JP6088657B2 - Agar-derived neoagalo-oligosaccharide composite composition having anti-obesity and anti-diabetic effects prepared by DagA enzyme reaction - Google Patents

Agar-derived neoagalo-oligosaccharide composite composition having anti-obesity and anti-diabetic effects prepared by DagA enzyme reaction Download PDF

Info

Publication number
JP6088657B2
JP6088657B2 JP2015541697A JP2015541697A JP6088657B2 JP 6088657 B2 JP6088657 B2 JP 6088657B2 JP 2015541697 A JP2015541697 A JP 2015541697A JP 2015541697 A JP2015541697 A JP 2015541697A JP 6088657 B2 JP6088657 B2 JP 6088657B2
Authority
JP
Japan
Prior art keywords
obesity
diabetes
agar
daga
reaction product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015541697A
Other languages
Japanese (ja)
Other versions
JP2016505521A (en
Inventor
ヒョン イ,ジェ
ヒョン イ,ジェ
グァン ホン,スン
グァン ホン,スン
ジュ ホン,ソン
ジュ ホン,ソン
ヒ イ,ムン
ヒ イ,ムン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynebio Inc
Original Assignee
Dynebio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynebio Inc filed Critical Dynebio Inc
Priority claimed from PCT/KR2013/010277 external-priority patent/WO2014077575A1/en
Publication of JP2016505521A publication Critical patent/JP2016505521A/en
Application granted granted Critical
Publication of JP6088657B2 publication Critical patent/JP6088657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/729Agar; Agarose; Agaropectin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/702Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Plant Substances (AREA)

Description

本発明は、DagA酵素反応で調剤した抗肥満及び抗糖尿効能を有する寒天由来のネオアガロオリゴ糖複合組成物に関し、具体的に、ストレプトミセス・セリカラー(Streptomyces coelicolor)DagAと寒天またはアガロース(agarose)の酵素反応で得られた反応産物を有効成分として含有することにより、肥満または糖尿の予防、治療、改善効果を表す組成物に関する。   The present invention relates to an anti-obesity and anti-diabetic-derived agaro-oligosaccharide complex composition prepared by DagA enzyme reaction, specifically, Streptomyces coelicolor DagA and agar or agarose. The present invention relates to a composition exhibiting an effect of preventing, treating or improving obesity or diabetes by containing a reaction product obtained by an enzymatic reaction as an active ingredient.

寒天(Agar)は、従来より、食品添加物、医薬品、化粧品、家畜飼料及び工業原料などに広く利用されている代表的な海藻類由来の多糖類であり、国内の場合、毎年その生産量が約3,600トンに至る比較的豊かな水産資源の一つである。しかし、実際利用の面では、全体生産量の一部のみが単純に加工処理されて安い原料として使用されるだけであり、その残りは大部分放置されて、賦存資源量に比べて付加価置が非常に低い状況にある。従って、豊かな国内寒天の新しい用途開発と付加価置の向上に関する研究が大きく要求されている。   Agar (Agar) is a typical seaweed-derived polysaccharide that has been widely used for food additives, pharmaceuticals, cosmetics, livestock feed, and industrial raw materials. It is one of the relatively abundant marine resources that reaches about 3,600 tons. However, in terms of actual use, only a part of the total production is simply processed and used as cheap raw materials, and the rest is largely left untouched and added value compared to the existing resources. The position is very low. Therefore, there is a great demand for research on development of new uses for rich domestic agar and improvement of added value.

寒天は、アガロース(agarose)とアガロペクチン(agaropectin)で構成され、アガロースは、ガラクトース(D-galactose)と3,6-anhydro-L-galactoseがβ−1,4の形態で結合した単位体であるアガロビオース(agarobiose)が繰り返されてα−1,3結合で連結された直鎖構造でなり、ゲル(gel)化力が強いことに対し、アガロペクチンは、アガロースと同様にアガロビオース単位でなっているが、硫酸基などの酸性基を含有し、ゲル化力が弱い。   Agar is composed of agarose and agaropectin. Agarose is a unit consisting of D-galactose and 3,6-anhydro-L-galactose bound in the form of β-1,4. While agarobiose is a linear structure in which agarobiose is repeated and linked by α-1,3 bonds, and has a strong gelling power, agaropectin is composed of agarobiose units like agarose. Contains acidic groups such as sulfate groups and has low gelling power.

この中で、アガロースは、β−1,4結合に作用するベータ−アガラーゼ(β-agarase)によってネオアガロテトラオース(neoagarotetraose)を経てネオアガロビオース(neoagarobiose)に分解され、続いてα−1,3結合に作用するアルファ−アガラーゼ(α-agarase)によってガラクトース(D-galactose)と3,6-anhydro-L-galactoseに最終分解される。   In this, agarose is decomposed by neo-agarotetraose via neo-agarotetraose by β-agarase acting on β-1,4 bonds, and subsequently α- It is finally decomposed into galactose (D-galactose) and 3,6-anhydro-L-galactose by alpha-agarase acting on 1,3-linkage.

一方、放線菌であるストレプトミセス・セリカラー(Streptomyces coelicolor)A3(2)は、寒天を分解する細胞外(細胞外に分泌される)アガラーゼを生産すると知られ(Stanier et al.,1942,J.Bacteriol.;Hodgson and Chater,1981,J.Gen.Microbiol.)、該アガラーゼは、dagA遺伝子によってコードされている。放線菌では、dagA遺伝子がその機能が唯一に知られたベータ−アガラーゼ(β-agarase)遺伝子であり、放線菌におけるアガラーゼの生産研究において重要な位置にある。特に、ストレプトミセス・セリカラーは、放線菌の分子生物学的研究に最も広く使用される菌株として、2002年、イギリスのSanger centreで染色体DNAの配列が分析されて公開されている(Bentley et al.,2002,Nature)。   On the other hand, Streptomyces coelicolor A3 (2), an actinomycete, is known to produce extracellular (secreted extracellularly) agarase that degrades agar (Stanier et al., 1942, J. et al. Bacteriol .; Hodgson and Chater, 1981, J. Gen. Microbiol.), The agarase is encoded by the dagA gene. In actinomycetes, the dagA gene is a beta-agarase gene whose function is only known, and is in an important position in the production research of agarase in actinomycetes. In particular, Streptomyces sericolor is the most widely used strain for molecular biology of actinomycetes and was published in 2002 by analyzing the sequence of chromosomal DNA at the Sanger center in the UK (Bentley et al. 2002, Nature).

本発明者は、豊かな水産資源である寒天をより有用に活用できる方法を開発するために、寒天が多糖類であることから、糖分解酵素を適切に活用すれば、寒天の分解過程で生理活性効果を表す多様な糖由来の化合物が生成されることができるという可能性に注目した。そして、放線菌は、抗生剤などの有用な生理活性物質を生産する微生物であり、この生理活性物質には、糖と関連した多様な化合物が含まれるため、放線菌中には、寒天を分解したり、変形して有用な化合物に切り替えられる酵素を保有した菌株があると想定した。従って、このような放線菌から有用な酵素を探索し、これを寒天の酵素反応に適用して有用な生理活性物質の生産を試みた。   Since the agar is a polysaccharide in order to develop a method that can more effectively utilize agar, which is an abundant marine resource, the present inventor has a physiological process in the agar degradation process by appropriately utilizing a glycolytic enzyme. We focused on the possibility that various sugar-derived compounds can be produced that exhibit an active effect. Actinomycetes are microorganisms that produce useful physiologically active substances such as antibiotics. Since these physiologically active substances contain a variety of compounds related to sugar, agar breaks down in the actinomycetes. Or a strain possessing an enzyme that can be transformed into a useful compound by transformation. Therefore, a useful enzyme was searched from such actinomycetes and applied to the enzyme reaction of agar to produce a useful physiologically active substance.

寒天のような高分子多糖類は、酵素反応を通じて相対的に大きさの小さいオリゴ糖が生成される。このようなオリゴ糖の中には、生体の代謝に使用されるオリゴ糖と分子的形態は類似しているが、関連酵素が分解できないため、結果として糖分解酵素の活性を阻害するものが存在する。本発明者は、この点に注目して、寒天の酵素反応産物に対する糖分解酵素活性の阻害能を確認することで、肥満や糖尿に効果的な物質を開発しようとした。
その結果、放線菌であるストレプトミセス・セリカラーのDagAと寒天またはアガロースの酵素反応を通じて得た反応産物が肥満または糖尿の予防、治療、改善に優れた効果があることを確認し、本発明の完成に至った。
High molecular polysaccharides such as agar produce oligosaccharides of relatively small size through enzymatic reactions. Some of these oligosaccharides are similar in molecular form to the oligosaccharides used for metabolism in the body, but the related enzymes cannot be degraded, resulting in inhibition of the activity of glycolytic enzymes. To do. The present inventor has focused on this point, and has attempted to develop a substance effective for obesity and diabetes by confirming the ability to inhibit the glycolytic enzyme activity against the enzyme reaction product of agar.
As a result, it was confirmed that the reaction product obtained through the enzymatic reaction of Streptomyces sericolor DagA, which is an actinomycete, and agar or agarose has an excellent effect in the prevention, treatment and improvement of obesity or diabetes. It came to.

本特許出願は、2013〜2014年度農村振興院の財源で次世代バイオグリーン21事業(課題固有番号:PJ009536、研究課題名:寒天オリゴ糖の抗肥満効能の検定を通じた高付加価値食医薬素材の開発)の支援を受けて行われた研究成果によるものである。   This patent application is the next generation BioGreen 21 project (Fund specific number: PJ009536, Research project name: Examination of anti-obesity efficacy of agar oligosaccharide) This is based on research results conducted with the support of development.

そこで、本発明の主な目的は、寒天を基質とする酵素反応を通じて生産される有用な生理活性物質、その中でも特に、脂肪細胞の分化及び糖代謝を調節することで、肥満または糖尿に優れた効果を表す生理活性物質を提供することにある。   Therefore, the main object of the present invention is to improve the usefulness of obesity or diabetes by regulating the differentiation and sugar metabolism of adipocytes, among other useful physiologically active substances produced through enzymatic reactions using agar as a substrate. It is to provide a physiologically active substance exhibiting an effect.

本発明の一態様によると、本発明は、ストレプトミセス・セリカラー(Streptomyces coelicolor)DagAと寒天またはアガロース(agarose)の酵素反応で得られた反応産物を有効成分として含有する、肥満または糖尿病の予防及び治療用薬剤学的組成物を提供する。   According to one aspect of the present invention, the present invention relates to the prevention and prevention of obesity or diabetes comprising, as an active ingredient, a reaction product obtained by enzymatic reaction of Streptomyces coelicolor DagA and agar or agarose. A therapeutic pharmaceutical composition is provided.

本発明の他の態様によると、本発明は、前記反応産物を有効成分として含有する、肥満または糖尿病の予防及び改善用機能性食品を提供する。   According to another aspect of the present invention, the present invention provides a functional food for preventing and improving obesity or diabetes, comprising the reaction product as an active ingredient.

本発明のまた他の態様によると、本発明は、前記反応産物を有効成分として含有する、肥満または糖尿病の予防及び改善用飼料を提供する。
本発明において、前記酵素反応は、35〜45℃の温度及びpH6〜8でなることが好ましい。
According to still another aspect of the present invention, the present invention provides a feed for preventing and improving obesity or diabetes, comprising the reaction product as an active ingredient.
In the present invention, the enzyme reaction is preferably performed at a temperature of 35 to 45 ° C. and a pH of 6 to 8.

本発明において、前記酵素反応は、0.5〜5%(w/v)の寒天またはアガロース(agarose)溶液に20〜100unit/mlの濃度でDagAを添加してなることが好ましい。この時、1unitは、0.2%(w/v)でアガロースを溶かした50mMのリン酸溶液(pH7)と、40℃で5分間反応(反応液4ml)した後、反応液と同量のDNS試薬(dinitrosalicylic acid 6.5g、2M NaOH 325ml、glycerol 45ml/1l蒸留水)を入れて10分間沸かした後、冷やして吸光度(Å540nm)を測定した時、吸光度(Å540nm)0.001を生成する量を意味する。   In the present invention, the enzyme reaction is preferably performed by adding Dag A at a concentration of 20 to 100 units / ml to a 0.5 to 5% (w / v) agar or agarose solution. At this time, 1 unit was reacted with 50 mM phosphoric acid solution (pH 7) in which agarose was dissolved at 0.2% (w / v) for 5 minutes at 40 ° C. (4 ml of the reaction solution), and then the same amount as the reaction solution. Add DNS reagent (dinitrosalicylic acid 6.5g, 2M NaOH 325ml, glycerol 45ml / 1l distilled water) and boil for 10 minutes, then cool and measure absorbance (Å540nm) to produce absorbance (Å540nm) 0.001 Means quantity.

本発明において、前記反応産物は、反応産物の総重量を基準として45〜85重量%のネオアガロオリゴ糖(neoagarooligosaccharide)混合物を含有し、前記ネオアガロオリゴ糖混合物は、ネオアガロオリゴ糖混合物の総重量を基準として10重量%以下のネオアガロビオース(neoagarobiose)、50〜70重量%のネオアガロテトラオース(neoagarotetraose)及び30〜50重量%のネオアガロヘキサオース(neoagarohexaose)を含有することが好ましい。   In the present invention, the reaction product contains 45 to 85% by weight of a neo agarooligosaccharide mixture based on the total weight of the reaction product, and the neo agarooligosaccharide mixture is based on the total weight of the neo agarooligosaccharide mixture. It is preferable to contain 10% by weight or less of neoagarobiose, 50 to 70% by weight of neoagarotetraose and 30 to 50% by weight of neoagarohexaose.

本発明のまた他の態様によると、本発明は、ネオアガロオリゴ糖混合物を有効成分として含有し、前記ネオアガロオリゴ糖混合物は、ネオアガロビオース(neoagarobiose)、ネオアガロテトラオース(neoagarotetraose)またはネオアガロヘキサオース(neoagarohexaose)を含有することを特徴とする、肥満または糖尿病の予防及び治療用薬剤学的組成物を提供する。   According to still another aspect of the present invention, the present invention contains a neo-agaro-oligosaccharide mixture as an active ingredient, and the neo-agaro-oligosaccharide mixture comprises neo-agarobiose, neo-agarotetraose or neo-agarotetraose. Disclosed is a pharmaceutical composition for preventing and treating obesity or diabetes, characterized by containing neoagarohexaose.

本発明のまた他の態様によると、本発明は、ネオアガロオリゴ糖混合物を有効成分として含有し、前記ネオアガロオリゴ糖混合物は、ネオアガロビオース(neoagarobiose)、ネオアガロテトラオース(neoagarotetraose)またはネオアガロヘキサオース(neoagarohexaose)を含有することを特徴とする、肥満または糖尿病の予防及び改善用機能性食品を提供する。   According to still another aspect of the present invention, the present invention contains a neo-agaro-oligosaccharide mixture as an active ingredient, and the neo-agaro-oligosaccharide mixture comprises neo-agarobiose, neo-agarotetraose or neo-agarotetraose. Provided is a functional food for preventing and ameliorating obesity or diabetes, characterized by containing neoagarohexaose.

本発明のまた他の態様によると、本発明は、ネオアガロオリゴ糖混合物を有効成分として含有し、前記ネオアガロオリゴ糖混合物はネオアガロビオース(neoagarobiose)、ネオアガロテトラオース(neoagarotetraose)またはネオアガロヘキサオース(neoagarohexaose)を含有することを特徴とする、肥満または糖尿病の予防及び改善用飼料を提供する。   According to still another aspect of the present invention, the present invention contains a neo-agaro-oligosaccharide mixture as an active ingredient, and the neo-agaro-oligosaccharide mixture is neo-agarobiose, neo-agarotetraose or neo-agarotetraose. Provided is a feed for preventing and improving obesity or diabetes, characterized by containing gallohexaose.

本発明において、前記ネオアガロオリゴ糖混合物は、ネオアガロオリゴ糖混合物の総重量を基準として10重量%以下のネオアガロビオース(neoagarobiose)、50〜70重量%のネオアガロテトラオース(neoagarotetraose)及び30〜50重量%のネオアガロヘキサオース(neoagarohexaose)を含有することが好ましい。   In the present invention, the neo-agaro-oligosaccharide mixture is 10 wt% or less neooagarobiose, 50-70 wt-% neoagarotetraose and 30 wt% based on the total weight of the neoagaro-oligosaccharide mixture. Preferably it contains ˜50% by weight of neoagarohexaose.

本発明において、ストレプトミセス・セリカラーDagAは、配列番号2の31〜309番間のアミノ酸配列を有するタンパク質を意味し、ストレプトミセス・セリカラーから生産されるか異種菌株から生産されたタンパク質を含む。また、機能が全く異なるものに変更されるかアガラーゼ活性を失わない範囲内で、通常の遺伝子の組換方法、すなわち、精製を有利にするために標識アミノ酸を含ませるか、異種発現のためにアミノ酸配列を変更するなどの方法により組換されたタンパク質を含む。   In the present invention, Streptomyces sericolor DagA means a protein having an amino acid sequence between 31 and 309 of SEQ ID NO: 2, and includes proteins produced from Streptomyces sericolor or from heterologous strains. In addition, as long as the function is changed to a completely different one or the agarase activity is not lost, a conventional gene recombination method, that is, a labeled amino acid is included to favor purification, or for heterologous expression. It includes proteins that have been recombined by methods such as changing the amino acid sequence.

DagAは、本来、ストレプトミセス・セリカラーが生産するベータ−アガラーゼに遺伝子から翻訳される時、配列番号2の309個のアミノ酸を有し、分子量が約35kDaの状態で生産され、N−末端が30個のアミノ酸シグナルペプチドが切られて完成した細胞外形タンパク質(約32kDa)の状態で分泌する。   When originally translated from a gene into beta-agarase produced by Streptomyces sericolor, DagA has 309 amino acids of SEQ ID NO: 2, is produced with a molecular weight of about 35 kDa, and has an N-terminus of 30. One amino acid signal peptide is cut and secreted in the state of a finished cell outline protein (about 32 kDa).

ストレプトミセス・セリカラーのdagA遺伝子が該DagAを暗号化し、dagA遺伝子は、配列番号1の塩基配列で表示される。配列番号1は、ストレプトミセス・セリカラーA3(2)のゲノムに存在する遺伝子の塩基配列で、NCBI(米国国立生物情報センター)のデータベース上に「SCO3471」と命名されている。In vitro実験を通じて確認したところ、dagA遺伝子の転写は、RNA重合酵素の少なくとも異なる3種の完全酵素(holoenzyme)によって認知される4または5種の異なるプローモーター(promoter)によって調節される。dagA遺伝子の転写段階の分析を通じて、転写が暗号化配列の上部32、77、125及び220番目の塩基で開始されると表れた。   The DagA gene of Streptomyces sericolor encodes the DagA, and the dagA gene is represented by the nucleotide sequence of SEQ ID NO: 1. SEQ ID NO: 1 is the base sequence of the gene present in the genome of Streptomyces sericolor A3 (2), and is named “SCO3471” on the NCBI (National Center for Biological Information) database. As confirmed through in vitro experiments, transcription of the dagA gene is regulated by 4 or 5 different promoters that are recognized by at least three different holoenzymes of RNA polymerase. Through analysis of the transcription phase of the dagA gene, it appeared that transcription was initiated at the upper 32, 77, 125 and 220th bases of the coding sequence.

本来、DagAの生産菌株であるストレプトミセス・セリカラーの培養を通じて本発明のDagAを生産することができるが、生産効率を高めるために、異種菌株であるストレプトミセス・リビダンス(Streptomyces lividans)の発現システムを利用することが好ましい。前記dagA遺伝子を放線菌用ベクターに挿入して組換ベクターを製造した後、該組換ベクターでストレプトミセス・リビダンスを形質転換し、該形質転換体を培養する方法を使用する。この場合、組換ベクターは、dagA遺伝子が放線菌由来のプローモーターによって転写が調節されるように構成することが好ましい。   Originally, DagA of the present invention can be produced through the culture of Streptomyces sericolor, which is a DagA-producing strain. In order to increase production efficiency, an expression system for Streptomyces lividans, a heterologous strain, is used. It is preferable to use it. A method is used in which the dagA gene is inserted into a vector for actinomycetes to produce a recombinant vector, Streptomyces lividans is transformed with the recombinant vector, and the transformant is cultured. In this case, the recombinant vector is preferably constructed so that transcription of the dagA gene is regulated by a promoter derived from actinomycetes.

放線菌由来のプローモーターには、sgtRプローモーター(sgtRp)、ermEプローモーター(ermEp)、tipAプローモーター(tipAp)などの多様なプローモーターが存在するので、組換ベクターを製造する時にこれらを選択して使用することができる。これらのプローモーターによって転写が調節されるように構成された様々な種類のベクターが開発されており、該ベクターにSCO3471をクローニングすれば、放線菌由来のプローモーターによって転写が調節される構造の組換ベクターを製造することができる。   There are various promoters derived from actinomycetes such as sgtR promoter (sgtRp), ermE promoter (ermEp), tipA promoter (tipAp), and these are selected when producing recombinant vectors. Can be used. Various types of vectors constructed so that transcription is regulated by these promoters have been developed. If SCO3471 is cloned into the vector, a set of structures in which transcription is regulated by actinomycete-derived promoters. Replacement vectors can be produced.

形質転換体は、宿主菌株を組換ベクターで形質転換して製造することができるが、宿主菌株によって形質転換のための方法が多様に存在するので、適切な方法を選択して使用する。例えば、ストレプトミセス・リビダンスを宿主菌株として使用する場合、PEG(polyethylene glycol)を媒介とした形質転換方法を使用する。
形質転換体などのようなDagA生産菌株を液体培地で培養すればDagAを生産することができ、培養液を得て限外ろ過法のような通常のタンパク質精製方法を利用すると、高純度のDagAを生産することができる。この時、液体培地に寒天(agar)またはアガロース(agarose)を含ませれば、より効率的にDagAを生産することができる。
A transformant can be produced by transforming a host strain with a recombinant vector. However, since there are various methods for transformation depending on the host strain, an appropriate method is selected and used. For example, when Streptomyces lividans is used as a host strain, a transformation method mediated by PEG (polyethylene glycol) is used.
If a DagA-producing strain such as a transformant is cultured in a liquid medium, DagA can be produced. If a normal protein purification method such as ultrafiltration is used after obtaining a culture solution, high-purity DagA Can be produced. At this time, if agar or agarose is contained in the liquid medium, DagA can be produced more efficiently.

本発明によると、寒天またはアガロースとDagAの酵素反応を通じてネオアガロヘキサオース、ネオアガロテトラオース、ネオアガロビオースが生成されることが表れた。従って、本発明において、酵素反応産物は、これらのそれぞれになってもよく、これらが混合した状態になってもよい。しかし、本発明で確認されたこれらの三つの反応産物の他にも他の反応産物が生成されることができるので、必ずしもこれらの三つの反応産物のみに限定されるものではない。   According to the present invention, it was shown that neoagarohexaose, neoagarotetraose, and neoagarobiose are produced through an enzyme reaction between agar or agarose and DagA. Therefore, in the present invention, the enzyme reaction product may be either of these or a mixture of these. However, in addition to these three reaction products identified in the present invention, other reaction products can be generated, and therefore, the present invention is not necessarily limited to only these three reaction products.

本発明によると、寒天またはアガロースとDagAの酵素反応以後、限外ろ過を通じて得られた反応産物(ネオアガロヘキサオース、ネオアガロテトラオース及びネオアガロビオースが全て含まれた形態であり、これら以外の反応産物が含まれてもよい)だけでなく、それぞれのネオアガロヘキサオース、ネオアガロテトラオース、ネオアガロビオースも、肥満及び糖尿の予防及び治療効果に優れることが確認された。   According to the present invention, the reaction product obtained through ultrafiltration after the enzymatic reaction of agar or agarose and DagA (neoagarohexaose, neoagarotetraose and neoagarobiose are all included) It is confirmed that each of these products is also excellent in preventing and treating obesity and diabetes. It was.

本発明の組成物は、医薬品及び食品などの用途で使用することができる。
食品医薬品安全省(MFDS)の通常の薬剤学的製剤への剤形化基準、または健康補助食品の剤形基準に基づいて剤形化することができ、通常の方法により、投与方法、投与形態及び治療目的によって有効成分を薬剤学的に許容可能な担体と共に混合して希釈するか、容器形態の担体内に封入させることができる。
The composition of this invention can be used for uses, such as a pharmaceutical and a foodstuff.
The dosage form can be formulated based on the standard formulation of the pharmacological formulation of the Ministry of Food and Drug Safety (MFDS) or the standard formula of the dietary supplement. Depending on the therapeutic purpose, the active ingredient can be mixed and diluted with a pharmaceutically acceptable carrier or encapsulated in a carrier in the form of a container.

前記担体が希釈剤として使用される場合は、塩水、緩衝剤、水、リンゲル液及びエタノールからなる群より選択された1種以上の担体を使用した経口投与と、非経口投与用として、粉末、顆粒、注射液、シロップ、溶液剤、錠剤などのような剤形で製造することができる。この時、非経口投与は、経口以外に静脈、腹膜、筋肉、動脈、経皮、吸入などを通じた有効成分の投与を意味する。   When the carrier is used as a diluent, powders, granules for oral administration using one or more carriers selected from the group consisting of saline, buffer, water, Ringer's solution and ethanol, and parenteral administration It can be produced in dosage forms such as injections, syrups, solutions, tablets and the like. At this time, parenteral administration means administration of an active ingredient through vein, peritoneum, muscle, artery, transdermal route, inhalation, etc. in addition to oral administration.

前記剤形に、充填剤、抗凝集剤、潤滑剤、湿潤剤、香料、乳化剤、防腐剤などをさらに含んで哺乳動物に投与された後、活性成分の迅速、持続または遅延された放出を提供するように剤形化することができる。そして、本発明の投与量は、患者の状態、投与経路及び投与形態によって調節され、限定されず、症状によって本発明の分野で通常の知識を持った者なら自明に多様な範囲内で使用することができるが、通常、本発明では、実験的な有効量で体重1kg当たり10〜200mgを一日に連続的または間欠的に投与可能であると判断される。   The dosage form further includes fillers, anti-agglomerating agents, lubricants, wetting agents, fragrances, emulsifiers, preservatives, etc., and administered to a mammal to provide rapid, sustained or delayed release of the active ingredient. It can be formulated as provided. The dosage of the present invention is adjusted according to the patient's condition, administration route and dosage form, and is not limited. It is obvious that a person having ordinary knowledge in the field of the present invention can use it within various ranges according to symptoms. In general, however, in the present invention, it is determined that an experimentally effective amount of 10 to 200 mg / kg body weight can be administered continuously or intermittently per day.

前記有効量を基準として、本発明は、寒天またはアガロースとDagAの酵素反応産物そのもの、または食品学的に許容された担体を混合した組成物を含有する食品を提供する。食肉加工品、魚肉製品、豆腐、寒天、おかゆ、ラーメンやうどんなどの麺類、醤油、味噌、トウガラシ味噌、混合味噌などの調味食品、ソース、お菓子、発酵乳やチーズなどの乳加工品、キムチや漬物などの漬物食品、果実、野菜、豆乳、発酵飲み物などの飲み物食品に含んで使用することができる。各食品の調理方法や生産方法は、本発明の分野で通常の知識を持った者なら自明な事項であるので、これに関する具体的な記載は省略する。また、食品学的に許容された担体は、上述した薬剤学的に許容された担体も使用することができる。   Based on the effective amount, the present invention provides a food product containing agar or agarose and DagA enzyme reaction product itself, or a composition in which a pharmaceutically acceptable carrier is mixed. Processed meat products, fish products, tofu, agar, porridge, ramen and udon noodles, soy sauce, miso, chili miso, mixed miso and other seasoned foods, sauces, sweets, processed milk products such as fermented milk and cheese, kimchi It can be used by including it in pickled foods such as fruit and vegetables, drink foods such as fruits, vegetables, soy milk and fermented drinks. The cooking method and the production method for each food are obvious to those who have ordinary knowledge in the field of the present invention, and a detailed description thereof will be omitted. Moreover, the pharmacologically acceptable carrier described above can also be used as the pharmaceutically acceptable carrier.

前記有効量を基準として、本発明は、寒天またはアガロースとDagAの酵素反応産物そのもの、または飼料として許容された担体を混合した組成物を含有する飼料を提供する。給餌対象の基本食餌素材に本発明の組成物を含んで使用することができる。特に、運動不足で肥満の恐れがある犬、猫などのペットや競走馬の飼料で使用すれば効果的である。   On the basis of the effective amount, the present invention provides a feed containing a composition in which agar or agarose and DagA enzyme reaction product itself, or a feed acceptable carrier is mixed. The basic dietary material to be fed can be used by including the composition of the present invention. In particular, it is effective when used in pets such as dogs and cats and racehorses that may be obese due to lack of exercise.

本発明によると、ストレプトミセス・セリカラーDagAと寒天またはアガロースの酵素反応産物が優れた抗肥満及び抗糖尿効果を表すため、本発明の組成物を投与するか摂取すれば、効果的に肥満及び糖尿を予防、治療及び改善することができる。   According to the present invention, since the enzyme reaction product of Streptomyces sericolor DagA and agar or agarose exhibits an excellent anti-obesity and anti-diabetic effect, if the composition of the present invention is administered or ingested, the obesity and diabetes effectively Can be prevented, treated and improved.

pUWL201pwベクターの図面である。1 is a drawing of the pUWL201pw vector. 本発明の一実施例に係る組換ベクターの図である。It is a figure of the recombinant vector which concerns on one Example of this invention. 本発明の酵素反応産物をHPLC−ELSD分析した結果を示したグラフである。It is the graph which showed the result of having analyzed the enzyme reaction product of this invention by HPLC-ELSD. 本発明の酵素反応産物(以下、「NAO」という)またはこれを精製して得られたネオアガロヘキサオース(以下、「DP6」という)、ネオアガロテトラオース(以下、「DP4」という)、ネオアガロビオース(以下、「DP2」という)のアルファ−アミラーゼ阻害活性結果を示したグラフである。Enzyme reaction product of the present invention (hereinafter referred to as “NAO”), or neo-agarohexaose (hereinafter referred to as “DP6”) or neo-agarotetraose (hereinafter referred to as “DP4”) obtained by purifying the enzyme reaction product. 1 is a graph showing the results of alpha-amylase inhibitory activity of neoagarobiose (hereinafter referred to as “DP2”). NAOまたはDP6、DP4、DP2のアルファ−グルコシダーゼ阻害活性結果を示したグラフである。It is the graph which showed the alpha-glucosidase inhibitory activity result of NAO or DP6, DP4, DP2. 正常食餌(以下、「ND」という)、高脂肪食餌(以下、「HFD」という)、0.25%(w/w)の本発明の酵素反応産物が含まれた高脂肪食餌(以下、「HFD−NAO0.25%」という)または0.5%(w/w)の本発明の酵素反応産物が含まれた高脂肪食餌(以下、「HFD−NAO0.5%」という)を摂取させた実験動物の日付別の体重増加量を示したグラフである。Normal diet (hereinafter referred to as “ND”), high fat diet (hereinafter referred to as “HFD”), and high fat diet (hereinafter referred to as “NFD”) containing 0.25% (w / w) of the enzyme reaction product of the present invention. High fat diet (hereinafter referred to as “HFD-NAO 0.5%”) containing 0.5% (w / w) of the enzyme reaction product of the present invention (hereinafter referred to as “HFD-NAO 0.25%”). It is the graph which showed the weight gain according to the date of an experimental animal. ND、HFD、HFD−NAO0.25%またはHFD−NAO0.5%を摂取させた実験動物の肝組織をH&E染色して顕微鏡で撮影した写真である。AはND、BはHFD、CはHFD−NAO0.25%、DはHFD−NAO0.5%実験群の組織を示す。It is the photograph which image | photographed the microscope of the liver tissue of the experimental animal which ingested ND, HFD, HFD-NAO0.25%, or HFD-NAO0.5% by H & E dyeing | staining. A shows ND, B shows HFD, C shows HFD-NAO 0.25%, and D shows HFD-NAO 0.5%. ND、HFD、HFD−NAO0.25%またはHFD−NAO0.5%を摂取させた実験動物の肝脂肪変性程度を示したグラフである。It is the graph which showed the hepatic steatosis degree of the experimental animal which ingested ND, HFD, HFD-NAO0.25%, or HFD-NAO0.5%. ND、HFD、HFD−NAO0.25%またはHFD−NAO0.5%を摂取させた実験動物の副睾丸脂肪組織細胞の大きさを示したグラフである。It is the graph which showed the magnitude | size of the testicular adipose tissue cell of the experimental animal which ingested ND, HFD, HFD-NAO0.25%, or HFD-NAO0.5%. ND、HFD、HFD−NAO0.25%またはHFD−NAO0.5%を摂取させた実験動物の副睾丸脂肪組織をH&E染色して顕微鏡で撮影した写真(A〜D)と、経口当たり負荷試験結果を示したグラフ(E)である。AはND、BはHFD、CはHFD−NAO0.25%、DはHFD−NAO0.5%実験群の組織を示す。Photographs (AD) of the testicular adipose tissue of laboratory animals fed with ND, HFD, HFD-NAO 0.25% or HFD-NAO 0.5%, taken with a microscope after H & E staining, and the peroral load test results It is the graph (E) which showed. A shows ND, B shows HFD, C shows HFD-NAO 0.25%, and D shows HFD-NAO 0.5%.

以下、実施例を通じて本発明をさらに詳しく説明する。これらの実施例は、単に本発明を例示するためのものであるので、本発明の範囲がこれらの実施例によって制限されると解釈されない。   Hereinafter, the present invention will be described in more detail through examples. These examples are merely to illustrate the present invention, and the scope of the present invention should not be construed as being limited by these examples.

実施例1.DagAの生産
ストレプトミセス・セリカラーA3(2)の染色体DNAを鋳型とし、以下のAsm−F及びAsm−Rプライマーを使用したPCRを通じてdagA遺伝子断片(DagAのシグナルペプチド及び完成型ペプチドが暗号化された947bp断片、配列番号1にプライマーの一部配列が含まれた状態)を増幅し、断片の制限酵素部位(NdeI/BamHI)を利用してpUWL201pwベクター(図1参照)にdagA遺伝子をクローニングして、dagA遺伝子の転写がermEプローモーターによって調節されるように組換ベクター(図2参照)を製造した。
Example 1. Production of DagA Using the chromosomal DNA of Streptomyces sericolor A3 (2) as a template, and using the following Asm-F and Asm-R primers, the dagA gene fragment (DagA signal peptide and completed peptide was encoded) A 947 bp fragment, in which the partial sequence of the primer is included in SEQ ID NO: 1), and the tagA gene was cloned into the pUWL201pw vector (see FIG. 1) using the restriction enzyme sites (NdeI / BamHI) of the fragment A recombinant vector (see FIG. 2) was prepared so that the transcription of the dagA gene was regulated by the ermE promoter.

Asm−Fプライマー:5’−GACATATGGTGGTCAACCGACGTGATC−3’(NdeI)(配列番号3)
Asm−Rプライマー:5’−GGTGGATCCCTACACGGCCTGATACG−3’(BamHI)(配列番号4)
Asm-F primer: 5'-GACATATGGTGCATCGACGGTGATC-3 '(NdeI) (SEQ ID NO: 3)
Asm-R primer: 5'-GGTGGATCCCCTACACGGCCTGATACG-3 '(BamHI) (SEQ ID NO: 4)

該組換ベクターでストレプトミセス・リビダンス(Streptomyces lividans)TK24を形質転換して得られた形質転換菌株をDagAの生産のために使用した。   A transformed strain obtained by transforming Streptomyces lividans TK24 with the recombinant vector was used for the production of DagA.

この菌株を0.3%(w/v)の寒天(agar)が含まれたR2YE液体培地に接種して、28℃で48〜72時間、120rpmで振とう培養した。全培養過程を経た後、本培養を実施し、各培養時間は2.5日にした。   This strain was inoculated into R2YE liquid medium containing 0.3% (w / v) agar and cultured at 28 ° C. for 48 to 72 hours with shaking at 120 rpm. After the entire culture process, main culture was carried out, and each culture time was 2.5 days.

本培養を通じて得られた培養液を遠心分離して菌体を取り除いた後、上層液を限外ろ過膜(5kDa cut-off membrane)でろ過して、ろ過膜を通過できなかったタンパク質を分離及び精製した。得られた濃縮液(酵素液)は、凍結乾燥して保管しながら使用した。   After centrifuging the culture solution obtained through the main culture to remove the cells, the upper layer solution is filtered through an ultrafiltration membrane (5 kDa cut-off membrane) to separate and isolate the protein that could not pass through the filtration membrane. Purified. The obtained concentrated solution (enzyme solution) was lyophilized and stored for use.

実施例2.DagAのアガラーゼの活性測定
還元当量検定方法(DNS method)で前記実施例1のDagAに対するアガラーゼ活性を測定した。実施例1で得られた酵素液100μlに0.2%(w/v)でアガロースを溶かした50mMのリン酸溶液(pH7)3.9mlを交ぜて40℃で5分間反応させた後、DNS試薬(dinitrosalicylic acid:6.5g、2M NaOH:325ml、glycerol:45ml/1l蒸留水)4mlを入れて10分間沸かした後、冷やして吸光度(Å540nm)を測定した。酵素1Uは、5分反応後に吸光度(Å540nm)0.001を生成する活性と定義した。
Example 2 Measurement of DagA agarase activity The agarase activity against DagA of Example 1 was measured by the reduction equivalent assay method (DNS method). 100 μl of the enzyme solution obtained in Example 1 was mixed with 3.9 ml of a 50 mM phosphoric acid solution (pH 7) in which agarose was dissolved at 0.2% (w / v) and reacted at 40 ° C. for 5 minutes. 4 ml of a reagent (dinitrosalicylic acid: 6.5 g, 2M NaOH: 325 ml, glycerol: 45 ml / 1 l distilled water) was added and boiled for 10 minutes, and then cooled and the absorbance (Å540 nm) was measured. Enzyme 1U was defined as the activity that produces an absorbance (Å540 nm) 0.001 after a 5-minute reaction.

実施例3.DagAの酵素反応産物
3−1.DagAを利用した寒天またはアガロースの分解
0.5〜5%(w/v)の寒天またはアガロースを溶かした20mMのTris−HCl溶液1lを製造して100℃で約10分間加熱して充分に溶かした後、40℃に温度を落とし、DagA酵素2,000〜50,000Uを処理して24時間酵素反応を実施した。
Example 3 Enzyme reaction product of DagA
3-1. Degradation of agar or agarose using Dag A 1 l of a 20 mM Tris-HCl solution in which 0.5 to 5% (w / v) agar or agarose is dissolved is prepared and heated at 100 ° C. for about 10 minutes to dissolve thoroughly. After that, the temperature was lowered to 40 ° C., and the DagA enzyme 2,000 to 50,000 U was treated to carry out the enzyme reaction for 24 hours.

3−2.DagA酵素反応産物の前処理
酵素反応産物で未分解されたアガロースを取り除くために、遠心分離して上澄液を回収した後、TLC(thin layer chromatography)を利用して酵素反応生成物を確認した。回収した上澄液を5KDa cut-off membraneで限外ろ過方法を通じて部分精製した。
3-2. Pretreatment of DagA enzyme reaction product After removing the undegraded agarose by the enzyme reaction product, the supernatant was collected by centrifugation, and the enzyme reaction product was confirmed using TLC (thin layer chromatography). . The collected supernatant was partially purified through an ultrafiltration method using a 5 KDa cut-off membrane.

実施例4.HPLC−ELSD分析を通じたDagA酵素反応産物の組成確認
HPLC−ELSD分析を通じて、前記実施例4で得られた酵素反応産物の組成を確認した。NH2P-50 4E multimode column(250×4.6mm)を使用し、移動相としてアセトニトリル(acetonitrile)と水の混合溶液(acetonitrile:water=65:35)を使用した。
Example 4 Composition confirmation of DagA enzyme reaction product through HPLC-ELSD analysis The composition of the enzyme reaction product obtained in Example 4 was confirmed through HPLC-ELSD analysis. NH 2 P-50 4E multimode column (250 × 4.6 mm) was used, and a mixed solution of acetonitrile and water (acetonitrile: water = 65: 35) was used as a mobile phase.

その結果、図3のように、反応産物の中でネオアガロビオース(neoagarobiose、以下「DP2」という)、ネオアガロテトラオース(neoagarotetraose、以下「DP4」という)及びネオアガロヘキサオース(neoagarohexaose、以下「DP6」という)の合からなるネオアガロオリゴ糖(neoagarooligosaccharides)の総量が65±20%(重量)を占めることが表れ、該ネオアガロオリゴ糖の総量を基準としてDP2、DP4、DP6がそれぞれ0〜10%、50〜70%、30〜50%(重量)を占めることが表れた。   As a result, as shown in FIG. 3, among the reaction products, neoagarobiose (hereinafter referred to as “DP2”), neoagarotetraose (hereinafter referred to as “DP4”), and neoagarohexaose (neoagarohexaose). , Hereinafter referred to as “DP6”), the total amount of neoagarooligosaccharides occupies 65 ± 20% (weight), and DP2, DP4, and DP6 are each 0 based on the total amount of neoagagarooligosaccharide. 10 to 50%, 50 to 70%, and 30 to 50% (weight).

実施例5.ゲルろ過クロマトグラフィーを利用したDagA酵素反応産物の精製
BioGel P-2 gel(Biorad、Cat.No.:150-4115)を利用してゲルろ過クロマトグラフィー(gel permeation chromatography、GPC)を通じてDP6、DP4、DP2を純粋に精製した産物は、TLCとHPLCを通じて純度を確認した。
Example 5 FIG. Purification of DagA enzyme reaction products using gel filtration chromatography
A product obtained by purely purifying DP6, DP4 and DP2 through gel permeation chromatography (GPC) using BioGel P-2 gel (Biorad, Cat. No .: 150-4115) is obtained through TLC and HPLC. The purity was confirmed.

実施例6.DagA酵素反応産物の抗肥満及び抗糖尿効能の確認試験
6−1.アルファ−アミラーゼ(α-amylase)の阻害活性
前記実施例5で精製を通じて得られたDP2、DP4、DP6及び実施例3で得られた酵素反応産物(以下「NAO」という)を試料として使用した。
第2型糖尿病治療剤として広く知られているアカルボース(acarbose)は、アルファ−アミラーゼ及びアルファ−グルコシダーゼの活性を抑制して糖吸収を遅延させる機作で抗糖尿効果を表すと知られている。従って、ネオアガロオリゴ糖の糖尿関連性を確認するために、アカルボースと類似した酵素活性抑制機能があるかを調査した。
アルファ−アミラーゼ溶液と各試料を交ぜ、基質としてでん粉青色試薬(starch azure solution)を入れて10分間反応させた後、分解されて表れる青色の濃度を吸光度(Å595nm)で測定して酵素活性を分析した。
その結果、図4のように、各試料がアルファ−アミラーゼ阻害活性を有することが表れたが、アカルボース(陽性対照群)に比べては阻害活性が低く表れた。
Example 6 Confirmation test of anti-obesity and anti-diabetic efficacy of DagA enzyme reaction product
6-1. Inhibitory Activity of Alpha-Amylase (α-Amylase) DP2, DP4, DP6 obtained through purification in Example 5 and the enzyme reaction product obtained in Example 3 (hereinafter referred to as “NAO”) were used as samples.
Acarbose, which is widely known as a therapeutic agent for type 2 diabetes, is known to exhibit an antidiabetic effect by a mechanism that delays sugar absorption by suppressing the activities of alpha-amylase and alpha-glucosidase. Therefore, in order to confirm the diabetic relevance of neoagaro-oligosaccharide, it was investigated whether there was an enzyme activity suppression function similar to acarbose.
After mixing each sample with alpha-amylase solution and adding starch azure solution as a substrate and reacting for 10 minutes, the blue concentration that appears after degradation is measured by absorbance (Å595nm) to analyze enzyme activity did.
As a result, as shown in FIG. 4, each sample was shown to have an alpha-amylase inhibitory activity, but the inhibitory activity appeared to be lower than that of acarbose (positive control group).

6−2.アルファ−グルコシダーゼ(α-glucosidase)の阻害活性
DP2、DP4、DP6及びNAOを試料として使用した。
アルファ−グルコシダーゼ溶液と各試料を交ぜ、基質としてp−NPG(p-nitrophenyl-α-D-glucopyranoside)溶液を入れて10分間反応させた後、分解して生成されたp−ニトロフェノール(p-nitrophenol)の濃度を吸光度(Å405nm)で測定して酵素活性を分析した。
その結果、図5のように、第2型糖尿病治療剤であるアカルボース(陽性対照群)ほど高い阻害活性ではないが、DP2、DP4、DP6及びNAOの全てに阻害活性があることを確認した。
6-2. Alpha-glucosidase inhibitory activity DP2, DP4, DP6 and NAO were used as samples.
Each sample is mixed with an alpha-glucosidase solution, p-NPG (p-nitrophenyl-α-D-glucopyranoside) solution is added as a substrate, reacted for 10 minutes, and then decomposed to produce p-nitrophenol (p- The enzyme activity was analyzed by measuring the concentration of nitrophenol by absorbance (酵素 405 nm).
As a result, as shown in FIG. 5, it was confirmed that all of DP2, DP4, DP6 and NAO had inhibitory activity, although it was not as high as that of acarbose (positive control group) which is a therapeutic agent for type 2 diabetes.

6−3.肥満誘発マウスにおける抗肥満及び抗糖尿効果の確認
実験動物(マウス)に高脂肪飼料を給与すると、過多な内臓脂肪の増加、高血糖、異常脂質症、高インシュリン血症及び肝組織に脂肪変性が発生して、肥満患者に表れる特徴をよく反映する肥満動物モデルを樹立することができる。
これにより、順化期間が終わった4週令のC57bl/6マウスを、体重により乱塊法によって正常群(Normal diet、ND)、高脂肪対照群(High fat diet、HFD)、高脂肪−0.25%NAO混合群(HFD−NAO 0.25%)、高脂肪−0.5%NAO混合群(HFD−NAO 0.5%)の4つの群に分離した後、それぞれに対する試料を高脂肪食餌と共に9週間供給し、実験動物の血液生化学的検査、組織学的検査、ブドウ糖耐性検査を通じて、NAOの抗肥満及び抗糖尿効果を確認した。
6-3. Confirmation of anti-obesity and anti-diabetic effects in obesity-induced mice When high-fat diet is fed to experimental animals (mice), excessive visceral fat increases, hyperglycemia, dyslipidemia, hyperinsulinemia and steatosis in liver tissue An obese animal model that develops and well reflects the characteristics that appear in obese patients can be established.
As a result, C57bl / 6 mice of 4 weeks old after the acclimatization period were divided into normal group (Normal diet, ND), high fat control group (High fat diet, HFD), high fat-0 by the randomized mass method according to body weight. After separation into 4 groups of 25% NAO mixed group (HFD-NAO 0.25%) and high fat-0.5% NAO mixed group (HFD-NAO 0.5%), samples for each were divided into high fat It was supplied with food for 9 weeks, and the anti-obesity and anti-diabetic effects of NAO were confirmed through blood biochemical examination, histological examination, and glucose tolerance examination of experimental animals.

9週間実験食餌を給与した実験動物の体重増加量と食餌摂取量は、図6及び表1の通りである。体重は、高脂肪食餌の供給1週間以後から統計的有意差が表れ、実験終了時点である9週間目は、対照群である高脂肪食餌群(HFD)が正常食餌群(ND)に比べて29.5%増加して、高脂肪食餌によるマウスの肥満誘導を観察することができた。NAOを0.5%で添加した食餌群の体重は、高脂肪食餌群に比べて有意的に低く、体重増加量においても正常群より少ない体重増加量を示した。一方、NAOを0.25%で添加した食餌群では、高脂肪食餌群と有意的な差を示さなかった。   FIG. The body weight shows a statistically significant difference from one week after the high-fat diet is fed, and in the ninth week, which is the end of the experiment, the high-fat diet group (HFD) as the control group is compared with the normal diet group (ND). With an increase of 29.5%, it was possible to observe the induction of obesity in mice with a high fat diet. The body weight of the diet group to which NAO was added at 0.5% was significantly lower than that of the high fat diet group, and the body weight gain was smaller than that of the normal group. On the other hand, the diet group to which NAO was added at 0.25% did not show a significant difference from the high fat diet group.

9週間実験食餌を給与した実験動物から肝組織及び副睾丸脂肪組織を採取して顕微鏡で観察し、肝組織のH&E染色(staining)結果は、図7に示した。
肝組織の場合、Kleiner DE et.al.(2005)の肝脂肪変性(steatosis)程度の比較方法によって脂肪変性程度を区分し、その結果は、図8に示した。高脂肪食餌摂取による肝組織内の脂肪蓄積が正常食餌群に比べて格段に高いことが表れ、小水泡性脂肪変性(micro-vescularsteotosis)と大水泡性脂肪変性(macro-vescularsteotosis)形態を表した(グレード1.75±0.41)。これに対し、NAO添加食餌群では、0.25%群(グレード0.75±0.16)と0.5%(グレード0.37±0.18)群の両方で脂肪空胞の数と大きさが正常水準に減少したことが表れ、NAOによって肝組織内の脂肪沈着が抑制されることを確認した。
Liver tissue and accessory testicular adipose tissue were collected from experimental animals fed the experimental diet for 9 weeks and observed with a microscope. The results of H & E staining (staining) of the liver tissue are shown in FIG.
In the case of liver tissue, the degree of steatosis was classified according to the method for comparing the degree of steatosis in Kleiner DE et.al. (2005). The results are shown in FIG. Fat accumulation in the liver tissue due to high-fat diet intake was significantly higher than in the normal diet group, indicating a form of micro-vescular steatosis and macro-vescular steotosis (Grade 1.75 ± 0.41). In contrast, in the NAO-added diet group, the number of fat vacuoles in both the 0.25% group (grade 0.75 ± 0.16) and the 0.5% (grade 0.37 ± 0.18) group It was confirmed that the size was reduced to a normal level, and it was confirmed that the deposition of fat in the liver tissue was suppressed by NAO.

副睾丸周りの脂肪組織のH&E染色の結果、図9及び図10のように、HFD(10.74±1.44)がND(4.65±0.54)に比べて副睾丸脂肪組織で脂肪細胞の大きさが格段に増加したが、NAOを添加した食餌群では、0.25%群(6.74±0.38)と0.5%(6.95±0.82)群の両方で高脂肪食餌群に比べて脂肪細胞の大きさが減少した。従って、NAOは、肝及び脂肪組織内の脂肪蓄積を抑制させると考えられる。   As a result of H & E staining of the adipose tissue around the accessory testicle, as shown in FIGS. 9 and 10, HFD (10.74 ± 1.44) is more abundant in the testicular adipose tissue than ND (4.65 ± 0.54). The size of adipocytes increased significantly, but in the diet group added with NAO, the 0.25% group (6.74 ± 0.38) and 0.5% (6.95 ± 0.82) groups In both cases, the size of adipocytes was reduced compared to the high fat diet group. Thus, NAO is thought to suppress fat accumulation in the liver and adipose tissue.

高脂肪食餌及びNAOが脂質代謝に及ぶ影響を確認するために、血清内の脂質含量を調査して表2に示した。血清総コレステロール含量は、ND群の場合140.1±5.2mg/dLであり、これに比べてHFD群では182.0±8.2mg/dLに増加した。一方、NAOを添加した食餌群は、0.25%群で173.0±4.3mg/dLに減少する傾向を表し、0.5%群では、159.6±5.6mg/dLに有意に減少した。血清中性脂肪の場合、ND群の場合48.7±3.2mg/dLであることに対し、HFD群では64.8±4.0mg/dLに増加した。NAOを添加した食餌群は、0.25%群で56.7±4.4mg/dLに減少する傾向を表し、0.5%群では47.3±2.9mg/dLに有意に減少した。また、血中FFA(Free fatty acid)も高脂肪食餌群では正常より高い数値を表したが、NAOを添加した食餌群では、正常と類似した水準の数値を表した。血中FFA濃度とTGの濃度は、肝組織の脂肪沈着とインシュリン抵抗性と密接な関係があると知られている。従って、NAOが血中FFAとTGを調節することで、第2型糖尿の主な原因の一つであるインシュリン抵抗性を改善する効果があると判断される。   In order to confirm the effect of high fat diet and NAO on lipid metabolism, the lipid content in serum was investigated and shown in Table 2. The serum total cholesterol content was 140.1 ± 5.2 mg / dL in the ND group, and increased to 182.0 ± 8.2 mg / dL in the HFD group. On the other hand, the diet group to which NAO was added showed a tendency to decrease to 173.0 ± 4.3 mg / dL in the 0.25% group, and significant in 159.6 ± 5.6 mg / dL in the 0.5% group. Decreased. In the case of serum neutral fat, the value was 48.7 ± 3.2 mg / dL in the ND group, whereas it increased to 64.8 ± 4.0 mg / dL in the HFD group. The diet group to which NAO was added showed a tendency to decrease to 56.7 ± 4.4 mg / dL in the 0.25% group, and significantly decreased to 47.3 ± 2.9 mg / dL in the 0.5% group. . Further, blood FFA (Free fatty acid) also showed a higher value than normal in the high fat diet group, but in the diet group added with NAO, a value similar to normal was shown. It is known that the blood FFA concentration and the TG concentration are closely related to fat deposition and insulin resistance in liver tissue. Therefore, it is judged that NAO has an effect of improving insulin resistance, which is one of the main causes of type 2 diabetes, by regulating blood FFA and TG.

