JP6090862B2 - Starting method of water electrolyzer - Google Patents

Starting method of water electrolyzer Download PDF

Info

Publication number
JP6090862B2
JP6090862B2 JP2014151792A JP2014151792A JP6090862B2 JP 6090862 B2 JP6090862 B2 JP 6090862B2 JP 2014151792 A JP2014151792 A JP 2014151792A JP 2014151792 A JP2014151792 A JP 2014151792A JP 6090862 B2 JP6090862 B2 JP 6090862B2
Authority
JP
Japan
Prior art keywords
water
current
electrolysis
water electrolysis
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014151792A
Other languages
Japanese (ja)
Other versions
JP2016029201A (en
Inventor
暢之 川崎
暢之 川崎
栄次 針生
栄次 針生
久史 長岡
久史 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014151792A priority Critical patent/JP6090862B2/en
Publication of JP2016029201A publication Critical patent/JP2016029201A/en
Application granted granted Critical
Publication of JP6090862B2 publication Critical patent/JP6090862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、電解質膜の両側に給電体が設けられ、前記給電体間に電解電流を印加することにより、水を電気分解してアノード側に酸素を発生させる一方、カソード側に前記酸素よりも高圧な水素を発生させる水電解装置の起動方法に関する。   In the present invention, a power feeding body is provided on both sides of the electrolyte membrane, and by applying an electrolytic current between the power feeding bodies, water is electrolyzed to generate oxygen on the anode side, while the cathode side has more oxygen than the oxygen. The present invention relates to a method for starting a water electrolysis apparatus that generates high-pressure hydrogen.

一般的に、燃料電池を発電させるための燃料ガスとして、水素ガスが使用されている。水素ガスは、例えば、水電解装置を組み込む水電解システムにより製造されている。水電解装置は、水を電気分解して水素(及び酸素)を発生させるため、固体高分子電解質膜(イオン交換膜)を用いている。電解質膜の両面には、電極触媒層が設けられて電解質膜・電極構造体が構成されるとともに、前記電解質膜・電極構造体の両側には、それぞれ給電体を配設して単位セルが構成されている。   In general, hydrogen gas is used as a fuel gas for generating power from a fuel cell. Hydrogen gas is manufactured by, for example, a water electrolysis system incorporating a water electrolysis device. The water electrolysis apparatus uses a solid polymer electrolyte membrane (ion exchange membrane) in order to electrolyze water and generate hydrogen (and oxygen). Electrode catalyst layers are provided on both sides of the electrolyte membrane to form an electrolyte membrane / electrode structure, and a power cell is provided on each side of the electrolyte membrane / electrode structure to form a unit cell. Has been.

そして、複数の単位セルが積層された状態で、積層方向両端に電圧が付与されるとともに、アノード側に水が供給される。このため、電解質膜・電極構造体のアノード側では、水が分解されて水素イオン(プロトン)が生成され、この水素イオンが電解質膜を透過してカソード側に移動し、電子と結合して水素が製造される。一方、アノード側では、水素イオンと共に生成された酸素が、余剰の水を伴ってユニットから排出される。   In a state where a plurality of unit cells are stacked, a voltage is applied to both ends in the stacking direction, and water is supplied to the anode side. For this reason, on the anode side of the electrolyte membrane / electrode structure, water is decomposed to generate hydrogen ions (protons). The hydrogen ions permeate the electrolyte membrane and move to the cathode side, and combine with electrons to form hydrogen. Is manufactured. On the other hand, on the anode side, oxygen produced together with hydrogen ions is discharged from the unit with excess water.

水電解装置では、カソード側に高圧(一般的には、1MPa以上)な水素を生成する高圧水素製造装置(差圧式水電解装置)が採用される場合がある。この高圧水素製造装置では、電解質膜を挟んでカソード側セパレータの流体通路に高圧水素が充填される一方、アノード側セパレータの流体通路には、常圧の水及び酸素が存在している。従って、運転停止(生成水素の供給終了)時には、電解質膜を保護するために、前記電解質膜の両側の圧力差を除去する必要がある。   In the water electrolysis apparatus, a high-pressure hydrogen production apparatus (differential pressure type water electrolysis apparatus) that generates high-pressure (generally 1 MPa or more) hydrogen on the cathode side may be employed. In this high-pressure hydrogen production apparatus, high-pressure hydrogen is filled in the fluid passage of the cathode-side separator across the electrolyte membrane, while atmospheric water and oxygen are present in the fluid passage of the anode-side separator. Therefore, when the operation is stopped (end of supply of generated hydrogen), it is necessary to remove the pressure difference between both sides of the electrolyte membrane in order to protect the electrolyte membrane.

そこで、例えば、特許文献1に開示されている水電解装置の運転停止方法が知られている。この運転停止方法では、カソード側電解室から水素の供給が停止された後、電圧を印加する工程と、前記電圧を印加した状態で、少なくとも前記カソード側電解室の減圧を行う工程とを有している。これにより、カソード側からアノード側にリークした水素は、水素膜ポンプ効果によって前記カソード側に戻されるため、リークした高圧水素の滞留を抑制し、触媒電極の水素による劣化を阻止することができる、としている。   Therefore, for example, a method for stopping the operation of a water electrolysis apparatus disclosed in Patent Document 1 is known. This operation stopping method includes a step of applying a voltage after the supply of hydrogen from the cathode-side electrolysis chamber is stopped, and a step of depressurizing at least the cathode-side electrolysis chamber in a state where the voltage is applied. ing. Thereby, since the hydrogen leaked from the cathode side to the anode side is returned to the cathode side by the hydrogen film pump effect, the retention of the leaked high-pressure hydrogen can be suppressed, and the deterioration of the catalyst electrode due to hydrogen can be prevented. It is said.

