JP6093457B2 - Natural gas liquefaction method and apparatus - Google Patents

Natural gas liquefaction method and apparatus Download PDF

Info

Publication number
JP6093457B2
JP6093457B2 JP2015562962A JP2015562962A JP6093457B2 JP 6093457 B2 JP6093457 B2 JP 6093457B2 JP 2015562962 A JP2015562962 A JP 2015562962A JP 2015562962 A JP2015562962 A JP 2015562962A JP 6093457 B2 JP6093457 B2 JP 6093457B2
Authority
JP
Japan
Prior art keywords
heat exchanger
outlet
separator
inlet
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015562962A
Other languages
Japanese (ja)
Other versions
JP2016512595A (en
Inventor
ヴラジミロヴィッチ ママエフ,アナトリー
ヴラジミロヴィッチ ママエフ,アナトリー
アレクセエヴィッチ シロチン,セルゲイ
アレクセエヴィッチ シロチン,セルゲイ
ペトロヴィッチ コプシャ,ディミトリー
ペトロヴィッチ コプシャ,ディミトリー
ペトロヴィッチ バクメチェフ,アンドレイ
ペトロヴィッチ バクメチェフ,アンドレイ
ヴィルスロヴィッチ イシュムルジン,アイラート
ヴィルスロヴィッチ イシュムルジン,アイラート
ウラジミーロヴィッチ レベデフ,ユーリイ
ウラジミーロヴィッチ レベデフ,ユーリイ
ヴィアチェスラヴォヴィッチ ノヴィコフ,デニス
ヴィアチェスラヴォヴィッチ ノヴィコフ,デニス
パブロヴィッチ アファナシエフ,イゴール
パブロヴィッチ アファナシエフ,イゴール
アレクサンドロヴィッチ ホダコフスキー,ウィタリー
アレクサンドロヴィッチ ホダコフスキー,ウィタリー
Original Assignee
オトクリトエ アクツィオネルノエ オブスチェストヴォ “ガズプロム”
オトクリトエ アクツィオネルノエ オブスチェストヴォ “ガズプロム”
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オトクリトエ アクツィオネルノエ オブスチェストヴォ “ガズプロム”, オトクリトエ アクツィオネルノエ オブスチェストヴォ “ガズプロム” filed Critical オトクリトエ アクツィオネルノエ オブスチェストヴォ “ガズプロム”
Publication of JP2016512595A publication Critical patent/JP2016512595A/en
Application granted granted Critical
Publication of JP6093457B2 publication Critical patent/JP6093457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、ガスとその混合物の液化に関連し、天然ガス処理中に使用できる。   The present invention relates to the liquefaction of gases and mixtures thereof and can be used during natural gas processing.

現状の技術は、北極海沿岸或いは近海での天然ガス液化方法(ロシア特許公報第2344359号、CI.F25J1/00、2009年1月20日)を含む。前記方法は、混入物、重質炭化水素、および窒素の除去によるガス精製用で、なおかつ、それに続くガス液化用の回路はもちろん、分配装置において、圧縮され、冷却された冷却剤の、1:19〜1:33の比率の2つの流れへの分配が行われる冷却回路との、2つの回路を備える装置の使用によって実施される。前記冷却剤のより大きな流れは冷却目的の熱交換器(HE)に送られ、(絞り弁を通過する)より小さな流れは回収塔の反応セクションに送られる。それらの圧力が平衡した後、両方の冷却剤が一緒に混合される。この方法の不都合は電力消費が大きいことである。   Current technology includes a natural gas liquefaction method (Russian Patent Publication No. 2344359, CI.F25J1 / 00, January 20, 2009) on or near the Arctic Ocean. The method is for gas purification by removal of contaminants, heavy hydrocarbons, and nitrogen, and in the distribution apparatus as well as the circuit for the subsequent gas liquefaction, 1: This is done by the use of a device with two circuits, with a cooling circuit in which a distribution of 19 to 1:33 in two streams takes place. The larger stream of the coolant is sent to a heat exchanger (HE) for cooling purposes, and the smaller stream (passing through the throttle valve) is sent to the reaction section of the recovery tower. After their pressures equilibrate, both coolants are mixed together. The disadvantage of this method is high power consumption.

出願人が試作として採用した最も近い既存技術は、天然ガス液化方法とその装置(ロシア特許公報第2344360号、CI.F25J1/00、2009年1月20日)である。   The closest existing technology adopted by the applicant as a prototype is a natural gas liquefaction method and apparatus (Russian Patent Publication No. 2344360, CI.F25J1 / 00, January 20, 2009).

