JP6094558B2 - Flow battery - Google Patents

Flow battery Download PDF

Info

Publication number
JP6094558B2
JP6094558B2 JP2014220246A JP2014220246A JP6094558B2 JP 6094558 B2 JP6094558 B2 JP 6094558B2 JP 2014220246 A JP2014220246 A JP 2014220246A JP 2014220246 A JP2014220246 A JP 2014220246A JP 6094558 B2 JP6094558 B2 JP 6094558B2
Authority
JP
Japan
Prior art keywords
mediator
flow battery
active material
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014220246A
Other languages
Japanese (ja)
Other versions
JP2016085955A (en
Inventor
坂田 二郎
二郎 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2014220246A priority Critical patent/JP6094558B2/en
Publication of JP2016085955A publication Critical patent/JP2016085955A/en
Application granted granted Critical
Publication of JP6094558B2 publication Critical patent/JP6094558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、フロー電池に関する。   The present invention relates to a flow battery.

従来より、電池の活物質を含む電解液を循環させて充放電を行うフロー電池が知られている。フロー電池は、低コスト、安全、長寿命といった多くのメリットがあるため、体積容量面での制約の少ない大規模定置型電池として実用化されている。しかしながら、その充放電容量が活物質の溶解度で決まるため、電気容量が比較的低いことがあった。そこで、充放電容量を高めるため、固体活物質を電解液中に分散させることが提案されている(例えば、特許文献1,3,4及び非特許文献1〜3参照)。また、水溶性のメディエータを用いたレドックス燃料電池が提案されている(例えば、特許文献2参照)。   2. Description of the Related Art Conventionally, a flow battery that charges and discharges by circulating an electrolytic solution containing a battery active material is known. Since the flow battery has many advantages such as low cost, safety and long life, it has been put to practical use as a large-scale stationary battery with less restrictions on volume capacity. However, since the charge / discharge capacity is determined by the solubility of the active material, the electric capacity may be relatively low. In order to increase the charge / discharge capacity, it has been proposed to disperse the solid active material in the electrolytic solution (see, for example, Patent Documents 1, 3, 4 and Non-Patent Documents 1 to 3). Further, a redox fuel cell using a water-soluble mediator has been proposed (see, for example, Patent Document 2).

特許第5211775号Japanese Patent No. 5211775 特表2014−500604号公報Special table 2014-500604 gazette 特表2014−500599号公報Japanese translation of PCT publication No. 2014-500909 特表2014−513857号公報Special table 2014-513857 gazette

Qizhao Huang, et al., Phys. Chem. Chem. Phys., 15, 1793(2013).Qizhao Huang, et al., Phys. Chem. Chem. Phys., 15, 1793 (2013). Mihai Duduta, et al., Adv., Energy Mater., 1, 511(2011).Mihai Duduta, et al., Adv., Energy Mater., 1, 511 (2011). Z. Li, et al., B1-397, Prime2012要旨集、Honolulu, HI 2012年10月7-12日Z. Li, et al., B1-397, Prime2012 Abstract, Honolulu, HI October 7-12, 2012

しかしながら、特許文献1や、非特許文献1,2では、固体活物質を非水系の電解液中に分散させたものについて検討されている。非水系の電解液を用いたものでは水分を嫌うため、水分の影響を受けないような構成が必要であり、そうした構成を必要としない水溶液系の電解液を用いたものが望まれていた。また、特許文献2の電池は、燃料電池であり、フロー電池とは原理的に異なるものであった。また、特許文献3,4や、非特許文献3では、固体活物質を水溶液系の電解液中に分散させたものについて検討されているが、充放電容量が小さいことがあった。このため、水溶液系の電解液を用いたものにおいて、充放電容量をより高めることが望まれていた。   However, Patent Document 1 and Non-Patent Documents 1 and 2 discuss a case where a solid active material is dispersed in a non-aqueous electrolyte solution. In the case of using a non-aqueous electrolyte solution, water is disliked, so that a configuration that is not affected by moisture is required, and a solution using an aqueous electrolyte solution that does not require such a configuration has been desired. Further, the battery of Patent Document 2 is a fuel cell, which is different in principle from a flow battery. Further, Patent Documents 3 and 4 and Non-Patent Document 3 discuss a case where a solid active material is dispersed in an aqueous electrolyte, but the charge / discharge capacity may be small. For this reason, it has been desired to further increase the charge / discharge capacity in the case of using an aqueous electrolyte.

本発明はこのような課題を解決するためになされたものであり、水溶液系のものにおいて、充放電容量をより高めることができるフロー電池を提供することを主目的とする。   The present invention has been made to solve such problems, and it is a main object of the present invention to provide a flow battery capable of further increasing the charge / discharge capacity in an aqueous solution system.

上述した目的を達成するために、本発明者らは、固体活物質と、メディエータを溶解した水溶液系のメディエータ含有電解液とを含む電極組成物を調整し、これを用いてフロー電池を作製したところ、水溶液系のものにおいて充放電容量をより高めることができることを見いだし、本発明を完成するに至った。   In order to achieve the above-mentioned object, the present inventors prepared a flow battery using an electrode composition containing a solid active material and an aqueous mediator-containing electrolyte solution in which a mediator was dissolved. However, it has been found that the charge / discharge capacity can be further increased in the aqueous solution system, and the present invention has been completed.

即ち、本発明のフロー電池は、
固体活物質と、メディエータを溶解した水溶液系のメディエータ含有電解液と、を含む電極組成物と、
前記電極組成物のうちの少なくともメディエータ含有電解液を流動させて集電体に接触させる送液部と、
を有する正極及び負極の少なくとも一方を備えたものである。
That is, the flow battery of the present invention is
An electrode composition comprising: a solid active material; and an aqueous mediator-containing electrolytic solution in which the mediator is dissolved;
A liquid-feeding part that causes at least the mediator-containing electrolyte of the electrode composition to flow and contact the current collector;
It comprises at least one of a positive electrode and a negative electrode.

このフロー電池では、充放電容量をより高めることができる。こうした効果が得られる理由は、以下のように推察される。例えば、電極組成物は、固体活物質の他にメディエータ含有電解液を含むため、固体活物質と集電体とが直接接触しなくても、メディエータを介して、電子の授受すなわち酸化還元反応が可能となる。このため、固体活物質による充放電容量を高める効果をより高めることができる。   In this flow battery, the charge / discharge capacity can be further increased. The reason why such an effect can be obtained is assumed as follows. For example, since the electrode composition includes a mediator-containing electrolyte in addition to the solid active material, even if the solid active material and the current collector are not in direct contact, the transfer of electrons, that is, the oxidation-reduction reaction is performed via the mediator. It becomes possible. For this reason, the effect of increasing the charge / discharge capacity by the solid active material can be further enhanced.

フロー電池10の構成の概略を示す説明図。FIG. 3 is an explanatory diagram showing an outline of the configuration of the flow battery. フロー電池110の構成の概略を示す説明図。An explanatory view showing the outline of composition of flow battery 110. FIG. 実験例1のメディエータ含有電解液及び固体活物質のCV。CV of the mediator containing electrolyte solution and solid active material of Experimental Example 1. 実験例1の充放電波形。The charge / discharge waveform of Experimental Example 1. 実験例1の容量増加の様子を示すグラフ。The graph which shows the mode of the capacity | capacitance increase of Experimental example 1. FIG. 実験例1,2の充放電電流変化時の各極の電圧変化を示すグラフ。The graph which shows the voltage change of each pole at the time of the charging / discharging current change of Experimental example 1,2. 実験例1,2の充放電電流変化時のセルの電圧変化を示すグラフ。The graph which shows the voltage change of the cell at the time of the charging / discharging current change of Experimental example 1,2. 実験例2のメディエータ含有電解液及び固体活物質のCV。CV of the mediator containing electrolyte solution of Experimental example 2, and a solid active material. 実験例2の充放電波形。The charge / discharge waveform of Experimental Example 2. 実験例2の充放電波形。The charge / discharge waveform of Experimental Example 2. 実験例3の充放電波形。The charge / discharge waveform of Experimental Example 3. 実験例4のメディエータ含有電解液及び固体活物質のCV。CV of the electrolyte containing mediator of Experimental example 4 and a solid active material. 実験例4の充放電波形。The charge / discharge waveform of Experimental Example 4. 実験例5の充放電波形。The charge / discharge waveform of Experimental Example 5. 実験例6の充放電波形。The charge / discharge waveform of Experimental Example 6. 実験例6の充放電波形。The charge / discharge waveform of Experimental Example 6. 実験例6の充放電波形。The charge / discharge waveform of Experimental Example 6. 実験例7のH4+x[SiVxMo12-x40](x=0)のCV。CV of H 4 + x [SiV x Mo 12-x O 40 ] (x = 0) in Experimental Example 7 実験例7のH4+x[SiVxMo12-x40](x=1)のCV。CV of H 4 + x [SiV x Mo 12-x O 40 ] (x = 1) in Experimental Example 7 実験例7のH4+x[SiVxMo12-x40](x=2)のCV。CV of H 4 + x [SiV x Mo 12-x O 40 ] (x = 2) in Experimental Example 7 実験例7のH4+x[SiVxMo12-x40](x=3)のCV。CV of H 4 + x [SiV x Mo 12-x O 40 ] (x = 3) in Experimental Example 7 実験例7のH4+x[SiVxMo12-x40](x=4)のCV。CV of H 4 + x [SiV x Mo 12-x O 40 ] (x = 4) in Experimental Example 7

本発明のフロー電池は、正極及び負極の少なくとも一方が、固体活物質と、メディエータを溶解した水溶液系のメディエータ含有電解液と、を含む電極組成物と、前記電極組成物のうちの少なくともメディエータ含有電解液を流動させて集電体に接触させる送液部と、を備えている。このフロー電池は、例えば、ケースと、ケースの内部を正極室と負極室とに分離するセパレータとを備えたものとしてもよい。こうしたものにおいて、正極室には正極集電体が配設され、送液部が、電極組成物のうち少なくともメディエータ含有電解液を流動させて正極室内に送液することによって正極集電体に接触させるものとしてもよい。また、負極室には負極集電体が配設され、送液部が、電極組成物のうち少なくともメディエータ含有電解液を流動させて負極室内に送液することによって負極集電体に接触させるものとしてもよい。また、この両方としてもよい。なお、ここでいう正極、負極は、2種の電極の電位差で決まるものであり、本発明の電極組成物を用いる電極が対極に対し貴な電圧であれば正極、卑な電圧であれば負極となる。以下、こうしたフロー電池について具体的に説明する。   The flow battery of the present invention includes an electrode composition in which at least one of a positive electrode and a negative electrode includes a solid active material and an aqueous mediator-containing electrolyte solution in which a mediator is dissolved, and at least a mediator content of the electrode composition And a liquid feeding section that causes the electrolytic solution to flow and contact the current collector. The flow battery may include, for example, a case and a separator that separates the inside of the case into a positive electrode chamber and a negative electrode chamber. In such a case, a positive electrode current collector is disposed in the positive electrode chamber, and a liquid feeding part contacts at least the positive electrode current collector by flowing at least a mediator-containing electrolytic solution of the electrode composition and feeding the liquid into the positive electrode chamber. It is good also as what makes it. In addition, a negative electrode current collector is disposed in the negative electrode chamber, and a liquid feeding part is brought into contact with the negative electrode current collector by flowing at least a mediator-containing electrolytic solution of the electrode composition and feeding it into the negative electrode chamber. It is good. Both of these may be used. Here, the positive electrode and the negative electrode are determined by the potential difference between the two types of electrodes. If the electrode using the electrode composition of the present invention is a noble voltage with respect to the counter electrode, the positive electrode is used. It becomes. Hereinafter, such a flow battery will be specifically described.

本発明のフロー電池において、固体活物質は、水系電解液中で充放電可能な電圧域にあるものであれば、特に限定されるものではない。例えば、リン酸鉄リチウム(LiFePO4)、リン酸バナジウムナトリウム(Na32(PO43)、リチウムマンガネート(LiMn24)、リン酸チタンリチウム(LiTi2(PO43)、リン酸チタンナトリウム(NaTi2(PO43)、ピロリン酸チタン(TiP27)、バナジウム酸リチウム(LiV24)などの、無機系の活物質を好適に用いることができる。このうち、リン酸鉄リチウム、リン酸バナジウムナトリウム、リチウムマンガネートは、正極の固体活物質に好適であり、リン酸鉄リチウムやリン酸バナジウムナトリウムがより好適である。また、リン酸チタンリチウム、リン酸チタンナトリウム、ピロリン酸チタン、バナジウム酸リチウムは、負極の固体活物質に好適であり、リン酸チタンリチウム、リン酸チタンナトリウムがより好適である。固体活物質としては、無機系活物質に限らず、キノン系やポリアニリンなどの導電性高分子など水に不溶か難溶な有機系活物質としてもよい。 In the flow battery of the present invention, the solid active material is not particularly limited as long as it is in a voltage range that can be charged and discharged in the aqueous electrolyte solution. For example, lithium iron phosphate (LiFePO 4 ), sodium vanadium phosphate (Na 3 V 2 (PO 4 ) 3 ), lithium manganate (LiMn 2 O 4 ), lithium titanium phosphate (LiTi 2 (PO 4 ) 3 ) Inorganic active materials such as sodium phosphate sodium (NaTi 2 (PO 4 ) 3 ), titanium pyrophosphate (TiP 2 O 7 ), and lithium vanadate (LiV 2 O 4 ) can be suitably used. Among these, lithium iron phosphate, sodium vanadium phosphate, and lithium manganate are suitable for the solid active material of the positive electrode, and lithium iron phosphate and sodium vanadium phosphate are more suitable. In addition, lithium titanium phosphate, sodium titanium phosphate, titanium pyrophosphate, and lithium vanadate are suitable for the solid active material of the negative electrode, and lithium titanium phosphate and sodium titanium phosphate are more suitable. The solid active material is not limited to an inorganic active material, and may be an organic active material that is insoluble or hardly soluble in water, such as a conductive polymer such as quinone or polyaniline.

この固体活物質の形状は限定されるものではなく、メディエータとの接触面積を多くできるものとして、粒子状や繊維状、シート状、多孔質状などとすることができる。例えば、粒子状とする場合には、10mm〜0.1mmのサイズとしてもよい。粒子状の固体活物質は、例えば、固体活物質とバインダー(結着材)とを混練し塊状にしたものを、粉砕したものとしても良い。バインダーとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンマー(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)等を単独で、あるいは2種以上の混合物として用いることができる。固体活物質とバインダーとの比率は、例えば、質量比で99:1〜90:10の範囲などとしてもよい。また、固体活物質としては、例えば、その表面をカーボン被覆したものを用いてもよい。カーボン被覆によって、固体活物質成分の電解液への溶解が防止でき、劣化防止の効果が期待される。カーボン被覆の方法は、特に限定されるものではないが、固体活物質の表面を炭素源となる物質で被覆し、その後、不活性雰囲気下で焼成してもよい。炭素源としては、有機化合物としてもよく、例えば、スクロースのような糖化合物としてもよい。不活性雰囲気としては、アルゴン雰囲気や窒素雰囲気などが挙げられる。   The shape of the solid active material is not limited, and the solid active material may be in the form of particles, fibers, sheets, porous, etc. that can increase the contact area with the mediator. For example, in the case of a particulate form, the size may be 10 mm to 0.1 mm. The particulate solid active material may be, for example, a pulverized material obtained by kneading a solid active material and a binder (binder). Examples of binders include, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluorine-containing resins such as fluororubber, thermoplastic resins such as polypropylene and polyethylene, ethylene-propylene-dienemer (EPDM), and sulfonation. EPDM, natural butyl rubber (NBR), styrene butadiene rubber (SBR), polyacrylonitrile (PAN) and the like can be used alone or as a mixture of two or more. The ratio between the solid active material and the binder may be, for example, in the range of 99: 1 to 90:10 by mass ratio. Further, as the solid active material, for example, a material whose surface is coated with carbon may be used. The carbon coating can prevent dissolution of the solid active material component in the electrolytic solution, and is expected to prevent deterioration. The method of carbon coating is not particularly limited, but the surface of the solid active material may be coated with a material serving as a carbon source and then fired in an inert atmosphere. The carbon source may be an organic compound, for example, a sugar compound such as sucrose. Examples of the inert atmosphere include an argon atmosphere and a nitrogen atmosphere.

本発明のフロー電池において、メディエータは、固体活物質と集電体との間の電子の授受を媒介する。メディエータは、水溶性の酸化還元物質であれば特に限定されないが、分子量が大きいもの(例えば分子量が1000以上など)であることが好ましく、例えば、ポリオキソメタレート(ポリ酸)であることが好ましい。分子量が大きいものでは、セパレータを通過しにくく、対極側への拡散によるクロスコンタミネーションが生じにくいからである。ポリオキソメタレートは、イソポリ酸でもよいし、ヘテロポリ酸でもよいが、ヘテロポリ酸が好ましい。ヘテロポリ酸としては、例えば、ケイバナドモリブデン酸(H4+x[SiVxMo12-x40](0≦x≦4))、リンバナドモリブデン酸(H3+x[PVxMo12-x40](0≦x≦4))、ケイタングステン酸(H4[SiW1240])などが挙げられる。ポリオキソメタレートは1種を単独で用いてもよいし、2種以上を混合して用いてもよい。メディエータがケイバナドモリブデン酸である場合、上記一般式中のxの値は1.5以上3.5以下であることが好ましい。こうしたものでは、pH3〜pH10.5という広いpHの範囲で再現性良く動作可能である。また、メディエータがケイバナドモリブデン酸である場合、上記一般式中のxの値は、3.5以上であるものとしてもよい。こうしたものでは、pH11以上の強アルカリ域で安定に動作可能である。 In the flow battery of the present invention, the mediator mediates transfer of electrons between the solid active material and the current collector. The mediator is not particularly limited as long as it is a water-soluble redox material, but it is preferably one having a large molecular weight (for example, a molecular weight of 1000 or more), for example, polyoxometalate (polyacid). . This is because when the molecular weight is large, it is difficult to pass through the separator and cross contamination due to diffusion to the counter electrode side is unlikely to occur. The polyoxometalate may be an isopolyacid or a heteropolyacid, but a heteropolyacid is preferred. Examples of the heteropolyacid include, for example, silico-molybdic acid (H 4 + x [SiV x Mo 12-x O 40 ] (0 ≦ x ≦ 4)), phosphovanad molybdic acid (H 3 + x [PV x Mo 12- x O 40 ] (0 ≦ x ≦ 4)) and silicotungstic acid (H 4 [SiW 12 O 40 ]). A polyoxometalate may be used individually by 1 type, and 2 or more types may be mixed and used for it. When the mediator is caivanadomolybdic acid, the value of x in the above general formula is preferably 1.5 or more and 3.5 or less. Such a device can operate with high reproducibility in a wide pH range of pH 3 to pH 10.5. When the mediator is caivanadomolybdic acid, the value of x in the above general formula may be 3.5 or more. In such a thing, it can operate | move stably in the strong alkali range more than pH11.

このメディエータは、固体活物質の酸化還元電位に近い酸化還元電位(標準電位)を有するか、固体活物質の酸化還元電位を挟むような複数の酸化還元電電位を有する(固体活物質の酸化還元電位よりも低い低電位側酸化還元電位と固体活物質の酸化還元電位よりも高い高電位側酸化還元電位とを有する)ものとすることが好ましい。こうしたものでは、分極が生じにくく、エネルギーロスを低減できる。特に、水溶液系電解液を用いた電池では、セル電圧が1V前後と低いことから、分極の低減の効果は、非水系電解液を用いた電池よりも相対的に大きくなる。例えば、分極が大きいと、送液部(送液ポンプ等)の駆動エネルギーすら確保できない状況になり得る。また、1種のメディエータで、固体活物質の酸化反応にも還元反応にも対応できるため、複数種のメディエータを用いる必要がない。ここで、固体活物質の酸化還元電位に近い酸化還元電位とは、固体活物質の酸化還元電位との差が0.5V以下の範囲にある酸化還元電位としてもよく、0.18V以下の範囲にある酸化還元電位とすることが好ましく、0.12V以下の範囲にある酸化還元電位とすることがより好ましい。メディエータは、固体活物質の酸化還元電位を挟むような複数の酸化還元電位を有する場合も、固体活物質の酸化還元電位に近い酸化還元電位を有することがより好ましい。また、メディエータは、酸化還元において傾斜電位を示すものであることが好ましい。なお、傾斜電位を示すとは、充放電曲線において、明瞭な充放電プラトーを示さない、別の表現をすれば、サイクリックボルタモメトリー(CV)でシャープな酸化還元ピークを示さない擬似容量キャパシタ的な挙動を示すことと同義である。傾斜電位を示す範囲としては、例えば、上述した固体活物質の酸化還元電位に近い酸化還元電位の範囲としてもよいし、上述した固体活物質の酸化還元電位を挟むような複数の酸化還元電位の間の範囲としてもよい。なお、上述したポリオキソメタレートは、固体活物質の酸化還元電位に近い位置に固体活物質の酸化還元電位を挟むような複数の酸化還元電位を有する。   This mediator has a redox potential (standard potential) close to the redox potential of the solid active material, or has a plurality of redox potentials that sandwich the redox potential of the solid active material (the redox potential of the solid active material). It is preferable to have a low potential side redox potential lower than the potential and a high potential side redox potential higher than the redox potential of the solid active material. In such a case, polarization hardly occurs and energy loss can be reduced. In particular, in a battery using an aqueous electrolyte, the cell voltage is as low as about 1 V, so that the effect of reducing polarization is relatively greater than that of a battery using a non-aqueous electrolyte. For example, if the polarization is large, it may be in a situation where even the driving energy of the liquid feeding part (liquid feeding pump or the like) cannot be secured. In addition, since one type of mediator can handle both the oxidation reaction and the reduction reaction of the solid active material, it is not necessary to use a plurality of types of mediators. Here, the oxidation-reduction potential close to the oxidation-reduction potential of the solid active material may be an oxidation-reduction potential in which the difference from the oxidation-reduction potential of the solid active material is in the range of 0.5 V or less, and in the range of 0.18 V or less. It is preferable that the redox potential is in the range of 0.12 V or less. Even when the mediator has a plurality of redox potentials that sandwich the redox potential of the solid active material, it is more preferable that the mediator has a redox potential close to the redox potential of the solid active material. Moreover, it is preferable that a mediator shows a gradient potential in oxidation reduction. In addition, in the charge / discharge curve, the term “inclined potential” refers to a pseudo-capacitance capacitor that does not exhibit a clear charge-discharge plateau, and in other words, does not exhibit a sharp redox peak in cyclic voltammetry (CV). Is synonymous with showing a typical behavior. The range indicating the gradient potential may be, for example, a range of the oxidation-reduction potential close to the oxidation-reduction potential of the solid active material described above, or a plurality of oxidation-reduction potentials sandwiching the oxidation-reduction potential of the solid active material described above. It is good also as the range between. The polyoxometalate described above has a plurality of redox potentials that sandwich the redox potential of the solid active material at a position close to the redox potential of the solid active material.

本発明のフロー電池において、電極組成物は、正極の電極組成物であるものとしてもよいし、負極の電極組成物であるものとしてもよいし、正極及び負極の電極組成物であるものとしてもよい。正極の電極組成物である場合には、メディエータがケイバナドモリブデン酸及びリンバナドモリブデン酸の少なくとも一方であり、固体活物質がリン酸鉄リチウム、リン酸バナジウムナトリウム及びリチウムマンガネートからなる群より選ばれる1以上であることが好ましい。また、負極の電極組成物である場合には、メディエータがケイバナドモリブデン酸及びケイタングステン酸の少なくとも一方であり、固体活物質がリン酸チタンリチウム及びリン酸チタンナトリウムの少なくとも一方であることが好ましい。正極及び負極の電極組成物である場合も同様である。この場合、正極の電極組成物と負極の電極組成物とは、メディエータが同種でもよいし、異種でもよいが、同種であることが好ましい。同種であれば、セパレータを通過して対極側へ拡散したとしても、同種であるため、クロスコンタミネーションによる問題などを生じにくいからである。同種の場合、メディエータとしては、ケイバナドモリブデン酸が好適である。ケイバナドモリブデン酸は、正負極固体活物質の酸化還元電位に近く、且つ、それら電位をそれぞれ挟むように複数の酸化還元電位を示し、且つ、ブロードな傾斜電位を示す。また、固体活物質が安定に動作する弱酸性から弱アルカリ性域で安定に動作する。これらのことから、ケイバナドモリブデン酸は、正極にも負極にも用いることのできる好適なメディエータであるといえる。   In the flow battery of the present invention, the electrode composition may be a positive electrode composition, a negative electrode composition, or a positive electrode and negative electrode composition. Good. In the case of the positive electrode composition, the mediator is at least one of caivanadomolybdic acid and phosphovanadomolybdic acid, and the solid active material is selected from the group consisting of lithium iron phosphate, sodium vanadium phosphate, and lithium manganate. It is preferable that it is 1 or more. In the case of a negative electrode composition, the mediator is preferably at least one of caivanadomolybdic acid and silicotungstic acid, and the solid active material is preferably at least one of lithium titanium phosphate and sodium titanium phosphate. . The same applies to the positive electrode and negative electrode compositions. In this case, the positive electrode composition and the negative electrode composition may be the same or different mediators, but are preferably the same. This is because, if the same type is used, even if it passes through the separator and diffuses to the counter electrode side, it is the same type, so that problems due to cross-contamination are unlikely to occur. In the case of the same kind, caivanadomolybdic acid is suitable as the mediator. Cayvanadomolybdic acid is close to the redox potentials of the positive and negative electrode solid active materials, exhibits a plurality of redox potentials so as to sandwich these potentials, and exhibits a broad gradient potential. Further, the solid active material operates stably in a weakly acidic to weakly alkaline region where it operates stably. From these facts, it can be said that caivanadomolybdic acid is a suitable mediator that can be used for both the positive electrode and the negative electrode.

本発明のフロー電池において、電極組成物が正極の電極組成物である場合、負極は金属亜鉛を備えているものとしてもよい。この場合、負極は、負極電解液として、硝酸塩、硫酸塩などを備えているものとしてもよい。硝酸塩としては、硝酸亜鉛、硝酸リチウム、硝酸ナトリウムなどが挙げられる。硫酸塩としては、硫酸亜鉛、硫酸リチウム、硫酸ナトリウムなどが挙げられる。   In the flow battery of the present invention, when the electrode composition is a positive electrode composition, the negative electrode may include zinc metal. In this case, the negative electrode may include nitrate, sulfate, etc. as the negative electrode electrolyte. Examples of nitrates include zinc nitrate, lithium nitrate, and sodium nitrate. Examples of the sulfate include zinc sulfate, lithium sulfate, and sodium sulfate.

本発明のフロー電池において、電極組成物は、pHが3以上11以下であることが好ましい。こうした範囲では、固体活物質が安定に動作するとともに、負極での水素発生、正極での酸素発生を抑制することができる。また、電極組成物は、バッファー(緩衝剤)を含むものとすることが好ましい。こうすれば、充放電時に、酸素発生や水素発生などの副反応により生じるpH変化を抑制できる。バッファーは、所望のpHに応じて適宜選択すればよく、例えば、フタル酸系のバッファー、リン酸系のバッファーや酢酸系のバッファーなどを用いることができる。   In the flow battery of the present invention, the electrode composition preferably has a pH of 3 or more and 11 or less. In such a range, the solid active material can operate stably, and hydrogen generation at the negative electrode and oxygen generation at the positive electrode can be suppressed. Moreover, it is preferable that an electrode composition shall contain a buffer (buffering agent). If it carries out like this, the pH change which arises by side reactions, such as oxygen generation and hydrogen generation at the time of charging / discharging, can be suppressed. The buffer may be appropriately selected according to the desired pH. For example, a phthalic acid buffer, a phosphoric acid buffer, an acetic acid buffer, or the like can be used.

本発明のフロー電池において、電極組成物は、導電材を含むものとしてもよい。導電材としては、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。なお、電極組成物は、導電材を含まないものとすることが好ましい。本発明のフロー電池では、メディエータを含むため、導電材を用いなくても、固体活物質と集電体との間の電子の授受が円滑に行われる。   In the flow battery of the present invention, the electrode composition may include a conductive material. Examples of the conductive material include graphite such as natural graphite (scale-like graphite, scale-like graphite) and artificial graphite, acetylene black, carbon black, ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum). , Silver, gold, etc.) or a mixture of two or more thereof can be used. In addition, it is preferable that an electrode composition shall not contain a conductive material. Since the flow battery of the present invention includes a mediator, electrons are smoothly exchanged between the solid active material and the current collector without using a conductive material.

本発明のフロー電池において、集電体としては、カーボンペーパー、アルミニウム、銅、チタン、ステンレス鋼、ニッケル、鉄、白金、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化(還元)性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタン、銀、白金、金などで処理したものも用いることができる。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1cm〜500μmのものが用いられる。なお、本願では集電体と称したが、本願における集電体は、フロー電池においては電極と称されることがある。   In the flow battery of the present invention, the current collector includes carbon paper, aluminum, copper, titanium, stainless steel, nickel, iron, platinum, baked carbon, conductive polymer, conductive glass, adhesive, conductive For the purpose of improving the resistance and oxidation (reduction) resistance, the surface of aluminum or copper treated with carbon, nickel, titanium, silver, platinum, gold or the like can also be used. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded, lath, porous, foam, and formed fiber group. The thickness of the current collector is, for example, 1 cm to 500 μm. In addition, although called the electrical power collector in this application, the electrical power collector in this application may be called an electrode in a flow battery.

本発明のフロー電池において、送液部は、電極組成物のうち、固体活物質を含まないメディエータ含有電解液を流動させて集電体に接触させるものとしてもよいし、固体活物質とメディエータ含有電解液を含む電極組成物を流動させて集電体に接触させるものとしてもよい。この送液部は、例えば、送液ポンプとしてもよい。正極電極組成物や負極電極組成物は、送液ポンプを用いて所定量、流通させればよく、その所定流量は、電池スケールに合わせて適宜設定することができる。また、送液部は、正極室、送液ポンプ(循環ポンプ)、正極リザーバ容器に接続された循環経路を備え、正極電極組成物のうち少なくとも正極メディエータ含有電解液を循環させるものとしてもよい。また、送液部は、負極室、送液ポンプ(循環ポンプ)、負極リザーバ容器に接続された循環経路を備え、負極電極組成物のうち少なくとも負極メディエータ含有電解液を循環させるものとしてもよい。また、この両方としてもよい。   In the flow battery of the present invention, the liquid feeding part may be one in which a mediator-containing electrolyte containing no solid active material in the electrode composition is caused to flow and contact the current collector, or the solid active material and the mediator are contained. It is good also as what makes the electrode composition containing electrolyte solution flow and contacts a collector. This liquid feeding unit may be a liquid feeding pump, for example. The positive electrode composition and the negative electrode composition may be circulated in a predetermined amount using a liquid feed pump, and the predetermined flow rate can be appropriately set according to the battery scale. The liquid feeding unit may include a circulation path connected to the positive electrode chamber, the liquid feeding pump (circulation pump), and the positive electrode reservoir container, and may circulate at least the positive electrode mediator-containing electrolyte in the positive electrode composition. The liquid feeding unit may include a circulation path connected to the negative electrode chamber, the liquid feeding pump (circulation pump), and the negative electrode reservoir container, and may circulate at least the negative electrode mediator-containing electrolyte in the negative electrode composition. Both of these may be used.

本発明のフロー電池において、セパレータは、イオン透過能を有し、かつ、正極の電極組成物と負極の電極組成物とが混じり合うクロスコンタミネーションを防止する機能を有するものであれば、特に限定されず、例えば、イオンを伝導可能なイオン伝導性高分子膜(イオン交換膜)や、イオン伝導性固体電解質膜、ゲル膜、微多孔膜などを用いることができる。イオン伝導性高分子膜としては、例えば、炭素−フッ素からなる疎水性テトラフルオロエチレン骨格とスルホン酸基を持つパーフルオロ側鎖から構成されるパーフルオロカーボン材料(テトラフルオロエチレン−パーフルオロビニル共重合体)などが挙げられる。より具体的には、例えば、ナフィオン(ナフィオンは登録商標)などが挙げられる。また、イオン伝導性固体電解質膜としては、例えば、カチオン伝導性ガラス(酸化物系ガラス)などが挙げられる。   In the flow battery of the present invention, the separator is particularly limited as long as it has ion permeability and has a function of preventing cross-contamination in which the positive electrode composition and the negative electrode composition are mixed. For example, an ion conductive polymer membrane (ion exchange membrane) capable of conducting ions, an ion conductive solid electrolyte membrane, a gel membrane, a microporous membrane, or the like can be used. Examples of the ion conductive polymer membrane include a perfluorocarbon material (tetrafluoroethylene-perfluorovinyl copolymer composed of a hydrophobic tetrafluoroethylene skeleton composed of carbon-fluorine and a perfluoro side chain having a sulfonic acid group. ) And the like. More specifically, for example, Nafion (Nafion is a registered trademark) and the like can be mentioned. Examples of the ion conductive solid electrolyte membrane include cation conductive glass (oxide glass).

本発明のフロー電池は、正極又は負極が、固体活物質の酸化還元電位に保たれた場合に、ネルンストの式で求められる、メディエータ酸化還元体の少量種濃度と流量とから求まる反応種電荷量以下に、メディエータ含有電解液又は電極組成物の流量及び電流値を制御して駆動することが好ましい。以下、この点について説明する。固体活物質とメディエータ間の酸化還元反応が早い場合には、固体活物質近傍での溶液の電位は固体活物質の電位になる。溶液中のメディエータの酸化還元種の比率はネルンストの式に従い、濃度が決定され、例えば、一電子系で固体活物質とメディエータとの酸化還元電位の差が0.12Vの時には、少量種の濃度は1%あるが、0.2Vでは約0.04%とごくわずかになる。したがって、充放電電流が、少量種の酸化もしくは還元で賄えるより低い場合は、充放電電圧は、固体活物質電位に近い電圧を示す。このため、少量種の濃度と液流量とから求まる反応可能電荷量以下に電流値を抑えて、メディエータの電位が固体活物質のそれより高い場合は還元電流を、低い場合は酸化電流を制御すれば分極発生を低減できる。賄えない場合には、固体活物質の酸化還元電位の反対側にメディエータが他の酸化還元電位を持たない場合には充電もしくは放電反応が停止してしまう。反対側に酸化還元電位がある場合にはその電位に近づき、電位が固体活物質のそれより離れている場合はその分、分極が大きくなる。なお、以上説明したように電流依存性はメディエータ含有電解液又は電極組成物の流量と少量種の濃度で決定される。流量を高めるとポンプのエネルギーロスにつながるため、なるべく小流量で大電流が取れるよう少量種の濃度が高い、即ち固体活物質との酸化還元電位差の小さなメディエータが好適となる。したがって、少量種の濃度が0.1%以上となるよう酸化還元電位差が0.18V以下が、さらに好ましくは1%以上となるよう酸化還元電位差が0.12V以下が好適である。他の方法としては、サイクリックボルタモメトリー(以下CVと略す)でみて、酸化還元ピークがブロードで、酸化還元電位が明瞭でなく、酸化還元が傾斜電位を示す場合、別の表現をすれば、擬似容量キャパシタ的な明瞭な充放電プラトーを示さない場合は、メディエータの少量種の濃度変化に対応する電圧変化が鈍くなり、固体活物質の酸化還元電位近傍での動作が可能となる。メディエータの酸化還元ピークがブロードになるのは、近い電位の複数の酸化還元が重畳したメディエータがその一例である。フロー電池は、レドックスフロー電池としてもよい。   In the flow battery of the present invention, when the positive electrode or the negative electrode is maintained at the redox potential of the solid active material, the reactive species charge amount obtained from the small concentration of the mediator redox compound and the flow rate obtained by the Nernst equation is obtained. It is preferable to drive by controlling the flow rate and current value of the mediator-containing electrolyte or electrode composition below. Hereinafter, this point will be described. When the redox reaction between the solid active material and the mediator is fast, the potential of the solution near the solid active material becomes the potential of the solid active material. The ratio of the redox species of the mediator in the solution is determined according to the Nernst equation. For example, when the difference in redox potential between the solid active material and the mediator is 0.12 V in a one-electron system, the concentration of the minor species is low. Is 1%, but at 0.2V, it is very small at about 0.04%. Therefore, when the charge / discharge current is lower than that which can be covered by a small amount of oxidation or reduction, the charge / discharge voltage shows a voltage close to the solid active material potential. For this reason, the current value should be kept below the amount of charge that can be obtained from the concentration of small species and the liquid flow rate, and if the potential of the mediator is higher than that of the solid active material, the reduction current should be controlled, and if it is lower, the oxidation current should be controlled. Thus, the generation of polarization can be reduced. If it cannot be covered, the charge or discharge reaction stops if the mediator does not have another redox potential on the opposite side of the redox potential of the solid active material. When the redox potential is on the opposite side, the potential approaches that potential, and when the potential is farther than that of the solid active material, the polarization increases accordingly. As described above, the current dependency is determined by the flow rate of the mediator-containing electrolytic solution or electrode composition and the concentration of a small amount of species. When the flow rate is increased, energy loss of the pump is caused. Therefore, a mediator having a high concentration of a small amount of species, that is, a small oxidation-reduction potential difference from the solid active material is preferable so that a large current can be obtained at a small flow rate. Therefore, the redox potential difference is preferably 0.18 V or less so that the concentration of a small amount of species is 0.1% or more, and more preferably, the redox potential difference is 0.12 V or less so as to be 1% or more. As another method, if the redox peak is broad, the redox potential is not clear, and the redox shows a gradient potential by cyclic voltammetry (hereinafter abbreviated as CV), another expression can be used. When a clear charge / discharge plateau like a pseudo-capacitance capacitor is not shown, the voltage change corresponding to the concentration change of a small amount of mediator becomes dull, and the operation near the redox potential of the solid active material becomes possible. An example of the mediator redox peak broadening is a mediator in which a plurality of near-potential redox is superimposed. The flow battery may be a redox flow battery.

図1は、本発明の一実施形態であるフロー電池10の構成の概略を示す説明図である。フロー電池10は、ケース12と、このケース12の内部を正極室14と負極室16とに分離するセパレータ18と、正極室14に配置された正極集電体20と、負極室16に配設された負極集電体50とを備えている。このフロー電池10では、正極室14と正極リザーバ容器30との間に正極側循環経路32を備え、この正極側循環経路32の途中に正極側循環ポンプ38が取り付けられている。また、負極室16と負極リザーバ容器60との間に負極側循環経路62を備え、この負極側循環経路62の途中に負極側循環ポンプ68が取り付けられている。正極リザーバ容器30は、その内部に正極メディエータ含有電解液22と正極固体活物質24とを含む正極電極組成物26を貯留しており、フィルタ31によって正極固体活物質24の流出を防止している。また、負極リザーバ容器60は、その内部に負極メディエータ含有電解液52と負極固体活物質54とを含む負極電極組成物56を貯留しており、フィルタ61によって負極固体活物質54の流出を防止している。また、フロー電池10は、その電流や電圧を測定するための回路80を備えている。この回路80は、正極室14の出口36に接続された参照電極81(例えばAg/AgCl参照電極)と正極集電体20との間の電位差(カソード電圧)を測定する電圧計83を備えている。また、負極室16の出口66に接続された参照電極84(例えばAg/AgCl参照電極)と負極集電体50との間の電位差(アノード電圧)を測定する電圧計86を備えている。また、正極集電体20と負極集電体50との間を流れる電流を測定する電流計87や、外部入出力装置89と並列に設けられ正極集電体20と負極集電体50との間の電位差(セル電圧)を測定する電圧計88を備えている。   FIG. 1 is an explanatory diagram showing an outline of the configuration of a flow battery 10 according to an embodiment of the present invention. The flow battery 10 includes a case 12, a separator 18 that separates the inside of the case 12 into a positive electrode chamber 14 and a negative electrode chamber 16, a positive electrode current collector 20 disposed in the positive electrode chamber 14, and a negative electrode chamber 16. The negative electrode current collector 50 is provided. In the flow battery 10, a positive electrode side circulation path 32 is provided between the positive electrode chamber 14 and the positive electrode reservoir container 30, and a positive electrode side circulation pump 38 is attached in the middle of the positive electrode side circulation path 32. A negative electrode side circulation path 62 is provided between the negative electrode chamber 16 and the negative electrode reservoir container 60, and a negative electrode side circulation pump 68 is attached in the middle of the negative electrode side circulation path 62. The positive electrode reservoir container 30 stores therein a positive electrode composition 26 containing a positive electrode mediator-containing electrolytic solution 22 and a positive electrode solid active material 24, and the filter 31 prevents the positive electrode solid active material 24 from flowing out. . The negative electrode reservoir container 60 stores therein a negative electrode composition 56 including a negative electrode mediator-containing electrolyte solution 52 and a negative electrode solid active material 54, and the filter 61 prevents the negative electrode solid active material 54 from flowing out. ing. The flow battery 10 also includes a circuit 80 for measuring the current and voltage. The circuit 80 includes a voltmeter 83 that measures a potential difference (cathode voltage) between a reference electrode 81 (for example, an Ag / AgCl reference electrode) connected to the outlet 36 of the positive electrode chamber 14 and the positive electrode current collector 20. Yes. Further, a voltmeter 86 for measuring a potential difference (anode voltage) between a reference electrode 84 (for example, an Ag / AgCl reference electrode) connected to the outlet 66 of the negative electrode chamber 16 and the negative electrode current collector 50 is provided. In addition, an ammeter 87 that measures the current flowing between the positive electrode current collector 20 and the negative electrode current collector 50 and an external input / output device 89 are provided in parallel with the positive electrode current collector 20 and the negative electrode current collector 50. A voltmeter 88 for measuring a potential difference (cell voltage) is provided.

このフロー電池10では、正極側循環ポンプ38により正極メディエータ含有電解液22を循環させて正極集電体20に接触させると共に、負極側循環ポンプ68により負極メディエータ含有電解液52を循環させて負極集電体50に接触させながら、充放電を行う。このとき、回路80により各電圧や電流を測定し、その値に基づいて、循環する各メディエータ含有電解液22,52などの流速を調整することもできる。   In this flow battery 10, the positive electrode mediator-containing electrolyte solution 22 is circulated by the positive electrode side circulation pump 38 and brought into contact with the positive electrode current collector 20, and the negative electrode mediator-containing electrolyte solution 52 is circulated by the negative electrode side circulation pump 68. Charging / discharging is performed while contacting the electric body 50. At this time, each voltage and current are measured by the circuit 80, and the flow rate of each circulating mediator-containing electrolytic solution 22, 52 or the like can be adjusted based on the value.

以上説明した実施形態のフロー電池では、充放電容量をより高めることができる。こうした効果が得られる理由は、以下のように推察される。例えば、電極組成物は、固体活物質の他にメディエータ含有電解液を含むため、固体活物質と集電体とが直接接触しなくても、メディエータを介して、電子の授受すなわち酸化還元反応が可能となる。このため、固体活物質による充放電容量を高める効果をより高めることができ、高出力も期待できる。なお、メディエータ含有電解液に代えて、カーボンなどの非水溶性の導電材を用いる場合、導電性確保のために多量の導電材が必要となる。カーボンを混入させ、粒子間の電気的接触を保とうとすると粘度が上昇する。粘度上昇に伴い、そのスラリーを流すための圧力が高くなるため、ポンプの消費エネルギーが上昇する。特に、水系のように電圧が低い場合には、大電流が取れないとポンプすら動かせないことなる。一方、流動性を高めるために分散剤等で粘度を低下させると抵抗が上昇する。このように粘度を低下させれば、導電性や容量が低下し蓄電エネルギーが低下するため、やはりポンプの消費エネルギーを確保することは難しくなる。   In the flow battery of the embodiment described above, the charge / discharge capacity can be further increased. The reason why such an effect can be obtained is assumed as follows. For example, since the electrode composition includes a mediator-containing electrolyte in addition to the solid active material, even if the solid active material and the current collector are not in direct contact, the transfer of electrons, that is, the oxidation-reduction reaction is performed via the mediator. It becomes possible. For this reason, the effect which raises the charge / discharge capacity by a solid active material can be heightened more, and high output can also be expected. When a water-insoluble conductive material such as carbon is used instead of the mediator-containing electrolyte, a large amount of conductive material is required to ensure conductivity. Viscosity increases when carbon is mixed in and electrical contact between particles is to be maintained. As the viscosity increases, the pressure for flowing the slurry increases, and the energy consumption of the pump increases. In particular, when the voltage is low as in a water system, even a pump cannot be operated unless a large current is taken. On the other hand, when the viscosity is lowered with a dispersant or the like in order to improve fluidity, the resistance increases. If the viscosity is lowered in this way, the conductivity and capacity are lowered and the stored energy is lowered, so that it is difficult to secure the energy consumption of the pump.

また、上述した実施形態のフロー電池では、水系電解液を用いるため、非水系の電解液を用いるものに比してより安全で、よりコストを低減できる。また、液相系の酸化還元物質をメディエータとして用いることによって、固体間の電気的な接触が困難な系においても、集電体とメディエータ、メディエータと固体活物質の電子の授受すなわち酸化還元が可能となる。この時、メディエータ含有電解液の電位は固体活物質の電位となり、ネルンストの式に従って、その電位に応じたメディエータの酸化還元種の濃度が決定される。すなわち、固体活物質とメディエータの酸化還元電位を近くし、且つ、充電も放電も可能となるよう固体活物質の電位と極めて近くするか、複数の酸化還元電位を有し、且つ固体活物質の酸化還元電位を挟む形のメディエータとすることにより、分極を小さくし、大電流が取れるようにすることができる。   Moreover, in the flow battery of embodiment mentioned above, since aqueous electrolyte solution is used, it is safer and can reduce cost more than what uses a non-aqueous electrolyte solution. In addition, by using a liquid phase redox material as a mediator, even in systems where electrical contact between solids is difficult, electrons can be exchanged between the current collector and mediator, or mediator and solid active material, that is, redox. It becomes. At this time, the potential of the mediator-containing electrolytic solution becomes the potential of the solid active material, and the concentration of the redox species of the mediator according to the potential is determined according to the Nernst equation. That is, the redox potentials of the solid active material and the mediator are brought close to each other and very close to the potential of the solid active material so that charging and discharging can be performed, or the solid active material has a plurality of redox potentials and By using a mediator that sandwiches the oxidation-reduction potential, polarization can be reduced and a large current can be obtained.

また、上述した実施形態のフロー電池では、電極組成物のうち、メディエータ含有電解液のみを流動させたため、電極組成物全体を流動させる場合に比して、流動物の粘度が低い。このため、電極組成物全体を流動させる場合よりも、送液圧力を低くすることができ、ポンプ駆動エネルギーを低減でき、効率がよい。   Moreover, in the flow battery of embodiment mentioned above, since only the mediator containing electrolyte solution was made to flow among electrode compositions, the viscosity of a fluid is low compared with the case where the whole electrode composition is made to flow. For this reason, compared with the case where the whole electrode composition is made to flow, liquid feeding pressure can be made low, pump drive energy can be reduced, and efficiency is good.

なお、本実施形態において、正極では、正極リザーバ容器30、正極側循環経路32及び正極側循環ポンプ38が本発明の送液部に相当し、負極では、負極リザーバ容器60、負極側循環経路62及び負極側循環ポンプ68が本発明の送液部に相当する。   In the present embodiment, in the positive electrode, the positive electrode reservoir container 30, the positive electrode side circulation path 32, and the positive electrode side circulation pump 38 correspond to the liquid feeding part of the present invention, and in the negative electrode, the negative electrode reservoir container 60 and the negative electrode side circulation path 62. And the negative electrode side circulation pump 68 corresponds to the liquid feeding section of the present invention.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述したフロー電池10では、正極リザーバ容器30は、フィルタ31を備えたものとしたが、フィルタ31を備えないものとしてもよい。この場合、正極メディエータ含有液22だけでなく、固体活物質24をも含む、正極電極組成物26が、循環経路32を流動する。この正極電極組成物26は、例えば、正極メディエータ含有電解液22に正極固体活物質24が懸濁したスラリーとして流動する。同様に、負極リザーバ容器60は、フィルタ61を備えたものとしたが、フィルタ61を備えないものとしてもよい。   For example, in the flow battery 10 described above, the positive electrode reservoir container 30 includes the filter 31, but may not include the filter 31. In this case, the positive electrode composition 26 including not only the positive electrode mediator-containing liquid 22 but also the solid active material 24 flows through the circulation path 32. The positive electrode composition 26 flows, for example, as a slurry in which the positive electrode solid active material 24 is suspended in the positive electrode mediator-containing electrolytic solution 22. Similarly, the negative electrode reservoir container 60 is provided with the filter 61, but may be provided with no filter 61.

例えば、上述したフロー電池10では、正極と負極の両方が、各極固体活物質24,54と、各極メディエータ含有液22,52と、を含む電極組成物26,56と、各極電極組成物26,56のうち少なくとも各極メディエータ含有電解液22,52を流動させて各極集電体20,50に接触させる各極送液部40,70と、を備えた構成を有するものとしたが、これに限定されない。例えば、正極のみがこうした構成を有するものとしてもよいし、負極のみがこうした構成を有するものとしてもよい。図2は、正極のみがこうした構成を有する、本発明の他の実施形態であるフロー電池110の構成の概略を示す説明図である。フロー電池110において、フロー電池10と同様の構成については、同じ符号を付して説明を省略する。このフロー電池110では、負極室16には、例えば亜鉛板などの負極電極150が配置されている。また、循環経路はなく、硝酸亜鉛や硝酸リチウムなどの負極電解液155が、負極室16の入口64から供給される。なお、負極電解液155は、負極室16の入口64と出口66とを結ぶ循環経路を介して循環させてもよい。また、負極電解液155は、負極室16の入口64から供給するのではなく、負極室16内に貯留してもよい。   For example, in the flow battery 10 described above, both the positive electrode and the negative electrode have electrode compositions 26 and 56 each including the electrode solid active materials 24 and 54 and the electrode mediator-containing liquids 22 and 52, and the electrode compositions of the electrodes. And the electrode liquid feeding sections 40 and 70 for causing at least the electrode mediator-containing electrolytes 22 and 52 to flow in contact with the electrode current collectors 20 and 50 among the materials 26 and 56. However, it is not limited to this. For example, only the positive electrode may have such a configuration, or only the negative electrode may have such a configuration. FIG. 2 is an explanatory diagram showing an outline of the configuration of a flow battery 110 according to another embodiment of the present invention, in which only the positive electrode has such a configuration. In the flow battery 110, the same components as those in the flow battery 10 are denoted by the same reference numerals and description thereof is omitted. In the flow battery 110, a negative electrode 150 such as a zinc plate is disposed in the negative electrode chamber 16. Further, there is no circulation path, and a negative electrode electrolyte 155 such as zinc nitrate or lithium nitrate is supplied from the inlet 64 of the negative electrode chamber 16. The negative electrode electrolyte 155 may be circulated through a circulation path connecting the inlet 64 and the outlet 66 of the negative electrode chamber 16. Further, the negative electrode electrolyte 155 may be stored in the negative electrode chamber 16 instead of being supplied from the inlet 64 of the negative electrode chamber 16.

以下では、フロー電池を具体的に作製した例について、実験例として説明する。なお、本発明は、以下の実験例に限定されるものではない。   Below, the example which produced the flow battery concretely is demonstrated as an experiment example. Note that the present invention is not limited to the following experimental examples.

[実験例1]
(フロー電池の作製)
実験例1では、図1のように構成されたフロー電池を作製した。正極の電極組成物において、固体活物質としてリン酸鉄リチウム(LiFePO4、以下LFPと略す。宝泉社製SLFP−PD60)を、メディエータとしてケイバナドモリブデン酸(H6[SiV2Mo1040]・29H2O、以下SiVMoと略す。日本無機化学工業製)を用いた。また、負極の電極組成物において、固体活物質としてリン酸チタンリチウム(LiTi2(PO43、以下LTPと略す。)を、メディエータとして、正極と同じSiVMoを用いた。なお、LTPとしては、以下のように作製したものを用いた。まず、チタンイソプロポキシド、酢酸リチウム、リン酸一アンモニウムを所定量混ぜた後、加水分解した固形物を、Ar雰囲気下700℃で24時間加熱焼成した。その後、焼成粉末表面をスクロースで表面被覆し、Ar雰囲気下700℃で焼成して表面カーボン被覆したものを用いた。
[Experimental Example 1]
(Production of flow battery)
In Experimental Example 1, a flow battery configured as shown in FIG. 1 was produced. In the electrode composition of the positive electrode, lithium iron phosphate (LiFePO 4 , hereinafter abbreviated as LFP; SLFP-PD60 manufactured by Hosen Co., Ltd.) is used as a solid active material, and caivanadomolybdate (H 6 [SiV 2 Mo 10 O 40 ] is used as a mediator. ] 29H 2 O, hereinafter abbreviated as SiVMo, manufactured by Nippon Inorganic Chemical Industry). Further, in the electrode composition of the negative electrode, titanium phosphate lithium as a solid active material (LiTi 2 (PO 4) 3 , hereinafter LTP abbreviated.), As a mediator, using the same SiVMo the positive electrode. In addition, what was produced as follows was used as LTP. First, after mixing a predetermined amount of titanium isopropoxide, lithium acetate, and monoammonium phosphate, the hydrolyzed solid was heated and fired at 700 ° C. for 24 hours in an Ar atmosphere. Thereafter, the surface of the fired powder was coated with sucrose, and fired at 700 ° C. in an Ar atmosphere to cover the surface with carbon.

実験例1の電池は、具体的には、以下のように作製した。まず、固体活物質としてのLFP95質量部とバインダーとしてのポリテトラフルオロエチレン(PTFE)5質量部とを混練し塊状にした。これをミキサーにかけて粉砕し、篩で1mm〜0.5mmのサイズの粒子を選別し、これを正極固体活物質粒子とした。また、固体活物質としてLTPを用いた以外は正極と同様にして、負極固体活物質粒子を得た。また、水酸化リチウム及び0.1Mフタル酸バッファーでpHを4.65に調整した、10質量%SiVMoの3M硝酸リチウム水溶液を作製し、これを正極用及び負極用のメディエータ含有電解液とした。   Specifically, the battery of Experimental Example 1 was manufactured as follows. First, 95 parts by mass of LFP as a solid active material and 5 parts by mass of polytetrafluoroethylene (PTFE) as a binder were kneaded to form a lump. This was pulverized by a mixer, and particles having a size of 1 mm to 0.5 mm were selected with a sieve, and this was used as positive electrode solid active material particles. Moreover, negative electrode solid active material particles were obtained in the same manner as the positive electrode except that LTP was used as the solid active material. Also, a 3M lithium nitrate aqueous solution of 10 mass% SiVMo adjusted to pH 4.65 with lithium hydroxide and 0.1 M phthalate buffer was prepared, and this was used as a mediator-containing electrolyte for positive electrode and negative electrode.

次に、図1に示すフロー電池を以下のように組み立てた。まず、ケース内に、イオン交換膜と、イオン交換膜を介して対向する正極電極及び負極電極と、を配設した。イオン交換膜としてはLiイオン交換したナフィオン膜(ナフィオンは登録商標)を用い、正極電極及び負極電極としてはいずれも厚さ3mm、4cm2のカーボンフェルトを用いた。次に、正極側のリザーバ容器内に、上述した正極固体活物質粒子(LFP)2g及びメディエータ含有電解液18mLを投入し、負極側のリザーバ容器内にメディエータ含有電解液18mLを投入した。なお、各リザーバ容器には、あらかじめ、固体活物質粒子の流出を防止するフィルタを配設し、固体活物質粒子がフロー電池内を流動しないように構成した。 Next, the flow battery shown in FIG. 1 was assembled as follows. First, an ion exchange membrane and a positive electrode and a negative electrode facing each other through the ion exchange membrane were disposed in the case. As the ion exchange membrane, a Li ion exchanged Nafion membrane (Nafion is a registered trademark) was used, and as the positive electrode and the negative electrode, carbon felt having a thickness of 3 mm and 4 cm 2 was used. Next, 2 g of the positive electrode solid active material particles (LFP) and 18 mL of the mediator-containing electrolyte solution were charged into the positive electrode side reservoir container, and 18 mL of the mediator-containing electrolyte solution was charged into the negative electrode side reservoir container. Each reservoir container was previously provided with a filter for preventing the outflow of the solid active material particles so that the solid active material particles did not flow in the flow battery.

(サイクリックボルタモメトリー)
メディエータ含有電解液及びLFP、LTPについて、サイクリックボルタモメトリーを行った。具体的には、メディエータ含有電解液のCVは、上記組成のメディエータ含有電解液を用い、作用極を直径3mmのグラッシーカーボン電極、対極は白金ワイヤ、参照極は飽和KClのAg/AgCl電極とし、窒素雰囲気下、掃引速度20mV/secでCV評価した。LFP及びLTPに関しては、LFP又はLTPを80質量部に、導電助剤としてケッチェンブラックを10質量部、バインダーとしてPTFE10質量部を混練したものを5mgとり、ステンレスメッシュに挟み込んだ電極を用い評価した。その他の条件はメディエータ含有電解液のCVと同じとした。実験例1のメディエータ含有電解液、LFP、LTPのサイクリックボルタモグラム(CV)を図3に示す。図3より、LFP、LTPの酸化還元電位(標準電位)は飽和塩化カリウムの銀/塩化銀電極に対し、それぞれ0.265V,−0.695Vであることが求まった。
(Cyclic voltammetry)
Cyclic voltammetry was performed on the mediator-containing electrolyte, LFP, and LTP. Specifically, the CV of the mediator-containing electrolyte is the mediator-containing electrolyte having the above composition, the working electrode is a glassy carbon electrode having a diameter of 3 mm, the counter electrode is a platinum wire, the reference electrode is an Ag / AgCl electrode of saturated KCl, CV evaluation was performed at a sweep rate of 20 mV / sec in a nitrogen atmosphere. Regarding LFP and LTP, an evaluation was performed using an electrode sandwiched between stainless steel meshes by taking 5 mg of 80 parts by mass of LFP or LTP, 10 parts by mass of ketjen black as a conductive additive, and 10 parts by mass of PTFE as a binder. . Other conditions were the same as the CV of the mediator-containing electrolyte. A cyclic voltammogram (CV) of the mediator-containing electrolyte solution, LFP, and LTP of Experimental Example 1 is shown in FIG. From FIG. 3, it was found that the redox potentials (standard potentials) of LFP and LTP were 0.265 V and −0.695 V, respectively, with respect to the saturated potassium chloride silver / silver chloride electrode.

図3より、メディエータ(SiVMo)含有電解液は、LFPの酸化還元電位(標準電位0.265V)より高電位側に標準電位を有するブロードな酸化還元ピーク(酸化ピーク/還元ピーク/標準電位=0.412V/0.336V/0.374V)と、LFPの酸化還元電位より低電位側に標準電位を有するブロードな酸化還元ピーク(酸化ピーク/還元ピーク/標準電位=0.283V/0.101V/0.192V)を有することがわかった。各酸化還元ピークの標準電位は、LFPの標準電位に対する電位差が0.11V、−0.07Vであり、LFPの酸化還元電位に近いことがわかった。また、その間がブロードで傾斜電位を示すことがわかった。また、図3より、メディエータ(SiVMo)含有電解液は、LTPの酸化還元電位(標準電位−0.695V)より高電位側に標準電位を有するブロードな酸化還元ピーク(酸化ピーク/還元ピーク/標準電位=−0.499V/−0.643V/−0.571V)と、LTPの酸化還元電位よりも低電位側に標準電位を有するブロードな酸化還元ピーク(酸化ピーク/還元ピーク/標準電位=−0.689V/−0.811V/−0.75V)を有することがわかった。各酸化還元ピークの標準電位は、LTPの標準電位に対する電位差が0.12V、−0.06Vであり、LTPの酸化還元電位に近いことがわかった。また、その間がブロードで傾斜電位を示すことがわかった。なお、pHを変化させてCVを測定したところ、SiVMo液はpH3−10.5の広いpH域で安定に動作することも確認した。一方、pH1以下ではLFPは比較的早期に劣化し、酸化還元ピークを示さなくなった。   From FIG. 3, the mediator (SiVMo) -containing electrolyte solution has a broad redox peak (oxidation peak / reduction peak / standard potential = 0) having a standard potential higher than the redox potential (standard potential 0.265 V) of LFP. 412V / 0.336V / 0.374V) and a broad redox peak having a standard potential lower than the redox potential of LFP (oxidation peak / reduction peak / standard potential = 0.283V / 0.101V / 0.192V). As for the standard potential of each redox peak, the potential difference with respect to the standard potential of LFP was 0.11 V and −0.07 V, which was found to be close to the redox potential of LFP. Also, it was found that the gradient potential was broad in the meantime. Further, from FIG. 3, the mediator (SiVMo) -containing electrolyte solution has a broad redox peak (oxidation peak / reduction peak / standard) having a standard potential higher than the redox potential of LTP (standard potential −0.695 V). Potential = −0.499V / −0.643V / −0.571V) and a broad redox peak having a standard potential on the lower potential side than the redox potential of LTP (oxidation peak / reduction peak / standard potential = − 0.689V / -0.811V / -0.75V). As for the standard potential of each redox peak, the potential difference with respect to the standard potential of LTP was 0.12 V and −0.06 V, which was found to be close to the redox potential of LTP. Also, it was found that the gradient potential was broad in the meantime. In addition, when CV was measured by changing pH, it was also confirmed that the SiVMo liquid operates stably in a wide pH range of pH 3-10.5. On the other hand, at pH 1 or lower, LFP deteriorated relatively early and no longer showed a redox peak.

(充放電試験)
まず、上述したフロー電池を用い、正極及び負極のそれぞれについてメディエータ含有電解液をローラーポンプでフロー電池内に流速30mL/分で流動させ、電流50mAで充放電を行った。その後、負極側のリザーバ容器内に、上述した負極固体活物質粒子(LTP)1gを投入し、引き続き、充放電を行った。
(Charge / discharge test)
First, using the flow battery described above, for each of the positive electrode and the negative electrode, the mediator-containing electrolyte was flowed into the flow battery at a flow rate of 30 mL / min with a roller pump, and charged and discharged at a current of 50 mA. Thereafter, 1 g of the negative electrode solid active material particles (LTP) described above was charged into the reservoir container on the negative electrode side, and charging / discharging was subsequently performed.

図4に、実験例1の充放電波形を示した。負極をみると、LTP投入前では負極側の電位(銀/塩化銀基準)変化はプラトーを示さずキャパシタ的な傾斜電位を示した。これに対して、LTP投入後には一定のプラトーを充放電とも示すようになり、容量も大幅に増大した。図5に、実験例1の容量増加の様子を示した。17サイクル以降は、100mAhの充電容量規制で放電容量をみたものである。LTPの仕込み量は約120mAhであるので、100mAh容量規制下では全量充電はできないが、少なくとも50%のLTPは利用されていることが分かった。またクーロン効率も高かった。図6,7には、充放電電流変化時の各極及びセルの電圧変化を示した。図6,7を見てわかるように、50mAの大電流を流した場合でも、正極、負極の分極は0.11Vと文献1に比べ大幅に小さい。また、膜抵抗分のロスが重畳しているセル電圧をみても分極は0.55Vと小さい。これは固体活物質とメディエータの電位差が小さいことに加え、傾斜電位を示す効果と推察された。以上のことから、正負極共通メディエータを用い固体活物質を含有させることによって、非常に優れた充放電が可能なフロー電池が構築できたことが分かった。また、両極のメディエータを同じものとしたことから、正負極メディエータのクロスコンタミネーションを防止する効果もあると推察された。   FIG. 4 shows the charge / discharge waveform of Experimental Example 1. Looking at the negative electrode, the change in potential (silver / silver chloride standard) on the negative electrode side did not show a plateau but showed a capacitor-like gradient potential before LTP was charged. On the other hand, after the LTP was turned on, a certain plateau was also indicated as charge / discharge, and the capacity increased significantly. FIG. 5 shows how the capacity of Experimental Example 1 is increased. From the 17th cycle onward, the discharge capacity is observed under the charge capacity regulation of 100 mAh. Since the charging amount of LTP is approximately 120 mAh, it was found that at least 50% of LTP was used, although full charge could not be performed under the 100 mAh capacity regulation. Coulomb efficiency was also high. 6 and 7 show the voltage change of each electrode and cell when the charge / discharge current changes. As can be seen from FIGS. 6 and 7, even when a large current of 50 mA is applied, the polarization of the positive electrode and the negative electrode is 0.11 V, which is significantly smaller than that of Document 1. Further, even when looking at the cell voltage on which the film resistance loss is superimposed, the polarization is as small as 0.55V. This is presumed to be an effect of showing a gradient potential in addition to a small potential difference between the solid active material and the mediator. From the above, it was found that a flow battery capable of very good charge / discharge could be constructed by using a positive and negative electrode common mediator and containing a solid active material. In addition, since the mediators of both poles are the same, it is presumed that there is an effect of preventing cross contamination of the positive and negative mediators.

[実験例2]
(フロー電池の作製)
実験例2では、図1のように構成されたフロー電池を作製した。正極の電極組成物において、固体活物質としてLFPを、メディエータとしてリンバナドモリブデン酸(H5[PV2Mo1040]・31H2O、以下PVMと略す。日本無機化学工業製)を用いた。また、負極の電極組成物において、固体活物質としてLTPを、メディエータとしてケイタングステン酸(H4[SiW1240]・24H2O、以下SiWOと略す。日本無機化学工業製)を用いた。
[Experiment 2]
(Production of flow battery)
In Experimental Example 2, a flow battery configured as shown in FIG. 1 was produced. In the positive electrode composition, LFP was used as the solid active material, and phosphovanadomolybdic acid (H 5 [PV 2 Mo 10 O 40 ] · 31H 2 O, hereinafter abbreviated as PVM, manufactured by Nippon Inorganic Chemical Industry) was used as the mediator. . Further, in the negative electrode composition, LTP was used as the solid active material, and silicotungstic acid (H 4 [SiW 12 O 40 ] · 24H 2 O, hereinafter abbreviated as SiWO, manufactured by Nippon Inorganic Chemical Industry) was used as the mediator.

実験例2の電池は、具体的には、以下のように作製した。正極固体活物質粒子(LFP)及び負極固体活物質粒子(LTP)を、実験例1と同様にして得た。また、水酸化リチウム及び0.1Mフタル酸バッファーでpHを4.90に調整した、10質量%PVMの3M硝酸リチウム水溶液を作製し、これを正極用のメディエータ含有電解液とした。また、水酸化リチウム及び0.1Mフタル酸バッファーでpHを4.9に調整した、10質量%SiWOの3M硝酸リチウム水溶液を作製し、これを負極用のメディエータ含有電解液とした。その他の構成は実験例1と同じとした。   Specifically, the battery of Experimental Example 2 was manufactured as follows. Positive electrode solid active material particles (LFP) and negative electrode solid active material particles (LTP) were obtained in the same manner as in Experimental Example 1. Moreover, 10 mass% PVM 3M lithium nitrate aqueous solution which adjusted pH to 4.90 with lithium hydroxide and 0.1M phthalic acid buffer was produced, and this was made into the mediator containing electrolyte solution for positive electrodes. Further, a 3M lithium nitrate aqueous solution of 10% by mass SiWO adjusted to pH 4.9 with lithium hydroxide and 0.1M phthalate buffer was prepared, and this was used as a mediator-containing electrolyte for negative electrode. Other configurations were the same as those in Experimental Example 1.

(サイクリックボルタモメトリー)
正極用メディエータ含有電解液及び負極用メディエータ含有電解液について、実験例1と同様にサイクリックボルタモメトリーを行った。実験例2の正極用メディエータ含有電解液、負極用メディエータ含有電解液及び上述したLFP、LTPのCVを図8に示す。
(Cyclic voltammetry)
Cyclic voltammetry was performed in the same manner as in Experimental Example 1 for the positive electrode mediator-containing electrolyte and the negative electrode mediator-containing electrolyte. The positive electrode mediator-containing electrolyte, the negative electrode mediator-containing electrolyte, and the above-described LFP and LTP CVs in Experimental Example 2 are shown in FIG.

図8より、正極用メディエータ(PVM)含有電解液は、LFPの酸化還元電位(標準電位0.265V)より高電位側に標準電位を有するブロードな酸化還元ピーク(酸化ピーク/還元ピーク/標準電位=0.420V/0.293V/0.357V)と、LFPの酸化還元電位より低電位側に標準電位を有するブロードな酸化還元ピーク(酸化ピーク/還元ピーク/標準電位=0.232V/0.179V/0.205V)を有することがわかった。各酸化還元ピークの標準電位は、LFPの標準電位に対する電位差が0.09V、−0.06Vであり、LFPの酸化還元電位に近いことがわかった。また、その間がブロードで傾斜電位を示すことがわかった。また、図8より、メディエータ(SiWO)含有電解液は、LTPの酸化還元電位より高電位側に標準電位を有する明瞭な酸化還元ピーク(酸化ピーク/還元ピーク/標準電位=−0.346V/−0.417V/−0.382V)と、LTPの酸化還元電位よりも低電位側に標準電位を有する明瞭な酸化還元ピーク(酸化ピーク/還元ピーク/標準電位=−0.729V/−0.851V/−0.815V)を有することがわかった。各酸化還元ピークの標準電位は、LTPの標準電位に対する電位差が0.31V、−0.12Vであり、LTPの酸化還元電位に比較的近いことがわかった。   As shown in FIG. 8, the positive electrode mediator (PVM) -containing electrolyte solution has a broad redox peak (oxidation peak / reduction peak / standard potential) having a standard potential higher than the redox potential (standard potential 0.265 V) of LFP. = 0.420 V / 0.293 V / 0.357 V) and a broad redox peak having a standard potential lower than the redox potential of LFP (oxidation peak / reduction peak / standard potential = 0.232 V / 0. 179V / 0.205V). As for the standard potential of each redox peak, the potential difference with respect to the standard potential of LFP was 0.09 V and −0.06 V, which was found to be close to the redox potential of LFP. Also, it was found that the gradient potential was broad in the meantime. Further, from FIG. 8, the mediator (SiWO) -containing electrolyte has a clear redox peak (oxidation peak / reduction peak / standard potential = −0.346 V / −) having a standard potential higher than the redox potential of LTP. 0.417V / −0.382V) and a clear redox peak having a standard potential on the lower potential side than the redox potential of LTP (oxidation peak / reduction peak / standard potential = −0.729 V / −0.851 V) /−0.815V). As for the standard potential of each redox peak, the potential difference with respect to the standard potential of LTP was 0.31 V and −0.12 V, which was found to be relatively close to the redox potential of LTP.

(充放電試験)
実験例1と同様に充放電試験を行った。図9,10に、実験例2の充放電波形を示した。LTP投入前の充放電波形である図9では、負極の波形は充放電時ともほぼ同じ電位にCVで見られた酸化還元電位に対応した複数のプラトーが明確に確認された。これに対して、LTP投入後には、図10に示すようにプラトー波形となった。充放電電流変化時の各極及びセルの電圧変化を上述した図6、7に示した。固体活物質との電位差が大きな負極側を見ると、放電時20mA以上で分極が大きくなる様子が分かった。電位差及びメディエータ濃度、流速から求まるSiWO酸化体の量に対応する電流値は15mAであり、その付近で変曲しているものと推察された。したがって、電流値を電位差・濃度・流速から求まる電流値以下に制御すれば分極をより低減できると推察された。
(Charge / discharge test)
A charge / discharge test was conducted in the same manner as in Experimental Example 1. 9 and 10 show the charge / discharge waveforms of Experimental Example 2. FIG. In FIG. 9, which is the charge / discharge waveform before LTP input, a plurality of plateaus corresponding to the oxidation-reduction potentials observed in CV were clearly confirmed in the negative electrode waveform at substantially the same potential during charge / discharge. On the other hand, after LTP input, a plateau waveform was obtained as shown in FIG. FIGS. 6 and 7 show the voltage change of each electrode and cell when the charge / discharge current changes. When the negative electrode side having a large potential difference from the solid active material was observed, it was found that the polarization increased at 20 mA or more during discharge. The current value corresponding to the amount of oxidized SiWO obtained from the potential difference, the mediator concentration, and the flow rate was 15 mA, which was presumed to be inflected in the vicinity thereof. Therefore, it was speculated that the polarization could be further reduced by controlling the current value to be equal to or less than the current value obtained from the potential difference, concentration, and flow velocity.

[実験例3]
(フロー電池の作製)
実験例3では、図2に示すように構成されたフロー電池を作製した。正極の電極組成物において、実験例2と同様、固体活物質としてLFPを、メディエータとしてPVMを用いた。負極では、電極組成物を用いず、負極電解液として1M硝酸リチウム+1M硝酸亜鉛水溶液を用いた。また、電極として金属亜鉛板を用いた。
[Experiment 3]
(Production of flow battery)
In Experimental Example 3, a flow battery configured as shown in FIG. 2 was produced. In the positive electrode composition, as in Experimental Example 2, LFP was used as the solid active material, and PVM was used as the mediator. In the negative electrode, no electrode composition was used, and 1M lithium nitrate + 1M zinc nitrate aqueous solution was used as the negative electrode electrolyte. Moreover, the metal zinc plate was used as an electrode.

実験例3の電池は、具体的には、以下のように作製した。正極固体活物質粒子(LFP)及び正極用のメディエータ(PVM)含有電解液を、実験例2と同様にして得た。また、1M硝酸リチウム+1M硝酸亜鉛水溶液を調製し、これを負極電解液とした。   Specifically, the battery of Experimental Example 3 was manufactured as follows. A positive electrode solid active material particle (LFP) and a positive electrode mediator (PVM) -containing electrolyte were obtained in the same manner as in Experimental Example 2. Moreover, 1M lithium nitrate + 1M zinc nitrate aqueous solution was prepared, and this was made into the negative electrode electrolyte solution.

次に、図2に示すフロー電池を以下のように組み立てた。まず、ケース内に、イオン交換膜と、イオン交換膜を介して対向する正極電極及び負極電極と、を配設した。イオン交換膜としてはLiイオン交換したナフィオン膜を用い、正極電極としては4cm2のカーボンフェルトを用い、負極電極としては金属亜鉛板を用いた。次に、正極側のリザーバ容器内に、メディエータ含有電解液18mLを投入し、図示しない負極側の電解液タンク内に上記負極電解液を投入した。なお、正極側のリザーバ容器には、あらかじめ、固体活物質粒子の流出を防止するフィルターを配設し、固体活物質粒子がフロー電池内を流動しないように構成した。 Next, the flow battery shown in FIG. 2 was assembled as follows. First, an ion exchange membrane and a positive electrode and a negative electrode facing each other through the ion exchange membrane were disposed in the case. A Lifion-exchanged Nafion membrane was used as the ion exchange membrane, a 4 cm 2 carbon felt was used as the positive electrode, and a metal zinc plate was used as the negative electrode. Next, 18 mL of the mediator-containing electrolyte solution was charged into the positive electrode side reservoir container, and the negative electrode electrolyte solution was charged into a negative electrode side electrolyte solution tank (not shown). In addition, the positive electrode side reservoir container was previously provided with a filter for preventing the outflow of the solid active material particles so that the solid active material particles did not flow in the flow battery.

(充放電試験)
まず、上述したフロー電池を用い、正極では、メディエータ含有電解液をローラーポンプでフロー電池内に流速30mL/分で流動させ、負極では、負極電解液をローラーポンプでフロー電池内に流速30mL/分で流動させ、充放電を行った。その後、正極側のリザーバ容器内に上述した正極固体活物質粒子(LFP)2gを投入し、引き続き、充放電を行った。なお、LFP投入後も、電極組成物のうちメディエータ含有電解液のみを流動させた。
(Charge / discharge test)
First, using the flow battery described above, at the positive electrode, the mediator-containing electrolyte is flowed into the flow battery at a flow rate of 30 mL / min with a roller pump, and at the negative electrode, the negative electrode electrolyte is flowed into the flow battery with a roller pump at a flow rate of 30 mL / min. And was charged and discharged. Thereafter, 2 g of the positive electrode solid active material particles (LFP) described above were charged into the positive electrode side reservoir container, and charging / discharging was subsequently performed. Note that only the mediator-containing electrolytic solution in the electrode composition was allowed to flow even after the LFP was charged.

図11に、実験例3の充放電波形を示した。正極において、LFP投入前に比べてLFP投入後では容量が大幅に増加しており、負極が金属亜鉛でも動作することが分かった。また、実験例3では亜鉛の分極が比較的大きかったが、それを低減できれば、フロー電池の放電電圧をより高めることができると推察された。   FIG. 11 shows the charge / discharge waveform of Experimental Example 3. In the positive electrode, the capacity was significantly increased after the LFP was introduced compared to before the LFP was introduced, and it was found that the negative electrode could operate even with metallic zinc. Moreover, although the polarization of zinc was comparatively large in Experimental Example 3, it was surmised that if it could be reduced, the discharge voltage of the flow battery could be further increased.

[実験例4]
(フロー電池の作製)
実験例4では、図1のように構成されたフロー電池を作製した。正極の電極組成物において、固体活物質としてリン酸バナジウムナトリウム(Na32(PO43、以下NVPと略す。)を、メディエータとしてPVMを用いた。また、負極の電極組成物において、固体活物質としてリン酸チタン酸ナトリウム(NaTi2(PO43、以下NTPと略す)を、メディエータとしてSiWOを用いた。なお、ここで用いたNVPとしては、バナジウムアセチルアセトナト、酢酸ナトリウム、リン酸一アンモニウムを所定量混ぜ反応させた後、濃縮生成した固形分を、Ar雰囲気下940℃3時間熱処理したものを用いた。また、ここで用いたNTPは、酢酸リチウムの代わりに酢酸ナトリウムを用いた以外は、上述したLTPと同様に作製した、表面カーボン被覆したものを用いた。
[Experimental Example 4]
(Production of flow battery)
In Experimental Example 4, a flow battery configured as shown in FIG. 1 was produced. In the positive electrode composition, sodium vanadium phosphate (Na 3 V 2 (PO 4 ) 3 , hereinafter abbreviated as NVP) was used as the solid active material, and PVM was used as the mediator. In the negative electrode composition, sodium phosphate titanate (NaTi 2 (PO 4 ) 3 , hereinafter abbreviated as NTP) was used as the solid active material, and SiWO was used as the mediator. In addition, as NVP used here, after using a predetermined amount of vanadium acetylacetonate, sodium acetate, and monoammonium phosphate mixed and reacted, the concentrated solid was heat-treated in an Ar atmosphere at 940 ° C. for 3 hours. It was. The NTP used here was the same as the LTP described above except that sodium acetate was used in place of lithium acetate, and the surface carbon-coated one was used.

実験例4の電池は、具体的には、以下のように作製した。正極固体活物質粒子(NVP)及び負極固体活物質粒子(NTP)を、実験例1と同様にして得た。また、水酸化ナトリウム及び0.15Mリン酸バッファーにてpHを3.0に調整した、10質量%PVMの3M硝酸ナトリウム水溶液を作製し、これを正極用のメディエータ含有電解液とした。また、水酸化ナトリウムと0.15Mリン酸バッファーにてpHを3.6に調整した、10質量%SiWOの3M硝酸ナトリウム水溶液を作製し、これを負極用のメディエータ含有電解液とした。イオン交換膜としてはNaイオン交換したナフィオン膜を用いた。その他の構成は実験例1と同じとした。なお、実験例4では、負極側のリザーバ容器内に、充放電試験当初から、負極固体活物質粒子(NTP)1gを投入し、一方、正極側のリザーバ容器内には、充放電試験当初には、正極固体活物質粒子(NVP)を投入しなかった。   The battery of Experimental Example 4 was specifically manufactured as follows. Positive electrode solid active material particles (NVP) and negative electrode solid active material particles (NTP) were obtained in the same manner as in Experimental Example 1. Moreover, 10 mass% PVM 3M sodium nitrate aqueous solution which adjusted pH to 3.0 with sodium hydroxide and 0.15M phosphate buffer was produced, and this was made into the mediator containing electrolyte solution for positive electrodes. Also, a 3M sodium nitrate aqueous solution of 10% by mass SiWO, adjusted to pH 3.6 with sodium hydroxide and 0.15M phosphate buffer, was prepared, and this was used as a mediator-containing electrolyte for negative electrode. As the ion exchange membrane, a Nafion membrane subjected to Na ion exchange was used. Other configurations were the same as those in Experimental Example 1. In Experimental Example 4, 1 g of negative electrode solid active material particles (NTP) was introduced into the negative electrode side reservoir container from the beginning of the charge / discharge test, while the positive electrode side reservoir container was charged at the beginning of the charge / discharge test. Did not introduce positive electrode solid active material particles (NVP).

(サイクリックボルタモメトリー)
正極用メディエータ含有電解液、負極用メディエータ含有電解液及びNTPについて、実験例1と同様にサイクリックボルタモメトリーを行った。実験例4の正極用メディエータ含有電解液、負極用メディエータ含有電解液、及び上述したNVP、NTPのCVを図12に示す。図12より、NVP、NTPの酸化還元標準電位は、それぞれ0.478V、−0.764Vであった。
(Cyclic voltammetry)
Cyclic voltammetry was performed in the same manner as in Experimental Example 1 for the positive electrode mediator-containing electrolyte, the negative electrode mediator-containing electrolyte, and NTP. The positive electrode mediator-containing electrolyte, the negative electrode mediator-containing electrolyte, and the above-described NVP and NTP CVs in Experimental Example 4 are shown in FIG. From FIG. 12, the redox standard potentials of NVP and NTP were 0.478 V and −0.764 V, respectively.

また、図12より、正極用メディエータ(PVM)含有電解液は、NVPの酸化還元電位(標準電位0.478V)の近くに標準電位を有するブロードな酸化還元ピーク(酸化ピーク/還元ピーク/標準電位=0.428V/0.364V/0.396V)を有することがわかった。酸化還元の標準電位は、NVPの標準電位に対する電位差が−0.08Vであり、NVPの酸化還元電位に近いことがわかった。また、図12より、メディエータ(SiWO)含有電解液は、NTPの酸化還元電位(標準電位−0.764V)の近くに標準電位を有するブロードな酸化還元ピーク(酸化ピーク/還元ピーク/標準電位=−0.768V/−0.921V/−0.804V)を有することがわかった。酸化還元の標準電位は、NTPの標準電位に対する電位差が−0.04Vであり、NTPの酸化還元電位に比較的近いことがわかった。   From FIG. 12, the positive electrode mediator (PVM) -containing electrolyte solution has a broad redox peak (oxidation peak / reduction peak / standard potential) having a standard potential near the redox potential of NVP (standard potential 0.478 V). = 0.428V / 0.364V / 0.396V). As for the standard potential of redox, the potential difference with respect to the standard potential of NVP was −0.08 V, which was found to be close to the redox potential of NVP. From FIG. 12, the mediator (SiWO) -containing electrolyte solution has a broad redox peak (oxidation peak / reduction peak / standard potential) having a standard potential close to the redox potential (standard potential−0.764 V) of NTP. −0.768V / −0.921V / −0.804V). As for the standard potential of redox, the potential difference with respect to the standard potential of NTP was −0.04 V, which was found to be relatively close to the redox potential of NTP.

(充放電試験)
まず、上述したフロー電池を用い、正極及び負極のそれぞれについてメディエータ含有電解液をローラーポンプでフロー電池内に流速30mL/分で流動させ、充放電を行った。その後、正極側のリザーバ容器内に、上述した正極固体活物質粒子(NVP)1gを投入し、引き続き、充放電を行った。
(Charge / discharge test)
First, using the above-described flow battery, the mediator-containing electrolyte solution was flowed into the flow battery at a flow rate of 30 mL / min with a roller pump for each of the positive electrode and the negative electrode to perform charge / discharge. Thereafter, 1 g of the positive electrode solid active material particles (NVP) described above was charged into the positive electrode side reservoir container, and charging / discharging was subsequently performed.

図13に、実験例4の充放電波形を示した。NVP投入前に比して、NVP投入後には、充放電とも容量が増大することが分かった。このことから、Liイオンを用いた系だけではなく、Naイオンを用いた系でも、また、NVPを正極活物質として用いても、メディエータ含有電解液と固体活物質との酸化還元電位の電位差が小さければ、良好に動作することが分かった。   FIG. 13 shows the charge / discharge waveform of Experimental Example 4. It was found that the capacity increased for both charging and discharging after the NVP input, compared to before the NVP input. From this, not only the system using Li ions but also the system using Na ions, or using NVP as the positive electrode active material, the potential difference between the redox potentials of the mediator-containing electrolyte and the solid active material is small. It was found that if it was small, it worked well.

[実験例5]
(フロー電池の作製)
混合電解液の影響を見るため、実験例5では、負極の電極組成物において、固体活物質としてLTPに代えてNTPを用い、正極及び負極の電極組成物において、3Mの硝酸リチウムに代えて6MのLi0.5Na0.5NO3を用いた以外は、実験例2と同様にフロー電池を作製した。なお、実験例5では、充放電試験当初から、負極側のリザーバ容器内に、負極固体活物質粒子(NTP)1gを投入した。
[Experimental Example 5]
(Production of flow battery)
In order to see the influence of the mixed electrolyte, in Experimental Example 5, NTP was used instead of LTP as the solid active material in the negative electrode composition, and 6M instead of 3M lithium nitrate was used in the positive and negative electrode compositions. A flow battery was produced in the same manner as in Experimental Example 2, except that Li 0.5 Na 0.5 NO 3 was used. In Experimental Example 5, 1 g of negative electrode solid active material particles (NTP) was charged into the negative electrode side reservoir container from the beginning of the charge / discharge test.

(充放電試験)
実験例2と同様に充放電試験を行った。図14に、実験例5の充放電波形を示した。負極での作動イオンがナトリウム、正極での作動イオンがリチウムと、各極で作動イオンが異なる混合電解液を用いた場合でも、良好な動作が確認できた。
(Charge / discharge test)
A charge / discharge test was conducted in the same manner as in Experimental Example 2. FIG. 14 shows the charge / discharge waveform of Experimental Example 5. Good operation could be confirmed even when a mixed electrolyte having different working ions at each electrode, such as sodium working ions at the negative electrode and sodium working ions at the positive electrode, was used.

[実験例6]
(フロー電池の作製)
実験例6では、図1のように構成されたフロー電池において、正極のリザーバ容器に固体活物質粒子の流出を防止するフィルターを配設せず、メディエータ含有電解液のみならず、固体活物質粒子も含む電極組成物がフロー電池内を流動するものを作製した。なお、ここでは、正極の固体活物質粒子として、バインダーを用いずにLFP(宝泉社製、直径5±2μm)粉末をそのまま用いた。その他の構成については、正極の電極組成物において、固体活物質としてのLFPを2gから5質量%に変更し、正極電極をカーボンフェルトに代えて多孔質ステンレスを用いた以外は、実験例5と同様にフロー電池を作製した。なお、実験例6では、充放電試験当初には、正極用メディエータ(PVM)含有電解液に代えてPVMを含まない正極用電解液(LFPスラリー)を用い、充放電試験の途中でPVMを添加して正極用メディエータ含有電解液とした。
[Experimental Example 6]
(Production of flow battery)
In Experimental Example 6, in the flow battery configured as shown in FIG. 1, the positive electrode reservoir container is not provided with a filter for preventing the outflow of the solid active material particles, and not only the mediator-containing electrolyte solution but also the solid active material particles In addition, an electrode composition including a fluid was produced in which it flows in a flow battery. Here, as the solid active material particles of the positive electrode, LFP (manufactured by Hosen Co., Ltd., diameter 5 ± 2 μm) powder was used as it was without using a binder. For other configurations, in the positive electrode composition, the LFP as the solid active material was changed from 2 g to 5% by mass, and the positive electrode was replaced with carbon felt and porous stainless steel was used. Similarly, a flow battery was produced. In Experimental Example 6, at the beginning of the charge / discharge test, a positive electrode electrolyte (LFP slurry) not containing PVM was used instead of the positive electrode mediator (PVM) -containing electrolyte, and PVM was added during the charge / discharge test. Thus, a positive electrode mediator-containing electrolyte was obtained.

(充放電試験)
実験例5と同様に充放電試験を行った。図15〜17に、実験例6の充放電波形を示した。PVM無しではほとんど充放電できなかったものが、PVM添加によって大幅に容量が増加した(図15参照)。また、PVMのみでは10mAh/gの容量であったものが(図16参照)、LFPスラリーにPVMを加えたものでは、容量制限50mAh/gでも充放電できており(図17参照)、大幅に容量が増加することが分かった。これらのことから、固体活物質粒子も流動させるタイプの電解液を用いた場合にも、メディエータ添加することで容量が増大することがわかった。
(Charge / discharge test)
A charge / discharge test was conducted in the same manner as in Experimental Example 5. 15 to 17 show the charge / discharge waveforms of Experimental Example 6. What could hardly be charged / discharged without PVM was greatly increased in capacity by addition of PVM (see FIG. 15). Moreover, what was the capacity | capacitance of 10 mAh / g only by PVM (refer FIG. 16), but what added PVM to the LFP slurry can be charged / discharged even by the capacity | capacitance limitation of 50 mAh / g (refer FIG. 17), It was found that the capacity increased. From these facts, it was found that the capacity is increased by adding a mediator even when an electrolytic solution of a type in which solid active material particles are also flowed is used.

[実験例7]
実験例7では、実験例1のSiVMoのバナジウム組成の影響を検討するため、pHを変化させながら、H4+x[SiVxMo12-x40]においてx=0,1,2,3,4に変化させた化合物について、CV 評価を行った。図18〜22に、実験例7のH4+x[SiVxMo12-x40]のCVを示した。メディエータとして機能するのに必要な、0〜0.7V領域及び−0.3〜−0.9V領域の酸化還元ピークに対するpHの影響をみたところ、pH3〜pH10の弱酸から弱アルカリ領域でより再現性よく働くのは、x=2,3であることがわかった。x=0,1ではpH6以上になると全領域の酸化還元ピークが消失し、x=4では逆にpH5.5以下で−0.5V〜−0.9Vの領域での還元ピークが消失し不可逆反応が起きると推察された。但し、x=4はpH11以上の強アルカリ域では安定に働いた。以上のことから、電解液をpH3〜10の弱酸性から弱アルカリ性の広いpH領域で使用する正負極同一メディエータとしてはH4+x[SiVxMo12-x40]においてx=2,3であるものがより適していることが分かった。また、アルカリ下で安定な活物質を用いる場合には、強アルカリで安定なx=4であるものがより適していることが分かった。
[Experimental Example 7]
In Experimental Example 7, in order to examine the influence of the vanadium composition of SiVMo in Experimental Example 1, x = 0, 1, 2, 3 in H 4 + x [SiV x Mo 12-x O 40 ] while changing the pH. , 4, CV evaluation was performed. 18 to 22 show the CV of H 4 + x [SiV x Mo 12-x O 40 ] in Experimental Example 7. When the effect of pH on the redox peaks in the 0 to 0.7 V region and -0.3 to -0.9 V region necessary to function as a mediator is observed, it is more reproduced in the weak alkaline region from the weak acid of pH 3 to pH 10 It was found that x = 2,3 worked well. When x = 0, 1, the redox peak in the entire region disappears when the pH is 6 or more, and when x = 4, the reduction peak in the region of -0.5 V to -0.9 V disappears when the pH is 5.5 or less. It was speculated that a reaction would occur. However, x = 4 worked stably in a strong alkali region having a pH of 11 or more. From the above, as the same mediator for positive and negative electrodes in which the electrolyte is used in a wide pH range from weak acidity to weak alkalinity of pH 3 to 10, x = 2, 3 in H 4 + x [SiV x Mo 12-x O 40 ]. It turns out that what is is more suitable. Moreover, when using an active material stable under an alkali, it was found that a strong alkali and stable x = 4 is more suitable.

[実験例8]
実験例8では、メディエータを入れずに実験例1〜3と同様の操作を行ったが、充放電はできなかった。
[Experimental Example 8]
In Experimental Example 8, the same operation as in Experimental Examples 1 to 3 was performed without the mediator, but charging / discharging could not be performed.

[実験例9]
実験例9では、メディエータを入れずLFPスラリーを流す実験例6の系において、LFPのスラリーの導電性が向上するようにケッチェンブラック0.75質量部を混ぜたスラリーを用いて、充放電試験を行った。この実験例では、電流を2mAと小さくしても充放電はほとんどできず、容量も0.1mAh以下と小さかった。
[Experimental Example 9]
In Experimental Example 9, in the system of Experimental Example 6 in which the LFP slurry was passed without a mediator, a charge / discharge test was performed using a slurry mixed with 0.75 parts by mass of ketjen black so as to improve the conductivity of the LFP slurry. Went. In this experimental example, even when the current was reduced to 2 mA, charging / discharging was hardly possible, and the capacity was as small as 0.1 mAh or less.

本発明は、エネルギー産業、例えば電池産業の分野に利用可能である。   The present invention can be used in the field of energy industry, for example, the battery industry.

10 フロー電池、12 ケース、14 正極室、16 負極室、18 セパレータ、20 正極集電体、22 正極メディエータ含有電解液、24 正極固体活物質粒子、26 正極電極組成物、30 正極リザーバ容器、31 フィルタ、32 正極側循環経路、34 入口、36 出口、38 正極側循環ポンプ、50 負極集電体、52 負極メディエータ含有電解液、54 負極固体活物質粒子、56 負極電極組成物、60 負極リザーバ容器、61 フィルタ、62 負極側循環経路、64 入口、66 出口、68 負極側循環ポンプ、80 回路、81 参照電極、83 電圧計、84 参照電極、86 電圧計、87 電流計、88 電圧計、89 外部入出力装置、110 フロー電池、150 負極電極、155 負極電解液。   DESCRIPTION OF SYMBOLS 10 Flow battery, 12 Case, 14 Positive electrode chamber, 16 Negative electrode chamber, 18 Separator, 20 Positive electrode collector, 22 Positive electrode mediator containing electrolyte, 24 Positive electrode solid active material particle, 26 Positive electrode composition, 30 Positive electrode reservoir container, 31 Filter, 32 Positive electrode side circulation path, 34 Inlet, 36 outlet, 38 Positive electrode side circulation pump, 50 Negative electrode current collector, 52 Negative electrode mediator-containing electrolyte, 54 Negative electrode solid active material particles, 56 Negative electrode composition, 60 Negative electrode reservoir container , 61 filter, 62 negative side circulation path, 64 inlet, 66 outlet, 68 negative side circulation pump, 80 circuit, 81 reference electrode, 83 voltmeter, 84 reference electrode, 86 voltmeter, 87 ammeter, 88 voltmeter, 89 External input / output device, 110 flow battery, 150 negative electrode, 155 negative electrode electrolyte.

Claims (19)

固体活物質と、メディエータを溶解した水溶液系のメディエータ含有電解液と、を含む電極組成物と、
前記電極組成物のうちの少なくともメディエータ含有電解液を流動させて集電体に接触させる送液部と、
を有する正極及び負極の少なくとも一方を備え、
前記メディエータは、前記固体活物質の酸化還元電位との差が0.5V以下の範囲にある酸化還元電位を有する物質であるか、前記固体活物質の酸化還元電位よりも低い低電位側酸化還元電位と固体活物質の酸化還元電位よりも高い高電位側酸化還元電位とを有する物質であるかのいずれか1以上である、
フロー電池。
An electrode composition comprising: a solid active material; and an aqueous mediator-containing electrolytic solution in which the mediator is dissolved;
A liquid-feeding part that causes at least the mediator-containing electrolyte of the electrode composition to flow and contact the current collector;
Bei example at least one of the positive and negative electrodes having,
The mediator is a substance having an oxidation-reduction potential whose difference from the oxidation-reduction potential of the solid active material is in a range of 0.5 V or less, or a low potential side oxidation-reduction that is lower than the oxidation-reduction potential of the solid active material. Any one or more of a substance having a potential and a high-potential-side redox potential higher than the redox potential of the solid active material,
Flow battery.
前記メディエータは、ポリオキソメタレートである、
請求項1に記載のフロー電池。
The mediator is a polyoxometalate;
The flow battery according to claim 1.
前記メディエータは、ケイバナドモリブデン酸、リンバナドモリブデン酸及びケイタングステン酸からなる群より選ばれる1以上である、請求項1又は2に記載のフロー電池。   3. The flow battery according to claim 1, wherein the mediator is one or more selected from the group consisting of caubanadomolybdic acid, phosphovanadmolybdic acid, and silicotungstic acid. 前記固体活物質は、リン酸鉄リチウム、リン酸バナジウムナトリウム、リチウムマンガネート、リン酸チタンリチウム及びリン酸チタンナトリウムからなる群より選ばれる1以上である、請求項1〜3のいずれか1項に記載のフロー電池。   The solid active material is one or more selected from the group consisting of lithium iron phosphate, sodium vanadium phosphate, lithium manganate, lithium titanium phosphate, and sodium titanium phosphate. The flow battery described in 1. 前記電極組成物は正極の電極組成物であり、前記メディエータはケイバナドモリブデン酸及びリンバナドモリブデン酸の少なくとも一方であり、前記固体活物質は、リン酸鉄リチウム、リン酸バナジウムナトリウム、リチウムマンガネートからなる群より選ばれる1以上である、請求項1〜4のいずれか1項に記載のフロー電池。   The electrode composition is a positive electrode composition, the mediator is at least one of caivanadomolybdic acid and phosphovanadmolybdic acid, and the solid active material is lithium iron phosphate, sodium vanadium phosphate, lithium manganate The flow battery according to any one of claims 1 to 4, wherein the flow battery is one or more selected from the group consisting of: 前記電極組成物は負極の電極組成物であり、前記メディエータはケイバナドモリブデン酸及びケイタングステン酸の少なくとも一方であり、前記固体活物質はリン酸チタンリチウム及びリン酸チタンナトリウムの少なくとも一方である、請求項1〜5のいずれか1項に記載のフロー電池。   The electrode composition is a negative electrode composition, the mediator is at least one of caivanadomolybdic acid and silicotungstic acid, and the solid active material is at least one of lithium titanium phosphate and sodium titanium phosphate, The flow battery according to any one of claims 1 to 5. 前記電極組成物は正極及び負極の電極組成物であり、前記正極及び前記負極において前記メディエータはケイバナドモリブデン酸である、請求項1〜6のいずれか1項に記載のフロー電池。   The flow battery according to any one of claims 1 to 6, wherein the electrode composition is an electrode composition of a positive electrode and a negative electrode, and in the positive electrode and the negative electrode, the mediator is caivanadomolybdic acid. 前記メディエータは、前記固体活物質の酸化還元電位との差が0.18V以下の範囲に酸化還元電位を有するものである、
請求項1〜7のいずれか1項に記載のフロー電池。
The mediator has a redox potential in a range where the difference from the redox potential of the solid active material is 0.18 V or less.
The flow battery according to any one of claims 1 to 7.
前記メディエータは、前記固体活物質の酸化還元電位よりも低い低電位側酸化還元電位と、前記固体活物質の酸化還元電位よりも高い高電位側酸化還元電位と、を有するものである、
請求項1〜8のいずれか1項に記載のフロー電池。
The mediator has a low potential side redox potential lower than the redox potential of the solid active material and a high potential side redox potential higher than the redox potential of the solid active material.
The flow battery according to claim 1.
前記メディエータは、充放電曲線において充放電プラトーを示さず傾斜した電位を示す請求項8又は9に記載のフロー電池。 The mediator, shows the sloped potential not show charge and discharge plateau in the charge-discharge curve, flow battery according to claim 8 or 9. 前記電極組成物は正極及び負極の電極組成物である、請求項1〜10のいずれか1項に記載のフロー電池。   The flow battery according to claim 1, wherein the electrode composition is a positive electrode and negative electrode composition. 前記電極組成物は正極及び負極の電極組成物であり、前記正極及び前記負極において前記メディエータが同種である、請求項1〜11のいずれか1項に記載のフロー電池。   The flow battery according to any one of claims 1 to 11, wherein the electrode composition is an electrode composition of a positive electrode and a negative electrode, and the mediator is the same in the positive electrode and the negative electrode. 前記電極組成物は正極の電極組成物であり、負極は金属亜鉛を備えている、請求項1〜5のいずれか1項に記載のフロー電池。   The flow battery according to claim 1, wherein the electrode composition is a positive electrode composition, and the negative electrode comprises metallic zinc. 前記電極組成物は、pHが3以上11以下である、請求項1〜13のいずれか1項に記載のフロー電池。   The flow battery according to any one of claims 1 to 13, wherein the electrode composition has a pH of 3 or more and 11 or less. 前記送液部は、前記メディエータ含有電解液を流動させて前記集電体に接触させる、請求項1〜14のいずれか1項に記載のフロー電池。   The flow battery according to claim 1, wherein the liquid feeding unit causes the mediator-containing electrolytic solution to flow and contact the current collector. 前記送液部は、前記電極組成物を流動させて前記集電体に接触させる、請求項1〜14のいずれか1項に記載のフロー電池。   The flow battery according to any one of claims 1 to 14, wherein the liquid feeding unit causes the electrode composition to flow and contact the current collector. 前記電極組成物は、導電材を含まない、請求項1〜16のいずれか1項に記載のフロー電池。   The flow battery according to claim 1, wherein the electrode composition does not include a conductive material. 請求項1〜17のいずれか1項に記載のフロー電池であって、
ケースと、
前記ケースの内部を正極室と負極室とに分離するセパレータと、
前記正極室に配設された正極集電体と、
を備え、
前記送液部は、前記電極組成物のうち少なくともメディエータ含有電解液を流動させて前記正極集電体に接触させる、フロー電池。
A flow battery according to any one of claims 1 to 17,
Case and
A separator that separates the inside of the case into a positive electrode chamber and a negative electrode chamber;
A positive electrode current collector disposed in the positive electrode chamber;
With
The liquid feeding unit is a flow battery in which at least a mediator-containing electrolytic solution of the electrode composition is caused to flow and contact with the positive electrode current collector.
請求項1〜18のいずれか1項に記載のフロー電池であって、
ケースと、
前記ケースの内部を正極と負極とに分離するセパレータと、
前記負極に配設された負極集電体と、
を備え、
前記送液部は、前記電極組成物のうち少なくともメディエータ含有電解液を流動させて前記負極集電体に接触させる、フロー電池。
The flow battery according to any one of claims 1 to 18,
Case and
A separator that separates the inside of the case into a positive electrode chamber and a negative electrode chamber ;
A negative electrode current collector disposed in the negative electrode chamber ;
With
The liquid feeding unit is a flow battery in which at least a mediator-containing electrolytic solution of the electrode composition is caused to flow and contact with the negative electrode current collector.
JP2014220246A 2014-10-29 2014-10-29 Flow battery Active JP6094558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014220246A JP6094558B2 (en) 2014-10-29 2014-10-29 Flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014220246A JP6094558B2 (en) 2014-10-29 2014-10-29 Flow battery

Publications (2)

Publication Number Publication Date
JP2016085955A JP2016085955A (en) 2016-05-19
JP6094558B2 true JP6094558B2 (en) 2017-03-15

Family

ID=55972324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014220246A Active JP6094558B2 (en) 2014-10-29 2014-10-29 Flow battery

Country Status (1)

Country Link
JP (1) JP6094558B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417184B (en) * 2016-07-01 2021-09-28 住友电气工业株式会社 Redox flow battery, electric quantity measuring system and electric quantity measuring method
CN108475804B (en) * 2016-07-19 2022-07-22 松下知识产权经营株式会社 Flow battery
JP6597678B2 (en) 2017-03-10 2019-10-30 株式会社豊田中央研究所 Electrolyte for negative electrode and flow battery
GB2562286B (en) * 2017-05-11 2020-01-15 Siemens Ag A reduction-oxidation flow battery
JP7122698B2 (en) 2017-09-11 2022-08-22 パナソニックIpマネジメント株式会社 flow battery
WO2019220845A1 (en) * 2018-05-17 2019-11-21 パナソニックIpマネジメント株式会社 Flow battery
WO2019230347A1 (en) 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 Flow battery
JP7207130B2 (en) * 2019-04-22 2023-01-18 トヨタ自動車株式会社 flow battery
CN111769300B (en) * 2020-02-28 2023-06-30 上海市机电设计研究院有限公司 Preparation method of aluminum-based copper-plated current collector for all-vanadium redox flow battery
CN111551610A (en) * 2020-04-07 2020-08-18 上海电气集团股份有限公司 Vanadium electrolyte concentration testing method, miniature vanadium battery and vanadium electrolyte concentration testing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575757B2 (en) * 2008-06-12 2014-08-20 マサチューセッツ インスティテュート オブ テクノロジー High energy density redox flow equipment
US8722226B2 (en) * 2008-06-12 2014-05-13 24M Technologies, Inc. High energy density redox flow device
GB2486719B (en) * 2010-12-23 2013-02-13 Acal Energy Ltd Fuel cells
EP2735048A4 (en) * 2011-07-21 2015-04-15 Univ Singapore A redox flow battery system
GB2503653A (en) * 2012-06-26 2014-01-08 Acal Energy Ltd Redox Battery use for polyoxometallate
KR20160088235A (en) * 2013-05-10 2016-07-25 유시카고 아곤, 엘엘씨 Rechargeable nanoelectrofuel electrodes and devices for high energy density flow batteries

Also Published As

Publication number Publication date
JP2016085955A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP6094558B2 (en) Flow battery
Huang et al. Cyclic voltammetry in lithium–sulfur batteries—challenges and opportunities
Zhang et al. An all-aqueous redox flow battery with unprecedented energy density
Akinwolemiwa et al. Fundamental consideration for electrochemical engineering of supercapattery
Hatzell et al. Materials for suspension (semi-solid) electrodes for energy and water technologies
Xu et al. A study of tiron in aqueous solutions for redox flow battery application
Wessells et al. Recent results on aqueous electrolyte cells
Milshtein et al. Voltammetry study of quinoxaline in aqueous electrolytes
Dewi et al. Cationic polysulfonium membrane as separator in zinc–air cell
WO2017020860A1 (en) Battery, battery set and uninterruptable power source
US10734667B2 (en) Negative electrode electrolyte solution and flow battery
CN106229498A (en) A kind of negative material being applicable to Water based metal ion battery and preparation method thereof
CN109309261A (en) Water system double ion secondary cell
Chen Supercapattery: Merit merge of capacitive and Nernstian charge storage mechanisms
JP2022535691A (en) Redox flow battery system and methods of manufacture and operation
US9972859B2 (en) Method for preparing cathode electrolyte for redox flow batteries, and redox flow battery
JP6766368B2 (en) Flow battery, storage battery and power supply system
CN103606703A (en) Lithium ion battery with uniform and stable current density
JP6662353B2 (en) Negative electrode current collector, negative electrode, and aqueous lithium ion secondary battery
Weng et al. High-voltage pH differential vanadium-hydrogen flow battery
JP7207130B2 (en) flow battery
CN111326778B (en) Neutral lithium-bromine flow battery
JP2014170715A (en) Cell
EP1843426A1 (en) Lithium rechargeable electrochemical cell
KR101466628B1 (en) Analysis Method of Metal Impurity By Electrochemical Method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R150 Certificate of patent or registration of utility model

Ref document number: 6094558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150