to claim 1, density measurement can be performed based on phase change measurement using digital holography that has not been used for paint evaluation so far, and volatilization evaluation under a plurality of solvents and paint dry evaluation can be performed. Can be done.
出力工程による出力態様は、例えば、横軸に乾燥時間、縦軸に揮発塗料の密度をプロットする例を挙げることができ、これにより、どの時間でどの成分が主として揮発しているかを容易に把握することが可能となる。この他、必要に応じて重量減等の時間推移もプロットするようにしてもよい。 As an output mode by the output process, for example, the horizontal axis represents the drying time and the vertical axis represents the density of the volatile paint, which makes it easy to grasp which component is mainly volatilizing at which time. It becomes possible to do. In addition, the time transition such as weight reduction may be plotted as necessary.
なお、測定の時間間隔を短くすることにより位相飛びが生じず、より正確な密度測定が実現される。時間間隔がある程度大きな場合は後述の位相接続により補正が可能である。 In addition, phase skip does not occur by shortening the measurement time interval, and more accurate density measurement is realized. When the time interval is large to some extent, it can be corrected by phase connection described later.
請求項2に記載の揮発塗料の密度変化測定方法は、請求項1に記載の揮発塗料の密度変化測定方法において、位相変化測定工程では位相変化を所定時間間隔毎に測定し、更に、位相接続をおこなって体積減を補正する補正工程を含んだことを特徴とする。 The method for measuring a change in density of a volatile paint according to claim 2 is the method for measuring a change in density of a volatile paint according to claim 1, wherein the phase change is measured at predetermined time intervals in the phase change measurement step. And a correction step for correcting the volume reduction.
すなわち、請求項2に係る発明は、位相接続することにより、より正確な密度測定が可能となる。また、有色塗料の顔料によっては、揮発初期にレーザが散乱されてしまい比較的不正確な値が出力されてしまう場合があるが、これを補正することも可能となる。 That is, the invention according to claim 2 enables more accurate density measurement by phase connection. In addition, depending on the pigment of the colored paint, the laser may be scattered at the initial stage of volatilization and a relatively inaccurate value may be output. This can be corrected.
なお、位相接続の方法は特に限定されず汎用ソフトウェアなどを用いることができる。 The phase connection method is not particularly limited, and general-purpose software can be used.
請求項3に記載の揮発塗料の密度変化測定方法は、請求項1または2に記載の揮発塗料の密度変化測定方法において、塗料が透明塗料であることを特徴とする。 A method for measuring a density change of a volatile paint according to claim 3 is the method for measuring a density change of a volatile paint according to claim 1 or 2, wherein the paint is a transparent paint.
すなわち、請求項3に係る発明は、従来法では、塗料底面と塗料表面内側との複数回の反射に由来する誤差により評価が極めて困難であった透明塗料の密度変化を評価、測定できる。 That is, the invention according to claim 3 can evaluate and measure the density change of the transparent paint, which is extremely difficult to evaluate due to the error derived from the multiple reflections between the paint bottom surface and the paint surface inner side in the conventional method.
請求項4に記載の揮発塗料の密度変化測定方法は、請求項1,2または3に記載の揮発塗料の密度変化測定方法において、出力工程を制御して、溶剤の密度も出力することを特徴とする。 The density change measuring method for volatile paint according to claim 4 is the method for measuring density change of volatile paint according to claim 1, 2 or 3, wherein the output step is controlled to output the density of the solvent. And
すなわち、請求項4に係る発明は、塗布からどの程度時間経過しているときにどの溶剤が主たる揮発を担っているかの評価、測定が容易となる。 That is, the invention according to claim 4 makes it easy to evaluate and measure which solvent is responsible for the main volatilization when the time has elapsed since the application.
なお、例えば、組成が必ずしも明らかでない他社塗料の評価をおこなう場合など、代表的な溶剤の密度を描画して逆推定する際の参考としてもよい。 Note that, for example, when evaluating a paint of another company whose composition is not necessarily clear, it may be used as a reference when the density of a representative solvent is drawn and back-estimated.
本発明の揮発塗料の密度変化測定方法によれば、表面が揮発等により動的に変化する塗料であっても非接触で密度の時間変化を測定でき、塗装工程の検討や、硬化状態の把握、更なる塗料開発に資する評価も可能とする技術を提供することができる。 According to the density change measurement method of the volatile paint of the present invention, the time change of the density can be measured in a non-contact manner even if the surface of the paint dynamically changes due to volatilization, etc. Further, it is possible to provide a technology that enables evaluation that contributes to further paint development.
以下、本発明の実施の形態を図面を参照しながら詳細に説明する。本実施の形態では、位相シフトデジタルホログラフィ装置と電子天秤を用いる態様を説明し、塗料表面の位相差および重量減の時間推移を同時測定して、塗料の密度変化を測定する例を述べる。またここでは、従来技術では密度変化の測定が困難であった透明塗料を試料として用いる例を挙げる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, an embodiment using a phase shift digital holography device and an electronic balance will be described, and an example in which a change in the density of the paint is measured by simultaneously measuring the phase difference of the paint surface and the time transition of weight loss will be described. Here, an example in which a transparent paint, which is difficult to measure the density change with the prior art, is used as a sample.
図1は、塗料の密度変化を評価する測定系の概念図である。なお、図では顕微鏡で試料を撮像するシステムもあわせて描画している。試料については、表面を粗らした銅平面基板に水性揮発塗料を塗布したものとする。この試料は測定系の電子天秤(EB)上に載置する。 FIG. 1 is a conceptual diagram of a measurement system for evaluating the density change of a paint. In the figure, a system for imaging a sample with a microscope is also drawn. About a sample, the water-based volatile paint shall be apply | coated to the copper plane board | substrate which roughened the surface. This sample is placed on the electronic balance (EB) of the measurement system.
位相シフトデジタルホログラフィ装置を概説する。光源である半導体レーザ(LD)からの出射光をレンズ(Lens)で並行光とした後に、ビームスプリッタ(BS)で試料照明光と、ピエゾ鏡(PZT−mirror)で反射させる参照光とに分割する。試料照明光により塗装面を照射し、塗装面からの反射光である物体光と、参照光とを干渉させて生じる干渉縞(ホログラム)をCCDにて記録する。 A phase shift digital holography apparatus will be outlined. After the light emitted from the semiconductor laser (LD), which is a light source, is converted into parallel light by a lens (Lens), it is divided into sample illumination light by a beam splitter (BS) and reference light reflected by a piezo mirror (PZT-mirror). To do. The coating surface is irradiated with the sample illumination light, and interference fringes (holograms) generated by causing the object light, which is reflected light from the coating surface, to interfere with the reference light are recorded by the CCD.
このとき、参照光の位相を、ピエゾ鏡に加えた電圧よりp/2ラジアンずつシフトした位相シフトホログラムとして記録する。4ステップ法の位相シフト法を用い、塗料塗布後の時刻tにおいて記録した4枚のホログラムによりCCD面上での物体光の複素振幅Uo(x,y;t)が得られる。具体的には式(1)として表される。 At this time, the phase of the reference light is recorded as a phase shift hologram shifted by p / 2 radians from the voltage applied to the piezo mirror. Using a four-step phase shift method, the complex amplitude U o (x, y; t) of the object light on the CCD surface is obtained from four holograms recorded at time t after coating. Specifically, it is expressed as equation (1).
また、CCD面から距離Zにある平面上における物体光の再生像U(X,Y;t)の複素振幅は次式(2)で表されるフレネル回折積分を計算することにより得られる
計算結果として得られる再生像の複素振幅U(X,Y;t)は、ホログラムがCCDで離散的に記録されるため、離散的な値として得られる。ここで、ホログラム記録に用いたCCDが画素数N×Nで縦、横がそれぞれΔx、Δyの大きさの画素から構成されているとする。フレネル回折積分の計算を1−FFT法でおこなった場合、得られる再生像の1画素の大きさは次式(3)のように波長λと再生距離Zに依存する。
塗料乾燥過程では、塗装表面が溶剤揮発により変化し、また、塗膜中の粒子による多重反射や散乱によって物体光の位相は激しく変化する。この変化を捉えることが塗料乾燥を評価する指標となるため、本法では一定時間間隔T毎に位相シフトホログラムを記録し、塗装面がある程度乾燥するまでの時間これを繰り返して密度変化を算出する。 In the paint drying process, the coating surface changes due to solvent volatilization, and the phase of object light changes drastically due to multiple reflection and scattering by particles in the coating film. Since capturing this change is an index for evaluating the drying of the paint, in this method, a phase shift hologram is recorded at every fixed time interval T, and this is repeated for a certain period of time until the coated surface is dried to calculate the density change. .
再生像の時間tとt+Tとにおける位相差Δφは、式(4)で表される。
透明塗料については、照明光は塗膜を透過しその下にある基板表面で反射されてCCDに戻ってくる。この場合、屈折率分布の揺らぎや基板表面と塗膜−空気の境界等による多重反射等が事実上無視でき、隣接再生像の位相差Dft(X,Y)は次式(5)のように表される。
式(5)において、実際の透明塗料中の溶剤や顔料は、著しく屈折率の異なるものはないため屈折率変化Δntは無視でき、塗膜厚さの変化量Δεtを位相変化Δφtによって算出できる。これにより、塗膜体積の減少量Δvloss(t)は次の関係式により求められる。
従って同時に測定している塗膜重量の減少量ΔMp(t)を用いて、次式(7)により塗料の経時的な密度変化destを算出することができる。
<実施例>
次に、実際に透明塗料の密度測定実験をおこなった。ホログラフィ用のレーザ光源は発振波長657.95nmの半導体レーザ(LD)を使用し、レンズ(Lens)で平行光にした後にビーム径30mmとしてビームスプリッタ(BS)を介して大きさ40×40mm2の銅基板上に塗布した塗料に照射した。
<Example>
Next, the density measurement experiment of the transparent paint was actually conducted. The laser light source for holography uses a semiconductor laser (LD) having an oscillation wavelength of 657.95 nm, and is converted into parallel light by a lens (Lens) and then has a beam diameter of 30 mm and a size of 40 × 40 mm 2 via a beam splitter (BS). The paint applied on the copper substrate was irradiated.
用いた透明塗料はクレオス社製水性ホビーカラー:H30である。製品安全データシート(MSDS)による成分表を表1に示す。
また、ホログラム記録には512×512画素、一画素の大きさ12.87×12.92μm2、8bit階調のモノクロCCD(SONY社製:XC−66)を使用し、ホログラム画像データはパソコン(PC)に取り付けたフレームメモリ(Cybertek社製:CT−3000A)によりデータを記録し、PC内で再生計算等の処理を行った。 In addition, a monochrome CCD of 512 × 512 pixels, a pixel size of 12.87 × 12.92 μm 2 , an 8-bit gray scale (manufactured by Sony Corporation: XC-66) is used for hologram recording. Data was recorded by a frame memory (manufactured by Cybertek: CT-3000A) attached to a PC, and processing such as reproduction calculation was performed in the PC.
また、塗料の重量変化は分解能0.1mgの電子はかりで同時測定し、PCにデータを送った。塗料乾燥評価をおこなうためホログラム記録、顕微鏡画像、重量データ取得は全て5秒間隔(T=5sec)で行い、500回(2500秒)繰り返した。なお、実験は室温中でおこなった。 The weight change of the paint was simultaneously measured with an electronic scale having a resolution of 0.1 mg, and the data was sent to a PC. In order to evaluate the drying of the paint, hologram recording, microscopic image, and weight data acquisition were all performed at intervals of 5 seconds (T = 5 sec) and repeated 500 times (2500 seconds). The experiment was performed at room temperature.
図2に、位相差画像Δφtの時間変化を示す。また、図3に、重量減と体積減の時間変化の出力図を示す。 FIG. 2 shows a time change of the phase difference image Δφt. FIG. 3 shows an output diagram of changes over time in weight reduction and volume reduction.
図4は、密度の時間変化を出力した図である。ここでdexは元の実験結果より直接算出した密度変化のプロットであり、dex2は320秒後以後の変形量を示す曲線から推定して算出した密度変化のプロットである。元の実験結果より直接得られたdexは、特に塗布初期の揮発が多く、位相飛びが生じて体積が過小評価される結果、密度が大きくなり、最終的に溶剤成分の各密度を超え1以上となってしまっている。しかしながら、変形量から推定して近似直線上から得た体積値を使って計算したdex2は、補正がされている結果、より正確な密度数値となっている。なお、これは測定間隔T=5secとしているためであり、特に初期の測定時間間隔を例えば0.5sec等と短くすれば解消でき変形量の推定値を用いなくとも正確な数値が測定されることとなる。なお、図4ではあわせて位相差の時間変化および各溶剤成分の密度も描画している。 FIG. 4 is a diagram in which changes with time in density are output. Here, d ex is a plot of density change calculated directly from the original experimental results, and d ex2 is a plot of density change calculated by estimation from a curve indicating the deformation after 320 seconds. Original d ex obtained directly from the experimental results, a result of the particular application early volatilization many, phase jumps volume is underestimated occurs, the density is increased, 1 beyond the respective density of the finally solvent component That's it. However, d ex2 estimated from the deformation amount and calculated using the volume value obtained on the approximate straight line is a more accurate density value as a result of correction. Note that this is because the measurement interval T = 5 sec. In particular, the initial measurement time interval can be shortened to, for example, 0.5 sec. This can be eliminated, and an accurate numerical value can be measured without using an estimated value of deformation. It becomes. In FIG. 4, the change in the phase difference with time and the density of each solvent component are also drawn.
図4は、塗料の密度に関する基本データであり、これに基づき各種の評価をおこなうことができる。例えば、成分表と密度の時間変化から、t=300sec以降ではdex2の値が0.85近くに達しているので、塗料中のエタノール、イソプロピルアルコール、イソブチルアルコールはこの段階でほぼ揮発していると判断できる。 FIG. 4 shows basic data relating to the density of the paint, and various evaluations can be performed based on this data. For example, since the value of dex2 has reached nearly 0.85 after t = 300 sec from the change in the composition table and density, the ethanol, isopropyl alcohol, and isobutyl alcohol in the paint are almost volatilized at this stage. It can be judged.
また、次のような新規溶剤ないし新規塗料の評価が可能となる。まず、複数種の溶剤を混合した基本組成の密度の時間変化を予め測定しておく。次に、この基本組成に新たな溶剤を添加混合してその密度変化を測定する。密度変化の相違をモニタリングすることにより、新たに添加した溶剤がどの時点で揮発していくかを把握可能になる。従って、例えば新たな添加溶剤が、取り扱いに注意すべき溶剤(例えば有害揮発分からなる場合)であるときに、どの時点で揮発していくかを把握可能となる。 In addition, the following new solvents or new paints can be evaluated. First, the time change of the density of the basic composition in which plural kinds of solvents are mixed is measured in advance. Next, a new solvent is added to and mixed with this basic composition, and the density change is measured. By monitoring the difference in density change, it becomes possible to know when the newly added solvent volatilizes. Therefore, for example, when a new additive solvent is a solvent that should be handled with care (for example, when it consists of harmful volatile components), it is possible to grasp at which point the solvent is volatilized.
また、位相変化に基づいて密度の経時変化を測定するので、凹凸がある塗装対象物への塗料の乾燥評価もおこなうことができる。具体的には、例えばシボ加工されたりサンドブラスト加工された対象物へ塗装する場合には凹部分に塗料がたまるため、乾燥経過が複雑となる。このような場合でも本発明を用いて、乾燥評価、揮発評価、硬化評価などを具体的におこなうことができる。 Moreover, since the change with time of the density is measured based on the phase change, it is possible to evaluate the drying of the paint on the object to be coated with unevenness. Specifically, for example, when coating an object that has been textured or sandblasted, the paint accumulates in the concave portion, and thus the drying process becomes complicated. Even in such a case, drying evaluation, volatilization evaluation, and curing evaluation can be specifically performed using the present invention.
なお、上記各式では近似を用いたが、有色顔料を用いる場合でも、屈折率の差が大きな溶剤同士を用いる場合でも、算出式を適正化、測定時間間隔の短縮化等をおこなうことにより密度の時間変化を推定することができる。有色顔料を用いた場合は,塗布当初は多重反射等により得られる変形量の誤差が大きいため,溶剤がある程度減少して表面からの反射光が主になった場合に得られる変形の時間推移から全体の変形を推定する手法を用いることで密度の推定ができる。 In addition, although approximation was used in each of the above formulas, whether using colored pigments or using solvents with a large difference in refractive index, the density can be adjusted by optimizing the calculation formula, shortening the measurement time interval, etc. Can be estimated. When colored pigments are used, there is a large amount of deformation error due to multiple reflections at the beginning of coating. Therefore, the time of deformation obtained when the solvent is reduced to some extent and the reflected light from the surface becomes the main component. The density can be estimated by using a method for estimating the entire deformation.
本発明によれば、塗料だけでなく、インクや薄膜の乾燥や硬化過程を定量的に評価することもでき、それらの高性能化や高機能化にとっての重要な基礎データを取得できる。 According to the present invention, it is possible to quantitatively evaluate not only the paint but also the drying and curing processes of ink and thin film, and it is possible to acquire important basic data for improving their performance and functionality.
Claims (4)
位相変化測定工程により測定された位相変化に基づき対象揮発塗料の体積減を算出する体積変化算出工程と、
試料の経時的な重量減を測定する重量測定工程と、
体積変化算出工程により算出された体積減と重量測定工程により測定された重量減とに基づいて、対象揮発塗料の経時的な密度変化を算出する算出工程と、
算出工程により算出された経時的な密度変化を出力する出力工程と、
を含んだことを特徴とする揮発塗料の密度変化測定方法。 A phase change measurement process for measuring the phase change over time of the sample surface coated with the target volatile paint using digital holography;
A volume change calculating step for calculating a volume reduction of the target volatile paint based on the phase change measured by the phase change measuring step;
A weight measurement step for measuring weight loss of the sample over time;
Based on the volume reduction calculated by the volume change calculation step and the weight reduction measured by the weight measurement step, a calculation step for calculating a change in density over time of the target volatile paint,
An output step for outputting a change in density over time calculated by the calculation step;
A method for measuring a change in density of a volatile paint characterized by comprising:
更に、位相接続をおこなって体積減を補正する補正工程を含んだことを特徴とする請求項1に記載の揮発塗料の密度変化測定方法。 In the phase change measurement process, phase change is measured at predetermined time intervals,
The method for measuring a change in density of a volatile paint according to claim 1, further comprising a correction step of correcting the volume loss by performing phase connection.
4. The method for measuring a change in density of a volatile paint according to claim 1, wherein the density of the solvent is also outputted by controlling the output step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013088594A JP6095164B2 (en) | 2013-04-19 | 2013-04-19 | Density estimation method of solvent with paint drying |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013088594A JP6095164B2 (en) | 2013-04-19 | 2013-04-19 | Density estimation method of solvent with paint drying |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014211395A JP2014211395A (en) | 2014-11-13 |
JP6095164B2 true JP6095164B2 (en) | 2017-03-15 |
Family
ID=51931249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013088594A Expired - Fee Related JP6095164B2 (en) | 2013-04-19 | 2013-04-19 | Density estimation method of solvent with paint drying |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6095164B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019060683A (en) * | 2017-09-26 | 2019-04-18 | 東レエンジニアリング株式会社 | Coating droplet characteristic evaluating device |
CN112964600B (en) * | 2021-02-08 | 2022-07-19 | 中国科学院空间应用工程与技术中心 | Measuring device and method for density distribution of low-concentration gas evaporated by micro-droplets |
EP4075117B1 (en) * | 2021-04-14 | 2024-05-01 | MTU Aero Engines AG | Method and device for characterizing a coating |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6034588B2 (en) * | 1977-06-21 | 1985-08-09 | 関西ペイント株式会社 | Steel plate pretreatment method |
WO2001005600A1 (en) * | 1999-07-16 | 2001-01-25 | American Coating Technology, Inc. | Heat-shrinkable ink-jet recording material |
FR2881222A1 (en) * | 2005-01-25 | 2006-07-28 | Debiotech Sa | Pumping chamber volume variation measuring method for micropump, involves placing pumping membrane in one position by deformation generated in mechanical manner so that fluid passage in chamber is absent |
JP4707506B2 (en) * | 2005-09-09 | 2011-06-22 | 日立造船株式会社 | Method for detecting cracks in structural members |
CN101326202B (en) * | 2005-12-09 | 2012-02-08 | 鲁特格斯州立大学 | Method of recycling paints as a component of an immiscible polymer blend |
JP2008267858A (en) * | 2007-04-17 | 2008-11-06 | Oji Paper Co Ltd | Coated film drying behavior measuring method and instrument |
JP5365718B2 (en) * | 2012-04-02 | 2013-12-11 | コニカミノルタ株式会社 | Coating film drying method |
-
2013
- 2013-04-19 JP JP2013088594A patent/JP6095164B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2014211395A (en) | 2014-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Su et al. | Digital holographic microtomography for high‐resolution refractive index mapping of live cells | |
CN111122460B (en) | Single-rotation compensator type spectroscopic ellipsometer parameter calibration method and device | |
JP6095164B2 (en) | Density estimation method of solvent with paint drying | |
Feng et al. | Optical measurement of surface topographies with transparent coatings | |
Fujii et al. | Development of measurement standards for verifying functional performance of surface texture measuring instruments | |
Lv et al. | Modeling the measurement precision of Fringe Projection Profilometry | |
Mandal et al. | Application of linear systems theory to characterize coherence scanning interferometry | |
CN103499429B (en) | Transmission-type heavy-calibre element Method for Phase Difference Measurement | |
Kebbel et al. | Application of digital holographic microscopy for inspection of micro-optical components | |
JPWO2018038064A1 (en) | Ellipsometry apparatus and ellipsometry method | |
Kim et al. | An interferometric system for measuring thickness of parallel glass plates without 2π ambiguity using phase analysis of quadrature Haidinger fringes | |
Zhang et al. | Three-dimensional holographic parallel focusing with feedback control for femtosecond laser processing | |
Akbulut et al. | Optical transmission matrix as a probe of the photonic strength | |
Zhang et al. | Validity of the instrument transfer function for fringe projection metrology | |
Dou et al. | A flexible fast 3D profilometry based on modulation measurement | |
Gomez-Conde et al. | Real-time phase step measurement using the volume enclosed by a surface algorithm in self-calibrating phase-shifting interferometry | |
CN103837325A (en) | Device and method for transmission type optical element layering phase position imaging | |
Hagemeier et al. | A novel cubic‐exp evaluation algorithm considering non‐symmetrical axial response signals of confocal microscopes | |
JP2020016650A (en) | Film thickness measurement method, and device of the same | |
Ekici et al. | A practical approach for optical characterization of a film coated on the optical fiber | |
Dingemans et al. | Quantitative coating thickness determination using a coefficient-independent hyperspectral scattering model | |
Dai et al. | Non-destructive strain determination based on phase measurement and radial basis function | |
JP5317759B2 (en) | Method and system for quantifying orientation state of scaly material in coating film | |
Purcell et al. | Effective wavelength calibration for moiré fringe projection | |
JP2006038533A (en) | Method and apparatus for evaluating substrate concealability of coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160405 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6095164 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |