JP6093748B2 - Light flux controlling member, light emitting device, surface light source device, and display device - Google Patents

Light flux controlling member, light emitting device, surface light source device, and display device Download PDF

Info

Publication number
JP6093748B2
JP6093748B2 JP2014260688A JP2014260688A JP6093748B2 JP 6093748 B2 JP6093748 B2 JP 6093748B2 JP 2014260688 A JP2014260688 A JP 2014260688A JP 2014260688 A JP2014260688 A JP 2014260688A JP 6093748 B2 JP6093748 B2 JP 6093748B2
Authority
JP
Japan
Prior art keywords
light
flux controlling
controlling member
light flux
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014260688A
Other languages
Japanese (ja)
Other versions
JP2015121791A (en
Inventor
山口 昌男
昌男 山口
康幸 福田
康幸 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2014260688A priority Critical patent/JP6093748B2/en
Publication of JP2015121791A publication Critical patent/JP2015121791A/en
Application granted granted Critical
Publication of JP6093748B2 publication Critical patent/JP6093748B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光束制御部材、発光装置、面光源装置、及び表示装置に関する。   The present invention relates to a light flux controlling member, a light emitting device, a surface light source device, and a display device.

従来から、パーソナルコンピュータやテレビジョン等に使用される液晶表示モニタの照明手段として、複数の発光ダイオード(LED)を点光源として使用した面光源装置が知られている。   2. Description of the Related Art Conventionally, a surface light source device using a plurality of light emitting diodes (LEDs) as point light sources is known as illumination means for a liquid crystal display monitor used in personal computers, televisions, and the like.

面光源装置は、液晶表示モニタの液晶表示パネルとほぼ同形状の板状の光束制御部材の裏面側に複数のLEDをマトリックス状に配置する。面光源装置は、LEDから出射された光を光束制御部材の内部に入射させ、光束制御部材から光を出射させる際に光の進行方向を制御する。そして、面光源装置は、光束制御部材から出射された光を光拡散部材により拡散した後、液晶表示パネルを背面側から面状に照明する。   In the surface light source device, a plurality of LEDs are arranged in a matrix on the back side of a plate-shaped light flux controlling member having substantially the same shape as the liquid crystal display panel of the liquid crystal display monitor. The surface light source device causes the light emitted from the LED to enter the inside of the light flux control member, and controls the traveling direction of the light when the light is emitted from the light flux control member. The surface light source device diffuses the light emitted from the light flux controlling member by the light diffusing member, and then illuminates the liquid crystal display panel in a planar shape from the back side.

特許文献1には、光学素子を透過した光が平面に対して略垂直に出射する平面光源が記載されている。図1は、特許文献1記載のLEDを光源とした面光源装置を模式的に示す図である。   Patent Document 1 describes a planar light source in which light transmitted through an optical element is emitted substantially perpendicularly to a plane. FIG. 1 is a diagram schematically showing a surface light source device using an LED described in Patent Document 1 as a light source.

図1に示すように、面光源装置100には、複数のLED101のそれぞれに一対一で対応するようにマイクロレンズアレイ102が配置される。マイクロレンズアレイ102が、LED101から出射された光の進行方向を制御することにより、面光源装置100は、基板平面に垂直な方向(上方)に光を出射する。   As shown in FIG. 1, in the surface light source device 100, a microlens array 102 is disposed so as to correspond to each of the plurality of LEDs 101 on a one-to-one basis. When the microlens array 102 controls the traveling direction of the light emitted from the LED 101, the surface light source device 100 emits light in a direction (upward) perpendicular to the substrate plane.

特許文献2には、レンズケースの凸部の内部に空洞部が形成され、空洞部より外周に、発光素子から横方向に出射する光を凸部の方に反射させる傾斜面を有する空隙部が形成された表示装置が記載されている。   In Patent Document 2, a hollow portion is formed inside the convex portion of the lens case, and a void portion having an inclined surface that reflects light emitted from the light emitting element in the lateral direction toward the convex portion on the outer periphery from the hollow portion. A formed display device is described.

図2は、特許文献2記載の表示装置を示す構成図である。図2に示すように、マトリックス表示装置130には、表示パネル基板131上に発光素子132がマトリックス状に配列され、発光素子132の表面側にレンズケース133が配置される。レンズケース133には、表示パネル基板131上に密着するように載置される。レンズケース133は、発光素子132に対応する位置に略半球状の凸部134と、凸部134の内部に発光素子132を内包する空洞部135とが形成される。空洞部135の側壁は、発光素子132から出射された光を正面側(図2の上方側)へ向かうように屈折させて取り込む。発光素子132から出射された光の入射面は、空洞部135の側壁のみである。また、レンズケース133には、発光素子132を内包する空洞部135の周囲に空隙部136が形成される。空隙部136は、発光素子132から横方向に出射された後にレンズケース133内に取り込まれた光を空隙部136の傾斜面137及び絶縁基板138によって正面側へ向けて全反射する。これにより、マトリックス表示装置130の正面側の照明光輝度が大きくなる。   FIG. 2 is a configuration diagram showing a display device described in Patent Document 2. As shown in FIG. As shown in FIG. 2, in the matrix display device 130, light emitting elements 132 are arranged in a matrix on the display panel substrate 131, and a lens case 133 is disposed on the surface side of the light emitting elements 132. The lens case 133 is placed in close contact with the display panel substrate 131. In the lens case 133, a substantially hemispherical convex portion 134 is formed at a position corresponding to the light emitting element 132, and a hollow portion 135 that encloses the light emitting element 132 is formed inside the convex portion 134. The side wall of the cavity 135 takes in the light emitted from the light emitting element 132 by being refracted toward the front side (the upper side in FIG. 2). The incident surface of the light emitted from the light emitting element 132 is only the side wall of the cavity portion 135. In the lens case 133, a gap 136 is formed around a cavity 135 that encloses the light emitting element 132. The gap 136 totally reflects light, which is emitted from the light emitting element 132 in the lateral direction and then taken into the lens case 133, toward the front side by the inclined surface 137 and the insulating substrate 138 of the gap 136. Thereby, the illumination light luminance on the front side of the matrix display device 130 is increased.

特開2002−49326号公報JP 2002-49326 A 特開2001−250986号公報JP 2001-250986 A

しかしながら、このような従来の面光源装置には、光束制御部材の裏面(基板に対向する面)に、発光素子から出射された光が入射され、光束制御部材がこの光を集光して出射してしまうため、被照射面に照度ムラが発生するという課題があった。照度ムラは、均一な面状照明の妨げとなり、照明品質を低下させる。   However, in such a conventional surface light source device, the light emitted from the light emitting element is incident on the back surface (the surface facing the substrate) of the light flux control member, and the light flux control member collects and emits this light. Therefore, there is a problem that unevenness in illuminance occurs on the irradiated surface. Illuminance unevenness hinders uniform planar illumination and degrades illumination quality.

本発明は、かかる点に鑑みてなされたものであり、照度ムラを抑制することができる光束制御部材、発光装置、面光源装置、及び表示装置を提供することを目的とする。   This invention is made | formed in view of this point, and it aims at providing the light beam control member, light-emitting device, surface light source device, and display apparatus which can suppress illumination intensity nonuniformity.

本発明の光束制御部材は、発光素子から出射された光の進行方向を制御する光束制御部材であって、発光素子から出射された光の進行方向を制御する光制御出射面と、前記光制御出射面の反対側に位置する凹みと、前記凹みの開口縁部から径方向に延在する裏面と、を有し、前記裏面には、複数の線条の凸部を格子状に配置した格子状凸部、または、複数の線条の凹部を格子状に配置した格子状凹部が形成されており、前記線条の凸部または前記線条の凹部は、線条の延在方向に対して直交する断面形状が、三角形状、頂部にR面取を施した三角形状、または半円形状であり、前記光制御出射面は、前記発光素子の光軸と交わるように配置された前記凹み側に凸の曲面である第1の出射面と、前記第1の出射面の周囲に連続して配置された前記裏面の反対側に凸の曲面である第2の出射面と、を含む、構成を採る。
本発明の発光装置は、光を出射する発光素子と、前記発光素子と前記凹みとが対向し、かつ前記第1の出射面が前記発光素子の光軸と交わるように配置された上記光束制御部材と、を有する、構成を採る。
The light flux controlling member of the present invention is a light flux controlling member for controlling the traveling direction of the light emitted from the light emitting element, the light control emitting surface for controlling the traveling direction of the light emitted from the light emitting element, and the light control. A grid having a recess located on the opposite side of the exit surface and a back surface extending in a radial direction from an opening edge of the recess, and on the back surface, a plurality of projections of a plurality of filaments are arranged in a grid pattern A grid-like convex part or a grid-like concave part in which concave parts of a plurality of filaments are arranged in a grid pattern, and the convex part of the filaments or the concave part of the filaments is in the extending direction of the filaments. The orthogonal cross-sectional shape is a triangular shape, a triangular shape with an R chamfered at the top, or a semicircular shape, and the light control emitting surface is disposed on the side of the recess that intersects with the optical axis of the light emitting element. A first exit surface that is a convexly curved surface, and a front surface continuously disposed around the first exit surface On the opposite side of the back surface includes a second exit surface which is convex curved surface, and a configuration.
The light-emitting device of the present invention is a light-emitting element that emits light, the light flux control that is arranged such that the light-emitting element and the recess face each other, and the first emission surface intersects the optical axis of the light-emitting element. And a member.

本発明の面光源装置は、上記発光装置と、前記発光装置から出射された光を拡散・透過する光拡散部材と、を有する構成を採る。   The surface light source device of the present invention employs a configuration having the light emitting device and a light diffusing member that diffuses and transmits light emitted from the light emitting device.

本発明の表示装置は、上記面光源装置と、前記面光源装置からの光が照射される被照明部材と、を有する構成を採る。   The display apparatus of this invention takes the structure which has the said surface light source device and the to-be-illuminated member to which the light from the said surface light source device is irradiated.

本発明によれば、発光素子から出射される光のうち光束制御部材の裏面に入射される光を散乱させることができる。その結果、照度ムラを抑制して、光束制御部材から光が照射される被照射面の照度を均一にすることができ、高品位な照明品質を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the light which injects into the back surface of a light beam control member among the lights radiate | emitted from a light emitting element can be scattered. As a result, illuminance unevenness can be suppressed, the illuminance of the irradiated surface irradiated with light from the light flux controlling member can be made uniform, and high-quality illumination quality can be obtained.

従来のLEDを光源とした面光源装置を模式的に示す図The figure which shows typically the surface light source device which used the conventional LED as the light source. 従来の表示装置を示す構成図Configuration diagram showing a conventional display device 本発明の基本原理を説明する図Diagram for explaining the basic principle of the present invention 本発明の実施の形態1に係る表示装置を構成する面光源装置の平面図The top view of the surface light source device which comprises the display apparatus which concerns on Embodiment 1 of this invention. 図4のX1−X1線に沿って切断して示す表示装置の断面図Sectional drawing of the display apparatus cut | disconnected and shown along the X1-X1 line | wire of FIG. 本発明の実施の形態1に係る面光源装置の光束制御部材の平面図The top view of the light beam control member of the surface light source device which concerns on Embodiment 1 of this invention 本発明の実施の形態1に係る面光源装置の光束制御部材の断面図Sectional drawing of the light beam control member of the surface light source device which concerns on Embodiment 1 of this invention 本発明の実施の形態1に係る面光源装置の光束制御部材の底面図The bottom view of the light beam control member of the surface light source device which concerns on Embodiment 1 of this invention 本発明の実施の形態1に係る面光源装置の光束制御部材の裏面の一部を切り取って格子状凸部の構造を模式的に示す斜視図The perspective view which cuts off a part of back surface of the light beam control member of the surface light source device which concerns on Embodiment 1 of this invention, and shows the structure of a grid | lattice-like convex part typically 本発明の実施の形態1に係る面光源装置の光束制御部材の裏面に格子状凸部が形成された光束制御部材の作用を説明する図The figure explaining the effect | action of the light beam control member by which the grid | lattice-like convex part was formed in the back surface of the light beam control member of the surface light source device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る面光源装置の光束制御部材の裏面が平滑面である光束制御部材の作用を説明する図The figure explaining the effect | action of the light beam control member whose back surface of the light beam control member of the surface light source device which concerns on Embodiment 1 of this invention is a smooth surface. 本発明の実施の形態1に係る面光源装置の光束制御部材の照射面の光の照度分布を示す図The figure which shows the illumination intensity distribution of the light of the irradiation surface of the light beam control member of the surface light source device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る面光源装置の光束制御部材の裏面に形成される凸部を説明する図The figure explaining the convex part formed in the back surface of the light beam control member of the surface light source device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る面光源装置の光束制御部材の裏面に形成される凸部と散乱光を説明する図The figure explaining the convex part and scattered light which are formed in the back surface of the light beam control member of the surface light source device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る面光源装置の光束制御部材の裏面に形成される凸部と散乱光を説明する図The figure explaining the convex part and scattered light which are formed in the back surface of the light beam control member of the surface light source device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る面光源装置の光束制御部材の裏面に形成される凸部と散乱光を説明する図The figure explaining the convex part and scattered light which are formed in the back surface of the light beam control member of the surface light source device which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る発光装置の光束制御部材の断面図Sectional drawing of the light beam control member of the light-emitting device concerning Embodiment 2 of this invention 本発明の実施の形態2に係る発光装置の裏面の一部を切り取って格子状凸部の構造を模式的に示す斜視図The perspective view which cuts off a part of back surface of the light-emitting device which concerns on Embodiment 2 of this invention, and shows the structure of a grid | lattice-like convex part typically 本発明の実施の形態3に係る発光装置の光束制御部材の断面図Sectional drawing of the light beam control member of the light-emitting device which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る発光装置の光束制御部材の裏面において光が再帰反射される様子を説明する図The figure explaining a mode that light is retroreflected in the back surface of the light beam control member of the light-emitting device concerning Embodiment 3 of this invention. 本発明の実施の形態3に係る発光装置の光束制御部材の裏面において光が再帰反射される様子を説明する図The figure explaining a mode that light is retroreflected in the back surface of the light beam control member of the light-emitting device concerning Embodiment 3 of this invention. 本発明の実施の形態3に係る発光装置の効果を検証するために行ったシミュレーションの結果を示す図The figure which shows the result of the simulation performed in order to verify the effect of the light-emitting device which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る発光装置の光束制御部材のバリエーションを示す図The figure which shows the variation of the light beam control member of the light-emitting device which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る発光装置の光束制御部材の断面図Sectional drawing of the light beam control member of the light-emitting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る発光装置のバリーション1の光束制御部材の裏面の一部を切り取って格子状凸部の構造を模式的に示す図The figure which cuts off part of the back surface of the light beam control member of the variation 1 of the light-emitting device concerning Embodiment 5 of this invention, and shows the structure of a grid | lattice-like convex part typically 本発明の実施の形態5に係る発光装置のバリーション2の光束制御部材の裏面の一部を切り取って格子状凹部の構造を模式的に示す図The figure which cuts off part of the back surface of the light beam control member of the variation 2 of the light-emitting device concerning Embodiment 5 of this invention, and shows the structure of a grid | lattice-like recessed part typically 本発明の実施の形態5に係る発光装置のバリーション3の光束制御部材の裏面の一部を切り取って格子状凸部の構造を模式的に示す図The figure which cuts off part of the back surface of the light beam control member of the variation 3 of the light-emitting device concerning Embodiment 5 of this invention, and shows the structure of a grid | lattice-like convex part typically

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(原理説明)
本発明の基本的な考え方を説明する。
(Principle explanation)
The basic concept of the present invention will be described.

図3は、本発明の基本原理を説明する図である。   FIG. 3 is a diagram for explaining the basic principle of the present invention.

従来は、光束制御部材の裏面から入射する光については配慮されていなかった。本発明者らの実験により、光束制御部材の裏面から、光束制御部材内部にこのような光が入射すると、光束制御部材がこの光を集光して出射することにより被照射面に照度ムラが発生することが判明した。但し、光束制御部材の裏面を単に粗面にするだけでは、照度ムラの発生を防止することができない知見が得られた。   Conventionally, no consideration has been given to light incident from the back surface of the light flux controlling member. As a result of experiments by the present inventors, when such light enters the light flux control member from the back surface of the light flux control member, the light flux control member condenses and emits this light, thereby causing uneven illumination on the irradiated surface. It was found to occur. However, it has been found that the illuminance unevenness cannot be prevented by simply making the back surface of the light flux controlling member rough.

そこで、本発明者らは、発光素子から光束制御部材の裏面に入射される光を散乱させるために、光束制御部材の裏面に複数の凸部または複数の凹部を格子状に形成する構成を見出した。この構成は、以下の特徴を有する。   Therefore, the present inventors have found a configuration in which a plurality of convex portions or a plurality of concave portions are formed in a lattice shape on the back surface of the light flux controlling member in order to scatter light incident on the back surface of the light flux controlling member from the light emitting element. It was. This configuration has the following characteristics.

図3は光束制御部材を配置する際の目安となる座標軸を示す。XYZ直交座標の原点Oに発光素子の出射面上の1点である発光点を配置し、原点Oから離れたXY平面と平行な面S上に光束制御部材の裏面を光束制御部材の基準光軸がZ軸と一致するように配置する。そして、光束制御部材の基準光軸と面Sとの交点を点P0とした場合に、原点Oを頂点とする仮想錘形状の錘面と前記面Sとの交線上の点P1、及びZ軸を回転軸として点P1をθ1=45度回転させた点P2を原点Oから出射した光の入射点とする。例えば、光束制御部材の裏面に、線P0−P1と直交方向に稜線が延びるように、複数の線条の凸部(突条)または線条の凹部(溝)を格子状に形成すれば、原点Oから出射される光を異方的に屈折させることができる。そして、点P1から入射した光が面Sと平行な被照射面S’へ到達する点の基準光軸からの距離L1と、点P2から入射した光が被照射面S’へ到達する点の基準光軸からの距離L2とが異なる。これにより、円環状の特異的な明部が被照射面上に発生することを抑制することができる。   FIG. 3 shows coordinate axes that serve as a guide when arranging the light flux controlling member. A light emitting point, which is one point on the emission surface of the light emitting element, is arranged at the origin O of the XYZ orthogonal coordinates, and the back surface of the light flux controlling member is placed on the surface S parallel to the XY plane away from the origin O and the reference light of the light flux controlling member. Arrange so that the axis coincides with the Z-axis. When the intersection point between the reference optical axis of the light flux controlling member and the surface S is a point P0, the point P1 on the intersection line between the virtual weight-shaped weight surface having the origin O as the vertex and the surface S, and the Z axis Is a point P2 obtained by rotating the point P1 by θ1 = 45 degrees with respect to the rotation axis as an incident point of light emitted from the origin O. For example, on the back surface of the light flux controlling member, if a plurality of projections (protrusions) or strip recesses (grooves) are formed in a lattice shape so that the ridge line extends in a direction orthogonal to the line P0-P1, Light emitted from the origin O can be refracted anisotropically. And the distance L1 from the reference optical axis of the point where the light incident from the point P1 reaches the irradiated surface S ′ parallel to the surface S, and the point where the light incident from the point P2 reaches the irradiated surface S ′. The distance L2 from the reference optical axis is different. Thereby, it can suppress that a ring-shaped specific bright part generate | occur | produces on a to-be-irradiated surface.

(実施の形態1)
〔面光源装置の全体形状〕
図4は、上記基本的な考え方に基づく実施の形態1に係る表示装置を構成する面光源装置の平面図である。なお、図4では、液晶表示パネル等の被照明部材を図示していない。図5は、図4の表示装置をX1−X1線に沿って切断した断面図である。なお、本実施の形態の面光源装置は、液晶表示パネルに適用した例である。
(Embodiment 1)
[Overall shape of surface light source device]
FIG. 4 is a plan view of the surface light source device constituting the display device according to Embodiment 1 based on the above basic concept. In FIG. 4, a member to be illuminated such as a liquid crystal display panel is not shown. FIG. 5 is a cross-sectional view of the display device of FIG. 4 taken along line X1-X1. The surface light source device of this embodiment is an example applied to a liquid crystal display panel.

図4に示すように、面光源装置1は、板状の光拡散部材2と、点光源としての発光素子3と、光束制御部材4と、を備える。光拡散部材2は、液晶表示パネル等の被照明部材の背面に配置され、被照明部材とほぼ同形状である。発光素子3は、光拡散部材2の裏面側にほぼ等間隔のピッチPで複数配置される。光束制御部材4は、発光素子3から出射された光束の進行方向を制御する。   As shown in FIG. 4, the surface light source device 1 includes a plate-like light diffusing member 2, a light emitting element 3 as a point light source, and a light flux controlling member 4. The light diffusing member 2 is disposed on the back surface of an illuminated member such as a liquid crystal display panel and has substantially the same shape as the illuminated member. A plurality of light emitting elements 3 are arranged on the back surface side of the light diffusing member 2 at substantially equal intervals P. The light beam control member 4 controls the traveling direction of the light beam emitted from the light emitting element 3.

上記発光素子3及び光束制御部材4は、発光装置5を構成する。   The light emitting element 3 and the light flux controlling member 4 constitute a light emitting device 5.

図5に示すように、表示装置6は、面光源装置1と、光拡散部材2の出射面8(裏面9と反対側の面)側に配置された被照明部材7とから構成される。   As shown in FIG. 5, the display device 6 includes the surface light source device 1 and a member 7 to be illuminated that is disposed on the light emission surface 8 (surface opposite to the back surface 9) side of the light diffusing member 2.

光拡散部材2は、光透過性に優れたPMMA(ポリメタクリル酸メチル)やPC(ポリカーボネート)等の樹脂材料によってシート状あるいは平板形状に形成される。光拡散部材2は、液晶表示パネル,広告表示パネル,標識表示パネル等の被照明部材の平面形状とほぼ同様の大きさに形成される。   The light diffusing member 2 is formed into a sheet shape or a flat plate shape using a resin material such as PMMA (polymethyl methacrylate) or PC (polycarbonate) having excellent light transmittance. The light diffusing member 2 is formed in substantially the same size as the planar shape of a member to be illuminated such as a liquid crystal display panel, an advertisement display panel, or a sign display panel.

光拡散部材2の表面には、微細な凹凸(プリズム状突起、エンボス加工やビーズコートによる拡散処理で形成される凹凸)が形成される、又は、光拡散部材2の内部に拡散材が混入される。   On the surface of the light diffusing member 2, fine irregularities (prism-like protrusions, irregularities formed by embossing or diffusion processing by bead coating) are formed, or a diffusing material is mixed inside the light diffusing member 2. The

この加工により、光拡散部材2は、光束制御部材4の光制御出射面11(図6参照)から出射した光を透過しながら拡散し、被照明部材に照射される光を均一化する。   By this processing, the light diffusing member 2 diffuses while transmitting the light emitted from the light control emitting surface 11 (see FIG. 6) of the light flux controlling member 4, and uniformizes the light irradiated to the illuminated member.

発光素子3は、例えばLEDである。発光素子3は、光拡散部材2の裏面側にマトリックス状に配置される。   The light emitting element 3 is, for example, an LED. The light emitting elements 3 are arranged in a matrix on the back side of the light diffusing member 2.

光束制御部材4は、発光素子3から出射された光の進行方向を制御する拡散レンズであり、例えば非球面レンズである。光束制御部材4は、例えば、PMMA(ポリメタクリル酸メチル),PC(ポリカーボネート),EP(エポキシ樹脂)等の透明樹脂材料、又は透明なガラスにより形成される。   The light flux controlling member 4 is a diffusing lens that controls the traveling direction of the light emitted from the light emitting element 3, and is, for example, an aspheric lens. The light flux controlling member 4 is made of, for example, a transparent resin material such as PMMA (polymethyl methacrylate), PC (polycarbonate), EP (epoxy resin), or transparent glass.

〔光束制御部材4の全体形状〕
図6乃至図8は、上記光束制御部材4の詳細な構成を示す図である。図6は、その平面図、図7(a)は図6のA−A’矢視断面図、図7(b)は図7(a)のC部拡大図、図8は上記光束制御部材4の底面図である。
[Overall shape of light flux controlling member 4]
6 to 8 are diagrams showing a detailed configuration of the light flux controlling member 4. 6 is a plan view thereof, FIG. 7A is a cross-sectional view taken along the line AA ′ in FIG. 6, FIG. 7B is an enlarged view of a portion C in FIG. 7A, and FIG. 4 is a bottom view of FIG.

図7は、発光素子3の基準光軸Lを含む光束制御部材4の形状を説明する図である。基準光軸Lとは、光束の代表となる仮想的な光線であって、発光素子3から出射される立体的な光束の中心における光の進行方向をいう。本実施の形態では、発光素子3の光軸(発光素子3の光学的な中心軸)と基準光軸Lが一致している場合を例に説明する。   FIG. 7 is a view for explaining the shape of the light flux controlling member 4 including the reference optical axis L of the light emitting element 3. The reference optical axis L is a virtual light beam that is representative of the light beam, and refers to the traveling direction of light at the center of the three-dimensional light beam emitted from the light emitting element 3. In the present embodiment, a case where the optical axis of the light emitting element 3 (the optical central axis of the light emitting element 3) and the reference optical axis L are described as an example.

図6乃至図8に示すように、光束制御部材4は、光制御出射面11と、裏面12と、凹み14と、を有する。光制御出射面11は、発光素子3から出射され、光束制御部材4の内部に入射された光を出射する際の出射方向を制御する。凹み14は、発光素子3から出射された光のうち基準光軸方向に対して所定の角度の範囲内に出射された光である主光線を内部へ入射させる。裏面12は、凹み14の開口縁部から径方向に延在し、基準光軸に対して大きな角度で発光素子3から出射された、上記主光線以外の光である副光線を内部へ入射させる。裏面12には、発光素子3から光束制御部材4の裏面12に入射される光を散乱させる格子状凸部13を形成する。   As shown in FIGS. 6 to 8, the light flux controlling member 4 has a light control emitting surface 11, a back surface 12, and a recess 14. The light control emission surface 11 controls the emission direction when emitting the light emitted from the light emitting element 3 and incident on the light flux controlling member 4. The dent 14 allows the principal ray, which is light emitted within a predetermined angle range with respect to the reference optical axis direction, out of the light emitted from the light emitting element 3 to enter the inside. The back surface 12 extends in the radial direction from the opening edge of the recess 14 and makes a sub-light, which is light other than the principal light, emitted from the light-emitting element 3 at a large angle with respect to the reference optical axis, enter the inside. . On the back surface 12, lattice-like convex portions 13 that scatter light incident on the back surface 12 of the light flux controlling member 4 from the light emitting element 3 are formed.

また、光束制御部材4は、光制御出射面11の径方向外方側に突出する略円環状の鍔部15と、光束制御部材4を基板18(図5参照)に位置決めした状態で取り付ける丸棒状の脚16と、脚16の位置決めを案内する突起17とを備える。   The light flux controlling member 4 is a round that is attached in a state where the light flux controlling member 4 is positioned on the substrate 18 (see FIG. 5), and a substantially annular flange 15 that projects radially outward of the light control emitting surface 11. A rod-shaped leg 16 and a protrusion 17 for guiding the positioning of the leg 16 are provided.

光制御出射面11は、図7(a)に示すように、鍔部15よりも上方(光拡散部材2側)へ向けて突出する。   As shown in FIG. 7A, the light control emission surface 11 protrudes upward (to the light diffusing member 2 side) from the flange portion 15.

脚16は、鍔部15の内周面の同心円周上に等間隔で3個形成されている。突起17は、3個の脚16位置に対応し、鍔部15の径方向外方側に突出して形成されている。   Three legs 16 are formed at equal intervals on the concentric circumference of the inner peripheral surface of the flange 15. The protrusion 17 corresponds to the positions of the three legs 16 and is formed to protrude outward in the radial direction of the flange portion 15.

光束制御部材4は、基板18に対して位置決めされた状態で、脚16が基板18の表面18a(図5参照)に接着されることにより、基板18に取り付けられる。   The light flux controlling member 4 is attached to the substrate 18 by the legs 16 being bonded to the surface 18 a (see FIG. 5) of the substrate 18 while being positioned with respect to the substrate 18.

光束制御部材4を基板18に取り付ける際に、発光素子3の発光面と光束制御部材4の裏面12(基準面)との間に隙間εが形成される(図5参照)。隙間εが形成される理由としては、例えば、凹み14に発光素子3が収容されるように光束制御部材4を基板18上へ載置する際の取付誤差のためという消極的理由や、発光素子3から発する熱を放熱する目的等の積極的理由がある。   When the light flux controlling member 4 is attached to the substrate 18, a gap ε is formed between the light emitting surface of the light emitting element 3 and the back surface 12 (reference surface) of the light flux controlling member 4 (see FIG. 5). The reason why the gap ε is formed is, for example, a negative reason for mounting errors when the light flux controlling member 4 is placed on the substrate 18 so that the light emitting element 3 is accommodated in the recess 14, or a light emitting element There is a positive reason such as the purpose of radiating the heat generated from 3.

〔光束制御部材4の光制御出射面11〕
光束制御部材4の光制御出射面11は、光軸Lを中心とする所定範囲に位置する第1の出射面11aと、第1の出射面11aの周囲に連続して形成される第2の出射面11bと、第2の出射面11bと鍔部15とを接続する第3の出射面11cとからなる。
[Light Control Exit Surface 11 of Light Beam Control Member 4]
The light control exit surface 11 of the light flux controlling member 4 has a first exit surface 11a located in a predetermined range centered on the optical axis L, and a second formed continuously around the first exit surface 11a. It consists of an exit surface 11b and a third exit surface 11c that connects the second exit surface 11b and the flange 15.

図7(a)に示すように、第1の出射面11aは、下に凸の滑らかな曲面形状であり、球の一部を切り取ったような凹み形状に形成されている。また、第2の出射面11bは、第1の出射面11aに連続して形成され、上に凸の滑らかな曲面形状であり、平面形状が第1の出射面11aを取り囲む略中空円板形状に形成されている。また、第3の出射面11cは、第2の出射面11bに連続して形成され、断面がほぼ直線状の傾斜面として形成されている。なお、第3の出射面11cは、光束制御部材4からの広範囲かつ均一な出射を妨げる形状でなければ曲線状に形成されてもよい。   As shown in FIG. 7A, the first emission surface 11a has a smooth curved surface convex downward, and is formed in a concave shape obtained by cutting off a part of a sphere. Further, the second emission surface 11b is formed in a continuous shape with the first emission surface 11a, has a smooth curved surface shape that is convex upward, and has a substantially hollow disk shape in which the planar shape surrounds the first emission surface 11a. Is formed. Moreover, the 3rd output surface 11c is formed continuously with the 2nd output surface 11b, and the cross section is formed as a substantially linear inclined surface. The third exit surface 11c may be formed in a curved shape as long as the third exit surface 11c does not obstruct a wide and uniform exit from the light flux controlling member 4.

〔光束制御部材4の格子状凸部13〕
上述したように、光束制御部材4は、基板18上に脚16により支持され、光束制御部材4の裏面12と発光素子3の発光面との間には、放熱等を目的とした隙間εが形成されている。この隙間εが形成されているために、発光素子3の発光面から出射された光の一部が、光束制御部材4の裏面12から、光束制御部材4内部に入射する。裏面12が平滑面である場合、光束制御部材4の裏面12すなわちレンズ底面に到達した光は、基準光軸L寄りに屈折されて光束制御部材4内部に入射し、光制御出射面11から出射する。この出射光は、光束制御部材4にとって滑らかに広げて出射するように制御可能な光ではなく、平滑な裏面12及び光制御出射面11を経由することによって意図せず集光してしまい、被照射面に円環状の明部を生じさせ照度ムラとなる(図12(b)により後述する)。
[Lattice-like convex portion 13 of light flux controlling member 4]
As described above, the light flux controlling member 4 is supported on the substrate 18 by the legs 16, and a gap ε for heat dissipation or the like is provided between the back surface 12 of the light flux controlling member 4 and the light emitting surface of the light emitting element 3. Is formed. Since the gap ε is formed, a part of the light emitted from the light emitting surface of the light emitting element 3 enters the light flux controlling member 4 from the back surface 12 of the light flux controlling member 4. When the back surface 12 is a smooth surface, the light reaching the back surface 12 of the light beam control member 4, that is, the lens bottom surface, is refracted near the reference optical axis L, enters the light beam control member 4, and exits from the light control light output surface 11. To do. The emitted light is not light that can be controlled so as to be smoothly spread and emitted by the light flux controlling member 4, but is unintentionally condensed by passing through the smooth back surface 12 and the light-controlled emitting surface 11, and is subject to being covered. An annular bright portion is formed on the irradiated surface, resulting in uneven illuminance (described later with reference to FIG. 12B).

本実施の形態は、光束制御部材4の裏面12に格子状凸部13を形成し、格子状凸部13によって光束制御部材4の裏面12に入射する光を散乱させる。すなわち、裏面12上における任意の光入射点P1から入射した光線と、この光入射点を基準光軸Lを回転軸として45度回転させて得られる光入射点P2から入射した光線とでは、各光入射点における裏面12の法線に対する角度が異なる。したがって、基準光軸Lを回転軸として光入射点P1を360度回転させて得られる軌跡上の各点から入射する光によって得られる被照射部(被照射面に到達する光が被照射面に描く軌跡)は円環状にはならず、広い範囲に散乱する。   In the present embodiment, a lattice-like convex portion 13 is formed on the back surface 12 of the light flux controlling member 4, and light incident on the back surface 12 of the light flux controlling member 4 is scattered by the lattice-like convex portion 13. That is, a light beam incident from an arbitrary light incident point P1 on the back surface 12 and a light beam incident from a light incident point P2 obtained by rotating the light incident point by 45 degrees about the reference optical axis L as a rotation axis, The angle with respect to the normal line of the back surface 12 at the light incident point is different. Therefore, the irradiated portion (light reaching the irradiated surface is irradiated on the irradiated surface obtained by light incident from each point on the locus obtained by rotating the light incident point P1 360 degrees with the reference optical axis L as the rotation axis. The trajectory to be drawn is not circular but scattered over a wide range.

なお、格子状凸部13の各線条の形状は、光束制御部材4の裏面12に入射する光を十分に散乱することができるものであればよく、突条の延びる方向に対して直交する断面形状が、三角形状、頂部にR面取を施した三角形状、半円形状でもよく、更にこれら線条間の溝部にR形状を付加してもよい。また、光束制御部材4を金型から転写する転写性を考慮すると、格子状凸部13の各突部は曲面であることが好ましいが、光を光軸方向に屈折させないという目的からすると断面三角形状が好ましい。また、本発明者らの実験により、光束制御部材4の裏面12に入射する光を十分に散乱するには、凸部を格子状に配置することが好ましいことが判明した。   In addition, the shape of each filament of the grid | lattice-shaped convex part 13 should just be able to fully scatter the light which injects into the back surface 12 of the light beam control member 4, and is a cross section orthogonal to the direction where a protrusion extends. The shape may be a triangular shape, a triangular shape having a chamfered chamfer at the top, or a semicircular shape, and an R shape may be added to a groove between these filaments. In consideration of transferability for transferring the light flux controlling member 4 from the mold, each protrusion of the grid-like convex portion 13 is preferably a curved surface, but for the purpose of preventing light from being refracted in the optical axis direction, a triangular cross section is used. Shape is preferred. In addition, it has been found by experiments by the present inventors that the convex portions are preferably arranged in a lattice pattern in order to sufficiently scatter the light incident on the back surface 12 of the light flux controlling member 4.

図7(a)及び図8に示すように、光束制御部材4の裏面12には、格子状凸部13が形成される。格子状凸部13は、(1)凸部であること、(2)格子状であることのそれぞれに特徴がある。   As shown in FIG. 7A and FIG. 8, lattice-like convex portions 13 are formed on the back surface 12 of the light flux controlling member 4. The grid-like convex portion 13 is characterized in that (1) it is a convex portion and (2) it is in a grid shape.

(1)凸部
図7(b)に示すように、格子状凸部13は、光束制御部材4の裏面12から外方に向かって突出した複数の線条の凸部13aを、それらの稜線が平行となるように並べ、これらと直交する複数の線条の凸部13b(後述する図9参照)をそれらの稜線が平行となるように並べることにより形成される。線条の延在方向に直交する凸部13aの断面形状は、半円に近い形であり、頂部をR形状で面取りした三角形状である。例えば、凸部13aの底面長さは0.5mm、線条を形成する傾斜面の底角は45°、先端のRは0.2mmである。凸部13aの傾斜角度は、45°より小さくてもよいが、光束制御部材4の裏面12に入射する光を散乱させる目的からすると凸部13aの傾斜角度は45°以上であることが好ましい。
(1) Convex portion As shown in FIG. 7 (b), the lattice-like convex portion 13 includes a plurality of linear convex portions 13 a protruding outward from the back surface 12 of the light flux controlling member 4, and their ridge lines. Are arranged so that they are parallel to each other, and convex portions 13b (see FIG. 9 to be described later) orthogonal to these are arranged so that their ridgelines are parallel. The cross-sectional shape of the convex portion 13a orthogonal to the extending direction of the filament is a shape close to a semicircle, and is a triangular shape with the top chamfered in an R shape. For example, the length of the bottom surface of the convex portion 13a is 0.5 mm, the bottom angle of the inclined surface forming the filament is 45 °, and the tip R is 0.2 mm. Although the inclination angle of the convex portion 13a may be smaller than 45 °, the inclination angle of the convex portion 13a is preferably 45 ° or more for the purpose of scattering light incident on the back surface 12 of the light flux controlling member 4.

格子状凸部13は、光束制御部材4の裏面12に、光束制御部材4本体と共に、PMMA,PC,EP等の透明樹脂材料を用いて、金型から転写されて一体形成される。このため、凸部13aの傾斜角度が大きい場合、成形時に必要な転写精度を得るためには、樹脂や金型を高温にして転写しやすくしたり、ヒケを抑制するために十分に保圧をかけたりする必要があるため、冷却時間や保圧時間に時間を要し、コスト増大を招く虞がある。   The lattice-shaped convex portion 13 is integrally formed on the back surface 12 of the light flux controlling member 4 by being transferred from a mold using a transparent resin material such as PMMA, PC, EP together with the light flux controlling member 4 body. For this reason, when the inclination angle of the convex portion 13a is large, in order to obtain the transfer accuracy required at the time of molding, it is easy to transfer the resin or mold at a high temperature, or the pressure is sufficiently maintained to suppress sink marks. Therefore, it takes time for the cooling time and the pressure holding time, which may increase the cost.

本実施の形態では、凸部13aの断面形状を略半円形とすることにより、格子状凸部13は、光束制御部材4の裏面12に入射する光を十分に散乱させることができ、かつ、光束制御部材4の形成の際の金型からの転写を容易にして製造コストを低減させることができる。   In the present embodiment, by making the cross-sectional shape of the convex portion 13a substantially semicircular, the lattice-shaped convex portion 13 can sufficiently scatter light incident on the back surface 12 of the light flux controlling member 4, and Transfer from the mold when forming the light flux controlling member 4 can be facilitated and the manufacturing cost can be reduced.

(2)格子状
図8に示すように、格子状凸部13は、上記複数の凸部13aとこれらに直交する凸部13bとによって形成される(後述する図9参照)。ここで、格子状凸部13は、光束制御部材4の裏面12の中心から外周面に向かって所定領域に設けられていればよい。図8では、格子状凸部13が、脚16の略内周面まで形成されている。格子状凸部13は、光束制御部材4の裏面12の全面に形成されてもよい。
(2) Lattice Shape As shown in FIG. 8, the lattice-like convex portion 13 is formed by the plurality of convex portions 13a and convex portions 13b orthogonal thereto (see FIG. 9 described later). Here, the grid-shaped convex part 13 should just be provided in the predetermined area | region from the center of the back surface 12 of the light beam control member 4 toward an outer peripheral surface. In FIG. 8, the lattice-like convex portion 13 is formed up to the substantially inner peripheral surface of the leg 16. The grid-shaped convex portion 13 may be formed on the entire back surface 12 of the light flux controlling member 4.

図9は、格子状凸部13の一部を切り取って模式的に構造を示す斜視図である。   FIG. 9 is a perspective view schematically showing the structure by cutting a part of the grid-like convex portion 13.

図9に示すように、格子状凸部13は、断面形状が略半円形の複数の凸部13aと複数の凸部13bとを、格子状に直交させることにより形成される。凸部を格子状に形成することにより、発光素子3の発光面上の1点を頂点とする基準光軸Lに対称な円錐を、その円錐の底面が光束制御部材4の裏面12と重なるように仮想配置した場合、円錐頂点から出射し錘面に沿うように進む光線と裏面12との交点を結んだ形状は、円錐底面の周縁形状(円形状)に一致する。しかし、それら交点を経由した後に光束制御部材4を出射する光線と被照明部材7との交点によって被照明部材7の被照射面にできる形状は円形状にはならない。したがって、縦方向及び横方向のいずれの方向に対しても、光束制御部材4の裏面12に入射する光を散乱させることができる。一方、上記凸部を、格子状に形成せずに、中心から放射状に形成する、あるいは円錐状の突起を均一なピッチで形成すると、却って規則性のある強い集光パターンが被照射面上に発生してしまう場合があり、被照射面上の狭い範囲に光が集光して特異的な明部を発生させる虞がある。   As shown in FIG. 9, the grid-like convex part 13 is formed by making a plurality of convex parts 13a and a plurality of convex parts 13b having a substantially semicircular cross-sectional shape orthogonal to each other in a grid pattern. By forming the convex portions in a lattice shape, a cone symmetrical to the reference optical axis L with one point on the light emitting surface of the light emitting element 3 as an apex is arranged so that the bottom surface of the cone overlaps the back surface 12 of the light flux controlling member 4. Is virtually arranged, the shape connecting the intersection of the back surface 12 with the light beam that exits from the apex of the cone and travels along the weight surface matches the peripheral shape (circular shape) of the bottom surface of the cone. However, the shape formed on the illuminated surface of the illuminated member 7 by the intersection of the light beam emitted from the light flux controlling member 4 after passing through these intersections and the illuminated member 7 is not circular. Therefore, the light incident on the back surface 12 of the light flux controlling member 4 can be scattered in both the vertical direction and the horizontal direction. On the other hand, if the convex portions are formed in a radial pattern from the center without forming a lattice shape, or conical protrusions are formed at a uniform pitch, a strong regular light collection pattern is formed on the irradiated surface. In some cases, the light is collected, and there is a possibility that light is collected in a narrow range on the irradiated surface and a specific bright portion is generated.

また、凸部を格子状に形成すると、明部の照度値も裏面12が平滑な場合に比べて低いことが判明した。このように、凸部を格子状に形成すると、光を散乱させるのに十分な形状を射出成形等で転写するために必要な金型を容易に加工することができるため、製造コストを低減させることができる。   Further, when the convex portions are formed in a lattice shape, it has been found that the illuminance value of the bright portion is lower than that when the back surface 12 is smooth. In this way, when the convex portions are formed in a lattice shape, a mold necessary for transferring a shape sufficient to scatter light by injection molding or the like can be easily processed, thereby reducing the manufacturing cost. be able to.

〔光束制御部材4の作用〕
以下、上述のように構成された光束制御部材4の作用について説明する。
[Operation of luminous flux control member 4]
Hereinafter, the operation of the light flux controlling member 4 configured as described above will be described.

図10は、光束制御部材4の裏面12に格子状凸部13が形成された光束制御部材4の作用を説明する図である。図11は、光束制御部材4の裏面12が平滑面(すなわち格子状凸部13を形成しない平滑面)である光束制御部材4の作用を説明する図である。図12は、光束制御部材4から出射した光による照射面の光の照度分布を示す図であり、光拡散部材2の裏面(被照射面)における照度分布である。図12(a)は図10の格子状凸部13が形成された光束制御部材4から照射された光による被照射面上の照度分布を示し、図12(b)は図11の裏面12が平滑面の光束制御部材4から照射された光による被照射面上の照度分布を本実施の形態1の比較例として示す。縦軸と横軸は、発光装置5の基準光軸Lからの寸法を表している。   FIG. 10 is a diagram for explaining the operation of the light beam control member 4 in which the lattice-shaped convex portions 13 are formed on the back surface 12 of the light beam control member 4. FIG. 11 is a diagram for explaining the operation of the light flux controlling member 4 in which the back surface 12 of the light flux controlling member 4 is a smooth surface (that is, a smooth surface that does not form the grid-like convex portions 13). FIG. 12 is a diagram showing the illuminance distribution of the light on the irradiated surface by the light emitted from the light flux controlling member 4, and is the illuminance distribution on the back surface (irradiated surface) of the light diffusing member 2. 12A shows the illuminance distribution on the irradiated surface by the light irradiated from the light flux controlling member 4 on which the grid-like convex portions 13 of FIG. 10 are formed, and FIG. 12B shows the back surface 12 of FIG. An illuminance distribution on the irradiated surface by light irradiated from the smooth surface light flux controlling member 4 is shown as a comparative example of the first embodiment. The vertical axis and the horizontal axis represent dimensions from the reference optical axis L of the light emitting device 5.

まず、図10及び図11に示すように、発光素子3から出射した光のうち半値幅の範囲内にある光は、大部分が凹み14から光束制御部材4に入射し、光束制御部材4の内部を伝播した後、第1の出射面11a乃至第3の出射面11cから外部(空気中)にスネルの法則に従って出射することになる。この際、光束制御部材4から出射される光束は、照射範囲内に向けて滑らかに拡がる。   First, as shown in FIG. 10 and FIG. 11, most of the light emitted from the light emitting element 3 is in the range of the half-value width, and enters the light flux control member 4 from the recess 14. After propagating through the inside, the light is emitted from the first emission surface 11a to the third emission surface 11c to the outside (in the air) according to Snell's law. At this time, the light beam emitted from the light beam control member 4 spreads smoothly toward the irradiation range.

ところが、光束制御部材4の裏面12と基板18(図5参照)との間には隙間εが形成されているために、発光素子3の発光面からこの隙間εに光が進入し、進入した光は光束制御部材4の裏面12から、光束制御部材4内部に入射する。   However, since a gap ε is formed between the back surface 12 of the light flux controlling member 4 and the substrate 18 (see FIG. 5), light enters the gap ε from the light emitting surface of the light emitting element 3 and enters. Light enters the light flux control member 4 from the back surface 12 of the light flux control member 4.

図11に示すように、光束制御部材4の裏面12が平滑面である場合、すなわち光束制御部材4に格子状凸部13を形成しない場合、光束制御部材4の裏面12(レンズ底面)に入射した光は、基準光軸L寄りに屈折した状態で光束制御部材4内を進み、第2の出射面11b及び第3の出射面11cから出射する。その結果、光束制御部材4への入射面における屈折と光束制御部材4の凸レンズ状の出射面における集光によって、被照射面には、光の集光した部分(輝部)が他の部分よりも明るく円環状に光る円環状の照度ムラ21が発生する。円環状の照度ムラ21は、光拡散部材2の出射面側から視認され、照明品質を低下させることになる。   As shown in FIG. 11, when the back surface 12 of the light beam control member 4 is a smooth surface, that is, when the lattice-shaped convex portion 13 is not formed on the light beam control member 4, the light beam control member 4 is incident on the back surface 12 (lens bottom surface). The transmitted light travels in the light flux controlling member 4 in a state of being refracted toward the reference optical axis L, and is emitted from the second emission surface 11b and the third emission surface 11c. As a result, due to refraction at the entrance surface to the light flux controlling member 4 and condensing at the convex lens-shaped exit surface of the light flux controlling member 4, the light condensing portion (bright portion) is on the irradiated surface from the other portions. Further, an annular illuminance unevenness 21 that shines brightly and annularly occurs. The annular illuminance unevenness 21 is visually recognized from the light exit surface side of the light diffusing member 2 and deteriorates the illumination quality.

これに対して、本実施の形態は、光束制御部材4の裏面12に格子状凸部13を形成することにより、光束制御部材4の裏面12に入射する光を散乱させている。   On the other hand, in the present embodiment, the light incident on the back surface 12 of the light beam control member 4 is scattered by forming the lattice-like convex portions 13 on the back surface 12 of the light beam control member 4.

図10に示すように、光束制御部材4の裏面12に格子状凸部13が形成された場合、格子状凸部13によって光を散乱させるために、光束制御部材4の裏面12(レンズ底面)に入射した光は、基準光軸L寄りに集光されることなく、被照射面の広範囲に向けて光束制御部材4から出射する。その結果、図12(a)に示すように、被照射面上の照度ムラ22は大幅に低減される。図12(a)では、説明の便宜上、照度ムラ22と表現したが実際にはこの光の強度差は小さく、照度ムラ22とは呼ばなくて良いレベルである。また、照度ムラ22は、図12(b)の円環状の照度ムラ21に対して光の強度差が格段に小さく抑制されているだけではなく、図12(a)に示すように明部が離散的な形となっているため、光の集合した部分(明部)が分散されており、より照度ムラとして目立たない状態となっている。なお、図12(a)の照度ムラ22の形状が離散的な十字形状となっているのは、格子状凸部13を、正方格子としたことによる。   As shown in FIG. 10, when the grid-like convex portion 13 is formed on the back surface 12 of the light flux controlling member 4, the back surface 12 (lens bottom surface) of the light flux controlling member 4 in order to scatter light by the grid-like convex portion 13. The light incident on the light is emitted from the light flux controlling member 4 toward the wide range of the irradiated surface without being condensed near the reference optical axis L. As a result, as shown in FIG. 12A, the illuminance unevenness 22 on the irradiated surface is significantly reduced. In FIG. 12A, for the sake of convenience of explanation, it is expressed as illuminance unevenness 22, but in reality, this light intensity difference is small, and it is not necessary to call it illuminance unevenness 22. In addition, the illuminance unevenness 22 is not only the light intensity difference is suppressed to be much smaller than the annular illuminance unevenness 21 in FIG. Since it has a discrete shape, light gathered parts (bright parts) are dispersed, and the illuminance unevenness is less noticeable. The reason why the uneven illuminance 22 in FIG. 12A has a discrete cross shape is that the lattice-shaped convex portions 13 are square lattices.

ところで、光束制御部材4の裏面12から入射する光の光路を散乱させることができれば、本実施の形態と同様の効果が得られると考えられる。しかしながら、本発明者らの実験等により、単なる拡散面では十分な効果が得られない場合があるということが判明した。   By the way, if the optical path of the light incident from the back surface 12 of the light flux controlling member 4 can be scattered, it is considered that the same effect as this embodiment can be obtained. However, it has been found by experiments of the present inventors that a sufficient effect may not be obtained with a simple diffusion surface.

光を拡散する一般的な方法として、光束制御部材4の裏面12に粗面を形成することが考えられる。粗面は、光束制御部材4の金型となる面をエッチング処理し表面を荒らすことで容易に作製することができる。   As a general method for diffusing light, it is conceivable to form a rough surface on the back surface 12 of the light flux controlling member 4. The rough surface can be easily produced by etching the surface of the light flux controlling member 4 to be a mold and roughening the surface.

図13は、光束制御部材4の裏面12に形成される凸部を説明する図である。図13(a)は格子状凸部13の凸部を示す。また、図13(b)は粗面処理を施した裏面12を示す。また、図13(c)は裏面12に粗面を形成するための粗面化された金型表面とその形状が転写された裏面12を示す。   FIG. 13 is a diagram for explaining a convex portion formed on the back surface 12 of the light flux controlling member 4. FIG. 13A shows the convex portions of the grid-like convex portions 13. Moreover, FIG.13 (b) shows the back surface 12 which performed the rough surface process. FIG. 13C shows a roughened mold surface for forming a rough surface on the back surface 12 and the back surface 12 onto which the shape has been transferred.

図13(c)に示すように、一般的なエッチャントを用いた粗面処理では、金型に形成される転写面31は非常に微細(μオーダ単位)である。このような微細加工処理を光束制御部材4の裏面12に施しても、入射する光を十分に散乱させることはできない。但し、本実施の形態の格子状凸部13にさらに、このような細かい凹凸を付けることは、光をより拡散するという効果を発揮する。この点については、実施の形態2により後述する。   As shown in FIG. 13C, in the rough surface treatment using a general etchant, the transfer surface 31 formed on the mold is very fine (μ order unit). Even if such fine processing is applied to the back surface 12 of the light flux controlling member 4, the incident light cannot be sufficiently scattered. However, the addition of such fine irregularities to the grid-like convex portions 13 of the present embodiment exhibits the effect of further diffusing light. This point will be described later in the second embodiment.

また、金型の転写面32から、射出成形等により光束制御部材4を転写形成する場合、樹脂及び金型の温度設定や保圧のかけ方が適当でないと、光束制御部材4の裏面12は、図13(c)に示すように、金型の転写面32の微細な凹凸よりも更になだらかな凹凸の加工面31となってしまい、入射光を十分に散乱させることができなくなる。金型の転写面32からより精度よく転写を行なおうとすれば、成形サイクルが長くなり、多大な時間と調整を要しコスト上昇となる。   Further, when the light flux control member 4 is transferred and formed from the transfer surface 32 of the mold by injection molding or the like, the back surface 12 of the light flux control member 4 is not suitable if the temperature setting and holding pressure of the resin and the mold are not appropriate. As shown in FIG. 13 (c), the processed surface 31 is more uneven than the fine unevenness of the transfer surface 32 of the mold, and the incident light cannot be sufficiently scattered. If the transfer is to be performed more accurately from the transfer surface 32 of the mold, the molding cycle becomes longer, requiring a great deal of time and adjustment, resulting in an increase in cost.

なお、特殊エッチャント又はやすりなどを用いた粗面処理を行うことにより、図13(b)の粗面33の高さdを、図13(a)の格子状凸部13の凸部13a程度とすれば、入射する光を散乱させることができる。しかし、本発明者らは、このような粗面処理ではコスト上昇となることに加えて、以下のような欠点があることを見出した。すなわち、光束制御部材4の裏面12の粗面処理により、粗面33の1つの凸部に十分な量の高低差dを得ることが必要であるのに対し、図13(b)に示す粗面33の成形サイクルをやや短くすると転写が不十分となり、必要な量の高低差dを得ることができなくなってしまう。このような十分な高低差dが得られない粗面33では、光束制御部材4の裏面12が平滑面である場合と同様の理由により、発光素子3の発光面から照射された光が光束制御部材4の裏面12(レンズ底面)において基準光軸L寄りに屈折する。したがって、その光が光束制御部材4から出射した後に、被照射面上で集光され、照度ムラが発生してしまう。   In addition, by performing a rough surface treatment using a special etchant or a file, the height d of the rough surface 33 in FIG. 13B is set to about the convex portion 13a of the lattice-shaped convex portion 13 in FIG. Then, the incident light can be scattered. However, the present inventors have found that such rough surface treatment has the following disadvantages in addition to the cost increase. That is, it is necessary to obtain a sufficient amount of height difference d for one convex portion of the rough surface 33 by the rough surface treatment of the back surface 12 of the light flux controlling member 4, whereas the rough surface shown in FIG. If the molding cycle of the surface 33 is slightly shortened, transfer becomes insufficient, and a necessary amount of height difference d cannot be obtained. On the rough surface 33 where such a sufficient height difference d cannot be obtained, the light irradiated from the light emitting surface of the light emitting element 3 is subjected to the light flux control for the same reason as the case where the back surface 12 of the light flux controlling member 4 is a smooth surface. The light is refracted toward the reference optical axis L on the back surface 12 (lens bottom surface) of the member 4. Therefore, after the light is emitted from the light flux controlling member 4, it is condensed on the irradiated surface, and illuminance unevenness occurs.

以上のように、一般的な粗面処理では、光束制御部材4の裏面12から入射する光の光路を十分に散乱させることはできない。一般的な用途に使用される粗面処理では、凸部は形成できたとしても光学的に見た場合には、裏面12が平滑面である場合と同様の照度ムラを生じさせる。   As described above, the general rough surface treatment cannot sufficiently scatter the optical path of the light incident from the back surface 12 of the light flux controlling member 4. In the rough surface treatment used for general purposes, even if the convex portion can be formed, when viewed optically, illuminance unevenness similar to that when the back surface 12 is a smooth surface is generated.

そこで、本実施の形態では、図13(a)に示すように、エッチャントややすり等を用いた高低差の小さな処理面を形成する粗面加工ではなく、光束制御部材4の裏面12に格子状凸部13を精度よく形成する。   Therefore, in the present embodiment, as shown in FIG. 13A, a grid pattern is formed on the back surface 12 of the light flux controlling member 4 instead of the rough surface processing that forms a processing surface with a small height difference using an etchant or a file. The convex portion 13 is formed with high accuracy.

〔凸部と散乱光の説明〕
図14乃至図16は、光束制御部材4の裏面12に形成される凸部13aとそこに入射する光の散乱光を説明する図である。図14(a)は、凸部13aをXYZ直交座標のX軸と平行となるように光束制御部材4の裏面12に形成した場合の裏面12へ入射される光線方向を裏面12側から見た図を示す。また、図14(b)は、図14(a)を側面(X軸方向)から見た形状を模式的に示す。図15(a)は、図14(a)で示した光束制御部材4の裏面12の凸部13aに直交方向から入射される光線方向を示す。また、図15(b)は、直交方向から入射される光線が受ける光束制御部材4の裏面12の凸部13aの作用を示す。図16(a)は、光束制御部材4の裏面12の凸部13aに斜め45°方向から入射される光線方向を示す。また、図16(b)は、斜め45°方向から入射される光線が受ける光束制御部材4の裏面12の凸部13aの作用を示す。なお、図15(b)に示した光線のうちの1つは、前記図3中の線O−P1で示す光線と一致し、図16(b)に示した光線のうちの1つは、前記図3中の線O−P2で示す光線と一致する。
[Explanation of convex part and scattered light]
14 to 16 are diagrams for explaining the convex portion 13a formed on the back surface 12 of the light flux controlling member 4 and the scattered light of the light incident thereon. In FIG. 14A, the direction of the light incident on the back surface 12 when the convex portion 13 a is formed on the back surface 12 of the light flux controlling member 4 so as to be parallel to the X axis of the XYZ orthogonal coordinates is viewed from the back surface 12 side. The figure is shown. Moreover, FIG.14 (b) shows typically the shape which looked at Fig.14 (a) from the side surface (X-axis direction). FIG. 15A shows the direction of light rays incident on the convex portion 13a of the back surface 12 of the light flux controlling member 4 shown in FIG. FIG. 15B shows the operation of the convex portion 13a of the back surface 12 of the light flux controlling member 4 that is received by light incident from the orthogonal direction. FIG. 16A shows the direction of light rays incident on the convex portion 13 a of the back surface 12 of the light flux controlling member 4 from an oblique 45 ° direction. FIG. 16B shows the operation of the convex portion 13a of the back surface 12 of the light flux controlling member 4 that is received by light incident from an oblique 45 ° direction. Note that one of the light beams shown in FIG. 15B matches the light beam indicated by the line O-P1 in FIG. 3, and one of the light beams shown in FIG. This coincides with the light beam indicated by the line OP2 in FIG.

図14(b)に示すように、光束制御部材4の裏面12に凸部13aが形成されている。図14(a)に示すように、凸部13aに平行な光線方向xと凸部13aに直交する光線方向をとる。   As shown in FIG. 14B, a convex portion 13 a is formed on the back surface 12 of the light flux controlling member 4. As shown in FIG. 14A, a light ray direction x parallel to the convex portion 13a and a light ray direction orthogonal to the convex portion 13a are taken.

図15(a)に示すように、光束制御部材4の裏面12の凸部13aに直交方向から光が入射された場合、図15(b)に示すように、凸部13aに入射される光の入射角度はばらつく。このため、光束制御部材4の裏面12(レンズ底面)に入射した光は、集光されることなく、散乱光として光束制御部材4の光制御出射面11から出射される。   As shown in FIG. 15 (a), when light is incident on the convex portion 13a of the back surface 12 of the light flux controlling member 4 from the orthogonal direction, the light incident on the convex portion 13a as shown in FIG. 15 (b). The incident angle varies. For this reason, the light incident on the back surface 12 (lens bottom surface) of the light flux controlling member 4 is emitted from the light control emitting surface 11 of the light flux controlling member 4 as the scattered light without being condensed.

図16(a)に示すように、光束制御部材4の裏面12の凸部13aに斜め45°方向から入射された場合も同様に、図16(b)に示すように、凸部13aに入射される光の入射角度はばらつく。また、凸部13aに対し角度(この場合斜め45°)を持って光が入射しているため、図16(b)の紙面の高さ及び深さ方向にも光の入射角度はばらつく。このため、光束制御部材4の裏面12(レンズ底面)に入射した光は、集光されることなく、散乱光として光束制御部材4の光制御出射面11から出射される。   As shown in FIG. 16 (a), when the light beam is incident on the convex portion 13a of the back surface 12 of the light flux controlling member 4 from an oblique direction of 45 °, the light beam enters the convex portion 13a as shown in FIG. 16 (b). The incident angle of the emitted light varies. In addition, since light is incident on the convex portion 13a at an angle (in this case, oblique 45 °), the incident angle of light also varies in the height and depth directions of the paper surface of FIG. For this reason, the light incident on the back surface 12 (lens bottom surface) of the light flux controlling member 4 is emitted from the light control emitting surface 11 of the light flux controlling member 4 as the scattered light without being condensed.

以上詳細に説明したように、本実施の形態では、光束制御部材4の裏面12に、発光素子3から光束制御部材4の裏面に入射される光を散乱させる複数の線条からなる格子状凸部13を形成した。これにより、光束制御部材4の裏面12(レンズ底面)に入射された光は、集光されることなく、散乱され、光制御出射面11から被照射面上の広範囲に向けて出射する。その結果、図12(a)に示すように、被照射面において、照度ムラを抑制して、照度を均一にすることができ、高品位な照明品質を得ることができる。   As described above in detail, in the present embodiment, a lattice-like convex made of a plurality of filaments that scatter light incident on the back surface of the light beam control member 4 from the light emitting element 3 on the back surface 12 of the light beam control member 4. Part 13 was formed. Thereby, the light incident on the back surface 12 (lens bottom surface) of the light flux controlling member 4 is scattered without being collected, and is emitted from the light control emitting surface 11 toward a wide range on the irradiated surface. As a result, as shown in FIG. 12A, it is possible to suppress illuminance unevenness on the irradiated surface, to make the illuminance uniform, and to obtain high quality illumination quality.

また、本実施の形態は、光束制御部材4を基板18に取り付けた際に、発光素子3の発光面と光束制御部材4の裏面12との間に隙間εが形成される場合において、光束制御部材4の裏面12(レンズ底面)に入射された光の基準光軸L寄りへの集光を抑制する。このように、本実施の形態は、発光素子3の発光面と光束制御部材4の裏面12との間の隙間εを許容しているので、過度な取り付け精度を要求されることがない。したがって、本実施の形態は、発光素子3として凹み14内に収容可能なサイズに小型化された高価なものではなく汎用のものを使用することができるなど、コスト低減を図ることができる。   Further, in the present embodiment, when the light flux control member 4 is attached to the substrate 18, the light flux control is performed when a gap ε is formed between the light emitting surface of the light emitting element 3 and the back surface 12 of the light flux control member 4. Condensing light incident on the back surface 12 (lens bottom surface) of the member 4 toward the reference optical axis L is suppressed. As described above, since the gap ε between the light emitting surface of the light emitting element 3 and the back surface 12 of the light flux controlling member 4 is allowed in the present embodiment, excessive mounting accuracy is not required. Therefore, this embodiment can reduce the cost, for example, by using a general-purpose light-emitting element 3 instead of an expensive one that is reduced to a size that can be accommodated in the recess 14.

同様の理由で、本実施の形態は、光束制御部材4の裏面12の全領域が入射面となり得る場合においても高品位な照明品質を得ることができる。また、本実施の形態は、発光素子から所定寸法だけ離れた位置に光束制御部材を配置しても高品位な照射面が得られ、かつ、発光素子が発する熱に起因する悪影響を抑えることができる。   For the same reason, the present embodiment can obtain high quality illumination quality even when the entire area of the back surface 12 of the light flux controlling member 4 can be the incident surface. In addition, this embodiment can provide a high-quality irradiation surface even when the light flux controlling member is disposed at a position away from the light emitting element by a predetermined dimension, and can suppress adverse effects caused by heat generated by the light emitting element. it can.

(実施の形態2)
〔光束制御部材の全体形状〕
図17は、実施の形態2に係る発光装置の光束制御部材の断面図である。図17(a)は光束制御部材の断面図であり、図17(b)は図17(a)に示すC部の拡大図である。なお、図17において、図7と共通する構成部分には同一符号を付してその説明を省略する。
(Embodiment 2)
[Overall shape of luminous flux control member]
FIG. 17 is a cross-sectional view of a light flux controlling member of the light emitting device according to Embodiment 2. FIG. 17A is a cross-sectional view of the light flux controlling member, and FIG. 17B is an enlarged view of a portion C shown in FIG. In FIG. 17, the same reference numerals are given to the same components as those in FIG.

光束制御部材40は、図4乃至図11の光束制御部材4に代えて用いられる。   The light flux controlling member 40 is used in place of the light flux controlling member 4 of FIGS.

図17(a)に示す光束制御部材40は、図7(a)に示した光束制御部材4と比較して、格子状凸部43の形状が、格子状凸部13の形状と異なる。   The light flux controlling member 40 shown in FIG. 17A is different from the light flux controlling member 4 shown in FIG. 7A in the shape of the lattice-like convex portion 43 from the shape of the lattice-like convex portion 13.

格子状凸部43は、光束制御部材40の裏面12に、光束制御部材40本体と共に、PMMA,PC,EP等の透明樹脂材料を用いて、金型から転写されて一体形成される。   The lattice-shaped convex portions 43 are integrally formed on the back surface 12 of the light flux controlling member 40 by being transferred from a mold using a transparent resin material such as PMMA, PC, EP together with the light flux controlling member 40 main body.

図17(b)、図18に示すように、格子状凸部43は、光束制御部材40の裏面12から外方に向かって突出した複数の線条の凸部43aを、それらの稜線が平行となるように並べ、これらと直交する複数の線条の凸部43bをそれらの稜線が平行となるように並べることにより形成される。そして、隣り合う凸部43aと凸部43a、凸部43bと凸部43bとの間に凹部が形成される。凸部43a及び凸部43bの表面は、微細な凹凸面43cが形成されている。   As shown in FIG. 17B and FIG. 18, the lattice-like convex portion 43 includes a plurality of linear convex portions 43 a that protrude outward from the back surface 12 of the light flux controlling member 40, and their ridge lines are parallel to each other. And a plurality of linear protrusions 43b orthogonal to these are arranged so that their ridgelines are parallel. And a recessed part is formed between the convex part 43a and the convex part 43a which adjoin, and the convex part 43b and the convex part 43b. On the surfaces of the convex portions 43a and the convex portions 43b, fine concave and convex surfaces 43c are formed.

図18は、格子状凸部43の一部を切り取って模式的に格子状凸部の構造を示す斜視図であり、図9に対応する図である。   FIG. 18 is a perspective view schematically showing the structure of the lattice-shaped convex portion by cutting out a part of the lattice-shaped convex portion 43, and corresponds to FIG.

図18に示すように、格子状凸部43は、断面形状が略半円形の複数の凸部43a及び複数の凸部43bを直交させることにより形成される。凸部を格子状に形成することにより、縦方向及び横方向のいずれの方向に対しても、光束制御部材40の裏面12に入射する光を散乱させることができる。   As shown in FIG. 18, the lattice-shaped convex portion 43 is formed by orthogonally crossing a plurality of convex portions 43 a and a plurality of convex portions 43 b having a substantially semicircular cross-sectional shape. By forming the convex portions in a lattice shape, light incident on the back surface 12 of the light flux controlling member 40 can be scattered in both the vertical direction and the horizontal direction.

凸部43aの断面形状は、半円に近い形である。例えば、凸部43aの底面長さは0.5mm、底角は45°、先端のRは0.2mmである。凸部43aの傾斜角度を45°以上、又は45°より小さくする形状でもよい。光束制御部材40の裏面12に入射する光を、適度に散乱させる目的からは凸部43aの傾斜角度は45°以上であることが好ましい。   The cross-sectional shape of the convex portion 43a is a shape close to a semicircle. For example, the bottom length of the convex portion 43a is 0.5 mm, the base angle is 45 °, and the tip R is 0.2 mm. The inclination angle of the convex portion 43a may be 45 ° or more or smaller than 45 °. For the purpose of appropriately scattering the light incident on the back surface 12 of the light flux controlling member 40, the inclination angle of the convex portion 43a is preferably 45 ° or more.

微細な凹凸面43cは、凸部43aの表面に形成される70μm程度の粗面である。微細な凹凸面43cは、凸部43aを形成した金型をエッチング処理して荒らすことにより作製される。   The fine uneven surface 43c is a rough surface of about 70 μm formed on the surface of the convex portion 43a. The fine concavo-convex surface 43c is produced by roughening the mold on which the convex portions 43a are formed by etching.

このように、本実施の形態によれば、光束制御部材40の裏面12に格子状凸部43を形成することにより、光束制御部材40の裏面12に入射する光を適度に散乱させることができ、かつ、凸部43a及び凸部43bの表面を微細な凹凸面43cに形成することで、散乱性能を高め、より一層照度ムラを抑制することができる。   As described above, according to the present embodiment, the light incident on the back surface 12 of the light flux controlling member 40 can be appropriately scattered by forming the grid-like convex portions 43 on the back surface 12 of the light flux controlling member 40. And by forming the surface of the convex part 43a and the convex part 43b in the fine uneven surface 43c, scattering performance can be improved and illuminance nonuniformity can be suppressed further.

(実施の形態3)
〔光束制御部材の全体形状〕
上記実施の形態1、2では、光束制御部材4(40)の裏面12に格子状凸部13(43)を設けることにより、裏面12に入射する光を散乱させる発明について説明した。
(Embodiment 3)
[Overall shape of luminous flux control member]
In the said Embodiment 1, 2, the invention which scatters the light which injects into the back surface 12 by providing the grid-like convex part 13 (43) in the back surface 12 of the light beam control member 4 (40) was demonstrated.

本発明者らは、さらに、格子状凸部13の形状を工夫することにより、光拡散部材2で反射された光を再帰反射させること、および、その再帰反射される光の量を増大させることができるという効果も得られることを見出した。   The present inventors further devise the shape of the grid-like convex portion 13 to retroreflect the light reflected by the light diffusing member 2 and increase the amount of the retroreflected light. It was found that the effect of being able to be obtained is also obtained.

実施の形態3では、再帰反射される光の量を増大させるための、格子状凸部13の形状の発明について説明する。   In the third embodiment, an invention of the shape of the lattice-shaped convex portion 13 for increasing the amount of light retroreflected will be described.

図19は、本実施の形態に係る発光装置の光束制御部材の断面図である。図19(a)は光束制御部材の全体断面図であり、図19(b)は図19(a)に示すC部の拡大図である。なお、図19において、図7と共通する構成部分には同一符号を付してその説明を省略する。   FIG. 19 is a cross-sectional view of the light flux controlling member of the light emitting device according to the present embodiment. FIG. 19A is an overall cross-sectional view of the light flux controlling member, and FIG. 19B is an enlarged view of a portion C shown in FIG. In FIG. 19, the same components as those in FIG.

光束制御部材50は、図4乃至図11の光束制御部材4に代えて用いられる。   The light flux controlling member 50 is used in place of the light flux controlling member 4 shown in FIGS.

図19(a)に示す光束制御部材50は、図7(a)に示した光束制御部材4と比較して、格子状凸部53の形状が、格子状凸部13の形状と異なる。   In the light flux controlling member 50 shown in FIG. 19A, the shape of the lattice-like convex portion 53 is different from the shape of the lattice-like convex portion 13 as compared with the light flux controlling member 4 shown in FIG.

格子状凸部53は、光束制御部材50の裏面12に、光束制御部材50本体と共に、PMMA,PC,EP等の透明樹脂材料を用いて、金型から転写されて一体形成される。   The lattice-like convex portion 53 is integrally formed on the back surface 12 of the light flux controlling member 50 by being transferred from a mold using a transparent resin material such as PMMA, PC, EP together with the light flux controlling member 50 main body.

図19(b)に示すように、格子状凸部53は、光束制御部材50の裏面12から外方に向かって突出した複数の線条の凸部53aを、それらの稜線が平行となるように並べ、これらと直交する複数の線条の凸部53bをそれらの稜線が平行となるように並べることにより形成される。そして、隣り合う凸部53aと凸部53a、凸部53bと凸部53bとの間に四角錐の凹部が形成される。線条の延在方向に直交する凸部53a、凸部53bの断面形状は二等辺三角形である。   As shown in FIG. 19B, the lattice-like convex portion 53 is formed of a plurality of linear convex portions 53 a that protrude outward from the back surface 12 of the light flux controlling member 50 so that their ridge lines are parallel to each other. And a plurality of linear protrusions 53b orthogonal to these are arranged so that their ridge lines are parallel to each other. A quadrangular pyramid recess is formed between the adjacent protrusions 53a and 53a and between the protrusions 53b and 53b. The cross-sectional shape of the convex part 53a and the convex part 53b orthogonal to the extending direction of the filament is an isosceles triangle.

なお、格子状凸部53は、光束制御部材50の裏面12の中心から外周面に向かって所定領域に設けられていればよく、光束制御部材50の裏面12の全面に形成されてもよい。   Note that the grid-like convex portion 53 may be provided in a predetermined region from the center of the back surface 12 of the light flux controlling member 50 toward the outer peripheral surface, and may be formed on the entire back surface 12 of the light flux controlling member 50.

〔格子状凸部53の凸部53aと再帰反射光の説明〕
光束制御部材50の光制御出射面11から出射した光の一部は、光拡散部材2(図5参照)を透過せず、光拡散部材2で反射される。光拡散部材2で反射された光の一部は、光制御出射面11に入射される。
[Explanation of the convex portion 53a of the grid-like convex portion 53 and the retroreflected light]
A part of the light emitted from the light control exit surface 11 of the light flux controlling member 50 does not pass through the light diffusing member 2 (see FIG. 5) and is reflected by the light diffusing member 2. A part of the light reflected by the light diffusing member 2 enters the light control emission surface 11.

図19に示したように、格子状凸部53の凸部53aの断面形状を二等辺三角形に形成することにより、光制御出射面11に入射された光は、凸部53aで再帰反射され、光制御出射面11から再び出射される。   As shown in FIG. 19, by forming the cross-sectional shape of the convex portion 53a of the lattice-like convex portion 53 into an isosceles triangle, the light incident on the light control emission surface 11 is retroreflected by the convex portion 53a, The light is emitted again from the light control exit surface 11.

図20及び図21は、光拡散部材2で反射されて光制御出射面11に入射された光が、凸部53aで再帰反射される様子を説明する図である。図20は、底面(基準面)と角錐面とのなす角度である傾斜角θが45°の場合を示し、図21は、傾斜角θが55°の場合を示す。なお、図20(b)は図20(a)のC部の拡大図であり、図21(b)は図21(a)のC部の拡大図である。   20 and 21 are diagrams for explaining how the light reflected by the light diffusing member 2 and incident on the light control emission surface 11 is retroreflected by the convex portion 53a. 20 shows a case where the inclination angle θ, which is an angle formed between the bottom surface (reference surface) and the pyramid surface, is 45 °, and FIG. 21 shows a case where the inclination angle θ is 55 °. 20B is an enlarged view of a C portion in FIG. 20A, and FIG. 21B is an enlarged view of a C portion in FIG.

図20に示すように、θ=45°の場合、光制御出射面11に、基準面に垂直な方向から入射された光54の一部は、1つの凸部53a内で全反射して再び光制御出射面11から出射される。   As shown in FIG. 20, when θ = 45 °, a part of the light 54 incident on the light control emission surface 11 from the direction perpendicular to the reference surface is totally reflected within one convex portion 53a and again. The light is emitted from the light control exit surface 11.

一方、図21に示すように、θ=55°の場合、光制御出射面11に、基準面に垂直な方向から入射された光54の一部は、複数の凸部53aの間を反射や屈折しながら通過して再び光制御出射面11から出射される。   On the other hand, as shown in FIG. 21, when θ = 55 °, a part of the light 54 incident on the light control emission surface 11 from the direction perpendicular to the reference surface is reflected between the plurality of convex portions 53a. The light passes through while being refracted and is emitted again from the light control exit surface 11.

1つの凸部53a内で全反射した光の方が、複数の凸部53aの間を反射や屈折しながら通過して出射された光よりも明るい。すなわち、再帰反射される光の量が多いことになる。   The light totally reflected within one convex portion 53a is brighter than the light emitted through the plurality of convex portions 53a while being reflected or refracted. That is, the amount of retroreflected light is large.

ただし、θ=45°の場合に、基準面に垂直な方向以外の方向から入射された光の中には、複数の凸部53aの間を反射や屈折しながら通過して出射されるものもある。したがって、θ=45°の場合に再帰反射される光の量が最も多いとは一概には言えない。   However, in the case of θ = 45 °, some of light incident from directions other than the direction perpendicular to the reference plane is emitted while being reflected or refracted between the plurality of convex portions 53a. is there. Therefore, it cannot be generally said that the amount of retroreflected light is the largest when θ = 45 °.

〔シミュレーション結果〕
そこで、本発明者らは、本実施の形態の効果を検証するために、傾斜角θと再帰反射される光の量との関係についてシミュレーションを行った。図22は、このシミュレーション結果を示す図である。
〔simulation result〕
Therefore, the inventors performed a simulation on the relationship between the inclination angle θ and the amount of retroreflected light in order to verify the effect of the present embodiment. FIG. 22 is a diagram showing the simulation result.

図22の横軸は傾斜角θを示す。また、図22の縦軸は、基板18の表面18a(受光面)に届く光量の、傾斜角が0°(裏面12が平面)の場合に対する割合である。   The horizontal axis in FIG. 22 indicates the inclination angle θ. The vertical axis in FIG. 22 represents the ratio of the amount of light reaching the front surface 18a (light receiving surface) of the substrate 18 with respect to the case where the inclination angle is 0 ° (the back surface 12 is flat).

すなわち、図22の縦軸の値が小さいほど、再帰反射される光の量が多いことになる。図22に示すように、シミュレーションによって、傾斜角θが略55°のときに、再帰反射される光の量が最多となることが判明した。   That is, the smaller the value on the vertical axis in FIG. 22, the more light is retroreflected. As shown in FIG. 22, it has been found by simulation that the amount of retroreflected light becomes the maximum when the inclination angle θ is approximately 55 °.

〔バリエーション〕
なお、上記図10に示したように、裏面12に入射される光の量は、発光素子3に近いほど多くなる。
〔variation〕
As shown in FIG. 10, the amount of light incident on the back surface 12 increases as the distance from the light emitting element 3 increases.

そこで、図23に示すように、裏面12の中心から所定距離の領域55内に、主に光の散乱を目的とする加工(シボ加工等)を行い、裏面12の他の領域56に、主に再帰反射を目的とする加工(格子状凸部53を設ける加工)を行っても良い。このように、発光素子3からの光が入射しやすい凹み14の周縁近傍の領域55(内側領域)に光散乱部を形成し、裏面12上における凹み14から離れた領域であって発光素子3からの光が届きにくい領域56(外側領域)に再帰反射部を形成することにより、光散乱と再帰反射の2つの機能を効果的に発揮させることができる。   Therefore, as shown in FIG. 23, processing (texture processing or the like) mainly for light scattering is performed in a region 55 at a predetermined distance from the center of the back surface 12, and the main region is applied to another region 56 of the back surface 12. Alternatively, processing for retroreflection (processing for providing the lattice-like convex portions 53) may be performed. Thus, a light scattering portion is formed in the region 55 (inner region) near the periphery of the recess 14 where light from the light emitting device 3 is likely to be incident, and the light emitting device 3 is a region away from the recess 14 on the back surface 12. By forming the retroreflective portion in the region 56 (outer region) where it is difficult for light from reaching, it is possible to effectively exhibit the two functions of light scattering and retroreflection.

以上のように、本実施の形態によれば、光束制御部材50の裏面12に、断面形状が二等辺三角形の凸部53a、凸部53bにより格子状凸部53を形成することにより、光拡散部材2で反射された光を再帰反射させて光拡散部材2に再び照射することで有効利用することができるので、表示面での輝度の低下量を少なくすることができる。   As described above, according to the present embodiment, the light diffusion is performed by forming the grid-like convex portions 53 on the back surface 12 of the light flux controlling member 50 by the convex portions 53a and 53b having an isosceles triangular section. Since the light reflected by the member 2 is retroreflected and re-irradiated to the light diffusing member 2, it can be used effectively, so that the amount of decrease in luminance on the display surface can be reduced.

なお、表示面での輝度の低下量を少なくするために、表示装置の基板18の表面18a上に反射シートを設置する場合がある。本実施の形態によれば、光束制御部材50で再帰反射させた光が光拡散部材2を透過して表示面(被照射面)に照射されるので、基板18の、発光装置5の下の部分には反射シートを設置しなくても表示面の輝度ムラを抑制することができ、高品位な照明品質を得ることができる。   In order to reduce the amount of decrease in luminance on the display surface, a reflective sheet may be provided on the surface 18a of the substrate 18 of the display device. According to the present embodiment, the light retroreflected by the light flux controlling member 50 is transmitted through the light diffusing member 2 and irradiated onto the display surface (irradiated surface). Even if a reflective sheet is not provided in the portion, uneven luminance on the display surface can be suppressed, and high-quality illumination quality can be obtained.

(実施の形態4)
実施の形態4では、光束制御部材の裏面に複数の凹部を格子状に形成する場合について説明する。
(Embodiment 4)
In the fourth embodiment, a case where a plurality of concave portions are formed in a lattice shape on the back surface of the light flux controlling member will be described.

図24は、本実施の形態に係る発光装置の光束制御部材の断面図である。図24(a)は光束制御部材の全体断面図であり、図24(b)は図24(a)に示すC部の拡大図である。なお、図24において、図19と共通する構成部分には同一符号を付してその説明を省略する。   FIG. 24 is a cross-sectional view of the light flux controlling member of the light emitting device according to the present embodiment. FIG. 24A is an overall cross-sectional view of the light flux controlling member, and FIG. 24B is an enlarged view of a portion C shown in FIG. In FIG. 24, the same components as those in FIG.

光束制御部材60は、図19乃至図23の光束制御部材50に代えて用いられる。   The light flux controlling member 60 is used in place of the light flux controlling member 50 shown in FIGS.

図24(a)に示す光束制御部材60は、図19(a)に示した光束制御部材50と比較して、格子状凸部53の代わりに、格子状凹部63が形成される点が異なる。光束制御部材50の凸部53aの代わりに凹部63aを、凸部53bの代わりに凹部63bを形成する。   The light flux controlling member 60 shown in FIG. 24A is different from the light flux controlling member 50 shown in FIG. 19A in that a lattice-shaped concave portion 63 is formed instead of the lattice-shaped convex portion 53. . A concave portion 63a is formed instead of the convex portion 53a of the light flux controlling member 50, and a concave portion 63b is formed instead of the convex portion 53b.

格子状凹部63は、光束制御部材60の裏面12に、複数の凹条の凹部63aを、それらの稜線が平行となるように並べ、これらと直交する複数の凹条の凹部63bをそれらの稜線が平行となるように並べることにより形成される。そして、隣り合う凹部63aと凹部63a、凹部63bと凹部63bとの間に四角錐の凸部63cが形成される。   The grid-shaped concave portion 63 has a plurality of concave concave portions 63a arranged on the back surface 12 of the light flux controlling member 60 so that their ridge lines are parallel to each other, and a plurality of concave concave portions 63b orthogonal to these are arranged on the ridge lines. Are arranged so as to be parallel to each other. And the convex part 63c of a quadrangular pyramid is formed between the recessed part 63a and the recessed part 63a which adjoin, and the recessed part 63b and the recessed part 63b.

光束制御部材60の裏面12から外方に向かって突出した複数の四角錐の凸部63cは、光束制御部材60本体と共に、PMMA,PC,EP等の透明樹脂材料を用いて、金型から転写されて一体形成される。   The plurality of quadrangular pyramid protrusions 63c projecting outward from the back surface 12 of the light flux controlling member 60 are transferred from the mold together with the light flux controlling member 60 main body using a transparent resin material such as PMMA, PC, EP or the like. And are integrally formed.

なお、格子状凹部63は、光束制御部材60の裏面12の中心から外周面に向かって所定領域に設けられていればよく、光束制御部材60の裏面12の全面に形成されてもよい。   Note that the lattice-shaped recess 63 may be provided in a predetermined region from the center of the back surface 12 of the light flux controlling member 60 toward the outer peripheral surface, and may be formed on the entire back surface 12 of the light flux controlling member 60.

本実施の形態によっても、発光素子から光束制御部材の裏面に入射される光を散乱させることができる。   Also according to the present embodiment, light incident on the back surface of the light flux controlling member from the light emitting element can be scattered.

(実施の形態5)
上記各実施の形態では、光束制御部材の裏面に複数の凹部あるいは複数の凸部を正方格子状に形成する場合について説明したが、本発明はこれに限られず、複数の凹部あるいは複数の凸部を三方格子状や六方格子状に形成してもよい。
(Embodiment 5)
In each of the above embodiments, the case where a plurality of concave portions or a plurality of convex portions are formed in a square lattice shape on the back surface of the light flux controlling member has been described. However, the present invention is not limited to this, and a plurality of concave portions or a plurality of convex portions are provided. May be formed in a three-way lattice shape or a hexagonal lattice shape.

実施の形態5では、光束制御部材の裏面に複数の凹部あるいは複数の凸部を三方格子状や六方格子状に形成する場合について説明する。   In the fifth embodiment, a case will be described in which a plurality of concave portions or a plurality of convex portions are formed in a three-sided lattice shape or a hexagonal lattice shape on the back surface of the light flux controlling member.

〔バリエーション1〕
本実施の形態のバリエーション1は、光束制御部材の裏面に複数の凸部を三方格子状に形成する場合である。図25は、本実施の形態に係る発光装置のバリーション1の光束制御部材の裏面の一部を切り取って格子状凹部の構造を模式的に示す図である。図25(a)は斜視図、図25(b)は底面図、図25(c)は側面図である。
[Variation 1]
Variation 1 of the present embodiment is a case where a plurality of convex portions are formed in a three-way lattice pattern on the back surface of the light flux controlling member. FIG. 25 is a diagram schematically showing the structure of the lattice-shaped recess by cutting out a part of the back surface of the light flux controlling member of variation 1 of the light emitting device according to the present embodiment. FIG. 25A is a perspective view, FIG. 25B is a bottom view, and FIG. 25C is a side view.

図25に示すように、格子状凸部73は、光束制御部材の裏面から外方に向かって突出した複数の線条の凸部73aを並べ、複数の凸部73bを凸部73aに対して60°を為すように並べ、凸部73cを凸部73a及び凸部73bに対して60°を為すように並べることにより形成される。そして、凸部73a、凸部73b及び凸部73cに囲まれた部分には三角錐の凹部が形成される。線条の延在方向に直交する凸部73a、凸部73b、凸部73cの断面形状は二等辺三角形である。   As shown in FIG. 25, the grid-like convex portion 73 is arranged with a plurality of linear convex portions 73a protruding outward from the back surface of the light flux controlling member, and the plurality of convex portions 73b with respect to the convex portion 73a. The projections 73c are arranged so as to form 60 °, and the projections 73c are arranged so as to form 60 ° with respect to the projections 73a and 73b. A concave portion of a triangular pyramid is formed in a portion surrounded by the convex portion 73a, the convex portion 73b, and the convex portion 73c. The cross-sectional shape of the convex part 73a, the convex part 73b, and the convex part 73c orthogonal to the extending direction of a filament is an isosceles triangle.

〔バリエーション2〕
本実施の形態のバリエーション2は、光束制御部材の裏面に複数の凹部を三方格子状に形成する場合である。図26は、本実施の形態に係る発光装置のバリーション2の光束制御部材の裏面の一部を切り取って格子状凹部の構造を模式的に示す図である。図26(a)は斜視図、図26(b)は底面図、図26(c)は側面図である。
[Variation 2]
Variation 2 of the present embodiment is a case where a plurality of recesses are formed in a three-way lattice pattern on the back surface of the light flux controlling member. FIG. 26 is a diagram schematically showing the structure of the lattice-shaped recess by cutting out a part of the back surface of the light flux controlling member of the variation 2 of the light emitting device according to the present embodiment. 26A is a perspective view, FIG. 26B is a bottom view, and FIG. 26C is a side view.

図26に示すように、格子状凹部83は、光束制御部材の裏面から外方に向かって突出した複数の三角錐の凸部83dが形成される。この三角錐の凸部83dは、複数の線条の凹部83aと複数の凹部83bと複数の凹部83cとが60°で交わるように形成された三方格子において、凹部83a、凹部83b及び凹部83cに囲まれた部分に形成される。   As shown in FIG. 26, the lattice-shaped concave portion 83 is formed with a plurality of triangular pyramid convex portions 83d protruding outward from the back surface of the light flux controlling member. The triangular pyramid convex portion 83d is a three-way lattice formed so that the plurality of linear concave portions 83a, the plurality of concave portions 83b, and the plurality of concave portions 83c intersect at 60 °. It is formed in the enclosed part.

〔バリエーション3〕
本実施の形態のバリエーション3は、光束制御部材の裏面に複数の凸部を六方格子状に形成する場合である。図27は、本実施の形態に係る発光装置のバリーション3の光束制御部材の裏面の一部を切り取って格子状凹部の構造を模式的に示す底面図である。
[Variation 3]
Variation 3 of the present embodiment is a case where a plurality of convex portions are formed in a hexagonal lattice pattern on the back surface of the light flux controlling member. FIG. 27 is a bottom view schematically showing the structure of the lattice-shaped recess by cutting out a part of the back surface of the light flux controlling member of variation 3 of the light emitting device according to the present embodiment.

図27に示すように、格子状凸部93は、光束制御部材の裏面に、六角形の稜線(図27の太線凸部93a)を六方格子状に並べることによって形成される。そして、六角形の凸部93aに囲まれた六角錐の凹部が形成される。   As shown in FIG. 27, the lattice-shaped convex portion 93 is formed by arranging hexagonal ridge lines (thick line convex portions 93a in FIG. 27) in a hexagonal lattice pattern on the back surface of the light flux controlling member. And the hexagonal pyramid recessed part enclosed by the hexagonal convex part 93a is formed.

〔バリエーション4〕
本実施の形態のバリエーション4は、光束制御部材の裏面に複数の凹部を六方格子状に形成する場合である。バリエーション4の光束制御部材は、前述のバリエーション3における六角形の凸部93aに変えて、六角形の溝(図27の太線凹部103a)が形成される。
[Variation 4]
Variation 4 of the present embodiment is a case where a plurality of recesses are formed in a hexagonal lattice pattern on the back surface of the light flux controlling member. The light flux controlling member of variation 4 is formed with a hexagonal groove (thick line concave portion 103a in FIG. 27) instead of the hexagonal convex portion 93a in variation 3 described above.

格子状凹部103は、光束制御部材の裏面に、六角形の溝(凹部)103aを、六方格子状に並べることにより形成される。そして、六角形の凹部103aに囲まれた六角錐の凸部が形成される。   The lattice-shaped recess 103 is formed by arranging hexagonal grooves (recesses) 103a in a hexagonal lattice pattern on the back surface of the light flux controlling member. And the convex part of the hexagonal pyramid enclosed by the hexagonal recessed part 103a is formed.

本実施の形態の各バリエーションにおいても、発光素子から光束制御部材の裏面に入射される光を散乱させることができる。   Also in each variation of the present embodiment, light incident on the back surface of the light flux controlling member from the light emitting element can be scattered.

なお、実施の形態1、実施の形態2、実施の形態3および実施の形態5におけるバリエーション1のように、製品(光束制御部材)において線条を形成する場合には、金型の加工が容易である。   In addition, when the filament is formed in the product (light flux controlling member) as in variation 1 in the first embodiment, the second embodiment, the third embodiment, and the fifth embodiment, it is easy to process the mold. It is.

以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されることはない。   The above description is an illustration of a preferred embodiment of the present invention, and the scope of the present invention is not limited to this.

例えば、光拡散部材は、被照明部材の発光素子側の面に取り付けてもよいし、また、被照明部材とは別に分離した状態で、被照明部材の発光素子に対向する面側に配置するようにしてもよい。   For example, the light diffusing member may be attached to the surface of the illuminated member on the light emitting element side, or in a state separated from the illuminated member, disposed on the surface of the illuminated member facing the light emitting element. You may do it.

また、光束制御部材は、光制御出射面にシボ面を形成し、光制御出射面から出射する光を拡散させるようにしてもよい。   The light flux controlling member may be formed with a textured surface on the light control exit surface to diffuse light emitted from the light control exit surface.

また、光束制御部材は、光拡散物質(例えば、シリコーン粒子や酸化チタン)を含む材料で形成するようにしてもよい。   The light flux controlling member may be formed of a material containing a light diffusing substance (for example, silicone particles or titanium oxide).

また、上記各実施の形態では、発光装置、面光源装置、及び表示装置という名称を用いたが、これは説明の便宜上であり、平面光源、表示素子等であってもよい。   In the above embodiments, the names of the light emitting device, the surface light source device, and the display device are used. However, this is for convenience of explanation and may be a planar light source, a display element, or the like.

本発明に係る光束制御部材、発光装置、面光源装置、及び表示装置は、テレビモニタやパーソナルコンピュータのモニタのバックライト、室内表示灯や各種照明などの用途に広く使用することができる。   The light flux controlling member, the light emitting device, the surface light source device, and the display device according to the present invention can be widely used in applications such as a backlight of a monitor of a television monitor or a personal computer, an indoor indicator light, and various illuminations.

1 面光源装置
2 光拡散部材
3 発光素子
4、40、50、60 光束制御部材
5 発光装置
6 表示装置
7 被照明部材
11 光制御出射面
12 裏面
13、43、53、73、93 格子状凸部
13a,13b,43a、43b、53a、53b、73a、73b、73c、93a 凸部
14 凹み
15 鍔部
16 脚
18 基板
43c 凹凸面
63、83、103 格子状凹部
63a、83a、83b、83c、103a 凹部
93a 稜線
DESCRIPTION OF SYMBOLS 1 Surface light source device 2 Light-diffusion member 3 Light-emitting element 4, 40, 50, 60 Light flux control member 5 Light-emitting device 6 Display apparatus 7 Illuminated member 11 Light-control emission surface 12 Back surface 13, 43, 53, 73, 93 Grid-shaped convex Portions 13a, 13b, 43a, 43b, 53a, 53b, 73a, 73b, 73c, 93a 103a Recess 93a Ridge line

Claims (11)

発光素子から出射された光の進行方向を制御する光束制御部材であって、
発光素子から出射された光の進行方向を制御する光制御出射面と、
前記光制御出射面の反対側に位置する凹みと、
前記凹みの開口縁部から径方向に延在する裏面と、を有し、
前記裏面には、複数の線条の凸部を格子状に配置した格子状凸部、または、複数の線条の凹部を格子状に配置した格子状凹部が形成されており、
前記線条の凸部または前記線条の凹部は、線条の延在方向に対して直交する断面形状が、三角形状、頂部にR面取を施した三角形状、または半円形状であり、
前記光制御出射面は、前記発光素子の光軸と交わるように配置された前記凹み側に凸の曲面である第1の出射面と、前記第1の出射面の周囲に連続して配置された前記裏面の反対側に凸の曲面である第2の出射面と、を含
前記線条の凸部または前記線条の凹部は、粗面加工されている、
光束制御部材。
A light flux controlling member for controlling the traveling direction of light emitted from the light emitting element,
A light control exit surface for controlling the traveling direction of the light emitted from the light emitting element;
A recess located on the opposite side of the light control exit surface;
A back surface extending in a radial direction from the opening edge of the recess,
On the back surface, a grid-like convex part in which convex parts of a plurality of filaments are arranged in a grid pattern, or a grid-like concave part in which concave parts of a plurality of filaments are arranged in a grid pattern are formed,
The protrusions of the filaments or the recesses of the filaments, the cross-sectional shape orthogonal to the extending direction of the filaments is a triangular shape, a triangular shape with an R chamfer on the top, or a semicircular shape,
The light control emission surface is continuously arranged around the first emission surface, which is a curved surface convex toward the dent and arranged so as to intersect the optical axis of the light emitting element, and around the first emission surface. look including a second exit surface which is convex curved in the opposite side of the back was,
The projections of the filaments or the recesses of the filaments are roughened,
Luminous flux control member.
前記格子は正方格子である、請求項1に記載の光束制御部材。   The light flux controlling member according to claim 1, wherein the lattice is a square lattice. 前記格子は三角格子である、請求項1に記載の光束制御部材。   The light flux controlling member according to claim 1, wherein the lattice is a triangular lattice. 前記格子は六角格子である、請求項1に記載の光束制御部材。   The light flux controlling member according to claim 1, wherein the lattice is a hexagonal lattice. 前記格子状凸部または前記格子状凹部は、前記裏面と一体成形される、請求項1〜4のいずれか一項に記載の光束制御部材。   The light flux controlling member according to any one of claims 1 to 4, wherein the lattice-shaped convex portion or the lattice-shaped concave portion is integrally formed with the back surface. 前記線条の凸部は、線条間の溝部がR形状を有する、請求項1〜5のいずれか一項に記載の光束制御部材。   The light flux controlling member according to any one of claims 1 to 5, wherein the convex portion of the filament has a R-shaped groove between the filaments. 前記線条の凸部は、延在方向に対して直交する断面形状が三角形状であって、底辺と他の辺とのなす角度である傾斜角が略55°である、請求項1〜のいずれか一項に記載の光束制御部材。 Projections of the striatum, the cross-sectional shape orthogonal to the extending direction a triangular inclination angle is an angle formed between the base and the other side is substantially 55 °, claim 1-6 The light flux controlling member according to any one of the above. 光を出射する発光素子と、
前記発光素子と前記凹みとが対向し、かつ前記第1の出射面が前記発光素子の光軸と交わるように配置された、請求項1〜のいずれか一項に記載の光束制御部材と、
を有する、発光装置。
A light emitting element that emits light;
The light flux controlling member according to any one of claims 1 to 7 , wherein the light emitting element and the recess are opposed to each other, and the first emission surface is disposed so as to intersect an optical axis of the light emitting element. ,
A light emitting device.
前記発光素子は、点光源である、請求項に記載の発光装置。 The light emitting device according to claim 8 , wherein the light emitting element is a point light source. 請求項または請求項に記載の発光装置と、
前記発光装置から出射された光を拡散・透過する光拡散部材と、
を有する、面光源装置。
A light emitting device according to claim 8 or 9 ,
A light diffusing member that diffuses and transmits light emitted from the light emitting device;
A surface light source device.
請求項1に記載の面光源装置と、
前記面光源装置からの光が照射される被照明部材と、
を有する、表示装置。
A surface light source device according to claim 1 0,
An illuminated member to which light from the surface light source device is irradiated;
A display device.
JP2014260688A 2009-04-27 2014-12-24 Light flux controlling member, light emitting device, surface light source device, and display device Expired - Fee Related JP6093748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014260688A JP6093748B2 (en) 2009-04-27 2014-12-24 Light flux controlling member, light emitting device, surface light source device, and display device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009107848 2009-04-27
JP2009107848 2009-04-27
JP2009222574 2009-09-28
JP2009222574 2009-09-28
JP2014260688A JP6093748B2 (en) 2009-04-27 2014-12-24 Light flux controlling member, light emitting device, surface light source device, and display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013256150A Division JP5677558B2 (en) 2009-04-27 2013-12-11 Surface light source device and display device

Publications (2)

Publication Number Publication Date
JP2015121791A JP2015121791A (en) 2015-07-02
JP6093748B2 true JP6093748B2 (en) 2017-03-08

Family

ID=45846645

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2011250457A Active JP5437352B2 (en) 2009-04-27 2011-11-16 Luminous flux control member
JP2013256150A Expired - Fee Related JP5677558B2 (en) 2009-04-27 2013-12-11 Surface light source device and display device
JP2014260688A Expired - Fee Related JP6093748B2 (en) 2009-04-27 2014-12-24 Light flux controlling member, light emitting device, surface light source device, and display device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2011250457A Active JP5437352B2 (en) 2009-04-27 2011-11-16 Luminous flux control member
JP2013256150A Expired - Fee Related JP5677558B2 (en) 2009-04-27 2013-12-11 Surface light source device and display device

Country Status (1)

Country Link
JP (3) JP5437352B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360568B1 (en) * 2012-09-14 2014-02-11 엘지이노텍 주식회사 Optical member and display device having the same
KR101814608B1 (en) 2016-04-07 2018-01-03 주식회사 퍼스트옵틱스 Flux control member and Light emitting apparatus using the same
KR101892590B1 (en) 2017-12-19 2018-08-30 한국건설기술연구원 Roadway lighting module and roadway lighting apparatus having the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4091233B2 (en) * 2000-03-03 2008-05-28 ローム株式会社 Dot matrix display
JP2003043477A (en) * 2001-08-02 2003-02-13 Hitachi Chem Co Ltd Diffuse reflection plate, transfer original pattern used to manufacture the same, transfer base film, transfer film, and method for manufacturing diffuse reflection plate
EP1870743A1 (en) * 2005-04-12 2007-12-26 Teijin Chemicals, Ltd. Resin sheet, direct backlight unit, and direct backlight type liquid crystal display
KR101298786B1 (en) * 2005-08-27 2013-08-22 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Illumination assembly and system
WO2007046337A1 (en) * 2005-10-17 2007-04-26 Mitsubishi Rayon Co., Ltd. Prism sheet and production method thereof and surface light source device
JP4587931B2 (en) * 2005-10-18 2010-11-24 株式会社エンプラス Lighting device and lighting unit
JP2008242295A (en) * 2007-03-28 2008-10-09 Dainippon Printing Co Ltd Optical sheet, surface light source device, and transmission type display device
JP5213383B2 (en) * 2007-08-09 2013-06-19 シャープ株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE EQUIPPED WITH THE SAME
JP4350144B2 (en) * 2007-08-09 2009-10-21 シャープ株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE EQUIPPED WITH THE SAME
JP4678058B2 (en) * 2009-01-14 2011-04-27 ソニー株式会社 Light control member, light emitting device, and display device

Also Published As

Publication number Publication date
JP2012033511A (en) 2012-02-16
JP5437352B2 (en) 2014-03-12
JP5677558B2 (en) 2015-02-25
JP2015121791A (en) 2015-07-02
JP2014056842A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
JP4870826B2 (en) Light emitting device, surface light source device, and display device
JP4863357B2 (en) Light emitting device, surface light source device, display device, and light flux controlling member
JP3875247B2 (en) Light emitting device, surface light source device, display device, and light flux controlling member
JP6046398B2 (en) Surface light source device and display device
JP5077942B2 (en) Light emitting device, surface light source device, and display device
JP5812566B2 (en) Light capture structure for light emitting applications
JP6111110B2 (en) Luminous flux control member, light emitting device, surface light source device, and display device
JP2011044411A (en) Luminous flux control member, light emitting device, planar light source device, and display device
JP4357508B2 (en) Light emitting device, surface light source device, display device, and light flux controlling member
TWI282444B (en) Light guide plate having diffusion function
WO2018194118A1 (en) Light flux control member, light-emitting device, surface light source device and display device
JP6093748B2 (en) Light flux controlling member, light emitting device, surface light source device, and display device
JP2019046751A (en) Light emitting device, surface light source device and display device
WO2016194798A1 (en) Planar light source device and liquid crystal display device
TW202001380A (en) Planar lighting device
JP2013105076A (en) Luminous flux control component, light-emitting device, surface light source device, and display unit
JP2019046649A (en) Light emitting device, surface light source device and display device
JP2016051164A (en) Luminous flux control member, luminescent device, surface light source device, and display device
JP2018120664A (en) Luminous flux control member, light emitting device, surface light source device and display device
WO2018207902A1 (en) Light bundle control member, light emitting device, area light source device, and display device
JP2020181836A (en) Planar lighting device
JP2022171284A (en) Surface light source device and display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6093748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees