JP6093232B2 - Valuable metal recovery method - Google Patents

Valuable metal recovery method Download PDF

Info

Publication number
JP6093232B2
JP6093232B2 JP2013091266A JP2013091266A JP6093232B2 JP 6093232 B2 JP6093232 B2 JP 6093232B2 JP 2013091266 A JP2013091266 A JP 2013091266A JP 2013091266 A JP2013091266 A JP 2013091266A JP 6093232 B2 JP6093232 B2 JP 6093232B2
Authority
JP
Japan
Prior art keywords
waste liquid
carbonate
cyan
valuable
concentrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013091266A
Other languages
Japanese (ja)
Other versions
JP2014214333A (en
Inventor
浩安 佐藤
浩安 佐藤
麻美 小林
麻美 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2013091266A priority Critical patent/JP6093232B2/en
Priority to PCT/JP2014/061177 priority patent/WO2014175218A1/en
Priority to CN201480020981.4A priority patent/CN105121676B/en
Priority to KR1020157030341A priority patent/KR101721354B1/en
Priority to TW103114640A priority patent/TWI621714B/en
Publication of JP2014214333A publication Critical patent/JP2014214333A/en
Application granted granted Critical
Publication of JP6093232B2 publication Critical patent/JP6093232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、有価金属回収方法に関する。   The present invention relates to a valuable metal recovery method.

貴金属、希土類元素、その他の金属類等の所謂有価金属は、工業的に非常に有用な材料が多く、幅広い分野で利用されている。例えば、金を用いた電解めっき法や無電解めっき法が広く知られており、そのめっき液としては、金供給源として液中での安定性に優れるシアン系金めっき液が従来から用いられている。   Many so-called valuable metals such as noble metals, rare earth elements, and other metals are industrially very useful materials and are used in a wide range of fields. For example, the electroplating method using gold and the electroless plating method are widely known, and as the plating solution, a cyan-based gold plating solution having excellent stability in the solution has been used as a gold supply source. Yes.

しかし、シアン化合物は強い毒性を有するとともに、前記のようなめっき液はシアン化合物の濃度が一般的に中〜高濃度であることから、めっき後の廃液の処理には万全を期す必要がある。一方で、高価な材料である有価金属は、めっき後の廃液から可能な限り回収して再利用することが求められる。   However, the cyanide compound has strong toxicity, and the plating solution as described above generally has a medium to high concentration of the cyanide compound. Therefore, it is necessary to ensure the complete treatment of the waste solution after plating. On the other hand, valuable metals that are expensive materials are required to be recovered from the waste liquid after plating as much as possible and reused.

従来、中〜高濃度でシアン化合物を含有する廃液(中〜高濃度シアン廃液)の処理方法としては、例えば、炉内噴霧法が知られている。ここで中濃度とは、廃液中のシアン化合物の濃度が例えば100mg/L以上1000mg/L未満であることを意味する。また、高濃度とは、廃液中のシアン化合物の濃度が例えば1000mg/L以上であることを意味する。   Conventionally, for example, an in-furnace spray method is known as a treatment method for a waste liquid (medium to high concentration cyan waste liquid) containing a cyanide compound at a medium to high concentration. Here, the medium concentration means that the concentration of the cyanide compound in the waste liquid is, for example, 100 mg / L or more and less than 1000 mg / L. The high concentration means that the concentration of the cyanide compound in the waste liquid is, for example, 1000 mg / L or more.

炉内噴霧方法は、1000℃を超える高温の炉内に該廃液を噴霧し、シアン化合物を分解する方法である。しかしこの方法は、高コストであること、熱溶融性塩である無機炭酸塩、例えば炭酸アルカリ金属塩や炭酸アルカリ土類金属塩が溶融し炉内に付着し炉を破損させること、有価金属を回収できない、等の問題点がある。   The in-furnace spraying method is a method of spraying the waste liquid into a high-temperature furnace exceeding 1000 ° C. to decompose the cyanide compound. However, this method is expensive, and inorganic carbonates, which are hot-melt salts, such as alkali metal carbonates or alkaline earth metal carbonates melt and adhere to the furnace and damage the furnace. There are problems such as being unable to collect.

なお、低濃度でシアン化合物を含有する廃液(低濃度シアン廃液)を処理する方法も知られている。ここで低濃度とは、シアン化合物の濃度が例えば100mg/L未満であることを意味する。   A method of treating a waste liquid containing a cyanide compound at a low concentration (low concentration cyan waste liquid) is also known. Here, the low concentration means that the concentration of the cyanide compound is less than 100 mg / L, for example.

例えば、特許文献1には、低濃度シアン廃液に水酸化ナトリウムを添加し、pHを10〜11に調整しながら次亜塩素酸ナトリウムを加え、シアン化合物を窒素まで分解するアルカリ塩素法が開示されている。しかし、アルカリ塩素法によって中〜高濃度シアン廃液から有価金属を回収しようとすると、使用する薬品が多量に必要であり処理廃液との体積和が大きくなる、反応熱による顕著な発熱を伴う、自体に有害な塩素が発生する、等の問題点がある。   For example, Patent Document 1 discloses an alkali chlorine method in which sodium hydroxide is added to a low-concentration cyan waste liquid, sodium hypochlorite is added while adjusting the pH to 10 to 11, and the cyanide compound is decomposed to nitrogen. ing. However, when recovering valuable metals from medium to high-concentration cyanide waste liquor by the alkali chlorine method, a large amount of chemicals are required and the volume sum with the treatment waste liquor increases, accompanied by significant heat generation due to reaction heat, itself There are problems such as generation of harmful chlorine.

その他、高温高圧下で熱加水分解する方法(例えば特許文献2参照)、オゾンガスの酸化力を利用するオゾン酸化法(例えば特許文献3参照)等が知られている。前者の方法はシアン化合物を十分に分解できず、後者の方法は高コストであるという問題点がある。   Other known methods include thermal hydrolysis under high temperature and high pressure (see, for example, Patent Document 2), ozone oxidation method using the oxidizing power of ozone gas (see, for example, Patent Document 3), and the like. The former method has a problem that the cyan compound cannot be sufficiently decomposed, and the latter method is expensive.

特開昭50−118962号公報Japanese Patent Laid-Open No. 50-118962 特開平1−194997号公報JP-A-1-194997 特開2006−341229号公報JP 2006-341229 A

したがって本発明の目的は、例えば中〜高濃度シアン廃液を低コストかつ簡単に処理することができ、かつ、廃液に残存する貴金属、希土類元素、その他の金属類等の所謂有価金属を、炉を腐食させることなく十分に回収可能な金属回収方法を提供することにある。   Accordingly, an object of the present invention is to treat, for example, medium to high-concentration cyan waste liquid at low cost and easily, and to treat so-called valuable metals such as precious metals, rare earth elements, and other metals remaining in the waste liquid in a furnace. An object of the present invention is to provide a metal recovery method that can be sufficiently recovered without causing corrosion.

本発明者は、シアン化合物、無機炭酸塩および有価金属を含有する廃液の濃縮物を比較的低温で焼成し、シアンをシアンガスとして前記廃液から分離する工程を経ることにより、上記課題を解決できることを見出し、本発明を完成した。   The present inventor is able to solve the above-mentioned problems by subjecting a concentrate of a waste liquid containing a cyanide compound, an inorganic carbonate and a valuable metal to a relatively low temperature and separating the waste liquid from cyan as a cyan gas. The headline and the present invention were completed.

すなわち本発明は、以下の通りである。
1.シアン化合物、無機炭酸塩および有価金属を含有する廃液の濃縮物を400〜650℃で焼成し、シアンをシアンガスとして前記廃液の濃縮物から分離した後に焼成残渣から有価金属を回収する工程を含む有価金属回収方法。
2.有価金属を液相回収する工程を含む前記1に記載の有価金属回収方法。
3.前記無機炭酸塩は炭酸アルカリ金属塩および/または炭酸アルカリ土類金属塩である前記1または2に記載の有価金属回収方法。
4.前記シアン化合物の濃度および無機炭酸塩の炭酸イオン換算濃度が、前記廃液の濃縮物中で夫々2〜200g/kg、20g/kg以上であって1000g/kg未満である前記1〜3のいずれか1項に記載の有価金属回収方法。
That is, the present invention is as follows.
1. A waste solution concentrate containing a cyanide compound, an inorganic carbonate and a valuable metal is calcined at 400 to 650 ° C. and separated from the waste liquid concentrate using cyan as a cyan gas, and then a valuable metal is recovered from the calcined residue. Metal recovery method.
2. 2. The valuable metal recovery method according to 1 above, which comprises a step of recovering the valuable metal in a liquid phase.
3. 3. The valuable metal recovery method according to 1 or 2, wherein the inorganic carbonate is an alkali metal carbonate and / or an alkaline earth metal carbonate.
4). Any of the above 1-3, wherein the concentration of the cyanide compound and the carbonate ion equivalent concentration of the inorganic carbonate are 2 to 200 g / kg, 20 g / kg or more and less than 1000 g / kg in the concentrate of the waste liquid, respectively. The valuable metal recovery method according to item 1.

本発明では、シアン化合物、無機炭酸塩および有価金属を含有する廃液の濃縮物を400〜650℃という比較的低温で焼成することにより、シアン化合物がシアンガスとして分離されるとともに、熱溶融性塩である無機炭酸塩が炉内で溶融せず、炉を腐食させることがない。またアルカリヒュームの発生も防止され、安全性が高まる。さらに焼成温度が低いことにより、低コストが達成される。シアン化合物が分離された焼成残渣は、毒性が低く、その後の金属回収が容易となる。また、分離されたシアンガスをさらに燃焼する形態によれば、シアンガスを水、二酸化炭素および窒素に分解でき、排ガスの更なる処理が容易となる。   In the present invention, the waste compound concentrate containing cyanide, inorganic carbonate and valuable metal is baked at a relatively low temperature of 400 to 650 ° C. to separate the cyanide as cyan gas, Certain inorganic carbonates do not melt in the furnace and do not corrode the furnace. Moreover, generation | occurrence | production of an alkali fume is also prevented and safety | security increases. Furthermore, low cost is achieved by the low firing temperature. The fired residue from which the cyanide compound has been separated has low toxicity and facilitates subsequent metal recovery. Further, according to the form in which the separated cyan gas is further burned, the cyan gas can be decomposed into water, carbon dioxide and nitrogen, and further processing of the exhaust gas becomes easy.

本発明の好ましい形態を説明するための工程図である。It is process drawing for demonstrating the preferable form of this invention.

以下、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明で使用される廃液は、シアン化合物、無機炭酸塩および有価金属を含有するものであり、該廃液は、貴金属である金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)及びルテニウム(Ru)、希土類金属であるスカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジウム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)、その他金属類であるスズ(Sn)、鉛(Pb)、亜鉛(Zn)、銅(Cu)、ニッケル(Ni)、コバルト(Co)、タリウム(TI)、インジウム(In)、ガリウム(Ga)等の有価金属を含む廃液が挙げられ、特に貴金属を含有する廃液、最適には金を含有する廃液である。   The waste liquid used in the present invention contains a cyanide compound, an inorganic carbonate and a valuable metal, and the waste liquid contains noble metals such as gold (Au), silver (Ag), platinum (Pt), palladium (Pd ), Rhodium (Rh), iridium (Ir) and ruthenium (Ru), rare earth metals scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd) , Promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) And lutetium (Lu), other metals such as tin (Sn), lead (Pb), zinc (Zn), copper (Cu), ni Examples include waste liquids containing valuable metals such as Kell (Ni), cobalt (Co), thallium (TI), indium (In), gallium (Ga), especially waste liquids containing noble metals, and optimally waste liquids containing gold. It is.

例えば貴金属を用いた電解めっき法や無電解めっき法におけるめっき液を由来とするものが挙げられる。例えばAu−Ni系、Pd−Ni系、Au−Pd−Ni系等の公知のめっき液がある。   Examples thereof include those derived from a plating solution in an electrolytic plating method or an electroless plating method using a noble metal. For example, there are known plating solutions such as Au—Ni, Pd—Ni, and Au—Pd—Ni.

なお本発明における廃液は当該形態に限定されるものではなく、例えば、貴金属回収業、表面処理業、電気・電子部品製造業、医薬品・農薬製造業等により発生するシアン廃液が挙げられるが、以下は、金を含有するめっき液の廃液(以下、金めっき廃液という)を例にとり説明する。   The waste liquid in the present invention is not limited to this form, and examples include cyan waste liquid generated by precious metal recovery industry, surface treatment industry, electrical / electronic parts manufacturing industry, pharmaceutical / agrochemical manufacturing industry, etc. Will be described with reference to an example of a waste solution of gold-containing plating solution (hereinafter referred to as gold plating waste solution).

金めっき廃液におけるシアン化合物の濃度は、一般的に中〜高濃度であり、前述のように従来の炉内噴霧法を採用して金めっき廃液を処理すると、高温加熱を必要とするため高コストであったり、溶融した無機炭酸塩(熱溶融性塩)の付着により炉を破損させたり、金の回収が不可となる等の問題点があった。   The concentration of cyanide compounds in the gold plating waste liquid is generally medium to high. As described above, if the gold plating waste liquid is treated by using the conventional in-furnace spray method, high temperature heating is required, resulting in high cost. There are problems such as damage to the furnace due to adhesion of molten inorganic carbonate (heat-meltable salt), and inability to recover gold.

なお、金めっき廃液中の無機炭酸塩は、めっき液に適宜添加される添加剤を由来とする;電気めっきの作業時にCNの一部が陽極酸化され炭酸イオンに分解される;空気中の二酸化炭素が吸収され、炭酸イオンがビルドアップする;等の理由により存在し、その濃度は例えば炭酸イオンとして1〜100g/Lである。   The inorganic carbonate in the gold plating waste solution is derived from an additive that is appropriately added to the plating solution; a part of CN is anodized and decomposed into carbonate ions during the electroplating operation; For example, carbon is absorbed and carbonate ions build up; and the concentration thereof is, for example, 1 to 100 g / L as carbonate ions.

そこで本発明では、シアン化合物、無機炭酸塩および有価金属を含有する廃液の濃縮物を400〜650℃という比較的低温で焼成し、シアン化合物をシアンガスとして分離する工程を経ることにより、前記課題を解決したものである。   Therefore, in the present invention, the above-mentioned problem is achieved by a step of baking a concentrate of a waste liquid containing a cyanide compound, an inorganic carbonate and a valuable metal at a relatively low temperature of 400 to 650 ° C. and separating the cyanide compound as cyan gas. It has been solved.

まず、本発明では、シアン化合物、無機炭酸塩および有価金属を含有する廃液の濃縮物を調製する。該廃液を濃縮する方法としては、例えば、100〜110℃で蒸発乾燥させる方法、蒸発皿で加熱、自然風乾する方法が挙げられる。これら各種手段によって廃液を粉末状や塊状などの固形物になるまで濃縮すれば、その後の処理操作が容易となるため好ましい。   First, in the present invention, a waste liquid concentrate containing a cyanide compound, an inorganic carbonate and a valuable metal is prepared. Examples of the method for concentrating the waste liquid include a method of evaporating and drying at 100 to 110 ° C., a method of heating in an evaporating dish, and a method of natural air drying. It is preferable to concentrate the waste liquid to a solid such as a powder or a lump by these various means because subsequent processing operations are facilitated.

本発明では、廃液濃縮物中のシアン化合物の濃度が2g/kg以上であってもシアン化合物をシアンガスとして効率的に分離することが可能であり、2〜200g/kgで好ましく、より好ましくは5〜200g/kgで実施できる。   In the present invention, even when the concentration of the cyanide compound in the waste liquid concentrate is 2 g / kg or more, it is possible to efficiently separate the cyanide compound as cyan gas, preferably 2 to 200 g / kg, more preferably 5 It can be carried out at ˜200 g / kg.

また、無機炭酸塩は、炭酸アルカリ金属塩および/または炭酸アルカリ土類金属塩を含む廃液濃縮物で好ましく実施でき、より好ましくは融点が700〜1000℃である炭酸アルカリ金属塩を含む廃液濃縮物で実施される。   In addition, the inorganic carbonate can be preferably implemented with a waste liquid concentrate containing an alkali carbonate carbonate and / or an alkaline earth carbonate carbonate, more preferably a waste concentrate containing an alkali carbonate carbonate having a melting point of 700 to 1000 ° C. Will be implemented.

廃液濃縮物中の無機炭酸塩は、炭酸イオン換算の濃度が、20g/kg以上の高濃度であってもシアン化合物をシアンガスとして効率的に分離することが可能であり、20g/kg以上であって1000g/kg未満の範囲で好ましく実施できる。   The inorganic carbonate in the waste liquid concentrate can efficiently separate the cyanide compound as cyan gas even if the concentration in terms of carbonate ion is as high as 20 g / kg or more, and is 20 g / kg or more. Preferably in the range of less than 1000 g / kg.

また、廃液濃縮物中の有価金属の濃度は1000mg/kg以下の中濃度以下であってもシアン化合物をシアンガスとして効率的に分離し有価金属を効率よく回収することが可能であり、10mg/kg以上で好ましく実施できる。   Even if the concentration of valuable metals in the waste liquid concentrate is 1000 mg / kg or less, the cyanide compound can be efficiently separated as cyan gas and valuable metals can be efficiently recovered. 10 mg / kg This can be preferably implemented.

次に、濃縮物を400〜650℃で焼成する。焼成は、密閉条件、大気圧下または加圧下または減圧下(例えば−60〜−10Pa下)で行うことができる。昇温速度は、例えば1〜10℃/分であり、好ましくは1〜5℃/分である。焼成の高温保持時間は例えば30〜120分である。   Next, the concentrate is fired at 400 to 650 ° C. Firing can be performed under sealed conditions, under atmospheric pressure, under pressure, or under reduced pressure (for example, under −60 to −10 Pa). The rate of temperature increase is, for example, 1 to 10 ° C./min, and preferably 1 to 5 ° C./min. The high temperature holding time for firing is, for example, 30 to 120 minutes.

この焼成により廃液中に含まれる有機物が燃焼して二酸化炭素と水を発生する。シアン化合物はこの二酸化炭素や水と反応し、例えば次の反応式(1)によりシアンガスとして分離される。また、金などの有価金属とシアンとの錯体を形成している場合は、その一部または全部が熱分解により有価金属とシアンガスに分解し分離される。   By this firing, the organic matter contained in the waste liquid burns to generate carbon dioxide and water. The cyanide compound reacts with the carbon dioxide and water and is separated as cyan gas by the following reaction formula (1), for example. When a complex of valuable metal such as gold and cyan is formed, part or all of the complex is decomposed and separated into valuable metal and cyan gas by thermal decomposition.

金などの有価金属とシアンとが錯体を形成している場合は、低温では分解が困難なため、400℃未満では金などの有価金属とシアンとの錯体は分解せずに、シアンガスとして分離することが困難である。650℃を超える場合は、炭酸アルカリ金属塩が溶融し炉内に付着し炉を破損させること、有価金属を回収できない、等の問題点がある。   When a valuable metal such as gold forms a complex with cyan, it is difficult to decompose at a low temperature. Therefore, at a temperature lower than 400 ° C., the complex between the valuable metal such as gold and cyan does not decompose and is separated as cyan gas. Is difficult. When the temperature exceeds 650 ° C., there are problems that the alkali metal carbonate melts and adheres to the furnace and damages the furnace, and valuable metals cannot be recovered.

本発明におけるシアンガスとしての分離とは、既述のシアン化合物の分解により生成したシアンガスの廃液濃縮物からの放出による分離を含む。 The separation of the cyan gas in the present invention, including the separation due to the release of the waste concentrate cyanide gas produced by decomposition of above cyanide.

2NaCN+CO+HO→NaCO+2HCN ↑ (1) 2NaCN + CO 2 + H 2 O → Na 2 CO 3 + 2HCN ↑ (1)

一般的に、シアンの分解は約600〜850℃で開始されるが、本発明では比較的低い温度で濃縮物を焼成することにより、シアンガスを生成せしめ、濃縮物からシアン化合物を除去することができる。   Generally, the decomposition of cyanide is started at about 600 to 850 ° C., but in the present invention, the concentrate is calcined at a relatively low temperature to generate cyan gas and to remove the cyanide compound from the concentrate. it can.

上記反応式(1)において、金めっき廃液に通常含まれるNaCNやKCNは、光、熱、湿気、COにより容易に反応しHCNを生成する。前記の焼成温度範囲において、これらの反応が促進され、HCNの生成が増大する。 In the reaction formula (1), NaCN or KCN usually contained in the gold plating waste liquid easily reacts with light, heat, moisture, and CO 2 to generate HCN. In the above-mentioned calcination temperature range, these reactions are promoted and the production of HCN is increased.

続いて本発明では、シアンをシアンガスとして前記廃液の濃縮物から分離した後に、無機炭酸塩が熱溶融による硬い焼結ではなく、柔らかでポーラス状の焼成残渣から有価金属を液相回収する。この際、焼成残渣は無機炭酸塩が熱溶融による焼結が無く細かい粉末状態となっているため、無機炭酸塩の水への溶解性が高く通液性に優れており、無機炭酸塩を水洗除去した後の残渣からの有価金属の液相回収に適切である。有価金属の液相回収方法としては、例えば、王水溶解し、還元剤で還元する方法が挙げられる。   Subsequently, in the present invention, after separating the waste liquid concentrate using cyan as cyan gas, the inorganic carbonate is not hard sintered by heat melting, but the valuable metal is recovered in a liquid phase from a soft and porous firing residue. At this time, since the inorganic carbonate is in a fine powder state without sintering due to heat melting, the firing residue is highly soluble in water and excellent in liquid permeability, and the inorganic carbonate is washed with water. Suitable for liquid phase recovery of valuable metals from residues after removal. Examples of the liquid phase recovery method of valuable metals include a method of dissolving aqua regia and reducing with a reducing agent.

なお、分離された排ガス106中のシアンガスは、アルカリで捕集し、公知のアルカリ塩素法・オゾン・電解法などの酸化分解法、または800℃以上の高温で燃焼させ処理することができる。本発明では、前述の400〜650℃での焼成する工程の後シアンガスを完全に燃焼させる為に800℃以上の高温で燃焼する工程を更に含むことが好ましい。   The cyan gas in the separated exhaust gas 106 can be collected by alkali and burned at a known oxidative decomposition method such as alkali chlorine method, ozone, electrolysis method, or high temperature of 800 ° C. or higher. In the present invention, it is preferable to further include a step of burning at a high temperature of 800 ° C. or higher in order to completely burn cyan gas after the step of baking at 400 to 650 ° C.

燃焼温度は、例えば、好ましくは800〜950℃である。昇温速度は、例えば、好ましくは1℃/分〜10℃/分であり、より好ましくは1℃/分〜5℃/分である。燃焼時間は、例えば、好ましくは指定温度に達してから30〜120分である。この工程により、シアンガスは例えば下記反応式(2)によって水、二酸化炭素および窒素に分解され、排ガスの更なる処理が容易となる。   The combustion temperature is preferably 800 to 950 ° C., for example. The rate of temperature rise is, for example, preferably 1 ° C./min to 10 ° C./min, more preferably 1 ° C./min to 5 ° C./min. The combustion time is, for example, preferably 30 to 120 minutes after reaching the specified temperature. By this step, cyan gas is decomposed into water, carbon dioxide and nitrogen by the following reaction formula (2), for example, and further processing of the exhaust gas becomes easy.

4HCN+5O→2HO+4CO+2N (2) 4HCN + 5O 2 → 2H 2 O + 4CO 2 + 2N 2 (2)

図1は、本発明の好ましい形態を説明するための工程図である。図1において、金めっき廃液100は、蒸発乾燥され、濃縮物101が得られる。得られた濃縮物101は、400〜650℃で焼成され、焼成残渣102とシアンガス103とに分離される。   FIG. 1 is a process diagram for explaining a preferred embodiment of the present invention. In FIG. 1, the gold plating waste liquid 100 is evaporated and dried to obtain a concentrate 101. The obtained concentrate 101 is baked at 400 to 650 ° C. and separated into a baking residue 102 and a cyan gas 103.

焼成残渣102は、水洗され、水洗残渣と廃アルカリ105とに分離される。このときの水洗は、水洗浴に焼成残渣102の5〜10質量倍程度の、水、好ましくは温水を入れ、両者を攪拌する等の方法により行われる。   The firing residue 102 is washed with water and separated into a water washing residue and a waste alkali 105. The washing with water at this time is performed by a method such as putting water, preferably warm water, about 5 to 10 times by mass of the baking residue 102 into a washing bath and stirring both.

得られた水洗残渣104は、必要に応じて500〜800℃で1〜4時間焼成後、上記で例示したような方法により、金が回収される。廃アルカリ105は、シアン化合物濃度が低濃度となっているため、従来の例えばアルカリ塩素法により無害化することができる。   As for the obtained water washing residue 104, gold | metal | money is collect | recovered by the method which was illustrated above after baking at 500-800 degreeC for 1-4 hours as needed. Since the waste alkali 105 has a low cyanide concentration, it can be rendered harmless by a conventional alkali chlorine method, for example.

一方、シアンガス103は、燃焼炉に導入され、前記のように燃焼され、排ガス106となる。排ガス106は、苛性アルカリ水による飽和水蒸気型急冷塔または完全蒸発型急冷塔で冷却し、電気集塵機で集塵する方法等により無害化され、大気中に放出される。   On the other hand, the cyan gas 103 is introduced into the combustion furnace, burned as described above, and becomes the exhaust gas 106. The exhaust gas 106 is detoxified by a method such as cooling with a saturated water vapor quenching tower or a complete evaporation quenching tower using caustic alkaline water, and collecting with an electric dust collector, etc., and is discharged into the atmosphere.

以下、本発明を実施例によりさらに説明するが、本発明は下記例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not restrict | limited to the following example.

[実施例1]
下記組成を有する金めっき廃液を準備した。下記表1に金めっき廃液中の組成の測定結果を示す。
[Example 1]
A gold plating waste solution having the following composition was prepared. Table 1 below shows the measurement results of the composition in the gold plating waste liquid.

Figure 0006093232
Figure 0006093232

前記金めっき廃液を、図1に示す工程により処理した。まず、金めっき廃液100を、装置として回転円盤式蒸発濃縮装置を用い、110℃で蒸発乾燥させ、濃縮物101を得た。濃縮物101について、定量分析を行なった。その結果を下記表2に示す。   The gold plating waste liquid was treated by the process shown in FIG. First, the gold plating waste liquid 100 was evaporated and dried at 110 ° C. using a rotary disk evaporation concentrator as an apparatus to obtain a concentrate 101. The concentrate 101 was quantitatively analyzed. The results are shown in Table 2 below.

Figure 0006093232
Figure 0006093232

続いて、前記濃縮物101の10kgを矩形の焼成用容器中に厚さ10cmとして入れ、焼成炉に導入し、500℃で焼成した。焼成は、減圧下で行い、昇温速度は3℃/分、焼成時間は500℃に達してから30分とした。得られた焼成残渣102について、定量分析を行なった。その結果を下記表3に示す。   Subsequently, 10 kg of the concentrate 101 was put into a rectangular baking container with a thickness of 10 cm, introduced into a baking furnace, and baked at 500 ° C. Firing was performed under reduced pressure, the rate of temperature increase was 3 ° C./min, and the firing time was 30 minutes after reaching 500 ° C. The obtained baked residue 102 was quantitatively analyzed. The results are shown in Table 3 below.

次に、得られた焼成残渣102から200gを採取し、1リットルの水とともに水洗浴に入れ、両者を攪拌することにより水洗を行なった。不溶分として得られた水洗残渣104について600℃、減圧下(−10Pa)にて高温保持時間1時間にて焼成後、定量分析を行なった。その結果を下記表4に示す。   Next, 200 g was collected from the obtained baked residue 102, placed in a water-washing bath with 1 liter of water, and washed with water by stirring both. The water washing residue 104 obtained as an insoluble matter was calcined at 600 ° C. under reduced pressure (−10 Pa) at a high temperature holding time of 1 hour, and then quantitative analysis was performed. The results are shown in Table 4 below.

続いて、得られた水洗残渣104に対して、王水溶解し、還元剤で還元する方法により、9mgの金を液相回収した。なお、金以外のその他の有価金属についても、必要に応じて常法により回収が可能となる。   Subsequently, 9 mg of gold was recovered in a liquid phase by a method in which the obtained water washing residue 104 was dissolved in aqua regia and reduced with a reducing agent. In addition, other valuable metals other than gold can be recovered by a conventional method as necessary.

また、廃アルカリ105についても定量分析を行なった。その結果を下記表5に示す。なお下記表5において、T−CNは廃アルカリ105中の錯体シアン化合物と遊離シアン化合物のCN量の合計を示している。   Further, the waste alkali 105 was also quantitatively analyzed. The results are shown in Table 5 below. In Table 5 below, T-CN represents the total CN amount of the complex cyanide compound and free cyanide compound in the waste alkali 105.

[実施例2]
焼成条件以外は、水洗前まで実施例1と同様に実施した。焼成は、400℃減圧下で行い、昇温速度は3℃/分、焼成時間は400℃に達してから120分とした。得られた焼成残渣102について、定量分析を行なった。その結果を表3に示す。
[Example 2]
Except for the firing conditions, the same procedure as in Example 1 was performed until washing with water. Firing was carried out under reduced pressure at 400 ° C., the rate of temperature increase was 3 ° C./min, and the firing time was 120 minutes after reaching 400 ° C. The obtained baked residue 102 was quantitatively analyzed. The results are shown in Table 3.

[実施例3]
焼成条件以外は、水洗前まで実施例1と同様に実施した。焼成は、650℃減圧下で行い、昇温速度は3℃/分、焼成時間は650℃に達してから60分とした。得られた焼成残渣102について、定量分析を行なった。その結果を表3に示す。
[Example 3]
Except for the firing conditions, the same procedure as in Example 1 was performed until washing with water. Firing was performed under reduced pressure at 650 ° C., the rate of temperature increase was 3 ° C./min, and the firing time was 60 minutes after reaching 650 ° C. The obtained baked residue 102 was quantitatively analyzed. The results are shown in Table 3.

Figure 0006093232
Figure 0006093232

Figure 0006093232
Figure 0006093232

Figure 0006093232
Figure 0006093232

[比較例]
前記実施例1で使用した金めっき廃液の濃縮物101を焼成炉に導入し、800℃で焼成した。焼成は、減圧下で行い、昇温速度は3℃/分、焼成時間は800℃に達してから30分とした。
[Comparative example]
The gold plating waste liquid concentrate 101 used in Example 1 was introduced into a firing furnace and fired at 800 ° C. Firing was performed under reduced pressure, the rate of temperature increase was 3 ° C./min, and the firing time was 30 minutes after reaching 800 ° C.

その結果、炭酸アルカリ金属塩が溶融し炉の壁面にガラス状に付着し、炉を腐食させてしまうことが確認された。   As a result, it was confirmed that the alkali metal carbonate melts and adheres to the wall surface of the furnace in a glassy state and corrodes the furnace.

なお上記実施例では、金の回収方法について説明したが、その他の貴金属、希土類元素等の所謂有価金属も回収可能であることは勿論である。   In addition, although the said Example demonstrated the collection | recovery method of gold | metal | money, of course, what is called valuable metals, such as other noble metals and rare earth elements, can also be collect | recovered.

Claims (4)

シアン化合物、無機炭酸塩および有価金属を含有する廃液の濃縮物を400〜650℃で焼成し、シアンをシアンガスとして前記廃液の濃縮物から前記シアンガスを燃焼および分解させることなく分離した後に焼成残渣から有価金属を回収する工程を含む有価金属回収方法。 A waste liquid concentrate containing a cyanide compound, an inorganic carbonate and a valuable metal is calcined at 400 to 650 ° C. and separated from the waste liquid concentrate using cyan as a cyan gas without burning and decomposing the cyan gas from the calcined residue. A method for recovering valuable metals, including a step of recovering valuable metals. 有価金属を液相回収する工程を含む請求項1に記載の有価金属回収方法。   The valuable metal recovery method according to claim 1, comprising a step of recovering the valuable metal in a liquid phase. 前記無機炭酸塩は炭酸アルカリ金属塩および/または炭酸アルカリ土類金属塩である請求項1または2に記載の有価金属回収方法。   The valuable metal recovery method according to claim 1 or 2, wherein the inorganic carbonate is an alkali metal carbonate and / or an alkaline earth metal carbonate. 前記シアン化合物の濃度および無機炭酸塩の炭酸イオン換算濃度が、前記廃液の濃縮物中で夫々2〜200g/kg、20g/kg以上であって1000g/kg未満である請求項1〜3のいずれか1項に記載の有価金属回収方法。   The density | concentration of the said cyanide compound and the carbonate ion conversion density | concentration of inorganic carbonate are 2-200 g / kg, 20 g / kg or more and less than 1000 g / kg in the concentrate of the said waste liquid, respectively. The valuable metal recovery method according to claim 1.
JP2013091266A 2013-04-24 2013-04-24 Valuable metal recovery method Active JP6093232B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013091266A JP6093232B2 (en) 2013-04-24 2013-04-24 Valuable metal recovery method
PCT/JP2014/061177 WO2014175218A1 (en) 2013-04-24 2014-04-21 Method for collecting valuable metal
CN201480020981.4A CN105121676B (en) 2013-04-24 2014-04-21 Method for collecting valuable metal
KR1020157030341A KR101721354B1 (en) 2013-04-24 2014-04-21 Method for collecting valuable metal
TW103114640A TWI621714B (en) 2013-04-24 2014-04-23 Valuable metal recycling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013091266A JP6093232B2 (en) 2013-04-24 2013-04-24 Valuable metal recovery method