この方法は、混入物、重質炭化水素、および窒素の除去によるガス精製用で、なおかつ、それに続くガス液化用の回路はもちろん、分配装置において、圧縮され、冷却された冷却剤の、1:19〜1:33の比率の2つの流れへの分配が行われる冷却回路との、2つの回路を備える装置の使用によって実施される。前記冷却剤のより大きな流れは冷却目的の熱交換器(HE)に送られ、(絞り弁を通過する)より小さな流れは回収塔の反応セクションに送られる。それらの圧力が平衡した後、両方の冷却剤が一緒に混合される。前記天然ガス液化装置は、混入物、重質炭化水素、および窒素の除去によるガス精製用で、なおかつ、それに続くガス液化用の回路はもちろん、冷却回路とからなる。液化天然ガス用の前記分配装置は、ミキサーで合流する第1および第2液化ラインに接続される2つの流出口を有する。前記第1液化ラインは第1HEを通過し、前記第2液化ラインは第2HEを通過する。両方のラインはバルブと、液化ガスミキサーでの混合より前に、前記第1および第2冷却ライン内の液化ガスの圧力の平衡を確保する圧力計と、を備え、当該液化ガスミキサーの流出口は第1分離器に接続され、当該第1分離器の頭頂部は、第1HEを通過する第3液化ラインを通って、前記回収塔に接続される。前記回収塔の頭頂部はパイプラインで前記第2HEに接続され、前記回収塔の底部は過冷却HEを通過する第4液化ラインに接続される。前記冷却回路は第1および第2冷却ラインに接続される2つの流出口を有する圧縮冷却分離器を備え、当該第1および第2冷却ラインは第1冷却ミキサーで合流する。前記第1冷却ラインは第3HEを通過し、前記第2冷却ラインは第3絞り弁と前記回収塔の反応セクションを通過する。両方のラインはバルブと、前記第1冷却ミキサーでの混合より前に、前記第1および第2冷却ライン内の前記冷却剤の圧力の平衡を確保する圧力計と、を備える。   This method is for gas purification by removal of contaminants, heavy hydrocarbons, and nitrogen, and of the compressed and cooled coolant in the distributor as well as the circuit for the subsequent gas liquefaction, 1: This is done by the use of a device with two circuits, with a cooling circuit in which a distribution of 19 to 1:33 in two streams takes place. The larger stream of the coolant is sent to a heat exchanger (HE) for cooling purposes, and the smaller stream (passing through the throttle valve) is sent to the reaction section of the recovery tower. After their pressures equilibrate, both coolants are mixed together. The natural gas liquefying apparatus is for gas purification by removing contaminants, heavy hydrocarbons, and nitrogen, and further includes a cooling circuit as well as a subsequent gas liquefying circuit. The distributor for liquefied natural gas has two outlets connected to the first and second liquefaction lines that merge at the mixer. The first liquefaction line passes through the first HE, and the second liquefaction line passes through the second HE. Both lines comprise a valve and a pressure gauge that ensures a balance of the pressure of the liquefied gas in the first and second cooling lines before mixing in the liquefied gas mixer, and the outlet of the liquefied gas mixer Is connected to the first separator, and the top of the first separator is connected to the recovery tower through a third liquefaction line passing through the first HE. The top of the recovery tower is connected to the second HE by a pipeline, and the bottom of the recovery tower is connected to a fourth liquefaction line passing through the supercooling HE. The cooling circuit includes a compression cooling separator having two outlets connected to first and second cooling lines, and the first and second cooling lines are joined by a first cooling mixer. The first cooling line passes through the third HE, and the second cooling line passes through the third throttle valve and the reaction section of the recovery tower. Both lines comprise a valve and a pressure gauge that ensures a balance of the pressure of the coolant in the first and second cooling lines prior to mixing in the first cooling mixer.

上記の方法と装置の使用は、電力消費が大きいことを特徴とする。   The use of the above method and apparatus is characterized by high power consumption.

ロシア特許公報第2344359号Russian Patent Publication No. 2344359 ロシア特許公報第2344360号Russian Patent Publication No. 2344360

本発明の応用を通じて到達する技術的な成果は、天然ガス液化処理中に必要とされる電力消費の低下である。   The technical result achieved through the application of the present invention is the reduction in power consumption required during the natural gas liquefaction process.

天然ガス液化の処理フローダイアグラムは、図面に以下のように示される。   The process flow diagram for natural gas liquefaction is shown in the drawing as follows.

本天然ガス液化方法の本質は、前処理済乾燥ガスが、予冷HEにおいて、摂氏マイナス52〜マイナス54度の間の範囲の温度まで冷却され、そして、濃縮されることである。それから、分別目的用に供給される液状エタンの留分を除去することによって、前記前処理済乾燥ガスは分離され、そして、第1分離器からのガス流が、液化HEにおいて摂氏マイナス120〜マイナス125度まで引き続いて冷却され、過冷却熱交換器において摂氏マイナス150〜マイナス160度まで、気体窒素によって冷却される。過冷却された液化天然ガス(LNG)の圧力は、液体膨張器において0.11〜0.13MPaになるまで低下させられる。前記過冷却されたLNGは分離目的で供給され、それからLNG貯蔵タンクに供給される。前記分離されたガスは燃料ガス系に供給され、前記予冷HEからの、窒素、メタン、エタン、プロパン、ブタンおよびペンタンを包含する混合冷却剤は3.0〜3.1MPaになるまで圧縮され、摂氏26〜30度に冷却され、そして、重液体冷却剤と軽気体冷却剤に分離される。前記重液体冷却剤は、直前の分離器からの重液体冷却剤と混和するために吸い出される。前記重液体混合冷却剤と前記軽気体混合冷却剤は、重冷却剤と軽冷却剤の低圧(LP)の混合対向流を注入することによって摂氏マイナス52〜マイナス54度へ冷却されるために供給される。それから、前記重液体混合冷却剤は、前記予冷HEにおいて過冷却され、0.25〜0.27MPaになるまでスロットルで調整され、そして、前記予冷HEの配管を冷却するために、前記液化HEからの前記軽混合冷却剤と共に供給される。前記軽混合冷却剤は、前記予冷HEと前記液化HEにおいて、濃縮され、そして引き続いて過冷却される。前記液化HEの流出口において生じた過冷却された液化軽混合冷却剤は0.25〜0.27MPaになるまでスロットルで調整され、それから、配管を冷却する。窒素HEからのLP気体窒素はターボ膨張圧縮機において1.2〜1.4MPaになるまで、そして、各窒素圧縮機において3.5〜3.7MPaになるまで圧縮され、そして続けて、各空気冷却器において摂氏26〜30度まで、そして、窒素HEにおいてLP窒素冷却剤対向流を通じて摂氏マイナス107〜マイナス109度まで冷却される。その後窒素は、膨張器において0.8〜1.0MPaになるまで膨張され、LNG流を冷却するために過冷却HEに送られ、窒素HEにおいて高圧(HP)窒素によって摂氏22〜24度まで加熱され、そして、ターボ膨張圧縮機吸込み口に帰還する。   The essence of the natural gas liquefaction method is that the pretreated dry gas is cooled and concentrated in pre-cooled HE to a temperature in the range between minus 52 and minus 54 degrees Celsius. The pre-treated dry gas is then separated by removing the fraction of liquid ethane supplied for fractionation purposes, and the gas stream from the first separator is minus 120 to minus Celsius in the liquefied HE. It is subsequently cooled to 125 degrees and cooled with gaseous nitrogen to minus 150 to minus 160 degrees Celsius in a supercooling heat exchanger. The pressure of the supercooled liquefied natural gas (LNG) is reduced to 0.11 to 0.13 MPa in the liquid expander. The supercooled LNG is supplied for separation purposes and then supplied to the LNG storage tank. The separated gas is supplied to a fuel gas system, and the mixed coolant including nitrogen, methane, ethane, propane, butane, and pentane from the precooled HE is compressed to 3.0 to 3.1 MPa, It is cooled to 26-30 degrees Celsius and separated into a heavy liquid coolant and a light gas coolant. The heavy liquid coolant is aspirated for mixing with the heavy liquid coolant from the previous separator. The heavy liquid mixed coolant and the light gas mixed coolant are supplied to be cooled to minus 52 to minus 54 degrees Celsius by injecting a low pressure (LP) mixed counter flow of heavy and light coolant. Is done. The heavy liquid mixed coolant is then subcooled in the precooled HE, adjusted with a throttle until it reaches 0.25 to 0.27 MPa, and from the liquefied HE to cool the precooled HE piping. Of the light mixed coolant. The light mixed coolant is concentrated and subsequently supercooled in the precooled HE and the liquefied HE. The supercooled liquefied light mixed coolant generated at the outlet of the liquefied HE is adjusted with a throttle until it becomes 0.25 to 0.27 MPa, and then the pipe is cooled. LP gaseous nitrogen from nitrogen HE is compressed to 1.2-1.4 MPa in a turbo expansion compressor and 3.5-3.7 MPa in each nitrogen compressor, and then each air Cooled to 26-30 degrees Celsius in the cooler and to minus 107-109 degrees Celsius through LP nitrogen coolant counterflow in nitrogen HE. Nitrogen is then expanded to 0.8-1.0 MPa in an expander, sent to supercooled HE to cool the LNG stream, and heated to 22-24 degrees Celsius with high pressure (HP) nitrogen in nitrogen HE. And return to the suction port of the turbo expansion compressor.

本方法の実施のために使用される本天然ガス液化装置の本質は、予冷HE、5つの分離器、2つの絞り弁、液化HE、混合冷却剤圧縮用の3つの圧縮機、5つの空気冷却器、2つのポンプ、液体膨張器、過冷却HE、ターボ膨張器装置(作動用膨張器と圧縮機を備える)、および2つの窒素圧縮機の各機器からなる装置であることである。   The essence of the natural gas liquefier used for carrying out the method consists of precooled HE, 5 separators, 2 throttle valves, liquefied HE, 3 compressors for mixed coolant compression, 5 air cooling. A pump, a liquid expander, a supercooling HE, a turbo expander device (including an operating expander and a compressor), and two nitrogen compressors.

前記予冷HEの流入口は、天然ガスの取り込み用である。前記予冷HEの第1流出口は第1分離器の流入口に接続され、当該第1分離器のガス流出口は前記液化HEの第1流入口に接続され、当該液化HEの第1流出口は前記過冷却HEの流入口に接続され、当該過冷却HEの第1流出口は前記液体膨張器を経由して第2分離器の流入口に接続され、当該第2分離器の分離ガス流出口は燃料ガス系への送り出し用である。   The inlet of the precooled HE is for taking in natural gas. The first outlet of the precooled HE is connected to the inlet of the first separator, the gas outlet of the first separator is connected to the first inlet of the liquefied HE, and the first outlet of the liquefied HE Is connected to the inlet of the supercooling HE, the first outlet of the supercooling HE is connected to the inlet of the second separator via the liquid expander, and the separation gas flow of the second separator is The outlet is for delivery to the fuel gas system.

前記第2分離器の液化ガス流出口はLNG貯蔵タンクに接続される。前記第1分離器の液体エタン流出口は分別装置の流入口に接続される。前記予冷HEの混合冷却剤流出口は第1圧縮機の流入口に接続され、当該第1圧縮機の流出口は前記空気冷却器の流入口に接続され、当該空気冷却器は、重液体冷却剤流と軽気体混合冷却剤流を生じる分離器の流入口に接続される。上述の第1圧縮機、空気冷却器、および分離器は、少なくとも三段階の圧縮段の、第1段階を構成し、当該圧縮段の全段階は同一である。第i段階(i=1,2
とする)の分離器の軽気体混合冷却剤用の流出口は、前記三段階の圧縮段の第i+1段階
の圧縮機の流入口に接続される。最終段階の分離器の軽気体混合冷却剤用の流出口は、前記予冷HEの第2流入口に接続される。第1段階および第2段階の分離器の重液体冷却剤用の流出口は、それぞれに、第1および第2ポンプを通過して、前記予冷HEの第3流入口に混合物を供給するために、第3段階の分離器の重液体冷却剤用の流出口と結合される。前記予冷HEの第2流出口は、前記液化HEの第2流入口に接続され、当該液化HEの第2流出口は、第2絞り弁を通じて配管冷却用の前記液化HEの流入口に接続される。前記予冷HEの第3流出口は、配管冷却用に前記予冷HE内に混合物を供給するために、第1絞り弁を通じて前記液化HEの第3流出口と結合される。前記過冷却HEの第2流出口は、窒素HEの流入口に接続され、当該窒素HEの第1および第2流出口は、それぞれに、膨張器とターボ膨張圧縮機の流入口に接続され、当該膨張器とターボ膨張圧縮機の流出口は、それぞれに、前記過冷却HEのLNG流の冷却用の流入口と第2窒素圧縮機の流入口に接続される。後者の流出口は、直列に接続された第5空気冷却器、第1窒素圧縮機および第4空気冷却器に接続され、当該第4空気冷却器流出口は、前記窒素HEの別の流入口へのHP窒素供給用である。
The liquefied gas outlet of the second separator is connected to an LNG storage tank. The liquid ethane outlet of the first separator is connected to the inlet of the fractionation device. The precooled HE mixed coolant outlet is connected to the inlet of the first compressor, the outlet of the first compressor is connected to the inlet of the air cooler, and the air cooler is cooled by heavy liquid cooling. Connected to the inlet of the separator that produces the agent stream and the light gas mixed coolant stream. The first compressor, the air cooler, and the separator described above constitute the first stage of at least three compression stages, and all stages of the compression stage are the same. I-th stage (i = 1, 2
The outlet for the light gas mixed coolant of the separator is connected to the inlet of the compressor in the i + 1th stage of the three-stage compression stage. The outlet for the light gas mixed coolant of the final stage separator is connected to the second inlet of the precooled HE. The outlets for the heavy liquid coolant of the first stage and second stage separators pass through the first and second pumps, respectively, to supply the mixture to the third inlet of the precooled HE. , Coupled to the outlet for the heavy liquid coolant of the third stage separator. The second outlet of the pre-cooled HE is connected to the second inlet of the liquefied HE, and the second outlet of the liquefied HE is connected to the inlet of the liquefied HE for cooling the pipe through a second throttle valve. The The third outlet of the precooled HE is coupled to the third outlet of the liquefied HE through a first throttle valve to supply a mixture into the precooled HE for pipe cooling. The second outlet of the supercooling HE is connected to an inlet of nitrogen HE, and the first and second outlets of the nitrogen HE are connected to the inlet of the expander and the turbo expansion compressor, respectively. The outlets of the expander and the turbo expansion compressor are respectively connected to an inlet for cooling the LNG flow of the supercooling HE and an inlet of the second nitrogen compressor. The latter outlet is connected to a fifth air cooler, a first nitrogen compressor, and a fourth air cooler connected in series, and the fourth air cooler outlet is another inlet for the nitrogen HE. For supplying HP nitrogen.

天然ガス液化の処理フローダイアグラムである。It is a processing flow diagram of natural gas liquefaction.

前記天然ガス液化装置は、
‐ 混合冷却剤回路と、
‐ 窒素冷却剤回路の、
2つの回路を備える。
The natural gas liquefaction device is:
-Mixed coolant circuit;
-Of the nitrogen coolant circuit,
Two circuits are provided.

前記天然ガス液化装置は、
‐ 予冷HE(1)と、
‐ 第1〜第5分離器(2,20,8,11,14)と、
‐ 第1および第2絞り弁(3,5)と、
‐ 液化HE(4)と、
‐ 混合冷却剤圧縮用の、第1〜第3圧縮機(6,9,12)と、
‐ 第1〜第5空気冷却器(7,10,13,23,25)と、
‐ 第1および第2ポンプ(15,16)と、
‐ 液体膨張器(19)と、
‐ 過冷却HE(17)と、
‐ 窒素HE(18)と、
‐ 作動用膨張器(21)と圧縮機(22)を備えるターボ膨張器装置と、
‐ 2つの窒素圧縮機(24,26)と、
‐ 分別装置(27)と、
‐ LNG貯蔵タンク(28)の、
各機器と各ブロックを備える。
The natural gas liquefaction device is:
-Pre-cooled HE (1),
-The first to fifth separators (2, 20, 8, 11, 14);
-First and second throttle valves (3, 5);
-Liquefied HE (4);
-First to third compressors (6, 9, 12) for mixed coolant compression;
-First to fifth air coolers (7, 10, 13, 23, 25);
-First and second pumps (15, 16);
-A liquid inflator (19);
-Supercooled HE (17);
-Nitrogen HE (18);
A turbo-expander device comprising an actuating expander (21) and a compressor (22);
-Two nitrogen compressors (24, 26);
-A sorting device (27);
-Of the LNG storage tank (28),
Each device and each block are provided.

前処理済乾燥ガスが液化目的で供給され、それから混合冷却剤によって、予冷HE(1)において摂氏マイナス52〜マイナス54度まで冷却される。二相の流れが、エタンの留分の除去が行われる第1分離器(2)を通過し、それから、前記第1分離器からの液体が、分別目的で送り込まれる。ガス流は液化HE(4)に供給され、摂氏マイナス120〜マイナス125度まで冷却される。   Pretreated dry gas is supplied for liquefaction purposes and then cooled to minus 52 to minus 54 degrees Celsius in precooled HE (1) by a mixed coolant. The two-phase stream passes through a first separator (2) where ethane fraction removal takes place, from which the liquid from the first separator is sent for fractionation purposes. The gas stream is supplied to liquefied HE (4) and cooled to minus 120 to minus 125 degrees Celsius.

液化天然ガス(LNG)はその後過冷却HE(17)において摂氏マイナス150〜マイナス160度まで、気体窒素によって冷却される。   The liquefied natural gas (LNG) is then cooled with gaseous nitrogen to minus 150 to minus 160 degrees Celsius in supercooled HE (17).

過冷却HE(17)から出ていく冷却されたLNGの圧力は、液体膨張器(19)において0.11〜0.13MPaになるまで低下させられる。前記低圧化したLNGは分離器(20)に、それからLNG貯蔵タンクに供給される。液体膨張器(19)は、液化ガス膨張エネルギーのおかげで、液化処理中の消費電力を低減することが可能になる。   The pressure of the cooled LNG exiting from the supercooled HE (17) is reduced to 0.11 to 0.13 MPa in the liquid expander (19). The reduced pressure LNG is fed to the separator (20) and then to the LNG storage tank. The liquid expander (19) can reduce power consumption during the liquefaction process thanks to the liquefied gas expansion energy.

混合冷却剤回路   Mixed coolant circuit

混合冷却剤は、窒素、メタン、エタン、プロパン、ブタンおよびペンタンからなる。   The mixed coolant consists of nitrogen, methane, ethane, propane, butane and pentane.

前記混合冷却剤は、コンプレッサ(6,9,12)において、3.0〜3.1MPaになるまで圧縮される。各圧縮段階の間に、前記混合冷却剤は、空気冷却器(7,10,13)において、摂氏26〜30度に冷却される。二相の流れが、重液体混合冷却剤流と軽気体混合冷却剤流への分離用の混合冷却剤分離器(8,11,14)に供給される。分離器(8,11)からの前記重液体混合冷却剤流は、ポンプ(15,16)によって、分離器(14)からの前記液体との混合のために供給される。段階毎の重液体混合冷却剤の成分および量は、混合冷却剤成分に依存し、当該混合冷却剤成分は、ある周囲温度における天然ガスの液化中の、最小冷却剤消費を確保するような方法で選択される。   The mixed coolant is compressed in a compressor (6, 9, 12) until it reaches 3.0 to 3.1 MPa. During each compression stage, the mixed coolant is cooled to 26-30 degrees Celsius in an air cooler (7, 10, 13). The two-phase stream is fed to a mixed coolant separator (8, 11, 14) for separation into a heavy liquid mixed coolant stream and a light gas mixed coolant stream. The heavy liquid mixed coolant stream from the separator (8, 11) is supplied by the pump (15, 16) for mixing with the liquid from the separator (14). The composition and amount of the heavy liquid mixed coolant at each stage depends on the mixed coolant component, and the mixed coolant component is a method that ensures minimum coolant consumption during liquefaction of natural gas at a certain ambient temperature. Selected.

重および軽混合冷却剤流は、LP重および軽混合冷却剤の対向流を通じて、HE(1)において摂氏マイナス52〜マイナス54度まで冷却される。   The heavy and light mixed coolant streams are cooled to minus 52 to minus 54 degrees Celsius in HE (1) through the counter flow of LP heavy and light mixed refrigerants.

重混合冷却剤は、HE(1)において冷却され、0.25〜0.27MPaになるまで絞り弁(3)によって調整され、そして、HE(1)の配管を冷却するために、液化HE(4)からの軽混合冷却剤と一緒にHE(1)の配管スペース内に供給される。   The heavy mixed coolant is cooled in HE (1), adjusted by a throttle valve (3) until 0.25 to 0.27 MPa, and liquefied HE ( It is fed into the piping space of HE (1) together with the light mixed coolant from 4).

軽混合冷却剤は、HE(1)および(4)において濃縮され、冷却される。その後過冷却され液化された軽混合冷却剤は、0.25〜0.27MPaになるまで絞り弁(5)によって調整され、配管を冷却するために液化HE(4)の配管スペース内に供給される。   The light mixed coolant is concentrated and cooled in HE (1) and (4). Thereafter, the light mixed coolant that has been supercooled and liquefied is adjusted by the throttle valve (5) until it reaches 0.25 to 0.27 MPa, and is supplied into the piping space of the liquefied HE (4) to cool the piping. The

LP重および軽混合冷却剤流は、一緒に混和されて、配管を冷却するためにHE(1)の配管スペースに帰還する。   The LP heavy and light mixed coolant streams are mixed together and returned to the piping space of HE (1) to cool the piping.

LP混合冷却剤は、HE(1)から摂氏26〜30度の蒸気として出ていき、当該蒸気は再循環のために供給される。前記混合冷却剤は、ガス流を摂氏マイナス120〜マイナス125度まで冷却するために使用される。   The LP mixed coolant exits HE (1) as steam at 26-30 degrees Celsius, and the steam is supplied for recirculation. The mixed coolant is used to cool the gas stream to minus 120 to minus 125 degrees Celsius.

窒素冷却剤回路   Nitrogen coolant circuit

LP気体窒素は、ターボ膨張器装置内で膨張器(21)によって駆動される圧縮機(22)において、1.2〜1.4MPaになるまで、そして、窒素圧縮機(24)および(26)において、3.5〜3.7MPaになるまで圧縮される。それから、それは空気冷却器(23)および(25)において摂氏26〜30度まで冷却され、窒素HE(18)においてLP窒素対向流を通じて摂氏マイナス107〜マイナス109度まで冷却される。   LP gaseous nitrogen is 1.2 to 1.4 MPa in the compressor (22) driven by the expander (21) in the turboexpander apparatus, and then the nitrogen compressors (24) and (26) , It is compressed to 3.5 to 3.7 MPa. It is then cooled to 26-30 degrees Celsius in air coolers (23) and (25), and cooled to minus 107-109 degrees Celsius through LP nitrogen countercurrent in nitrogen HE (18).

それから窒素は、膨張器(21)において0.8〜1.0MPaになるまで膨張され、LNG流を冷却するために過冷却HE(17)に供給され、窒素HE(18)においてHP窒素によって摂氏22〜24度まで加熱され、そして、圧縮機吸込み口に帰還する。   The nitrogen is then expanded to 0.8-1.0 MPa in the expander (21) and fed to the supercooled HE (17) to cool the LNG stream, and in nitrogen HE (18) by HP nitrogen in degrees Celsius. Heated to 22-24 degrees and returned to compressor inlet.

天然ガス液化処理の間に消費される電力の削減は、予冷および液化段階における混合冷却剤の使用はもちろん、過冷却段階における窒素循環からも生じる。   The reduction in power consumed during the natural gas liquefaction process arises from nitrogen circulation in the supercooling stage as well as the use of mixed coolant in the precooling and liquefaction stage.

Claims (2)

天然ガス液化方法であって、
前処理済乾燥ガスが、予冷熱交換器において、摂氏マイナス52〜マイナス54度の間の範囲の温度まで冷却され
それから、分別目的用に供給される液状エタンの留分を除去する第1分離器を通過することによって、前記前処理済乾燥ガスは分離され、そして、第1分離器からのガス流が、液化熱交換器において摂氏マイナス120〜マイナス125度まで引き続いて冷却され、
過冷却熱交換器において摂氏マイナス150〜マイナス160度まで、気体窒素によって冷却され、
過冷却された液化天然ガスの圧力が、液体膨張器において0.11〜0.13MPaになるまで低下させられ、
そして、前記過冷却された液化天然ガスは第2分離器に分離目的で供給され、そしてそれから、液化天然ガス貯蔵タンクに供給され、
分離されたガスは燃料ガス系に送られ、
前記予冷熱交換器からの、窒素、メタン、エタン、プロパン、ブタンおよびペンタンを包含する混合冷却剤は3.0〜3.1MPaになるまで圧縮され、摂氏26〜30度に冷却され、そして、第3分離器、第4分離器、第5分離器に供給され重液体混合冷却剤と軽気体混合冷却剤に分離され、
第3分離器、第4分離器からの前記重液体混合冷却剤は、第5分離器からの重液体混合冷却剤と混和するために吸い出され、
重液体混合冷却剤と軽気体混合冷却剤は、重液体混合冷却剤と軽気体混合冷却剤の投入によって摂氏マイナス52〜マイナス54度まで冷却するために供給され、
それから、前記重液体混合冷却剤は前記予冷熱交換器において過冷却され、0.25〜0.27MPaになるまでスロットルで調整され、そして、前記予冷熱交換器の配管を冷却するために、前記液化熱交換器からの前記軽気体混合冷却剤と共に供給され、
前記軽気体混合冷却剤は、前記予冷熱交換器と前記液化熱交換器において、濃縮され、そして引き続いて過冷却され、
前記液化熱交換器の流出口において生じた過冷却された液化軽気体混合冷却剤は0.25〜0.27MPaになるまでスロットルで調整され、それから、前記液化熱交換器の配管を冷却するために供給され、
窒素熱交換器からの低圧気体窒素はターボ膨張圧縮機において1.2〜1.4MPaになるまで、そして、各窒素圧縮機において3.5〜3.7MPaになるまで圧縮され、各空気冷却器において摂氏26〜30度まで、そして、窒素熱交換器において低圧窒素冷却剤により摂氏マイナス107〜マイナス109度まで冷却され、
そしてそれから、窒素は、膨張器において0.8〜1.0MPaになるまで膨張され、液化天然ガス流を冷却するために過冷却熱交換器に送られ、窒素熱交換器において高圧窒素によって摂氏22〜24度まで加熱され、そして、ターボ膨張圧縮機吸込み口に帰還することを特徴とする天然ガス液化方法。
A natural gas liquefaction method comprising:
The pretreated dry gas is cooled in a pre-cooling heat exchanger to a temperature in the range between minus 52 and minus 54 degrees Celsius ;
The pretreated dry gas is then separated by passing through a first separator that removes a fraction of liquid ethane supplied for fractionation purposes, and the gas stream from the first separator is liquefied. In the heat exchanger, it is continuously cooled to minus 120 to minus 125 degrees Celsius,
Cooled by gaseous nitrogen to minus 150 to minus 160 degrees Celsius in a supercooling heat exchanger,
The pressure of the supercooled liquefied natural gas is reduced to 0.11 to 0.13 MPa in the liquid expander,
And the supercooled liquefied natural gas is supplied to the second separator for separation purposes, and then supplied to the liquefied natural gas storage tank,
The separated gas is sent to the fuel gas system,
The mixed coolant including nitrogen, methane, ethane, propane, butane and pentane from the pre-cooling heat exchanger is compressed to 3.0-3.1 MPa, cooled to 26-30 degrees Celsius, and Supplied to the third separator, the fourth separator, and the fifth separator and separated into a heavy liquid mixed coolant and a light gas mixed coolant;
The heavy liquid mixed coolant from the third separator, the fourth separator is sucked out to mix with the heavy liquid mixed coolant from the fifth separator;
Heavy liquid mixing coolant and light gaseous mixture coolant is supplied to cool to Celsius 52 to minus 54 degrees by the introduction of heavy liquid mixture coolant and light gas mixed coolant,
Then, the heavy liquid mixed coolant is subcooled in the precooling heat exchanger and adjusted with a throttle until it reaches 0.25 to 0.27 MPa, and in order to cool the piping of the precooling heat exchanger, Supplied with the light gas mixed coolant from the liquefied heat exchanger,
The light gas mixed coolant is concentrated and subsequently subcooled in the precooling heat exchanger and the liquefied heat exchanger,
The supercooled liquefied light gas mixed coolant generated at the outlet of the liquefied heat exchanger is adjusted with a throttle until it reaches 0.25 to 0.27 MPa, and then the piping of the liquefied heat exchanger is cooled. Supplied to
The low pressure gaseous nitrogen from the nitrogen heat exchanger is compressed to 1.2 to 1.4 MPa in the turbo expansion compressor and to 3.5 to 3.7 MPa in each nitrogen compressor , and each air cooler Cooled to 26 to 30 degrees Celsius, and cooled to minus 107 to 109 degrees Celsius with a low pressure nitrogen coolant in a nitrogen heat exchanger,
And then, the nitrogen is expanded to 0.8-1.0 MPa in the expander and sent to a supercooling heat exchanger to cool the liquefied natural gas stream, and 22 degrees Celsius with high pressure nitrogen in the nitrogen heat exchanger. A natural gas liquefaction method, characterized in that it is heated to ˜24 degrees and then returned to the inlet of the turbo expansion compressor.
請求項1記載の方法の実施のために使用される装置であって、
予冷熱交換器と、5つの分離器と、2つの絞り弁と、液化熱交換器と、混合冷却剤を圧縮するための3つの圧縮器と、5つの空気冷却器と、2つのポンプと、液体膨張器と、過冷却熱交換器と、作動用膨張器(21)と圧縮機(22)を備えるターボ膨張器装置と、2つの窒素圧縮機と、を備え、
前記予冷熱交換器の流入口は、天然ガスの取り込み用であり、
当該予冷熱交換器の第1流出口は第1分離器の流入口に接続され、
当該第1分離器のガス流出口は液化熱交換器の第1流入口に接続され、
当該液化熱交換器の第1流出口は前記過冷却熱交換器の流入口に接続され、
当該過冷却熱交換器の第1流出口は前記液体膨張器を経由して第2分離器の流入口に接続され、
当該第2分離器の分離ガス流出口は燃料ガス系への送り出し用であり、
そして、前記第2分離器の液化ガス流出口は液化天然ガス貯蔵タンクに接続され、
前記第1分離器の液状エタン流出口は分別装置の流入口に接続され、
前記予冷熱交換器の混合冷却剤流出口は第1圧縮機の流入口に接続され、
当該第1圧縮機の流出口は空気冷却器の流入口に接続され、
当該空気冷却器は重液体混合冷却剤流と軽気体混合冷却剤流を生じる分離器の流入口に接続され、
上述の第1圧縮機、空気冷却器、および分離器は、少なくとも三段階の圧縮段の、第1段階を構成し
i=1,2として、第i段階の分離器の軽気体混合冷却剤用の流出口は、前記三段階の圧縮段の第i+1段階の圧縮機の流入口に接続されるものとし、
最終段階の分離器の軽気体混合冷却剤用の流出口は、前記予冷熱交換器の第2流入口に接続され、
第1段階および第2段階の分離器の重液体混合冷却剤用の流出口は、それぞれに、第1および第2ポンプを通過して、前記予冷熱交換器の第3流入口に混合物を供給するために、第3段階の分離器の重液体混合冷却剤用の流出口と結合され
前記予冷熱交換器の第2流出口は、前記液化熱交換器の第2流入口に接続され、
前記液化熱交換器の第2流出口は、第2絞り弁を通じて前記液化熱交換器の配管冷却用の流入口に接続され
前記予冷熱交換器の第3流出口は、前記予冷熱交換器内に配管冷却用に混合物を供給するために、第1絞り弁を通じて前記液化熱交換器の第3流出口と結合され、
前記過冷却熱交換器の第2流出口は、窒素熱交換器の流入口に接続され、
当該窒素熱交換器の第1および第2流出口は、それぞれに、膨張器とターボ膨張圧縮機の流入口に接続され、
当該膨張器とターボ膨張圧縮機の流出口は、それぞれに、前記過冷却熱交換器の液化天然ガス流の冷却用の流入口と第2窒素圧縮機の流入口に接続され、
そして、後者の流出口は、直列に接続された第5空気冷却器、第1窒素圧縮機および第4空気冷却器に接続され、
当該第4空気冷却器の流出口は、前記窒素熱交換器の別の流入口への高圧窒素供給用であることを特徴とする装置。
An apparatus used for carrying out the method according to claim 1, comprising:
A precooling heat exchanger, five separators, two throttle valves, a liquefied heat exchanger, three compressors for compressing the mixed coolant, five air coolers, two pumps, A liquid expander, a supercooling heat exchanger, a turboexpander device comprising an actuating expander (21) and a compressor (22), and two nitrogen compressors,
The inlet of the pre-cooling heat exchanger is for taking in natural gas;
The first outlet of the precooling heat exchanger is connected to the inlet of the first separator;
The gas outlet of the first separator is connected to the first inlet of the liquefied heat exchanger,
A first outlet of the liquefied heat exchanger is connected to an inlet of the supercooling heat exchanger;
A first outlet of the supercooling heat exchanger is connected to an inlet of the second separator via the liquid expander;
The separation gas outlet of the second separator is for sending out to the fuel gas system,
And the liquefied gas outlet of the second separator is connected to a liquefied natural gas storage tank,
The liquid ethane outlet of the first separator is connected to the inlet of the fractionation device;
A mixed coolant outlet of the precooling heat exchanger is connected to an inlet of the first compressor;
The outlet of the first compressor is connected to the inlet of the air cooler;
The air cooler is connected to a separator inlet that produces a heavy liquid mixed coolant stream and a light gas mixed coolant stream;
The first compressor, air cooler, and separator described above constitute a first stage of at least three stages of compression stages ;
Assuming that i = 1, 2, the outlet for the light gas mixed coolant of the i-th stage separator is connected to the inlet of the compressor of the i + 1-th stage of the three-stage compression stage,
The outlet for the light gas mixed coolant of the final stage separator is connected to the second inlet of the precooling heat exchanger,
The outlets for the heavy liquid mixed coolant of the first stage and second stage separators respectively pass the first and second pumps to supply the mixture to the third inlet of the precooling heat exchanger A second outlet of the precooling heat exchanger is connected to a second inlet of the liquefied heat exchanger, coupled to an outlet for the heavy liquid mixed coolant of the third stage separator,
The second outlet of the liquefied heat exchanger is connected to an inlet for cooling the pipe of the liquefied heat exchanger through a second throttle valve, and the third outlet of the precooling heat exchanger is in the precooling heat exchanger. To supply a mixture for cooling the pipe to the third outlet of the liquefied heat exchanger through a first throttle valve,
A second outlet of the supercooling heat exchanger is connected to an inlet of the nitrogen heat exchanger;
The first and second outlets of the nitrogen heat exchanger are connected to the inlets of the expander and the turbo expansion compressor, respectively.
The outlet of the expander and the turbo expansion compressor are respectively connected to an inlet for cooling the liquefied natural gas stream of the supercooling heat exchanger and an inlet of the second nitrogen compressor,
The latter outlet is connected to a fifth air cooler, a first nitrogen compressor and a fourth air cooler connected in series,
The outlet of the fourth air cooler is for supplying high-pressure nitrogen to another inlet of the nitrogen heat exchanger.
JP2015562962A 2013-11-07 2013-12-27 Natural gas liquefaction method and apparatus Active JP6093457B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2013149401 2013-11-07
RU2013149401/06A RU2538192C1 (en) 2013-11-07 2013-11-07 Method of natural gas liquefaction and device for its implementation
PCT/RU2013/001177 WO2015069138A2 (en) 2013-11-07 2013-12-27 Natural gas liquefaction method and unit

Publications (2)

Publication Number Publication Date
JP2016512595A JP2016512595A (en) 2016-04-28
JP6093457B2 true JP6093457B2 (en) 2017-03-08

Family

ID=50877640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015562962A Active JP6093457B2 (en) 2013-11-07 2013-12-27 Natural gas liquefaction method and apparatus

Country Status (4)

Country Link
JP (1) JP6093457B2 (en)
CN (1) CN105102913B (en)
RU (1) RU2538192C1 (en)
WO (1) WO2015069138A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015002822A1 (en) * 2015-03-05 2016-09-08 Linde Aktiengesellschaft Process for liquefying a hydrocarbon-rich fraction
FR3045798A1 (en) * 2015-12-17 2017-06-23 Engie HYBRID PROCESS FOR THE LIQUEFACTION OF A COMBUSTIBLE GAS AND INSTALLATION FOR ITS IMPLEMENTATION
CN107228525A (en) * 2016-03-25 2017-10-03 王建基 Oilfield Natural Gas Plant azeotrope, which freezes, natural gas liquefaction process technology and stablizes hydrocarbon mixture recovery process technology
RU2623021C1 (en) * 2016-09-16 2017-06-21 Публичное акционерное общество криогенного машиностроения (ПАО "Криогенмаш") Method of natural gas liquefaction
CN106500459B (en) * 2016-10-28 2019-07-30 宁夏凯添燃气发展股份有限公司 A kind of hybrid refrigeration process applied to natural gas cryogenic liquefying field
CN106839648A (en) * 2017-02-24 2017-06-13 杨皓 A kind of ethylene unit flare gas recovery technique
RU2645185C1 (en) * 2017-03-16 2018-02-16 Публичное акционерное общество "НОВАТЭК" Method of natural gas liquefaction by the cycle of high pressure with the precooling of ethane and nitrogen "arctic cascade" and the installation for its implementation
RU2656068C1 (en) * 2017-07-06 2018-06-01 Юрий Васильевич Белоусов Method and unit of natural gas liquefaction at the gas distribution station
US10753676B2 (en) * 2017-09-28 2020-08-25 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling process
RU2758362C1 (en) * 2021-03-10 2021-10-28 Андрей Владиславович Курочкин Installation for complex gas treatment with increased extraction of gas condensate and production of liquefied natural gas
WO2024107081A1 (en) * 2022-11-18 2024-05-23 Публичное акционерное общество "НОВАТЭК" Method for liquefying natural gas and apparatus for carrying out same
GB2624852A (en) * 2022-11-22 2024-06-05 Equinor Energy As Hydrocarbon pressure control
WO2024123208A1 (en) * 2022-12-07 2024-06-13 Gasanova Olesya Igorevna Natural gas liquefaction method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404008A (en) * 1982-02-18 1983-09-13 Air Products And Chemicals, Inc. Combined cascade and multicomponent refrigeration method with refrigerant intercooling
AUPM485694A0 (en) * 1994-04-05 1994-04-28 Bhp Petroleum Pty. Ltd. Liquefaction process
FR2725503B1 (en) * 1994-10-05 1996-12-27 Inst Francais Du Petrole NATURAL GAS LIQUEFACTION PROCESS AND INSTALLATION
NO962776A (en) * 1996-07-01 1997-12-08 Statoil Asa Method and plant for liquefaction / conditioning of a compressed gas / hydrocarbon stream extracted from a petroleum deposit
WO2006087330A2 (en) * 2005-02-17 2006-08-24 Shell Internationale Research Maatschappij B.V. Plant and method for liquefying natural gas
RU2344359C1 (en) 2007-07-04 2009-01-20 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий-ВНИИГАЗ" Gas liquefaction method to be used in offshore/inshore areas of arctic seas
RU2344360C1 (en) * 2007-07-04 2009-01-20 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий-ВНИИГАЗ" Method of gas liquefaction and installation for this effect
CN201532077U (en) * 2009-11-17 2010-07-21 华中科技大学 Natural gas liquefying device based on low temperature liquid refrigeration
JP5660845B2 (en) * 2010-10-13 2015-01-28 三菱重工業株式会社 Liquefaction method, liquefaction apparatus, and floating liquefied gas production facility equipped with the same

Also Published As

Publication number Publication date
WO2015069138A3 (en) 2015-08-20
RU2538192C1 (en) 2015-01-10
WO2015069138A2 (en) 2015-05-14
CN105102913A (en) 2015-11-25
JP2016512595A (en) 2016-04-28
CN105102913B (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6093457B2 (en) Natural gas liquefaction method and apparatus
AU2020202355B2 (en) Pre-cooling of natural gas by high pressure compression and expansion
AU2021201534B2 (en) Pre-cooling of natural gas by high pressure compression and expansion
US10578354B2 (en) Systems and methods for the production of liquefied nitrogen using liquefied natural gas
CA2836628C (en) Process for liquefaction of natural gas
CA2864482C (en) Method and system for liquefying natural gas using single mixed refrigerant and refrigeration medium
CA2856096C (en) System and method for liquefying natural gas using single mixed refrigerant as refrigeration medium
AU2018354587B2 (en) Natural gas liquefaction by a high pressure expansion process using multiple turboexpander compressors
JP6781852B2 (en) Equipment and methods for liquefying natural gas
CN107917577B (en) Multi-pressure mixed refrigerant cooling method and system
WO2016111258A1 (en) Gas liquefaction apparatus and gas liquefaction method
US20210088275A1 (en) Pretreatment and Pre-Cooling of Natural Gas by High Pressure Compression and Expansion
KR20230034899A (en) Integrated nitrogen rejection for liquefaction of natural gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170210

R150 Certificate of patent or registration of utility model

Ref document number: 6093457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250