JP6089144B1 - Copper-clad laminate and manufacturing method thereof - Google Patents

Copper-clad laminate and manufacturing method thereof Download PDF

Info

Publication number
JP6089144B1
JP6089144B1 JP2016244584A JP2016244584A JP6089144B1 JP 6089144 B1 JP6089144 B1 JP 6089144B1 JP 2016244584 A JP2016244584 A JP 2016244584A JP 2016244584 A JP2016244584 A JP 2016244584A JP 6089144 B1 JP6089144 B1 JP 6089144B1
Authority
JP
Japan
Prior art keywords
copper
layer
white
clad laminate
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016244584A
Other languages
Japanese (ja)
Other versions
JP2017185780A (en
Inventor
祝迫 恭
恭 祝迫
昂優 折田
昂優 折田
裕之 大神
裕之 大神
祐貢 上野
祐貢 上野
幸太郎 古川
幸太郎 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to PCT/JP2017/004417 priority Critical patent/WO2017169138A1/en
Priority to KR1020187023769A priority patent/KR20180126458A/en
Priority to CN201780012160.XA priority patent/CN108698375A/en
Priority to TW106105599A priority patent/TWI777939B/en
Application granted granted Critical
Publication of JP6089144B1 publication Critical patent/JP6089144B1/en
Publication of JP2017185780A publication Critical patent/JP2017185780A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/44Manufacturing insulated metal core circuits or other insulated electrically conductive core circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Led Device Packages (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

【課題】可視光および紫外光に対して高い反射率を有し、紫外光耐性や耐熱性に優れた銅張積層板を提供する。【解決手段】銅張積層板を、銅層、白色層、接着層および熱伝導率が200W/m・K以上の高熱伝導基板をこの順に有し、白色層を紫外光耐性が高いオルガノポリシロキサンのマトリックス中に紫外光反射率の高いBN、ZrO2、SiO2、CaF2、ダイヤモンドのうちいずれかのフィラーを有する組成とし、白色層とアルミニウム基板とを熱硬化性樹脂にて接合した構造とした。【選択図】図3A copper-clad laminate having high reflectivity for visible light and ultraviolet light and excellent in ultraviolet light resistance and heat resistance is provided. An organopolysiloxane having a copper-clad laminate comprising a copper layer, a white layer, an adhesive layer, and a high thermal conductivity substrate having a thermal conductivity of 200 W / m · K or higher in this order, and the white layer having a high ultraviolet light resistance. In this matrix, a composition having any one of BN, ZrO 2, SiO 2, CaF 2, and diamond having a high ultraviolet light reflectivity was used, and a white layer and an aluminum substrate were joined by a thermosetting resin. [Selection] Figure 3

Description

本発明は、可視光および紫外光に対して高い反射率を有し、紫外光耐性や耐熱性に優れた銅張積層板に関する。この銅張積層板は、発光ダイオード(LED)実装用プリント基板等に好適する。   The present invention relates to a copper clad laminate having high reflectivity for visible light and ultraviolet light, and excellent in ultraviolet light resistance and heat resistance. This copper clad laminate is suitable for a printed circuit board for mounting a light emitting diode (LED).

回路パターン形成のための銅箔を表面に有し、前記銅箔にエッチング等の手段によってパターンを形成し、エッチング等によって銅が除去された部分からは白色の反射材が露出する積層基板(以後、銅箔を表面に有する同様の積層基板を「銅張積層体」とも記載する。)は広く市販されている。また、この銅張基板上に発光素子を実装したLED装置は電子機器、照明機器等に幅広く利用されている。一般的な白色の反射材は、それが可視光領域の反射であれば問題なく使用できるが、紫外光の反射材としては、紫外光に対する反射率の低さや、紫外光による劣化等の問題があった。   A laminated substrate having a copper foil for forming a circuit pattern on the surface, a pattern is formed on the copper foil by means of etching or the like, and a white reflector is exposed from a portion where the copper is removed by etching or the like (hereinafter referred to as a laminated substrate) A similar laminated substrate having a copper foil on its surface is also referred to as a “copper-clad laminate”). In addition, LED devices in which light emitting elements are mounted on a copper-clad substrate are widely used in electronic devices, lighting devices, and the like. A general white reflective material can be used without any problem if it is in the visible light region, but as a reflective material for ultraviolet light, there are problems such as low reflectivity for ultraviolet light and deterioration due to ultraviolet light. there were.

特に、近年LEDの技術進歩は著しく、より大出力の紫外光や、より波長の短い紫外光を発生させるLED素子も増えてきている。それに伴い、基板側、特に紫外光反射材(以下、単に「反射材」とも記載する。)には、紫外光反射に優れ、紫外光耐性にも優れた性質が求められている。   In particular, in recent years, the technological progress of LEDs has been remarkable, and the number of LED elements that generate higher-power ultraviolet light or shorter-wavelength ultraviolet light is increasing. Accordingly, the substrate side, in particular, the ultraviolet light reflecting material (hereinafter also simply referred to as “reflecting material”) is required to have excellent properties for ultraviolet light reflection and ultraviolet light resistance.

こうした背景を受けて、たとえば特許文献1には、紫外光領域および可視光領域において高い反射率を有し、加熱処理や光照射処理による光反射率の低下が少なく、金属箔とのピール強度が良好な樹脂組成物、それを用いたプリプレグおよび銅張積層板が開示されている。これらは、LED実装用プリント配線板に好適する記載されている。
また、特許文献2には熱可塑性樹脂を含有してなる層と、シリコーン樹脂に無機充填剤を含有してなる層を有し、波長400〜800nmの可視光に対する平均反射率が70%以上である積層体を、LED搭載用基板に使用する提案がなされている。
In view of such background, for example, Patent Document 1 has a high reflectance in the ultraviolet light region and the visible light region, there is little reduction in light reflectance due to heat treatment or light irradiation treatment, and the peel strength with the metal foil is low. A good resin composition, a prepreg and a copper clad laminate using the same are disclosed. These are described as being suitable for printed wiring boards for LED mounting.
Patent Document 2 has a layer containing a thermoplastic resin and a layer containing an inorganic filler in a silicone resin, and has an average reflectance of 70% or more for visible light having a wavelength of 400 to 800 nm. Proposals have been made to use a certain laminate for an LED mounting substrate.

さらに、特許文献3には、銅張積層板ではないが、紫外光の反射に優れたLEDパッケージが開示されている。光反射層については、金属アルコキシドの加水分解および脱水縮合により形成された無機材質、および、それにAlN、Al、MgO等のセラミックスフィラーを分散した構成が開示されている。金属アルコキシドの加水分解および脱水縮合により得られたシリコーン樹脂は、紫外光に弱い炭素−炭素結合を比較的少なくしやすいために、シリコーン樹脂の中でも紫外光耐性を高くすることが可能である。また、フィラーとして添加されているAlやMgOも、例えばTiOと比較すると、表面に特別な処理をすることなく高い紫外光反射を得られる。 Furthermore, Patent Document 3 discloses an LED package that is not a copper-clad laminate but excellent in reflection of ultraviolet light. As for the light reflection layer, an inorganic material formed by hydrolysis and dehydration condensation of metal alkoxide and a ceramic filler such as AlN, Al 2 O 3 , MgO and the like are dispersed. Since the silicone resin obtained by hydrolysis and dehydration condensation of metal alkoxide is relatively easy to reduce the number of carbon-carbon bonds that are weak against ultraviolet light, it is possible to increase the resistance to ultraviolet light among silicone resins. Further, Al 2 O 3 and MgO added as fillers can obtain high ultraviolet light reflection without special treatment on the surface, for example, as compared with TiO 2 .

国際公開第2012/165147号International Publication No. 2012/165147 特開2010−274540号公報JP 2010-274540 A 特開2013−004822号公報JP 2013-004822 A

特許文献1に記載のプリプレグおよび銅張積層板の反射層の使用により、可視光用の反射材に用いられる一般的な白色の塗料や接着剤に対しては、紫外光耐性、紫外光反射率ともにやや改善される。これは、表面の金属箔を除去することにより露出する白色反射材の白色のフィラーとして二酸化チタンが使用されており、二酸化チタンは例えば有機ポリマー系の白色樹脂よりも優れた紫外光耐性を有するためである。また、エポキシ変性シリコーン化合物は、同じく主鎖が炭素−炭素結合である有機ポリマーより優れた紫外光耐性を有する。しかし、二酸化チタンは、白色セラミックスの中では紫外光を吸収しやすく、反射しにくい特徴を有する。表面処理により紫外光反射性を改善したとしても、その効果は限定的であり、紫外光反射性が十分に高いとは言えない。また、特許文献1の金属張基板は、エポキシ変性シリコーンは導入基として   With the use of the prepreg and the reflective layer of the copper clad laminate described in Patent Document 1, ultraviolet light resistance and ultraviolet light reflectivity with respect to general white paints and adhesives used for a reflective material for visible light Both are slightly improved. This is because titanium dioxide is used as the white filler of the white reflector exposed by removing the metal foil on the surface, and titanium dioxide has better ultraviolet light resistance than, for example, organic polymer-based white resins. It is. Moreover, the epoxy-modified silicone compound has ultraviolet light resistance superior to that of an organic polymer whose main chain is a carbon-carbon bond. However, titanium dioxide has a characteristic that it is easy to absorb ultraviolet light and hardly reflects in white ceramics. Even if the ultraviolet light reflectivity is improved by the surface treatment, the effect is limited, and it cannot be said that the ultraviolet light reflectivity is sufficiently high. In addition, the metal-clad substrate of Patent Document 1 has epoxy-modified silicone as an introduction group.

を含むものであり、このうち炭素−炭素結合部分が特に切断されやすいために、紫外光耐性が十分に高いとは言えない。この点では、二酸化チタンにポリオール処理、シランカップリング処理およびアミン処理する際にも、同様の炭素−炭素結合が生じるために、やはり、十分な紫外光耐性および反射率も十分とは言えない。また、必須成分として含まれるイソシアヌレート環についても同様である。 Among these, since the carbon-carbon bond portion is particularly easily broken, it cannot be said that the ultraviolet light resistance is sufficiently high. In this respect, since the same carbon-carbon bond is generated when the titanium dioxide is subjected to polyol treatment, silane coupling treatment and amine treatment, it cannot be said that sufficient ultraviolet light resistance and reflectivity are sufficient. The same applies to the isocyanurate ring contained as an essential component.

特許文献2には、熱可塑性樹脂の層(A)と、シリコーン樹脂に無機充填剤を含有した層(B)との2層を含み、この2層に加えて前記(A)側に銅箔層を、前記(B)層側にアルミ板を有する構造が例として開示されている。例えば図2にこの構造が記載されている。また、LED搭載用基板の製造方法として、前記(A)と前記(B)の積層体に、銅箔層と、各ピースに切断後(窓抜き加工)に、(アルミ)基板を接合する方法が記載されている。しかし、この方法では、プレスで厚さを一定にするのが難しい問題点がある。また、熱可塑性樹脂は温度が上がると軟化するために、使用時に高温となる紫外LED搭載用基板への使用はやはり難しい。特に、光源などの位置精度が厳しい用途へは使用できない。引用文献2では、シリコーン樹脂の種類として、組成は特に限定せずに、形態もゴム、ミラブル、ワニス、レジン、エラストマー、ゲル等と限定されていない。珪素−酸素結合を主鎖とするシリコーン樹脂は、炭素−炭素結合を主鎖とする樹脂より一般的に紫外光耐性は高いが、本文献にはその形態が特定されていないために、特に深紫外領域で十分な紫外光耐性を有する構成を得るのは難しい。   Patent Document 2 includes two layers of a thermoplastic resin layer (A) and a layer (B) containing an inorganic filler in a silicone resin. In addition to these two layers, a copper foil is provided on the (A) side. A structure having an aluminum plate on the layer side (B) is disclosed as an example. For example, FIG. 2 illustrates this structure. Moreover, as a manufacturing method of the board | substrate for LED mounting, the method which joins an (aluminum) board | substrate after cutting into a laminated body of said (A) and said (B), a copper foil layer, and each piece (window extraction process). Is described. However, this method has a problem that it is difficult to make the thickness constant with a press. In addition, since the thermoplastic resin softens as the temperature rises, it is still difficult to use the thermoplastic resin on a substrate for mounting an ultraviolet LED that becomes high temperature during use. In particular, it cannot be used for applications where the positional accuracy of a light source or the like is severe. In Cited Document 2, the composition of the silicone resin is not particularly limited, and the form is not limited to rubber, millable, varnish, resin, elastomer, gel, and the like. Silicone resins having a silicon-oxygen bond as the main chain generally have higher ultraviolet light resistance than resins having a carbon-carbon bond as the main chain, but the form is not specified in this document. It is difficult to obtain a structure having sufficient ultraviolet light resistance in the ultraviolet region.

特許文献3で開示されている絶縁層は、ある程度の紫外光反射および紫外光耐性を期待できる。しかしながら、特許文献3に記載の絶縁層は、上下両面に回路部(銅箔層)と放熱部(金属板)の両方に隙間なく接合するのは技術的に困難である。特許文献3で使用されている絶縁層は、金属アルコキシドが加水分解および脱水重合された無機材料であり、この加水分解および脱水重合する際には水や低分子化合物等を気化させ、絶縁膜から放出させる必要がある。ところが、上下両面が銅箔層と金属板とで挟まれている場合は、放出しなければならない水や低分子化合物の放出経路が無く、結果として、絶縁層自体に気泡が残留するという不具合が生じる。この現象を避けるために、金属箔を加水分解および脱水縮合時に接合しない場合(金属板は接合する)は、その後にスパッタリング等の高価な手段で銅箔層を改めて付ける必要が生じる。また、金属板を加水分解および脱水縮合時に接合しない場合(銅箔は接合する)は、脱水縮合および加水分解時に銅箔ごと変形するために、平面状に形成するのが困難であるという問題がある。また、一度加水分解および脱水重合して得られた絶縁層は、表面に反応基が無く、加熱や加圧しても金属板に接合はできない。
本発明の銅張積層板およびその製造方法は、以下に示す現在の技術課題のいずれか少なくとも1点を解決する。
(1)銅層を除去したのちに露出する反射材が、紫外光に対しても劣化しにくく、また十分な反射率を有する、紫外LED搭載用基板等に適した銅張積層板を提供すること。
(2)LED発光中に、基板の温度が上がっても、変形が小さく使用可能であること。
(3)前記(1)(2)に応える、両面に銅層と金属板とを有する銅張積層板を得る方法を提案すること。
(4)前記銅層と金属板との間には、前記銅層を除去した部分に、高い紫外光耐性および高い紫外光反射率を有する反射膜が露出する銅張積層板であること。
The insulating layer disclosed in Patent Document 3 can be expected to have a certain degree of ultraviolet light reflection and ultraviolet light resistance. However, it is technically difficult to join the insulating layer described in Patent Document 3 to both the circuit part (copper foil layer) and the heat radiating part (metal plate) on both the upper and lower surfaces without a gap. The insulating layer used in Patent Document 3 is an inorganic material in which a metal alkoxide is hydrolyzed and dehydrated and polymerized by evaporating water, a low-molecular compound, and the like during the hydrolyzing and dehydrating polymerization. Need to be released. However, when both the upper and lower surfaces are sandwiched between the copper foil layer and the metal plate, there is no water or low molecular compound release route that must be released, resulting in the problem that bubbles remain in the insulating layer itself. Arise. In order to avoid this phenomenon, when the metal foil is not joined at the time of hydrolysis and dehydration condensation (metal plate is joined), it is necessary to attach a copper foil layer again by expensive means such as sputtering thereafter. Further, when the metal plate is not joined at the time of hydrolysis and dehydration condensation (copper foil is joined), since the entire copper foil is deformed at the time of dehydration condensation and hydrolysis, it is difficult to form a flat plate. is there. Further, the insulating layer obtained by once hydrolysis and dehydration polymerization has no reactive group on the surface, and cannot be bonded to the metal plate even when heated or pressurized.
The copper clad laminate and the method for producing the same according to the present invention solve at least one of the following current technical problems.
(1) To provide a copper-clad laminate suitable for an ultraviolet LED mounting substrate or the like, in which a reflective material exposed after removing a copper layer is not easily deteriorated against ultraviolet light and has a sufficient reflectance. about.
(2) Even when the temperature of the substrate rises during LED emission, the deformation is small and can be used.
(3) Proposing a method for obtaining a copper-clad laminate having a copper layer and a metal plate on both sides in response to the above (1) and (2).
(4) Between the said copper layer and a metal plate, it is a copper clad laminated board which the reflective film which has high ultraviolet light tolerance and a high ultraviolet light reflectance exposes in the part which removed the said copper layer.

銅張積層板を、銅層、白色層、接着層および熱伝導率が200W/m・K以上の高熱伝導基板をこの順に有し、前記白色層がオルガノポリシロキサンのマトリックス中に、BN、ZrO、SiO、CaF、ダイヤモンドのうちいずれか1種または2種以上のフィラーを有し、前記接着層を熱硬化性樹脂とすることで解決した。この銅張積層板は、例えば、オルガノポリシロキサンのマトリックス中にBN、ZrO、SiO、CaF、ダイヤモンドのうちいずれか1種または2種以上を有する白色塗料を銅箔上に塗布する工程、銅箔の変形を抑制しながら銅箔上で白色塗料を熱硬化処理する工程、前記白色塗料の層と少なくとも熱伝導率が200W/m・K以上の高熱伝導基板を片面に有する熱硬化性樹脂とを、加熱および加圧した状態で接合する工程をこの順に含む製造方法にて得られる。 The copper clad laminate has a copper layer, a white layer, an adhesive layer, and a high thermal conductivity substrate having a thermal conductivity of 200 W / m · K or more in this order, and the white layer is in a matrix of organopolysiloxane, BN, ZrO 2, SiO 2, CaF 2, have either one or two or more fillers of the diamond was the adhesive layer was solved by a thermosetting resin. This copper-clad laminate is, for example, a step of applying a white paint having one or more of BN, ZrO 2 , SiO 2 , CaF 2 , and diamond in an organopolysiloxane matrix on a copper foil , A step of thermosetting a white paint on the copper foil while suppressing deformation of the copper foil, a thermosetting having a layer of the white paint and a high thermal conductive substrate having at least a thermal conductivity of 200 W / m · K or more on one side It is obtained by a manufacturing method including a step of joining the resin in a heated and pressurized state in this order.

本発明の銅張積層板およびその製造方法により、下記の事項が実現できた。
まず、紫外光、特に深紫外光耐性の高い銅張積層板が実現できた。この銅張積層板は、表面に銅箔等の銅層を有しており、エッチング等により簡単に回路を作製可能である。エッチングにより銅層が除去された部分からは、十分に反射率(特に紫外光反射率)が高く、かつ、紫外光耐性の高い反射層が露出する。
また、基板材と光反射層、および、前記光反射層と前記(回路形成用の)銅層が強固に密着した状態の銅張積層板であるために、銅層、光反射層、基板材を回路形成後に接合する必要が無い。また、例えば熱可塑性樹脂を用いて光反射層と基板材を接合した場合に生じる、LEDが発光した際の発熱による基板の変形が少なくできる。
本発明の銅張積層板に回路形成をし、LED素子を実装することで、それを用いた紫外LED搭載用基板を得ることができる。
With the copper clad laminate and the method for producing the same of the present invention, the following matters could be realized.
First, a copper-clad laminate with high resistance to ultraviolet light, particularly deep ultraviolet light, could be realized. This copper clad laminate has a copper layer such as a copper foil on the surface, and a circuit can be easily produced by etching or the like. From the portion where the copper layer is removed by etching, a reflective layer having a sufficiently high reflectance (particularly, ultraviolet light reflectance) and high ultraviolet light resistance is exposed.
Moreover, since it is a copper clad laminate in a state where the substrate material and the light reflection layer, and the light reflection layer and the copper layer (for circuit formation) are in close contact, the copper layer, the light reflection layer, and the substrate material Need not be joined after the circuit is formed. Moreover, the deformation | transformation of the board | substrate by the heat_generation | fever when LED light_emits which arises, for example, when a light reflection layer and a board | substrate material are joined using a thermoplastic resin can be decreased.
By forming a circuit on the copper-clad laminate of the present invention and mounting the LED element, an ultraviolet LED mounting substrate using it can be obtained.

また、本発明では、前記銅張積層板を製造するための、製造方法を併せて開示する。   Moreover, in this invention, the manufacturing method for manufacturing the said copper clad laminated board is also disclosed collectively.

第1の積層体の模式図である。It is a schematic diagram of a 1st laminated body. 第2の積層体の模式図である。It is a schematic diagram of a 2nd laminated body. 第1の積層体と第2の積層体を接合した、本発明の銅張積層板(第3の積層体)の模式図であるIt is a schematic diagram of the copper clad laminated board (3rd laminated body) of this invention which joined the 1st laminated body and the 2nd laminated body. 第4の積層体の模式図である。It is a schematic diagram of a 4th laminated body. 第1の積層体と第4の積層体を接合した、本発明の銅張積層板(第5の積層体)の模式図である。It is a schematic diagram of the copper clad laminated board (5th laminated body) of this invention which joined the 1st laminated body and the 4th laminated body. 第3の積層体に回路形成した銅張積層板の模式図である。It is a schematic diagram of the copper clad laminated board in which the circuit was formed in the 3rd laminated body. 2枚の第1の積層体を、熱硬化性プリプレグにて接合した積層体の模式図である(第6の積層体)。It is a schematic diagram of the laminated body which joined the 1st laminated body of 2 sheets with the thermosetting prepreg (6th laminated body). 多層基板構造とした、本発明の銅張積層板の模式図である(第7の積層体)。It is a schematic diagram of the copper clad laminated board of this invention made into the multilayer substrate structure (7th laminated body). 各種フィラーの紫外光反射率の測定結果である。It is a measurement result of the ultraviolet light reflectance of various fillers. 紫外光による劣化の測定結果である。It is a measurement result of deterioration by ultraviolet light.

本発明の銅張積層板は、以下の方法にて製造できる。
最初に、白色層に使用する塗料について説明する。
The copper clad laminate of the present invention can be produced by the following method.
First, the paint used for the white layer will be described.

白色層に使用する塗料はオルガノポリシロキサンマトリックス中に、所定のセラミックスフィラーが分散した組成を有している。以下に製法を述べる。   The paint used for the white layer has a composition in which a predetermined ceramic filler is dispersed in an organopolysiloxane matrix. The production method is described below.

まず、オルガノアルコキシラン、水および酸触媒を混合する。オルガノアルコキシランは、
式1:RmSi(OR4−m(但し、式1中のRは炭素数1の有機基、Rはアルキル基、mは0〜2の整数)、
で表される組成のもののうち、いずれか1種または2種を用いる。
First, an organoalkoxylane, water, and an acid catalyst are mixed. Organoalkoxylane is
Formula 1: R 1 mSi (OR 2 ) 4-m (wherein R 1 in Formula 1 is an organic group having 1 carbon atom, R 2 is an alkyl group, m is an integer of 0 to 2),
Any one or two of the compounds represented by formula (1) are used.

前記、R(炭素数1の有機基)にあてはまるものは、メチル基(CH)またはトリフルオロメチル基(CF)のいずれかである。これらは、オルガノポリシロキサンとなった際のマトリックスの骨格となる部分であり、紫外光に弱い炭素−炭素結合(C−C結合)を全く或いはほとんど有さないために、紫外光耐性が高い。C−C結合を有するRは、すべてのRのうち5%まで許容できる。5%を超えると、紫外光耐性が著しく低下する。 What applies to R 1 (an organic group having 1 carbon atom) is either a methyl group (CH 3 ) or a trifluoromethyl group (CF 3 ). These are portions that become the skeleton of the matrix when it becomes an organopolysiloxane, and have no or almost no carbon-carbon bond (C—C bond) that is weak to ultraviolet light. R 1 having a C—C bond is acceptable up to 5% of all R 1 . If it exceeds 5%, the ultraviolet light resistance is significantly reduced.

前記R(アルキル基)としてはメチル、エチル、n−プロピル、n−ブチル、n−ペンチル等の直鎖状アルキル基;iso−プロピル、iso−ブチル、sec−ブチル、tert−ブチル、iso−ペンチル、tert−ペンチル、neo−ペンチル等の分枝状アルキル基等が挙げられる。Rは、縮重合の際にヒドロキシル基が置換されてアルコールとなり、最終的に白色層に残留しないために、C−C結合を多く含んでいても構わない。 As said R < 2 > (alkyl group), linear alkyl groups, such as methyl, ethyl, n-propyl, n-butyl, n-pentyl; iso-propyl, iso-butyl, sec-butyl, tert-butyl, iso- Examples include branched alkyl groups such as pentyl, tert-pentyl, and neo-pentyl. R 2 may contain a lot of C—C bonds because the hydroxyl group is substituted during condensation polymerization to become an alcohol and does not remain in the white layer finally.

水および酸触媒の混合量は、後に縮重合の際に揮発するために特に限定されるものではないが、pH値が2〜6となるように配合することが好ましい。こうして混合体を得る。
次に、混合体にフィラーを添加する。フィラーとして適しているのは、単体での紫外光反射率が高く、紫外光で劣化しない、粒状の粒子である。これに適する材種はc−BN(立方晶窒化ホウ素)、h−BN(六方晶窒化ホウ素)、ZrO、SiO、CaF、ダイヤモンド等が挙げられ、1種または2種以上を用いることができる。これらのフィラーはいずれも紫外光反射率および紫外光耐性が高いという特徴を持つ。例として、同じオルガノポリシロキサン中に異なるフィラーであるZrO、SiO、AlおよびTiOフィラーを同じ体積分率で分散した白色体の反射率のデータを図9に示す。また、同試料に波長254nmの紫外光を照射した際の反射率の推移を図10に示す。なお、図10においては、SiO、CaFおよびダイヤモンドを用いた場合も、ZrOフィラーを用いた白色体とほぼ同様の特性を示した。これらのグラフより、前記フィラーの反射率が高く、紫外光耐性が高いことが分かる。得られた混合体にフィラーを添加し、混合することで、フィラー分散体が得られる。フィラーの添加量は、白色層となった際に、フィラーが10〜85体積%となる分量の添加が適している。フィラー量が10体積%未満では十分な反射率が得られにくく、85体積%を超えると、マトリックスに隙間が発生しやすくなる。高い反射率を有し、安定的に生産しやすいのは、特にフィラーが40〜70体積%となる範囲である。
次に、フィラー分散体のオルガノアルコキシシランを、室温〜70℃程度で縮重合させ、水分とアルコール分を蒸発させる。塗布に適当な粘度とすることで、白色塗料が得られる。なお、前記縮重合反応の一部は、フィラー添加前に行ってもよい。白色塗料の粘度は、スプレー噴射する場合は10〜1000cps程度に、塗布の場合は1,000〜100,000cps程度とすればよい。
The mixing amount of water and the acid catalyst is not particularly limited because it volatilizes later in the condensation polymerization, but it is preferably blended so that the pH value is 2-6. A mixture is thus obtained.
Next, a filler is added to the mixture. Suitable as fillers are granular particles that have a high ultraviolet light reflectance by themselves and do not deteriorate with ultraviolet light. Suitable material types include c-BN (cubic boron nitride), h-BN (hexagonal boron nitride), ZrO 2 , SiO 2 , CaF 2 , diamond, etc., and one or more types should be used. Can do. All of these fillers are characterized by high ultraviolet light reflectance and ultraviolet light resistance. As an example, FIG. 9 shows reflectance data of a white body in which different fillers ZrO 2 , SiO 2 , Al 2 O 3 and TiO 2 filler are dispersed at the same volume fraction in the same organopolysiloxane. Further, FIG. 10 shows a change in reflectance when the sample is irradiated with ultraviolet light having a wavelength of 254 nm. In FIG. 10, even when SiO 2 , CaF 2 and diamond were used, the same characteristics as the white body using the ZrO 2 filler were shown. From these graphs, it can be seen that the filler has high reflectance and high ultraviolet light resistance. A filler dispersion is obtained by adding and mixing a filler to the obtained mixture. The amount of filler added is suitably such that the filler is 10 to 85% by volume when the white layer is formed. If the amount of filler is less than 10% by volume, sufficient reflectance is difficult to obtain, and if it exceeds 85% by volume, gaps are likely to occur in the matrix. What has a high reflectance and is easy to produce stably is the range which becomes especially 40 to 70 volume% of a filler.
Next, the organoalkoxysilane of the filler dispersion is subjected to condensation polymerization at about room temperature to about 70 ° C. to evaporate water and alcohol. A white paint can be obtained by adjusting the viscosity to be suitable for application. In addition, you may perform a part of said condensation polymerization reaction before filler addition. The viscosity of the white paint may be about 10 to 1000 cps when spraying, and about 1,000 to 100,000 cps when applied.

次に、白色塗料を銅箔に形成する方法について述べる。   Next, a method for forming a white paint on a copper foil will be described.

白色塗料を銅箔の表面に塗布を行う。塗布方法としては通常の技術、例えば、浸漬法、流延法、スピンナー法、スプレー法、バーコート法、スクリーン印刷、メタルマスク、インクジェットやブレード等を用いることで塗工することができる。塗布手段はこれらに限定されずに、適当に塗布できるのであればどのような方法でもよい。   A white paint is applied to the surface of the copper foil. As an application method, it can be applied by using a normal technique such as dipping method, casting method, spinner method, spray method, bar coating method, screen printing, metal mask, ink jet or blade. The application means is not limited to these, and any method may be used as long as it can be applied appropriately.

用いる銅箔は特に限定するものではないが、回路に適した電解銅箔(純銅)等を用いることが望ましい。また、厚さについては数μm〜数mmと、用途に合わせ任意の厚さのものを用いることができる。なお、銅箔の表面には白色反射材との密着性を高めるため、表面粗化処理がされてあると望ましい。塗布する量については、次工程である熱硬化処理した後の厚さが10〜200μmとなる量が好ましい。10μm未満では、反射率を上げることが難しく、200μmを超えると反射率がそれ以上向上せずに、熱硬化処理する際の変形が大きくなるために好ましくない。
塗布後に、白色塗料を熱硬化処理させる。硬化は約120〜300℃で5〜60分の熱処理条件を行えばよい。この処理を行うことで、オルガノアルコキシシランの縮重合が完全に終了し、オルガノポリシロキサンのマトリックス中にフィラーが分散した、固形の白色層が得られる。銅層と白色層は、密着性が高く、強硬に接合される。硬化の際の雰囲気は、大気雰囲気中でも可能であるが、可能であれば非酸化性雰囲気中で行うことが望ましい。これは、雰囲気中の酸素の影響により銅箔(銅層)の酸化を防ぐためである。なお、酸化した場合でも、後の工程にて脱錆剤等で洗浄処理することにより、銅層表面の酸化層は除去可能である。こうして、銅層と白色層が接合した、第1の積層体が得られる。
The copper foil to be used is not particularly limited, but it is desirable to use electrolytic copper foil (pure copper) suitable for the circuit. Moreover, about thickness, several micrometer-several mm and the thing of arbitrary thickness can be used according to a use. In addition, in order to improve adhesiveness with a white reflector, it is desirable that the surface of the copper foil is subjected to a surface roughening treatment. About the quantity to apply | coat, the quantity from which the thickness after the thermosetting process which is the next process will be 10-200 micrometers is preferable. If it is less than 10 μm, it is difficult to increase the reflectivity, and if it exceeds 200 μm, the reflectivity is not further improved, and deformation at the time of thermosetting treatment is increased, which is not preferable.
After application, the white paint is heat-cured. Curing may be performed at about 120 to 300 ° C. for 5 to 60 minutes. By performing this treatment, the polycondensation of the organoalkoxysilane is completely completed, and a solid white layer in which the filler is dispersed in the organopolysiloxane matrix is obtained. The copper layer and the white layer have high adhesiveness and are strongly bonded. The atmosphere at the time of curing can be an air atmosphere, but if possible, it is preferably performed in a non-oxidizing atmosphere. This is to prevent oxidation of the copper foil (copper layer) due to the influence of oxygen in the atmosphere. Even when oxidized, the oxidized layer on the surface of the copper layer can be removed by washing with a derusting agent or the like in a later step. In this way, the 1st laminated body which the copper layer and the white layer joined is obtained.

第1の積層体は、前記工程にて白色塗料の縮重合が起こるために、積層体が反る場合がある。これを防ぐためには、熱硬化時に銅箔部分の端の部分を固定した状態とするか、熱硬化時に銅箔に張力を加えた状態で行うか、白色塗料の裏面側を吸着する等の銅層が変形しないように保持した状態で縮重合をさせ、変形を防ぐ方法が有効である。   In the first laminate, the laminate may warp due to condensation polymerization of the white paint in the step. In order to prevent this, it is necessary to keep the end of the copper foil part fixed at the time of thermosetting, to apply the tension to the copper foil at the time of thermosetting, or to adsorb the back side of the white paint. An effective method is to prevent the deformation by performing condensation polymerization while keeping the layer so as not to be deformed.

得られた第1の積層体は、片面に銅層を、もう片面に白色層を有する2層構造である。このうち、白色層は金属等とほとんど反応しないオルガノポリシロキサンンとフィラーからなるために、アルミニウム基板等の高熱伝導基板と直接接合することは難しい。そのために、白色層とアルミニウム基板(高熱伝導基板)との接合する際には、両者を熱硬化性樹脂を用いて接合する。熱硬化性樹脂は、エポキシ樹脂、アクリル樹脂やイミド樹脂等公知の熱硬化性樹脂を用いることが可能である。これらの樹脂のシートを用いてもよいし、液状のものを固化させることで接合してもよい。熱硬化性樹脂を用いることにより、例えば先行技術文献に記載のある熱可塑性樹脂を用いた場合と比較して、使用時に高温となった際でも、変形の少ない積層体が得られる。接着の際は、例えば0.2〜10MPa程度に加圧した状態で、100〜200℃まで昇温する条件とすればよい。こうして、第1の積層体の白色層側に熱硬化性樹脂層が、熱硬化性樹脂層のもう1面にアルミニウム基板(高熱伝導基板)が積層した4層構造の積層体(第3の積層体、本発明の積層体)が得られる。   The obtained first laminate has a two-layer structure having a copper layer on one side and a white layer on the other side. Among these, since the white layer is composed of an organopolysiloxane and a filler that hardly reacts with a metal or the like, it is difficult to directly bond it to a high thermal conductive substrate such as an aluminum substrate. Therefore, when joining a white layer and an aluminum substrate (high heat conductive substrate), both are joined using a thermosetting resin. As the thermosetting resin, a known thermosetting resin such as an epoxy resin, an acrylic resin, or an imide resin can be used. You may use the sheet | seat of these resin, and you may join by solidifying a liquid thing. By using the thermosetting resin, for example, a laminate with less deformation can be obtained even when the temperature becomes high during use as compared with the case where a thermoplastic resin described in the prior art document is used. When bonding, for example, the temperature may be raised to 100 to 200 ° C. in a state of being pressurized to about 0.2 to 10 MPa. Thus, a four-layer laminate (third laminate) in which the thermosetting resin layer is laminated on the white layer side of the first laminate and the aluminum substrate (high thermal conductivity substrate) is laminated on the other surface of the thermosetting resin layer. Body, the laminate of the present invention).

以上は構成が最も簡単な積層体について述べたが、「銅層−白色層−熱硬化性樹脂−アルミニウム基板(高熱伝導基板)」の位置関係が保たれていれば、他の層をこれらの間に挟むことも可能である。一例として、熱硬化性樹脂とアルミニウム基板(高熱伝導基板)との間に絶縁樹脂層を挟むことが可能である。これは、例えば白色層の絶縁破壊電圧が十分でない場合は、銅層とアルミニウム基板(高熱伝導基板)の間が絶縁破壊する場合がある。絶縁樹脂層を用いることにより、大電流を用いる場合や、落雷等の想定外の電圧が付与された際に生じる絶縁破壊を防ぐことができる。   The above has described the laminate with the simplest configuration. However, if the positional relationship of “copper layer-white layer-thermosetting resin-aluminum substrate (high thermal conductivity substrate)” is maintained, the other layers are replaced with these layers. It can also be sandwiched between them. As an example, an insulating resin layer can be sandwiched between a thermosetting resin and an aluminum substrate (high thermal conductivity substrate). For example, when the dielectric breakdown voltage of the white layer is not sufficient, the dielectric breakdown may occur between the copper layer and the aluminum substrate (high thermal conductivity substrate). By using the insulating resin layer, it is possible to prevent dielectric breakdown that occurs when a large current is used or when an unexpected voltage such as a lightning strike is applied.

また、以上では白色層が1層の場合を述べたが、複数の第1の積層体を熱硬化性樹脂で接合し、多積層体とすることも可能である。
また、以上では高熱伝導基板としてアルミニウム基板を例示したが、熱伝導率が200W/m・K以上のものであればアルミニウム基板には限定されない。例えば高熱伝導基板は、アルミニウム、銅、銀、タングステン、炭素(カーボン(グラファイト、炭素繊維、カーボンナノチューブを含む。))、ダイヤモンドの単体または混合体とすることも可能である。
Moreover, although the case where the white layer was one layer was described above, it is also possible to join a plurality of first laminated bodies with a thermosetting resin to form a multi-layered body.
Moreover, although the aluminum substrate was illustrated as a high heat conductive board | substrate above, as long as heat conductivity is 200 W / m * K or more, it will not be limited to an aluminum board. For example, the high thermal conductive substrate can be aluminum, copper, silver, tungsten, carbon (carbon (including graphite, carbon fiber, and carbon nanotube)), diamond alone or a mixture.

得られた積層体は、表面に銅層と、その内部に白色層を有している。表面の銅層の一部をマスクし、残部を例えば酸、過酸化水素水や塩化第2鉄溶液等でエッチングすることにより回路基板が得られる。得られる回路基板は、銅層が除去された部分には、紫外光耐性および紫外光反射率に優れた白色層が露出する。回路上に各種メッキをし、メッキ部分にリード線やLED素子を接合することにより、LED搭載基板が得られる。   The obtained laminate has a copper layer on the surface and a white layer inside. A circuit board can be obtained by masking a part of the surface copper layer and etching the remaining part with, for example, an acid, a hydrogen peroxide solution or a ferric chloride solution. In the obtained circuit board, a white layer excellent in ultraviolet light resistance and ultraviolet light reflectance is exposed at a portion where the copper layer is removed. Various plating is performed on the circuit, and a lead wire or an LED element is joined to the plated portion to obtain an LED mounting substrate.

以下実施例により、より詳細に本発明を説明する。
(実施例1)
オルガノアルコキシシランとしてメチルトリエトキシシラン(キシダ化学株式会社製)100質量部と、水50質量部と、酢酸(関東化学株式会社製)25質量部と、酸化ホウ素(関東化学株式会社製)1質量部とをオートクレーブ(耐圧硝子工業株式会社製、TAS−7−3型反応容器)に投入し、40℃にて112時間撹拌し、オルガノポリシロキサン混合体組成物を得た。
前記オルガノポリシロキサン混合体組成物100質量部に対し、平均粒子径2.0μmのZrO粉末を170質量部と、ブチルカルビトールアセテート(キシダ化学株式会社製)55質量部とを投入、混合し、13時間解砕して、白色塗料を得た。
上記白色塗料を厚さ35μmの片面処理銅箔(古河電気工業株式会社製、GTS箔)の凹凸面上にスクリーン印刷法にて厚み約80μmに塗布し、260℃にて30分間焼成して、銅箔上に白色層を有する第1の積層体を得た。第1の積層体の白色層は厚さ約50μmで、この部分が紫外光反射部となる。
続いて、前記第1の積層体に第2の積層体を加熱加圧接着した。第2の積層体は、2層構造であり、厚さが1mmのアルミニウム基板の片面に、厚さ10μmの熱可硬化性プリプレグが接着した構造を有する。この第2の積層体の熱硬化性プリプレグの面と、前記第1の積層体の白色層とを重ねあわせた状態で、170℃、3MPaの圧力を加えることで加熱加圧接着し、第3の積層体を得た。
この第3の積層体は、本発明の銅張積層板の一形態である。第3の積層体は、1.75kVの耐電圧を有していた。
第3の積層体は、銅層側から、銅箔−白色層−熱硬化性プリプレグ−アルミニウム基板の4層を有している。
Hereinafter, the present invention will be described in more detail by way of examples.
Example 1
As an organoalkoxysilane, 100 parts by mass of methyltriethoxysilane (manufactured by Kishida Chemical Co., Ltd.), 50 parts by mass of water, 25 parts by mass of acetic acid (manufactured by Kanto Chemical Co., Ltd.), and 1 part by mass of boron oxide (manufactured by Kanto Chemical Co., Ltd.) Were put into an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., TAS-7-3 type reaction vessel) and stirred at 40 ° C. for 112 hours to obtain an organopolysiloxane mixture composition.
With respect to 100 parts by mass of the organopolysiloxane mixture composition, 170 parts by mass of ZrO 2 powder having an average particle size of 2.0 μm and 55 parts by mass of butyl carbitol acetate (manufactured by Kishida Chemical Co., Ltd.) were added and mixed. For 13 hours to obtain a white paint.
The white paint is applied to a concavo-convex surface of a 35 μm thick single-sided copper foil (GTS foil, manufactured by Furukawa Electric Co., Ltd.) by a screen printing method to a thickness of about 80 μm, and baked at 260 ° C. for 30 minutes. The 1st laminated body which has a white layer on copper foil was obtained. The white layer of the first laminate has a thickness of about 50 μm, and this portion becomes an ultraviolet light reflection portion.
Then, the 2nd laminated body was heat-pressure-bonded to the said 1st laminated body. The second laminate has a two-layer structure in which a thermosetting prepreg having a thickness of 10 μm is bonded to one surface of an aluminum substrate having a thickness of 1 mm. In a state where the surface of the thermosetting prepreg of the second laminate and the white layer of the first laminate are overlapped, a pressure of 170 ° C. and 3 MPa is applied to apply heat and pressure, A laminate was obtained.
This third laminate is one form of the copper clad laminate of the present invention. The third laminate had a withstand voltage of 1.75 kV.
The third laminate has four layers of copper foil-white layer-thermosetting prepreg-aluminum substrate from the copper layer side.

(実施例2)
実施例1で得られた第1の積層体を用いた別の例である。
実施例1中の、前記第1の積層体に第4の積層体を加熱加圧接着した。第4の積層体は、3層構造であり、厚さが1mmのアルミニウム基板の片面に厚さ50μmの放熱絶縁樹脂層が接着されており、さらに、前記放熱絶縁樹脂層の裏側に厚さ10μmの熱可硬化性プリプレグが接着した構造を有する。この第4の積層体の熱硬化性プリプレグの面と、前記第1の積層体の白色層とを重ねあわせた状態で、170℃、3MPaの圧力を加えることで加熱加圧接着し、第5の積層体を得た。
この第5の積層体は、本発明の銅張積層板の一形態である。
第5の積層体は、銅箔側から、銅層−白色層−熱硬化性プリプレグ−放熱絶縁樹脂層−アルミニウム基板の5層を有している。
第5の積層体は、絶縁層部分を白色層、熱硬化性プリプレグおよび放熱絶縁樹脂層の3層有しており、白色層および放熱絶縁樹脂層の2層は、いずれも高い絶縁耐力を有しているために、銅箔とアルミニウム基板間での絶縁破壊が極めて発生しにくくなる。そのために、非常に高い電圧を用いる紫外LED搭載用基板に応用した場合でも、絶縁破壊の恐れが無くなる。第5の積層体は、放熱絶縁性樹脂の効果により絶縁破壊電圧が第3の積層体よりも高く、絶縁破壊電圧は5.75kVであり、高い絶縁耐力が求められる大型のLED搭載基板として有利な特性を有していた。
(Example 2)
4 is another example using the first laminate obtained in Example 1. FIG.
In Example 1, the fourth laminate was heated and pressure-bonded to the first laminate. The fourth laminate has a three-layer structure in which a heat-dissipating insulating resin layer having a thickness of 50 μm is bonded to one side of an aluminum substrate having a thickness of 1 mm, and further, a thickness of 10 μm is provided on the back side of the heat-dissipating insulating resin layer. The heat curable prepreg has a structure adhered thereto. In a state where the surface of the thermosetting prepreg of the fourth laminate and the white layer of the first laminate are superposed, heat and pressure adhesion is applied by applying a pressure of 170 ° C. and 3 MPa, A laminate was obtained.
This fifth laminate is an embodiment of the copper clad laminate of the present invention.
The fifth laminated body has five layers of copper layer-white layer-thermosetting prepreg-heat radiation insulating resin layer-aluminum substrate from the copper foil side.
The fifth laminate has three insulating layer portions, a white layer, a thermosetting prepreg, and a heat-dissipating insulating resin layer. Both the white layer and the heat-dissipating insulating resin layer have high dielectric strength. For this reason, dielectric breakdown between the copper foil and the aluminum substrate hardly occurs. Therefore, even when applied to an ultraviolet LED mounting substrate using a very high voltage, there is no risk of dielectric breakdown. The fifth laminated body has a higher dielectric breakdown voltage than the third laminated body due to the effect of the heat-insulating insulating resin, has a dielectric breakdown voltage of 5.75 kV, and is advantageous as a large-sized LED mounting substrate that requires high dielectric strength. It had the characteristic.

(実施例3)
実施例1に記載の第1の積層体を2枚準備し、熱硬化性プリプレグにて一方の白色層と、もう片方の銅層を接合して、第6の積層体を得た。第6の積層体の白色層に、第4の積層体を接合することで、8層構造の第7の積層体(本発明の銅張積層板)を得た。
第7の積層体は、銅層が最表面と内部に離れて2層あるために、回路パターンの一部のみを最表面に形成し、残部を内部で形成し、両者を銅張基板の厚さ方向に電気的に接合することで立体的な回路を作製できる。エッチング後に最表面に残留する回路(銅箔層)面積を小さくすることが可能であり、その分白色層の露出を増やせるために、紫外光反射率を向上できる。また、最表面の銅箔層にNi/Auメッキ(まず、Niメッキし、その上にAuメッキする)を行う際の、Auの使用量を削減できるために、回路の形状によっては大幅に製造費用を下げることができる。
(Example 3)
Two first laminates described in Example 1 were prepared, and one white layer and the other copper layer were joined with a thermosetting prepreg to obtain a sixth laminate. The fourth laminate was joined to the white layer of the sixth laminate to obtain a seventh laminate (copper-clad laminate of the present invention) having an eight-layer structure.
In the seventh laminated body, since there are two copper layers separated from the outermost surface and the inside, only a part of the circuit pattern is formed on the outermost surface, the remaining part is formed inside, and both are formed on the thickness of the copper-clad substrate. A three-dimensional circuit can be manufactured by electrically joining in the vertical direction. The area of the circuit (copper foil layer) remaining on the outermost surface after etching can be reduced, and the exposure of the white layer can be increased accordingly, so that the ultraviolet light reflectance can be improved. In addition, since the amount of Au used when Ni / Au plating (first Ni plating and Au plating on top) is performed on the outermost copper foil layer can be greatly reduced depending on the circuit shape. Cost can be reduced.

(実施例4)
実施例1にて得られた本発明の銅張積層板の、銅層側にマスクパターンを用いて銅エッチング液中でエッチングした。銅箔の一部がエッチングにて除去され、銅張積層板の銅箔側に回路パターンが形成できた。エッチングされた部分からは、紫外光反射率および紫外光耐性が極めて高い白色層が露出した。図6に示すように、形成された回路上にNi/Auメッキし、その上にLED素子、リード線等を接合して、LED搭載基板が得られた。
Example 4
The copper-clad laminate of the present invention obtained in Example 1 was etched in a copper etchant using a mask pattern on the copper layer side. A part of the copper foil was removed by etching, and a circuit pattern could be formed on the copper foil side of the copper clad laminate. From the etched portion, a white layer with extremely high ultraviolet light reflectivity and ultraviolet light resistance was exposed. As shown in FIG. 6, Ni / Au plating was performed on the formed circuit, and an LED element, a lead wire, and the like were joined thereon to obtain an LED mounting substrate.

1 銅層
2 白色層
3 熱硬化性プリプレグ
4 アルミニウム基板(高熱伝導基板)
5 放熱絶縁樹脂層
6 回路部(一部エッチングされた銅箔)
7 LED素子
8 リード線
9 Ni/Auメッキ層
10 第1の積層体
20 第2の積層体
30 第3の積層体
40 第4の積層体
50 第5の積層体
60 第6の積層体
70 第7の積層体
101、102、103 本発明の銅張積層板
101´ 回路形成後の本発明の銅張積層板
1 Copper layer 2 White layer 3 Thermosetting prepreg 4 Aluminum substrate (high thermal conductivity substrate)
5 Thermal insulation resin layer 6 Circuit part (partially etched copper foil)
7 LED element 8 Lead wire 9 Ni / Au plating layer 10 1st laminated body 20 2nd laminated body 30 3rd laminated body 40 4th laminated body 50 5th laminated body 60 6th laminated body 70 6th 7 Laminate 101, 102, 103 Copper-clad laminate 101 'of the present invention Copper-clad laminate of the present invention after circuit formation

Claims (8)

銅層、白色層、接着層および熱伝導率が200W/m・K以上の高熱伝導基板をこの順に有し、
前記白色層がオルガノポリシロキサンのマトリックス中に、BN、ZrO、SiO、CaF、ダイヤモンドのうちいずれか1種または2種以上のフィラーを有する組成であり、
前記接着層が熱硬化性樹脂である銅張積層板。
It has a copper layer, a white layer, an adhesive layer and a high thermal conductivity substrate with a thermal conductivity of 200 W / m · K or higher in this order
The white layer is a composition having one or more fillers of BN, ZrO 2 , SiO 2 , CaF 2 , and diamond in an organopolysiloxane matrix,
A copper-clad laminate in which the adhesive layer is a thermosetting resin.
前記オルガノポリシロキサンが有機基を有しており、
前記有機基中で、炭素−炭素結合を有する有機基の割合が5%以下である請求項1に記載の銅張積層板。
The organopolysiloxane has an organic group,
The copper clad laminate according to claim 1, wherein a ratio of the organic group having a carbon-carbon bond in the organic group is 5% or less.
前記オルガノポリシロキサンが有機基を有しており、
前記有機基が炭素−炭素結合を有さない、請求項1または請求項2に記載の銅張積層板。
The organopolysiloxane has an organic group,
The copper clad laminate according to claim 1, wherein the organic group does not have a carbon-carbon bond.
前記白色層中の前記フィラーの割合が10〜85体積%である請求項1から請求項3のいずれか1項に記載の銅張積層板。   The copper-clad laminate according to any one of claims 1 to 3, wherein a ratio of the filler in the white layer is 10 to 85% by volume. 前記白色層の厚さが10〜200μmである請求項1から請求項4のいずれか1項に記載の銅張積層板。   The thickness of the said white layer is 10-200 micrometers, The copper clad laminated board of any one of Claims 1-4. 前記接着層と、前記高熱伝導基板との間に、さらに放熱絶縁樹脂層を有する請求項1から請求項5のいずれか1項に記載の銅張積層板。   The copper clad laminate according to any one of claims 1 to 5, further comprising a heat-dissipating insulating resin layer between the adhesive layer and the high thermal conductive substrate. 請求項1から請求項6に記載のいずれか1項に記載の銅張積層板の銅層上に、さらに接着層、白色層および銅層をこの順に有する、複数の白色層を有する銅張積層板。   A copper-clad laminate having a plurality of white layers, further comprising an adhesive layer, a white layer, and a copper layer in this order on the copper layer of the copper-clad laminate according to any one of claims 1 to 6. Board. 少なくとも、
オルガノポリシロキサンのマトリックス中にBN、ZrO、SiO、CaF、ダイヤモンドのうちいずれか1種または2種以上を有する白色塗料を銅箔上に塗布する工程、
銅箔の変形を抑制しながら銅箔上で白色塗料を熱硬化処理する工程、
前記白色塗料の層と、少なくとも熱伝導率が200W/m・K以上の高熱伝導基板を片面に有する熱硬化性樹脂とを、加熱および加圧した状態で接合する工程、
をこの順に含む、銅張積層板の製造方法。
at least,
Applying a white paint having one or more of BN, ZrO 2 , SiO 2 , CaF 2 , and diamond in a matrix of organopolysiloxane on a copper foil;
A process of thermosetting the white paint on the copper foil while suppressing the deformation of the copper foil,
Bonding the white paint layer and a thermosetting resin having a high thermal conductivity substrate at least having a thermal conductivity of 200 W / m · K or more on one side in a heated and pressurized state;
The manufacturing method of a copper clad laminated board which contains these in this order.
JP2016244584A 2016-03-30 2016-12-16 Copper-clad laminate and manufacturing method thereof Active JP6089144B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/004417 WO2017169138A1 (en) 2016-03-30 2017-02-07 Copper-clad laminate and production method for same
KR1020187023769A KR20180126458A (en) 2016-03-30 2017-02-07 Copper clad laminate and manufacturing method thereof
CN201780012160.XA CN108698375A (en) 2016-03-30 2017-02-07 Copper-clad laminated board and its manufacturing method
TW106105599A TWI777939B (en) 2016-03-30 2017-02-20 Copper clad laminate and method of making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016068946 2016-03-30
JP2016068946 2016-03-30

Publications (2)

Publication Number Publication Date
JP6089144B1 true JP6089144B1 (en) 2017-03-01
JP2017185780A JP2017185780A (en) 2017-10-12

Family

ID=58186059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016244584A Active JP6089144B1 (en) 2016-03-30 2016-12-16 Copper-clad laminate and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP6089144B1 (en)
KR (1) KR20180126458A (en)
CN (1) CN108698375A (en)
TW (1) TWI777939B (en)
WO (1) WO2017169138A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149497A1 (en) * 2020-01-20 2021-07-29 岡本硝子株式会社 Resist ink

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7461177B2 (en) 2020-03-13 2024-04-03 日本タングステン株式会社 Copper Clad Laminate
CN116390335A (en) * 2022-10-27 2023-07-04 松山湖材料实验室 Low-transmission-loss copper-based composite material, preparation method thereof, PCB and electronic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284596A (en) * 2006-04-18 2007-11-01 Mitsubishi Gas Chem Co Inc Prepreg and copper clad laminate
JP2011127074A (en) * 2009-12-21 2011-06-30 Risho Kogyo Co Ltd Prepreg, laminated board, and metal foil-clad laminate
JP2012116003A (en) * 2010-11-29 2012-06-21 Mitsubishi Plastics Inc Metal laminate, board for mounting led, and light source device
WO2012165147A1 (en) * 2011-05-31 2012-12-06 三菱瓦斯化学株式会社 Resin composition and prepreg and metal foil clad laminate using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501432B (en) * 2009-07-17 2015-09-21 Denki Kagaku Kogyo Kk Led chip bonding body, led package and method for manufacturing a led package
WO2011118109A1 (en) * 2010-03-23 2011-09-29 株式会社朝日ラバー Flexible reflective substrate, manufacturing method for same, and base material composition for use in reflective substrate
CN102891417B (en) * 2011-07-19 2015-02-04 中国北车集团大同电力机车有限责任公司 Lead connecting method and junction terminal
JP5851970B2 (en) * 2012-10-29 2016-02-03 信越化学工業株式会社 Silicone resin composition, silicone laminated substrate using the same, method for producing the same, and LED device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284596A (en) * 2006-04-18 2007-11-01 Mitsubishi Gas Chem Co Inc Prepreg and copper clad laminate
JP2011127074A (en) * 2009-12-21 2011-06-30 Risho Kogyo Co Ltd Prepreg, laminated board, and metal foil-clad laminate
JP2012116003A (en) * 2010-11-29 2012-06-21 Mitsubishi Plastics Inc Metal laminate, board for mounting led, and light source device
WO2012165147A1 (en) * 2011-05-31 2012-12-06 三菱瓦斯化学株式会社 Resin composition and prepreg and metal foil clad laminate using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149497A1 (en) * 2020-01-20 2021-07-29 岡本硝子株式会社 Resist ink
JPWO2021149497A1 (en) * 2020-01-20 2021-07-29
JP7343220B2 (en) 2020-01-20 2023-09-12 岡本硝子株式会社 resist ink

Also Published As

Publication number Publication date
TW201806755A (en) 2018-03-01
CN108698375A (en) 2018-10-23
KR20180126458A (en) 2018-11-27
JP2017185780A (en) 2017-10-12
WO2017169138A1 (en) 2017-10-05
TWI777939B (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP6089144B1 (en) Copper-clad laminate and manufacturing method thereof
KR101489159B1 (en) Method for manufacturing metal printed circuit board
KR102344267B1 (en) Mold-release polyimide film, laminated board having mold-release polyimide film having adhesive layer, laminated board, monolayer or multilayer wiring board having mold-release polyimide film having adhesive layer, and method for manufacturing multilayer wiring board
TWI526301B (en) A metal foil laminate, an LED mounting substrate, and a light source device
JP6510650B2 (en) Silicone resin composition, and white prepreg and white laminate using the same
JP5385685B2 (en) Cover-lay film, light-emitting element mounting substrate, and light source device
JP5941847B2 (en) Silicone / organic resin composite laminate, method for producing the same, and light-emitting semiconductor device using the same
KR100934476B1 (en) Circuit board and method of manufacturing the same
JP2011040715A (en) Led mounting substrate and method of manufacturing the same
JP5870934B2 (en) Method for manufacturing metal-based circuit board
KR100726247B1 (en) Method for forming board
JP2010263165A (en) Reflective substrate for led, and light emitting device
JP5230532B2 (en) White film, metal laminate, LED mounting substrate and light source device
JP2010189614A (en) Resin composition, support material with insulative layer, prepreg, laminated board for light-emitting element, circuit board for light emitting element, and light emitting device
JP2008041838A (en) Metal core board and manufacturing method therefor
KR101391187B1 (en) Flexible module with enhanced radiating ability and method for manufacturing the same
JP5682554B2 (en) Metal support flexible substrate and metal support carrier tape for tape automated bonding using the same, metal support flexible circuit substrate for LED mounting, and metal support flexible circuit substrate laminated with copper foil for circuit formation
KR101125752B1 (en) Printed circuit board and method of manufacturing the same
KR20140082599A (en) Method for manufacturing metal printed circuit board
JP5517042B2 (en) Adhesive resin composition, adhesive sheet
JP7461177B2 (en) Copper Clad Laminate
JP6023677B2 (en) Cyanate ester resin prepreg, laminated substrate, cyanate ester resin metal-clad laminate, and LED mounting substrate
JP2011253859A (en) Base plate with adhesive layer, heat dissipation mounting base plate, and manufacturing methods of these
TWM548624U (en) A metal core printed circuit board
JP2013116558A (en) Polyethylene naphthalate film to which softening agent is adhered, polyethylene naphthalate film which is softened, insulator film with metal foil, method of manufacturing insulator film with metal foil, method of manufacturing laminated structure, and laminated structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161216

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6089144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150