NAOの糖尿改善効果及びインシュリン抵抗性の改善効果を確認するために、Oral GTTとインシュリン抵抗性と関連した生化学的分析を行い、結果を図10(E)と表3に示した。NAOを9週間摂取させた後、ブドウ糖(glucose)を経口投与し、血糖を測定した結果、高脂肪食餌群は、血糖投与後の30分と60分時点で正常群より高い血糖数値を表し、インシュリン抵抗性が誘発されたことを確認することができた。これに対し、NAOを添加した食餌群では、30分と60分時点で高脂肪食餌群より有意に低い血糖数値を表し、AUC(Area under curve)を計算して比べた結果でも、NAOを添加した食餌群で有意に低く表れた。これは、高脂肪食餌を通じて誘発されたインシュリン抵抗性がNAOを共に摂取することで正常と類似した水準に回復することを示唆している。また、表3に示すように、血中インシュリンと血糖測定の結果、NAOを添加した食餌群でHFDより低い数値を表し、血中アディポネクチンは、NAOを添加した食餌群でHFDより高い数値を表した。アディポネクチン数値は、インシュリン抵抗性とも密接な関連があると知られているが、インシュリン抵抗性のある人のアディポネクチン数値が落ち、これらのインシュリン抵抗性が改善すればアディポネクチン数値も上がる。表3に示すように、HFD群のアディポネクチン濃度は、正常群と大きな差を示さなかったが、HFD群で肥満によるインシュリン抵抗性及び糖尿が充分に進展されていないことが分かる。しかし、NAOを添加した食餌群でアディポネクチンの数値が正常群に比べて増加することが表れ、NAOがインシュリン抵抗性の改善に重要な機能をすることができることを示唆した。本実施例では、HFDから糖尿病までは進展されなかったが、糖尿関連の指標が悪くなる傾向を示し、これは、NAOを摂取することで相当部分が正常化されることを確認することができた。また、OGTT検定結果では、NAOを摂取した食餌群で確実な糖尿改善効果を示し、抗糖尿機能性素材としてNAOの可能性を立証した。   In order to confirm the effect of NAO in improving diabetes and improving insulin resistance, biochemical analysis related to oral GTT and insulin resistance was performed, and the results are shown in FIG. After ingesting NAO for 9 weeks, glucose was orally administered and blood glucose was measured. As a result, the high-fat diet group showed higher blood glucose levels than the normal group at 30 and 60 minutes after blood glucose administration, It was confirmed that insulin resistance was induced. On the other hand, in the diet group added with NAO, the blood glucose value was significantly lower than that in the high fat diet group at 30 and 60 minutes, and NAO was added even in the result of calculating and comparing AUC (Area under curve). Showed significantly lower in the diet group. This suggests that insulin resistance induced through a high-fat diet is restored to a level similar to normal by taking NAO together. Moreover, as shown in Table 3, as a result of blood insulin and blood glucose measurement, a numerical value lower than HFD was shown in the diet group to which NAO was added, and blood adiponectin was higher than HFD in the diet group to which NAO was added. did. Adiponectin numbers are known to be closely related to insulin resistance, but the adiponectin numbers of people with insulin resistance drop, and if these insulin resistances improve, the adiponectin number also rises. As shown in Table 3, the adiponectin concentration in the HFD group did not show a large difference from the normal group, but it was found that insulin resistance and diabetes due to obesity were not sufficiently developed in the HFD group. However, the value of adiponectin increased in the dietary group to which NAO was added compared to the normal group, suggesting that NAO can play an important function in improving insulin resistance. In this example, the progress from HFD to diabetes was not made, but the diabetes-related index tended to deteriorate, and it can be confirmed that a considerable part is normalized by taking NAO. It was. In addition, the OGTT test results showed a certain diabetes improvement effect in the diet group ingested NAO, and proved the possibility of NAO as an anti-diabetic functional material.

本発明によると、ストレプトミセス・セリカラーDagAと寒天またはアガロースの酵素反応産物が優れた抗肥満及び抗糖尿効果を表すため、本発明の組成物を投与するか摂取すれば、効果的に肥満及び糖尿を予防、治療及び改善することができる。これにより、本発明の組成物は、肥満及び糖尿を予防、治療及び改善するための医薬品、食品、飼料などの用途で使用することができる。   According to the present invention, since the enzyme reaction product of Streptomyces sericolor DagA and agar or agarose exhibits an excellent anti-obesity and anti-diabetic effect, if the composition of the present invention is administered or ingested, the obesity and diabetes effectively Can be prevented, treated and improved. Thereby, the composition of this invention can be used for uses, such as a pharmaceutical, a foodstuff, and a feed for preventing, treating, and improving obesity and diabetes.

Claims (9)

ストレプトミセス・セリカラー(Streptomyces coelicolor)DagAと寒天またはアガロース(agarose)の酵素反応で得られた反応産物を有効成分として含有する、肥満または糖尿病の予防及び治療用薬剤学的組成物であって、
前記反応産物は、反応産物の総重量を基準として45〜85重量%のネオアガロオリゴ糖(neoagarooligosaccharide)混合物を含有し、
前記ネオアガロオリゴ糖混合物は、ネオアガロオリゴ糖混合物の総重量を基準として10重量%以下のネオアガロビオース(neoagarobiose)、50〜70重量%のネオアガロテトラオース(neoagarotetraose)及び30〜50重量%のネオアガロヘキサオース(neoagarohexaose)を含有することを特徴とする、前記肥満または糖尿病の予防及び治療用薬剤学的組成物。
A pharmaceutical composition for preventing and treating obesity or diabetes, comprising as an active ingredient a reaction product obtained by enzymatic reaction of Streptomyces coelicolor DagA and agar or agarose,
The reaction product contains 45-85% by weight of a neoagarooligosaccharide mixture, based on the total weight of the reaction product,
The neoagaro-oligosaccharide mixture is 10 wt% or less neooagarobiose, 50-70 wt% neoagarotetraose and 30-50 wt% based on the total weight of the neoagarooligosaccharide mixture. The pharmaceutical composition for the prevention and treatment of obesity or diabetes characterized by containing neoagarohexaose.
前記酵素反応は、35〜45℃の温度及びpH6〜8でなることを特徴とする、請求項1に記載の肥満または糖尿病の予防及び治療用薬剤学的組成物。   The pharmaceutical composition for prevention and treatment of obesity or diabetes according to claim 1, wherein the enzymatic reaction comprises a temperature of 35 to 45 ° C and a pH of 6 to 8. 前記酵素反応は、0.5〜5%(w/v)の寒天またはアガロース溶液に20〜100unit/mlの濃度でDagAを添加してなることを特徴とする、請求項1に記載の肥満または糖尿病の予防及び治療用薬剤学的組成物。   2. The obesity according to claim 1, wherein the enzyme reaction is performed by adding DagA at a concentration of 20 to 100 units / ml to a 0.5 to 5% (w / v) agar or agarose solution. A pharmaceutical composition for the prevention and treatment of diabetes. ストレプトミセス・セリカラー(Streptomyces coelicolor)DagAと寒天またはアガロース(agarose)の酵素反応で得られた反応産物を有効成分として含有する、肥満または糖尿病の予防及び改善用機能性食品であって、
前記反応産物は、反応産物の総重量を基準として45〜85重量%のネオアガロオリゴ糖(neoagarooligosaccharide)混合物を含有し、
前記ネオアガロオリゴ糖混合物は、ネオアガロオリゴ糖混合物の総重量を基準として10重量%以下のネオアガロビオース(neoagarobiose)、50〜70重量%のネオアガロテトラオース(neoagarotetraose)及び30〜50重量%のネオアガロヘキサオース(neoagarohexaose)を含有することを特徴とする、前記肥満または糖尿病の予防及び改善用機能性食品。
A functional food for preventing and ameliorating obesity or diabetes, comprising as an active ingredient a reaction product obtained by enzymatic reaction of Streptomyces coelicolor DagA and agar or agarose,
The reaction product contains 45-85% by weight of a neoagarooligosaccharide mixture, based on the total weight of the reaction product,
The neoagaro-oligosaccharide mixture is 10 wt% or less neooagarobiose, 50-70 wt% neoagarotetraose and 30-50 wt% based on the total weight of the neoagarooligosaccharide mixture. The functional food for prevention and amelioration of obesity or diabetes characterized by containing neoagarohexaose.
前記酵素反応は、35〜45℃の温度及びpH6〜8でなることを特徴とする、請求項4に記載の肥満または糖尿病の予防及び改善用機能性食品。   The functional food for prevention and amelioration of obesity or diabetes according to claim 4, wherein the enzymatic reaction comprises a temperature of 35 to 45 ° C and a pH of 6 to 8. 前記酵素反応は、0.5〜5%(w/v)の寒天またはアガロース溶液に20〜100unit/mlの濃度でDagAを添加してなることを特徴とする、請求項4に記載の肥満または糖尿病の予防及び改善用機能性食品。   The obesity according to claim 4, wherein the enzyme reaction is performed by adding DagA at a concentration of 20 to 100 units / ml to 0.5 to 5% (w / v) agar or agarose solution. Functional food for diabetes prevention and improvement. ストレプトミセス・セリカラー(Streptomyces coelicolor)DagAと寒天またはアガロース(agarose)の酵素反応で得られた反応産物を有効成分として含む、肥満または糖尿病の予防及び改善用飼料であって、
前記反応産物は、反応産物の総重量を基準として45〜85重量%のネオアガロオリゴ糖(neoagarooligosaccharide)混合物を含有し、
前記ネオアガロオリゴ糖混合物は、ネオアガロオリゴ糖混合物の総重量を基準として10重量%以下のネオアガロビオース(neoagarobiose)、50〜70重量%のネオアガロテトラオース(neoagarotetraose)及び30〜50重量%のネオアガロヘキサオース(neoagarohexaose)を含有することを特徴とする、前記肥満または糖尿病の予防及び改善用飼料。
A feed for preventing and ameliorating obesity or diabetes comprising, as an active ingredient, a reaction product obtained by enzymatic reaction of Streptomyces coelicolor DagA and agar or agarose,
The reaction product contains 45-85% by weight of a neoagarooligosaccharide mixture, based on the total weight of the reaction product,
The neoagaro-oligosaccharide mixture is 10 wt% or less neooagarobiose, 50-70 wt% neoagarotetraose and 30-50 wt% based on the total weight of the neoagarooligosaccharide mixture. The above-mentioned feed for preventing and improving obesity or diabetes, characterized by containing neoagarohexaose.
前記酵素反応は、35〜45℃の温度及びpH6〜8でなることを特徴とする、請求項7に記載の肥満または糖尿病の予防及び改善用飼料。   The feed for preventing and improving obesity or diabetes according to claim 7, wherein the enzymatic reaction comprises a temperature of 35 to 45 ° C and a pH of 6 to 8. 前記酵素反応は、0.5〜5%(w/v)の寒天またはアガロース溶液に20〜100unit/mlの濃度でDagAを添加してなることを特徴とする、請求項7に記載の肥満または糖尿病の予防及び改善用飼料。   The obesity according to claim 7, wherein the enzyme reaction is performed by adding DagA at a concentration of 20 to 100 units / ml to 0.5 to 5% (w / v) agar or agarose solution. Feed for prevention and improvement of diabetes.
JP2015541697A 2012-11-13 2013-11-13 Agar-derived neoagalo-oligosaccharide composite composition having anti-obesity and anti-diabetic effects prepared by DagA enzyme reaction Active JP6088657B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20120128087 2012-11-13
KR10-2012-0128087 2012-11-13
KR10-2013-0137079 2013-11-12
KR1020130137079A KR101632262B1 (en) 2012-11-13 2013-11-12 Agar-derived neoagarooligosaccharide complex for the prevention and treatment of obesity and/or diabetes comprising enzyme reaction products of beta agarase DagA and agar
PCT/KR2013/010277 WO2014077575A1 (en) 2012-11-13 2013-11-13 Agar-derived neoagarooligosaccharide composite composition prepared by daga enzyme reaction and having anti-obesity and anti-diabetes effects