特開2010−236089号公報JP 2010-236089 A

ところで、上記の高圧水素製造装置では、何らかの異常が発生して非常停止する際に、電解電流を印加することが困難になる場合がある。その際、電解電流を印加せずに減圧処理(以下、無電解減圧処理ともいう)を行うと、前記電解電流を印加した場合(以下、電解減圧処理ともいう)に比べて、電解質膜の水分状態が異なってしまう。具体的には、無電解減圧処理では、電解質膜が乾燥され易くなり、次回の起動時に前記電解質膜が劣化するという問題がある。   By the way, in the above-described high-pressure hydrogen production apparatus, it may be difficult to apply an electrolytic current when an abnormality occurs and an emergency stop occurs. At that time, when the reduced pressure treatment (hereinafter also referred to as electroless reduced pressure treatment) is performed without applying the electrolytic current, the moisture content of the electrolyte membrane is larger than that when the electrolytic current is applied (hereinafter also referred to as electrolytic reduced pressure treatment). The state will be different. Specifically, in the electroless decompression process, there is a problem that the electrolyte membrane is easily dried and the electrolyte membrane is deteriorated at the next start-up.

本発明はこの種の問題を解決するものであり、無電解減圧処理が行われた際にも、電解質膜が乾燥状態で起動されることがなく、前記電解質膜の劣化を阻止して良好な差圧式水電解処理が遂行可能な水電解装置の起動方法を提供することを目的とする。   The present invention solves this type of problem, and even when an electroless decompression process is performed, the electrolyte membrane is not activated in a dry state, and the deterioration of the electrolyte membrane is prevented. An object of the present invention is to provide a method for starting up a water electrolysis apparatus capable of performing differential pressure water electrolysis.

本発明に係る起動方法が適用される水電解装置は、電解質膜の両側に給電体が設けられ、前記給電体間に電解電流を印加することにより、水を電気分解してアノード側に酸素を発生させている。一方、カソード側には、酸素よりも高圧な水素を発生させている。   In the water electrolysis apparatus to which the starting method according to the present invention is applied, a power feeding body is provided on both sides of the electrolyte membrane, and by applying an electrolysis current between the power feeding bodies, water is electrolyzed and oxygen is supplied to the anode side. Is generated. On the other hand, hydrogen having a pressure higher than that of oxygen is generated on the cathode side.

この起動方法は、水電解装置の前回の停止時に、減圧用電解電流を印加しながら、少なくともカソード側の減圧が行われたか否かを判断する工程を有している。この起動方法は、起動時に電解電流の印加を開始する前に、水電解装置に水を循環させる工程を有している。   This activation method includes a step of determining whether or not at least the cathode side pressure reduction has been performed while applying the pressure reducing electrolytic current when the water electrolysis apparatus was stopped last time. This starting method has a step of circulating water through the water electrolysis device before starting application of the electrolysis current at the time of starting.

そして、水電解装置の前回の停止時に減圧用電解電流印加しながら前記減圧が行われたと判断された場合、今回の起動時に前記水電解装置への水の循環を開始させてから前記電解電流印加を開始するまでの第1待機時間を設定し前記水電解装置の前回の停止時に前記減圧用電解電流印加しないで前記減圧が行われと判断された場合今回の起動時に前記水電解装置への前記水の循環を開始させてから前記電解電流印加を開始するまでの第2待機時間を前記第1待機時間よりも長く設定している。 Then, when the vacuum while applying a previous stop at reduced pressure for electrolysis current water electrolysis apparatus is judged to have been carried out, the electrolyte were allowed to start the circulation of water to the water electrolysis device to the current startup If setting the first waiting time until it starts applying current, previous the decompression during the pressure reducing electrolysis current has an applied to stop the water electrolysis apparatus is determined to have been performed, the current is set to be longer than the water electrolysis device said circulation of water to initiate the electroless the first waiting time and the second waiting time until it starts applying current from the startup.

また、この起動方法では、水電解装置の前回の停止時に脱圧に要した時間を記憶する工程を有することが好ましい。その際、脱圧に要した時間が長い程、電解電流の印加を開始するまでの第2待機時間を長く設定することが好ましい。 In addition, this activation method preferably includes a step of storing the time required for depressurization when the water electrolysis apparatus was stopped last time. At this time, it is preferable to set the second waiting time until the application of the electrolytic current is started longer as the time required for depressurization is longer.

さらに、この起動方法では、起動時に印加される電解電流を除々に上昇させる工程を有することが好ましい。その際、減圧時に減圧用電解電流の印加が行われていないと判断された際、電解電流を定格電流値まで上昇させる時間を、減圧時に前記減圧用電解電流の印加が行われた際に前記電解電流を前記定格電流値まで上昇させる時間よりも長く設定することが好ましい。   Furthermore, this starting method preferably includes a step of gradually increasing the electrolytic current applied at the time of starting. At that time, when it is determined that the application of the electrolysis current for decompression is not performed during decompression, the time for increasing the electrolysis current to the rated current value is set to the time when the electrolysis current for decompression is applied during decompression. It is preferable to set the electrolytic current longer than the time for raising the electrolytic current to the rated current value.

さらにまた、この起動方法では、電解質膜のインピーダンス値を計測する工程を有することが好ましい。その際、計測されたインピーダンス値が高い程、電解電流の印加を開始するまでの第2待機時間を長く設定することが好ましい。 Furthermore, this starting method preferably includes a step of measuring the impedance value of the electrolyte membrane. At that time, the higher the measured impedance value, the longer the second waiting time until the application of the electrolytic current starts.

本発明によれば、電解減圧処理が行われた際、水電解装置への水の循環を開始させてから電解電流印加を開始するまでの第1の待機時間が設定されている。一方、無電解減圧処理が行われた際、水電解装置への水の循環を開始させてから電解電流印加を開始するまで第2の待機時間が設定されている。そして、第2の待機時間は、第1の待機時間よりも長く設定されている。このため、無電解減圧処理により水分が不足し易い電解質膜は、電解減圧処理後に比べて水の循環時間が長くなり、良好に加湿(含水)される。 According to the present invention, when the electrolytic reduced pressure treatment is performed, a first waiting time from to initiate the circulation of water to the water electrolysis device until it starts to apply the electrolytic current is set. Meanwhile, when the electroless decompression process is performed, a second waiting time has to start circulation of water into the water electrolysis device until it starts to apply the electrolytic current is set. The second standby time is set longer than the first standby time. For this reason, the electrolyte membrane in which moisture tends to be insufficient due to the electroless decompression process has a longer water circulation time than after the electrolytic decompression process, and is well humidified (hydrated).

従って、無電解減圧処理が行われた際にも、電解質膜が乾燥状態で起動されることがない。これにより、電解質膜の劣化を阻止して良好な差圧式水電解処理が遂行可能になる。   Therefore, even when the electroless decompression process is performed, the electrolyte membrane is not activated in a dry state. Thereby, deterioration of the electrolyte membrane can be prevented and good differential water electrolysis can be performed.

本発明の第1の実施形態に係る起動方法が適用される水電解装置の概略構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is schematic structure explanatory drawing of the water electrolysis apparatus to which the starting method which concerns on the 1st Embodiment of this invention is applied. 前記起動方法において、前回の減圧処理が電解減圧処理と無電解減圧処理とである際の、それぞれの待機時間の説明図である。In the said starting method, it is explanatory drawing of each waiting time when the last pressure reduction process is an electrolytic pressure reduction process and an electroless pressure reduction process. 前記起動方法において、脱圧時間と待機時間との関係説明図である。In the starting method, it is an explanatory view of the relationship between the decompression time and the standby time. 前記起動方法において、電解電流の印加速度が変更される際の説明図である。It is explanatory drawing when the application rate of an electrolysis current is changed in the said starting method. 本発明の第2の実施形態に係る起動方法が適用される水電解装置の概略構成説明図である。It is schematic structure explanatory drawing of the water electrolysis apparatus to which the starting method which concerns on the 2nd Embodiment of this invention is applied.

図1に示すように、本発明の第1の実施形態に係る起動方法が適用される水電解装置10は、水(純水)を電気分解することによって酸素(常圧)及び酸素よりも高圧な水素(高圧水素)を製造する差圧式水電解機構12を備える。   As shown in FIG. 1, the water electrolysis apparatus 10 to which the start-up method according to the first embodiment of the present invention is applied has oxygen (normal pressure) and higher pressure than oxygen by electrolyzing water (pure water). A differential pressure type water electrolysis mechanism 12 for producing pure hydrogen (high pressure hydrogen) is provided.

水電解装置10は、純水供給機構14を介して市水から生成された水(純水)が供給され、この水を差圧式水電解機構12に供給するとともに、前記差圧式水電解機構12から排出される余剰の前記水を、前記差圧式水電解機構12に循環供給する水循環機構16を備える。水電解装置10は、差圧式水電解機構12から高圧水素を導出させる高圧水素配管18と、コントローラ(制御部)20とを備える。   The water electrolysis apparatus 10 is supplied with water (pure water) generated from city water via a pure water supply mechanism 14, and supplies the water to the differential pressure water electrolysis mechanism 12, and the differential pressure water electrolysis mechanism 12. A water circulation mechanism 16 that circulates and supplies the excess water discharged from the water to the differential pressure water electrolysis mechanism 12. The water electrolysis apparatus 10 includes a high-pressure hydrogen pipe 18 that leads high-pressure hydrogen from the differential-pressure water electrolysis mechanism 12 and a controller (control unit) 20.

差圧式水電解機構12は、差圧式高圧水素製造装置(カソード側圧力>アノード側圧力)を構成しており、複数の単位セル24が積層される。単位セル24の積層方向一端には、ターミナルプレート26a、絶縁プレート28a及びエンドプレート30aが外方に向かって、順次、配設される。単位セル24の積層方向他端には、同様にターミナルプレート26b、絶縁プレート28b及びエンドプレート30bが外方に向かって、順次、配設される。エンドプレート30a、30b間は、一体的に締め付け保持される。   The differential pressure type water electrolysis mechanism 12 constitutes a differential pressure type high pressure hydrogen production apparatus (cathode side pressure> anode side pressure), and a plurality of unit cells 24 are stacked. At one end of the unit cells 24 in the stacking direction, a terminal plate 26a, an insulating plate 28a, and an end plate 30a are sequentially disposed outward. Similarly, a terminal plate 26b, an insulating plate 28b, and an end plate 30b are sequentially disposed on the other end in the stacking direction of the unit cells 24 toward the outside. The end plates 30a and 30b are integrally clamped and held.

ターミナルプレート26a、26bの側部には、端子部34a、34bが外方に突出して設けられる。端子部34a、34bは、配線36a、36bを介して電解電源38に電気的に接続される。陽極(アノード)側である端子部34aは、電解電源38のプラス極に接続される一方、陰極(カソード)側である端子部34bは、前記電解電源38のマイナス極に接続される。   Terminal portions 34a and 34b are provided on the side portions of the terminal plates 26a and 26b so as to protrude outward. The terminal portions 34a and 34b are electrically connected to the electrolytic power source 38 via the wirings 36a and 36b. The terminal part 34 a on the anode (anode) side is connected to the positive electrode of the electrolytic power supply 38, while the terminal part 34 b on the cathode (cathode) side is connected to the negative electrode of the electrolytic power supply 38.