Publications (2)

Publication Number Publication Date
JP2014214333A JP2014214333A (en) 2014-11-17
JP6093232B2 true JP6093232B2 (en) 2017-03-08

Family

ID=51791792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013091266A Active JP6093232B2 (en) 2013-04-24 2013-04-24 Valuable metal recovery method

Country Status (5)

Country Link
JP (1) JP6093232B2 (en)
KR (1) KR101721354B1 (en)
CN (1) CN105121676B (en)
TW (1) TWI621714B (en)
WO (1) WO2014175218A1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516018B2 (en) * 1972-10-11 1976-02-24
JPS50118962A (en) 1974-03-05 1975-09-18
JPH0779999B2 (en) * 1988-01-26 1995-08-30 日本パーカライジング株式会社 Cyan-containing liquid treatment method
JP3199194B2 (en) * 1992-11-16 2001-08-13 三井金属資源開発株式会社 How to collect gold and silver
JPH09268329A (en) * 1996-04-04 1997-10-14 Nippon Parkerizing Co Ltd Noble metal and method for recovering noble metal from heavy metal-containing liquid
JP3820468B2 (en) * 1999-07-13 2006-09-13 同和鉱業株式会社 Method for treating aqueous solution containing metal elements
CN1172009C (en) * 2001-11-09 2004-10-20 清华大学 Technological method for reextracting gold from cyanide gold refining wast slag
AUPS167402A0 (en) * 2002-04-11 2002-05-16 Platinum Australia Limited Method for extracting pgms
CA2522074C (en) * 2003-04-11 2012-08-07 Lonmin Plc Recovery of platinum group metals
JP2006341229A (en) 2005-06-10 2006-12-21 Sumitomo Precision Prod Co Ltd Advanced treating method of cyanide compound-containing drain
CN101139660A (en) * 2007-10-08 2008-03-12 郑满秀 Method for extracting iron-lead and gold-silver from gold concentrate acidifying baking residue
CN101893247A (en) * 2010-08-16 2010-11-24 林向东 Treatment method of cyanogen-containing wastewater from gold concentrate roasting and smelting plant
CN102367587B (en) * 2011-11-15 2014-06-04 陕西科技大学 Method for treating excessive carbonate in cyanogens-containing gold plating solution

Also Published As

Publication number Publication date
JP2014214333A (en) 2014-11-17
TWI621714B (en) 2018-04-21
CN105121676A (en) 2015-12-02
CN105121676B (en) 2017-03-22
KR101721354B1 (en) 2017-03-29
TW201446968A (en) 2014-12-16
KR20150131394A (en) 2015-11-24
WO2014175218A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
CN101445872B (en) Method for extracting noble metal iridium from mixed oxide containing ruthenium, iridium, titanium, tin, zirconium and palladium
KR101640462B1 (en) Hydrometalurgical process and apparatus for recovering metals from waste material
US20110028306A1 (en) Process for the recovery of precious metals from used and/or defective catalytic carriers
JP5999478B2 (en) Method and apparatus for recovering precious metal via composite oxide
JP2007302944A (en) Method for recovering platinum group element from ion-exchange resin containing adsorbed platinum group element
US10597753B2 (en) Systems and methods of efficiently recovering precious metals using an alkaline leach, ultrasound, and electrolysis
JPS6344810B2 (en)
CN111940460A (en) Aluminum ash final ash low-temperature catalytic denitrification method
US20110192255A1 (en) Composition for collecting metal component
JP5652765B2 (en) Metal component recovery agent and metal component recovery method
JP6093232B2 (en) Valuable metal recovery method
CN106498178B (en) A kind of recycle carries method golden in bronze charcoal
CA1148749A (en) Process for treating liquid container au-cn compound
WO2021061184A1 (en) Systems and methods of efficiently recovering precious metals using an alkaline leach, ultrasound, and electrolysis
CN105256147A (en) Technique for recovering palladium in waste circuit board by means of supercritical fluid
JP2006348375A (en) Method for recovering silver
US6337056B1 (en) Process for refining noble metals from auriferous mines
CN104340999B (en) A kind of method of purification of aluminum oxide
CN108526490B (en) Method for producing copper metal powder by using copper chloride or cuprous chloride
JP3080947B1 (en) Electric furnace dust treatment method
TWI585238B (en) Method for recovering metal from printed circuit boards by using hydrochloride acid
TWI535854B (en) Resource recovery of gallium from scrap sapphire wafer
KR101579498B1 (en) Method for recovering palladium of waste pastes containing palladium
JP2015221934A (en) Silver recovery method
RU2175020C1 (en) Osmium powder production method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170210

R150 Certificate of patent or registration of utility model

Ref document number: 6093232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250