Publications (2)

Publication Number Publication Date
JP2016505521A JP2016505521A (en) 2016-02-25
JP6088657B2 true JP6088657B2 (en) 2017-03-01

Family

ID=50890329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015541697A Active JP6088657B2 (en) 2012-11-13 2013-11-13 Agar-derived neoagalo-oligosaccharide composite composition having anti-obesity and anti-diabetic effects prepared by DagA enzyme reaction

Country Status (3)

Country Link
JP (1) JP6088657B2 (en)
KR (1) KR101632262B1 (en)
CN (1) CN104780943B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101675359B1 (en) * 2014-12-30 2016-11-14 건국대학교 글로컬산학협력단 Composition comprising neoagarooligosaccharide for preventing or treating sepsis or septic shock
US10933086B2 (en) 2016-10-27 2021-03-02 Dynebio Inc. Composition for preventing, alleviating, or treating arthritis or osteoporosis, containing neoagarooligosaccharide
KR102032799B1 (en) * 2017-11-16 2019-10-17 고려대학교 산학협력단 Method for producing agarotriose and prebiotics use thereof
KR102214973B1 (en) * 2019-06-04 2021-02-10 다인바이오 주식회사 Manufacturing method of agar for raw material of neoagarooligosaccharide mixture and use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210965A (en) * 1986-03-13 1987-09-17 Shokuhin Sangyo Baioriakutaa Syst Gijutsu Kenkyu Kumiai Food and drink having low calorific value and production thereof
TW577744B (en) * 1999-01-20 2004-03-01 Takara Shuzo Co Medicinal compositions containing 3,6-anhydrogalactopyranose as active ingredient
TWI247585B (en) * 1999-05-14 2006-01-21 Takara Bio Inc Agarobiose-containing composition
JP4346308B2 (en) * 2001-02-27 2009-10-21 タカラバイオ株式会社 Agarase and its gene
CN1189472C (en) * 2002-06-06 2005-02-16 严小军 Alpha-heterosidase inhibitor and use thereof
KR101233766B1 (en) 2010-02-11 2013-02-15 명지대학교 산학협력단 Recombination expression vector to produce beta-agarase
KR101190078B1 (en) * 2011-11-29 2012-10-11 명지대학교 산학협력단 Recombinant expression vector to produce beta-agarase, transformed microorganisms, and method for producing beta-agarase

Also Published As

Publication number Publication date
JP2016505521A (en) 2016-02-25
CN104780943A (en) 2015-07-15
KR20140061272A (en) 2014-05-21
KR101632262B9 (en) 2022-08-16
KR101632262B1 (en) 2016-06-21
CN104780943B (en) 2017-06-23

Similar Documents

Publication Publication Date Title
JP7064435B2 (en) Polypeptides capable of producing glucans with α-1,2-branched chains and their use
JP6292725B2 (en) Lipopolysaccharide, lipopolysaccharide production method and lipopolysaccharide compound
JP6088657B2 (en) Agar-derived neoagalo-oligosaccharide composite composition having anti-obesity and anti-diabetic effects prepared by DagA enzyme reaction
JP6815525B2 (en) Compositions for the prevention, amelioration or treatment of arthritis or osteoporosis containing neoagalooligosaccharides
US10548916B2 (en) Composition comprising neoagarooligosaccharide as active ingredient, for prevention or treatment of sepsis or septic shock
JP5992902B2 (en) Modified α-glucosidase and use thereof
CN1324234A (en) Fructosamine oxidase: antagonists and inhibitors
TW201717778A (en) Bacillus amyloliquefaciens, grain yeast, preparation method thereof, and use thereof, food composition, composition for thrombolysis, composition for improving digestion, composition for preventing, improving or treating enteritis, intestinal weakening
US12053509B2 (en) Microbial lysozyme for use in the treatment of irritable bowel syndrome or inflammatory bowel disease
JP6096179B2 (en) Protein having lactase activity, gene encoding the protein, recombinant vector containing the gene, transformant, production method and use thereof
CN107259310A (en) Reducing agent from bacillus spp. microorganism and application thereof
US11236315B2 (en) Thermophile peptidoglycan hydrolase fusion proteins and uses thereof
KR20160020457A (en) Composition for enhancing immune function or anticancer effect comprising neoagarooligosaccharide
WO2014077575A1 (en) Agar-derived neoagarooligosaccharide composite composition prepared by daga enzyme reaction and having anti-obesity and anti-diabetes effects
KR102032799B1 (en) Method for producing agarotriose and prebiotics use thereof
CN113748120B (en) Peptides, compositions and ghrelin secretion promoters
KR20180046392A (en) Composition including neoagarooligosaccharide for preventing, improving or treating arthritis
KR20180048481A (en) Composition including neoagarooligosaccharide for preventing, improving or treating hyperlipidemia and the like
EP2975113B1 (en) Variant of cellulase-producing fungus, cellulase manufacturing method, and cello-oligosaccharide manufacturing method
WO2022080245A1 (en) Protein having effect of improving immunostimulatory activity of lactic acid bacteria exopolysaccharide, and fermented milk including same and method for producing same
KR102132743B1 (en) Method for producing agarotriose and prebiotics use thereof
KR101923062B1 (en) Composition including neoagarooligosaccharide for preventing, improving or treating osteoporosis
Suzuki et al. Construction of “toxin complex” in a mutant serotype C strain of Clostridium botulinum harboring a defective neurotoxin gene
TW202231289A (en) Composition for suppressing increases and decreases in muscle mass, and composition for suppressing increases in muscle mass and muscular atrophy
TW202142688A (en) Highly potent modified acid alpha-glucosidase and method of making and using it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170203

R150 Certificate of patent or registration of utility model

Ref document number: 6088657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250