単位セル24は、電解質膜・電極構造体42と、この電解質膜・電極構造体42を挟持するアノード側セパレータ44及びカソード側セパレータ46とを備える。電解質膜・電極構造体42は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜48と、前記固体高分子電解質膜48の両面に設けられるアノード側給電体50及びカソード側給電体52とを備える。固体高分子電解質膜48の一方の面には、アノード電極触媒層が、前記固体高分子電解質膜の他方の面には、カソード電極触媒層が、それぞれ形成される。   The unit cell 24 includes an electrolyte membrane / electrode structure 42, and an anode-side separator 44 and a cathode-side separator 46 that sandwich the electrolyte membrane / electrode structure 42. The electrolyte membrane / electrode structure 42 includes, for example, a solid polymer electrolyte membrane 48 in which a perfluorosulfonic acid thin film is impregnated with water, and an anode-side power feeder 50 and a cathode provided on both surfaces of the solid polymer electrolyte membrane 48. Side power supply body 52. An anode electrode catalyst layer is formed on one surface of the solid polymer electrolyte membrane 48, and a cathode electrode catalyst layer is formed on the other surface of the solid polymer electrolyte membrane.

単位セル24の外周縁部には、積層方向に互いに連通して、水(純水)を供給するための水供給連通孔56が設けられる。単位セル24の外周縁部には、反応により生成された酸素及び未反応の水(混合流体)を排出するための排出連通孔58と、反応により生成された水素を流すための水素連通孔60とが設けられる。   A water supply communication hole 56 for supplying water (pure water) to each other in the stacking direction is provided at the outer peripheral edge of the unit cell 24. A discharge communication hole 58 for discharging oxygen generated by the reaction and unreacted water (mixed fluid) and a hydrogen communication hole 60 for flowing hydrogen generated by the reaction are provided at the outer peripheral edge of the unit cell 24. And are provided.

アノード側セパレータ44の電解質膜・電極構造体42に対向する面には、水供給連通孔56及び排出連通孔58に連通する第1流路(アノード側電解室)64が設けられる。第1流路64には、反応により生成された酸素及び未反応の水が流通する。カソード側セパレータ46の電解質膜・電極構造体42に向かう面には、水素連通孔60に連通する第2流路(カソード側電解室)68が形成される。第2流路68には、反応により生成された高圧水素が流通する。   A surface of the anode separator 44 facing the electrolyte membrane / electrode structure 42 is provided with a first flow path (anode side electrolytic chamber) 64 communicating with the water supply communication hole 56 and the discharge communication hole 58. In the first flow path 64, oxygen generated by the reaction and unreacted water flow. A second flow path (cathode side electrolytic chamber) 68 communicating with the hydrogen communication hole 60 is formed on the surface of the cathode side separator 46 facing the electrolyte membrane / electrode structure 42. High-pressure hydrogen generated by the reaction flows through the second flow path 68.

水循環機構16は、差圧式水電解機構12の水供給連通孔56に連通する循環配管72を備え、この循環配管72には、循環ポンプ74、イオン交換器76及び気液分離器78が配設される。   The water circulation mechanism 16 includes a circulation pipe 72 that communicates with the water supply communication hole 56 of the differential pressure type water electrolysis mechanism 12, and a circulation pump 74, an ion exchanger 76, and a gas-liquid separator 78 are disposed in the circulation pipe 72. Is done.

気液分離器78の上部には、戻り配管80の一端部が連通するとともに、前記戻り配管80の他端部は、差圧式水電解機構12の排出連通孔58に連通する。気液分離器78には、純水供給機構14に接続された純水供給配管82と、前記気液分離器78で純水から分離された酸素を排出するための酸素排気配管84とが連結される。   One end portion of the return pipe 80 communicates with the upper portion of the gas-liquid separator 78, and the other end portion of the return pipe 80 communicates with the discharge communication hole 58 of the differential pressure water electrolysis mechanism 12. The gas / liquid separator 78 is connected to a pure water supply pipe 82 connected to the pure water supply mechanism 14 and an oxygen exhaust pipe 84 for discharging oxygen separated from the pure water by the gas / liquid separator 78. Is done.

差圧式水電解機構12の水素連通孔60には、高圧水素配管18が接続され、この高圧水素配管18は、逆止弁86及び背圧弁(図示せず)を介して水素供給部(例えば、水素タンク等)に接続される。高圧水素配管18から脱圧配管88が分岐するとともに、前記脱圧配管88には、脱圧用バルブ90及び可変バルブ92が設けられる。   A high-pressure hydrogen pipe 18 is connected to the hydrogen communication hole 60 of the differential pressure water electrolysis mechanism 12, and the high-pressure hydrogen pipe 18 is connected to a hydrogen supply unit (for example, via a check valve 86 and a back pressure valve (not shown)). Connected to a hydrogen tank). A decompression pipe 88 branches from the high-pressure hydrogen pipe 18, and a decompression valve 90 and a variable valve 92 are provided in the decompression pipe 88.

このように構成される水電解装置10の動作について、以下に説明する。   The operation of the water electrolysis apparatus 10 configured as described above will be described below.

先ず、水電解装置10の始動運転時には、純水供給機構14を介して市水から生成された純水(以下、単に水という)が、水循環機構16を構成する気液分離器78に供給される。水循環機構16では、循環ポンプ74の作用下に、循環配管72を介して水が差圧式水電解機構12の水供給連通孔56に供給される。一方、ターミナルプレート26a、26bの端子部34a、34bには、電気的に接続されている電解電源38を介して電解電流(電解電圧)が印加される。   First, during the start-up operation of the water electrolysis apparatus 10, pure water generated from city water (hereinafter simply referred to as water) is supplied to the gas-liquid separator 78 constituting the water circulation mechanism 16 through the pure water supply mechanism 14. The In the water circulation mechanism 16, water is supplied to the water supply communication hole 56 of the differential pressure type water electrolysis mechanism 12 through the circulation pipe 72 under the action of the circulation pump 74. On the other hand, an electrolytic current (electrolytic voltage) is applied to the terminal portions 34a and 34b of the terminal plates 26a and 26b through an electrically connected electrolytic power source 38.

このため、各単位セル24では、水供給連通孔56からアノード側セパレータ44の第1流路64に水が供給され、この水がアノード側給電体50内に沿って移動する。従って、水は、電気により分解され、水素イオン、電子及び酸素が生成される。この陽極反応により生成された水素イオンは、固体高分子電解質膜48を透過してカソード側に移動し、電子と結合して水素が得られる。   For this reason, in each unit cell 24, water is supplied from the water supply communication hole 56 to the first flow path 64 of the anode side separator 44, and this water moves along the anode side power supply body 50. Therefore, water is decomposed by electricity to generate hydrogen ions, electrons and oxygen. Hydrogen ions generated by this anodic reaction permeate the solid polymer electrolyte membrane 48 and move to the cathode side, and combine with electrons to obtain hydrogen.

これにより、カソード側セパレータ46とカソード側給電体52との間に形成される第2流路68に沿って水素が流動する。この水素は、水供給連通孔56よりも高圧に維持されており、水素連通孔60を流れて高圧水素配管18を介し差圧式水電解機構12の外部に取り出し可能となる。   Thereby, hydrogen flows along the second flow path 68 formed between the cathode-side separator 46 and the cathode-side power feeder 52. This hydrogen is maintained at a pressure higher than that of the water supply communication hole 56, and can flow out of the differential pressure type water electrolysis mechanism 12 through the hydrogen communication hole 60 and through the high-pressure hydrogen pipe 18.

一方、第1流路64には、反応により生成した酸素と、使用済みの水とが流動しており、これらの混合流体が排出連通孔58に沿って水循環機構16の戻り配管80に排出される。この使用済みの水及び酸素は、気液分離器78に導入されて分離された後、水は、循環ポンプ74を介して循環配管72からイオン交換器76を通って水供給連通孔56に導入される。水から分離された酸素は、酸素排気配管84から外部に排出される。   On the other hand, oxygen generated by the reaction and used water flow through the first flow path 64, and these mixed fluids are discharged to the return pipe 80 of the water circulation mechanism 16 along the discharge communication hole 58. The After this used water and oxygen are introduced into the gas-liquid separator 78 and separated, the water is introduced from the circulation pipe 72 through the ion exchanger 76 into the water supply communication hole 56 via the circulation pump 74. Is done. Oxygen separated from the water is discharged to the outside from the oxygen exhaust pipe 84.

次いで、水電解装置10の電解運転が停止されると、コントローラ20では、差圧式水電解機構12の脱圧処理を開始する。具体的には、脱圧用バルブ90が開放されて、脱圧配管88が水素連通孔60に連通する。このため、カソード側の第2流路68に充填されている高圧水素は、可変バルブ92の開度調整によって徐々に減圧処理される。   Next, when the electrolysis operation of the water electrolysis apparatus 10 is stopped, the controller 20 starts the depressurization process of the differential pressure type water electrolysis mechanism 12. Specifically, the pressure release valve 90 is opened, and the pressure release pipe 88 communicates with the hydrogen communication hole 60. For this reason, the high-pressure hydrogen filled in the cathode-side second flow path 68 is gradually decompressed by adjusting the opening of the variable valve 92.

その際、電解電源38により、上記の電解電流よりも低い電解電流(以下、減圧用電解電流ともいう)が印加される(電解減圧処理)。減圧用電解電流は、例えば、膜ポンプ効果が得られる最小電流値に設定される。   At that time, an electrolysis current lower than the above electrolysis current (hereinafter, also referred to as an electrolysis pressure reducing pressure) is applied by the electrolysis power supply 38 (electrolytic pressure reduction treatment). The electrolytic current for decompression is set to, for example, the minimum current value that can obtain the membrane pump effect.

そして、第2流路68内の水素圧力が、第1流路64内の圧力(常圧)と同圧になった際、電解電源38による電圧印加が停止される。これにより、水電解装置10の運転が停止される。   When the hydrogen pressure in the second flow path 68 becomes the same as the pressure (normal pressure) in the first flow path 64, voltage application by the electrolytic power supply 38 is stopped. Thereby, the operation of the water electrolysis apparatus 10 is stopped.

次に、本発明の第1の実施形態に係る水電解装置10の始動方法について、説明する。   Next, a starting method for the water electrolysis apparatus 10 according to the first embodiment of the present invention will be described.

先ず、コントローラ20は、始動信号(例えば、イグニッションスイッチ)が入力(オン)されると、上記の水電解装置10の始動運転(起動)前に、すなわち、電解電流の印加を開始する前に、差圧式水電解機構12に水を循環させる処理を行う。具体的には、水循環機構16を構成する循環ポンプ74が駆動され、循環配管72を介して水が差圧式水電解機構12に循環供給される。   First, when a start signal (for example, an ignition switch) is input (turned on), the controller 20 before the start operation (startup) of the water electrolysis apparatus 10, that is, before starting application of the electrolysis current, A process of circulating water through the differential pressure type water electrolysis mechanism 12 is performed. Specifically, the circulation pump 74 constituting the water circulation mechanism 16 is driven, and water is circulated and supplied to the differential pressure water electrolysis mechanism 12 via the circulation pipe 72.

ここで、コントローラ20は、水電解装置10の前回の運転停止時に、上記の電解減圧処理が行われたか、無電解減圧処理が行われたか、を判断する。無電解減圧処理とは、例えば、水電解装置10の運転中に異常が発生し、前記水電解装置10を非常停止する際に、電解電流の印加を行うことなく、減圧する処理をいう。   Here, the controller 20 determines whether the electrolytic depressurization process or the electroless depressurization process was performed when the water electrolysis apparatus 10 was stopped last time. The electroless depressurization process refers to a process of depressurizing without applying an electrolysis current when an abnormality occurs during operation of the water electrolysis apparatus 10 and the water electrolysis apparatus 10 is emergency stopped.

コントローラ20は、水電解装置10の前回の運転停止時に、電解減圧処理が行われたと判断すると、差圧式水電解機構12に水が循環供給された後、迅速に電解電流の印加を開始させる。図2に示すように、循環水の供給が開始された時間T1から僅かな待機時間ΔTaだけ置いた時間T2において、電解電流Anが印加される。電解電流Anは、定格電流値Asまで除々に上昇される。従って、水電解装置10による水電解運転が開始される。   When the controller 20 determines that the electrolytic depressurization process has been performed at the previous stop of the water electrolysis apparatus 10, the controller 20 quickly starts application of the electrolysis current after water is circulated and supplied to the differential pressure water electrolysis mechanism 12. As shown in FIG. 2, the electrolysis current An is applied at a time T2 that is set for a short waiting time ΔTa from the time T1 at which the supply of circulating water is started. The electrolysis current An is gradually increased to the rated current value As. Therefore, the water electrolysis operation by the water electrolysis apparatus 10 is started.

一方、コントローラ20は、水電解装置10の前回の運転停止時に、無電解減圧処理が行われたと判断すると、待機時間ΔTaよりも長い待機時間ΔTbを有して、時間T3から電解電流Aaが印加される。電解電流Aaは、定格電流値Asまで除々に上昇される。これにより、水電解装置10による水電解運転が開始される。   On the other hand, when the controller 20 determines that the electroless decompression process has been performed when the water electrolysis apparatus 10 was stopped last time, the controller 20 has the standby time ΔTb longer than the standby time ΔTa, and the electrolytic current Aa is applied from the time T3. Is done. The electrolytic current Aa is gradually increased to the rated current value As. Thereby, the water electrolysis operation by the water electrolysis apparatus 10 is started.

この場合、第1の実施形態では、前回の停止時に電解減圧処理が行われた際、差圧式水電解機構12への水の循環を開始させてから電解電流Anを印加させるまでの待機時間ΔTaが設定されている。一方、前回の停止時に無電解減圧処理が行われた際、差圧式水電解機構12への水の循環を開始させてから電解電流Aaを印加させるまで待機時間ΔTbが設定されている。そして、待機時間ΔTbは、待機時間ΔTaよりも長く設定されている。   In this case, in the first embodiment, when the electrolytic pressure reduction process is performed at the previous stop, the standby time ΔTa from when the water circulation to the differential pressure type water electrolysis mechanism 12 is started until the electrolytic current An is applied. Is set. On the other hand, when the electroless pressure reduction process is performed at the previous stop, the waiting time ΔTb is set from the start of the water circulation to the differential pressure water electrolysis mechanism 12 until the electrolysis current Aa is applied. The standby time ΔTb is set longer than the standby time ΔTa.

このため、前回の停止時に無電解減圧処理を行ったことにより、水分が不足し易い固体高分子電解質膜48は、前回の停止時に電解減圧処理を行った場合に比べて水の循環時間が長くなり、良好に加湿(含水)されている。   For this reason, by performing the electroless decompression process at the previous stop, the solid polymer electrolyte membrane 48 that is likely to be deficient in water has a longer water circulation time than when the electrolytic decompression process was performed at the previous stop. It is well humidified (containing water).

従って、前回の停止時に無電解減圧処理が行われた際にも、固体高分子電解質膜48が乾燥状態で起動されることがない。これにより、固体高分子電解質膜48の劣化を阻止して良好な差圧式水電解処理が遂行可能になるという効果が得られる。   Therefore, the solid polymer electrolyte membrane 48 is not activated in the dry state even when the electroless decompression process is performed at the previous stop. As a result, it is possible to obtain an effect of preventing the deterioration of the solid polymer electrolyte membrane 48 and performing a good differential pressure water electrolysis process.

また、コントローラ20では、水電解装置10の前回の停止時に脱圧に要した時間を記憶する工程を有することができる。その際、図3に示すように、脱圧に要した時間Tが長い程、電解電流の印加を開始する前に水を循環させる時間、すなわち、待機時間ΔTを長く設定している。このため、固体高分子電解質膜48の水分量に対応して水を良好に循環供給させることができ、品質の向上が図られる。   Further, the controller 20 can have a step of storing the time required for depressurization when the water electrolysis apparatus 10 was stopped last time. At this time, as shown in FIG. 3, the longer the time T required for depressurization, the longer the time for circulating water before starting application of the electrolysis current, that is, the standby time ΔT is set longer. For this reason, water can be circulated and fed well in accordance with the amount of water in the solid polymer electrolyte membrane 48, and quality can be improved.

さらにまた、コントローラ20では、起動時に印加される電解電流を除々に上昇させる工程を有している。その際、図4に示すように、前回の減圧時に無電解減圧処理が行われた際、電解電流Aaaを定格電流値Asまで上昇させる時間を、電解減圧処理が行われた際、電解電流Anを前記定格電流値Asまで上昇させる時間よりも長く設定している。すなわち、電解電流Aaaの上昇角度は、電解電流Anの上昇角度よりも小さく設定されている。   Furthermore, the controller 20 has a step of gradually increasing the electrolytic current applied at the time of startup. At that time, as shown in FIG. 4, when the electroless decompression process is performed at the previous decompression, the time during which the electrolytic current Aaa is increased to the rated current value As is equal to the electrolytic current An when the electrolytic decompression process is performed. Is set longer than the time required to increase the current to the rated current value As. That is, the rising angle of the electrolysis current Aaa is set smaller than the rising angle of the electrolysis current An.

従って、固体高分子電解質膜48を乾燥状態から所望の湿潤状態に、一層確実に移行させることができ、差圧式水電解機構12の性能低下を確実に抑制することが可能になるという効果が得られる。   Therefore, the solid polymer electrolyte membrane 48 can be more reliably transferred from the dry state to the desired wet state, and the effect that the performance degradation of the differential pressure type water electrolysis mechanism 12 can be reliably suppressed can be obtained. It is done.

図5は、本発明の第2の実施形態に係る起動方法が適用される水電解装置100の概略構成説明図である。なお、第1の実施形態に係る水電解装置10と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。   FIG. 5 is a schematic configuration explanatory diagram of the water electrolysis apparatus 100 to which the activation method according to the second embodiment of the present invention is applied. In addition, the same referential mark is attached | subjected to the component same as the water electrolysis apparatus 10 which concerns on 1st Embodiment, and the detailed description is abbreviate | omitted.

水電解装置100では、差圧式水電解機構12には、電解質膜・電極構造体42(固体高分子電解質膜48)の水分量を測定するインピーダンス計測部102が設けられる。インピーダンス計測部102は、電解質膜・電極構造体42の抵抗値を測定するものであり、測定された抵抗値が大きい程、固体高分子電解質膜48の含水量が低くなっていることが検出される。   In the water electrolysis apparatus 100, the differential pressure type water electrolysis mechanism 12 is provided with an impedance measurement unit 102 that measures the moisture content of the electrolyte membrane / electrode structure 42 (solid polymer electrolyte membrane 48). The impedance measuring unit 102 measures the resistance value of the electrolyte membrane / electrode structure 42, and it is detected that the water content of the solid polymer electrolyte membrane 48 decreases as the measured resistance value increases. The

この第2の実施形態では、インピーダンス計測部102は、電解質膜・電極構造体42の抵抗値を測定し、その抵抗値がコントローラ20に送られる。コントローラ20では、測定された抵抗値が大きい程、差圧式水電解機構12に水を循環させる時間、すなわち、待機時間を長く設定している。これにより、固体高分子電解質膜48の乾燥状態を精度よく検知することができ、経済的且つ確実に前記固体高分子電解質膜48の劣化を可及的に抑制することが可能になる。   In the second embodiment, the impedance measuring unit 102 measures the resistance value of the electrolyte membrane / electrode structure 42, and the resistance value is sent to the controller 20. In the controller 20, the longer the measured resistance value is, the longer the time for circulating water in the differential pressure water electrolysis mechanism 12, that is, the standby time is set. As a result, the dry state of the solid polymer electrolyte membrane 48 can be accurately detected, and the deterioration of the solid polymer electrolyte membrane 48 can be suppressed as much as possible economically and reliably.

10、100…水電解装置 12…差圧式水電解機構
14…純水供給機構 16…水循環機構
18…高圧水素配管 20…コントローラ
24…単位セル 42…電解質膜・電極構造体
48…固体高分子電解質膜 50…アノード側給電体
52…カソード側給電体 56…水供給連通孔
58…排出連通孔 60…水素連通孔
64、68…流路 72…循環配管
74…循環ポンプ 80…戻り配管
DESCRIPTION OF SYMBOLS 10,100 ... Water electrolysis apparatus 12 ... Differential pressure type water electrolysis mechanism 14 ... Pure water supply mechanism 16 ... Water circulation mechanism 18 ... High pressure hydrogen piping 20 ... Controller 24 ... Unit cell 42 ... Electrolyte membrane and electrode structure 48 ... Solid polymer electrolyte Membrane 50 ... Anode-side power supply 52 ... Cathode-side power supply 56 ... Water supply communication hole 58 ... Discharge communication hole 60 ... Hydrogen communication holes 64, 68 ... Flow path 72 ... Circulation pipe 74 ... Circulation pump 80 ... Return pipe

Claims (4)

電解質膜の両側に給電体が設けられ、前記給電体間に電解電流を印加することにより、水を電気分解してアノード側に酸素を発生させる一方、カソード側に前記酸素よりも高圧な水素を発生させる水電解装置の起動方法であって、
前記水電解装置の前回の停止時に、減圧用電解電流を印加しながら、少なくとも前記カソード側の減圧が行われたか否かを判断する工程と、
起動時に前記電解電流の印加を開始する前に、前記水電解装置に前記水を循環させる工程と、
を有し、
前記水電解装置の前回の停止時に前記減圧用電解電流を印加しながら前記減圧が行われたと判断された場合、今回の起動時に前記水電解装置への前記水の循環を開始させてから前記電解電流の印加を開始するまでの第1待機時間を設定し、
前記水電解装置の前回の停止時に前記減圧用電解電流印加しないで前記減圧が行われと判断された場合今回の起動時に前記水電解装置への前記水の循環を開始させてから前記電解電流印加を開始するまでの第2待機時間を前記第1待機時間よりも長く設定することを特徴とする水電解装置の起動方法。
A power feeder is provided on both sides of the electrolyte membrane, and by applying an electrolysis current between the power feeders, water is electrolyzed to generate oxygen on the anode side, while hydrogen having a pressure higher than that of oxygen on the cathode side. A method for starting a water electrolysis device to be generated,
Determining whether or not at least the cathode side depressurization was performed while applying a depressurizing electrolysis current when the water electrolysis apparatus was stopped last time;
Circulating the water through the water electrolysis device before starting application of the electrolysis current at startup; and
Have
If it is determined that the pressure reduction has been performed while applying the electrolytic current for pressure reduction when the water electrolysis device is stopped last time, the water electrolysis is started after the water circulation to the water electrolysis device is started at the time of the current start-up. Set the first waiting time until the start of current application,
If the last of the pressure reducing time of the pressure reducing electrolysis current has an applied to stop the water electrolysis apparatus is judged to have been done, since the circulation of the water to the water electrolysis device to the current startup is initiated starting the water electrolysis apparatus characterized by setting longer than the second waiting time the first waiting time until it starts the application of the electrolysis current.
請求項1記載の起動方法において、前記水電解装置の前回の停止時に脱圧に要した時間を記憶する工程を有し、
脱圧に要した時間が長い程、前記電解電流の印加を開始するまでの前記第2待機時間を長く設定することを特徴とする水電解装置の起動方法。
The starting method according to claim 1, further comprising a step of storing a time required for depressurization when the water electrolysis apparatus is stopped last time.
The method of starting a water electrolysis apparatus, wherein the second waiting time until the application of the electrolysis current is started is set longer as the time required for depressurization is longer.
請求項1又は2記載の起動方法において、起動時に印加される前記電解電流を除々に上昇させる工程を有し、
減圧時に前記減圧用電解電流の印加が行われていないと判断された際、前記電解電流を定格電流値まで上昇させる時間を、減圧時に前記減圧用電解電流の印加が行われた際、前記電解電流を前記定格電流値まで上昇させる時間よりも長く設定することを特徴とする水電解装置の起動方法。
The starting method according to claim 1 or 2, further comprising a step of gradually increasing the electrolytic current applied at the time of starting,
When it is determined that the application of the electrolysis current for decompression is not performed during decompression, the time for increasing the electrolysis current to the rated current value is set to the time when the electrolysis current for decompression is applied during decompression. A method for starting a water electrolysis apparatus, characterized in that the current is set to be longer than the time required to increase the rated current value.
請求項1〜3のいずれか1項に記載の起動方法において、前記電解質膜のインピーダンス値を計測する工程を有し、
計測された前記インピーダンス値が高い程、前記電解電流の印加を開始するまでの前記第2待機時間を長く設定することを特徴とする水電解装置の起動方法。
The starting method according to any one of claims 1 to 3, further comprising a step of measuring an impedance value of the electrolyte membrane,
The method of starting a water electrolysis apparatus, wherein the second waiting time until the application of the electrolysis current is started is set longer as the measured impedance value is higher.
JP2014151792A 2014-07-25 2014-07-25 Starting method of water electrolyzer Active JP6090862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014151792A JP6090862B2 (en) 2014-07-25 2014-07-25 Starting method of water electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014151792A JP6090862B2 (en) 2014-07-25 2014-07-25 Starting method of water electrolyzer

Publications (2)

Publication Number Publication Date
JP2016029201A JP2016029201A (en) 2016-03-03
JP6090862B2 true JP6090862B2 (en) 2017-03-08

Family

ID=55435205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014151792A Active JP6090862B2 (en) 2014-07-25 2014-07-25 Starting method of water electrolyzer

Country Status (1)

Country Link
JP (1) JP6090862B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10682014B2 (en) 2013-07-09 2020-06-16 Strix Limited Apparatus for heating food
US11234559B2 (en) 2015-01-09 2022-02-01 Strix Limited Apparatus for heating food

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6370834B2 (en) * 2016-05-17 2018-08-08 本田技研工業株式会社 Start-up method of high pressure water electrolysis system
JP7263849B2 (en) * 2019-03-07 2023-04-25 株式会社豊田中央研究所 WATER ELECTROLYSIS DEVICE AND CONTROL METHOD OF WATER ELECTROLYSIS DEVICE

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291320B2 (en) * 2005-12-22 2009-07-08 日科ミクロン株式会社 Ozone water generator
JP2012153965A (en) * 2011-01-28 2012-08-16 Honda Motor Co Ltd Method for operating high pressure water electrolysis apparatus
JP2012167331A (en) * 2011-02-15 2012-09-06 Honda Motor Co Ltd Method for operating differential pressure water electrolysis apparatus
CN102965686A (en) * 2011-08-31 2013-03-13 本田技研工业株式会社 Water electrolysis system and method for operating the same
JP5872431B2 (en) * 2012-09-24 2016-03-01 本田技研工業株式会社 High pressure water electrolysis system and its startup method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10682014B2 (en) 2013-07-09 2020-06-16 Strix Limited Apparatus for heating food
US11234559B2 (en) 2015-01-09 2022-02-01 Strix Limited Apparatus for heating food

Also Published As

Publication number Publication date
JP2016029201A (en) 2016-03-03

Similar Documents

Publication Publication Date Title
JP5349360B2 (en) Water electrolysis equipment shutdown method
US8685223B2 (en) Method for operating water electrolysis system
JP5394458B2 (en) How to stop water electrolysis system
US8815075B2 (en) Water electrolysis system and method of operating same
US20120090989A1 (en) Water electrolysis system
US8741123B2 (en) Water electrolysis system and method for shutting down the same
JP6090862B2 (en) Starting method of water electrolyzer
JP5355623B2 (en) Water electrolysis system and operation method thereof
JP5872431B2 (en) High pressure water electrolysis system and its startup method
US11214880B2 (en) Water electrolysis system and control method therefor
US20120209434A1 (en) Method for operating differential pressure water electrolysis apparatus
JP5341547B2 (en) Water electrolysis system
JP5490654B2 (en) Method for stopping operation of high-pressure water electrolyzer
JP6348143B2 (en) Depressurization method for high pressure water electrolysis system
JP5378439B2 (en) Water electrolysis system and operation method thereof
JP2012153965A (en) Method for operating high pressure water electrolysis apparatus
JP2012219276A (en) Water electrolysis system and method for controlling the same
JP5653278B2 (en) How to stop water electrolysis system
US9540739B2 (en) High differential pressure water electrolysis system and method for starting the same
US20170335469A1 (en) Starting method of high-pressure water electrolysis system and starting method of water electrolysis system
JP7158529B1 (en) Water electrolysis system and method for starting water electrolysis device
JP2013241638A (en) Water electrolysis system and operation method of the same
JP2013241639A (en) Water electrolysis system and operation method of the same
JP2013032572A (en) Method for stopping operation of high pressure hydrogen production system
JP2012036473A (en) Water electrolysis system and pressure release method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170202

R150 Certificate of patent or registration of utility model

Ref document number: 6090862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150