JP6088310B2 - Luminescent body holding substrate and manufacturing method thereof - Google Patents

Luminescent body holding substrate and manufacturing method thereof Download PDF

Info

Publication number
JP6088310B2
JP6088310B2 JP2013060643A JP2013060643A JP6088310B2 JP 6088310 B2 JP6088310 B2 JP 6088310B2 JP 2013060643 A JP2013060643 A JP 2013060643A JP 2013060643 A JP2013060643 A JP 2013060643A JP 6088310 B2 JP6088310 B2 JP 6088310B2
Authority
JP
Japan
Prior art keywords
film
light
filler
light emitter
organopolysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013060643A
Other languages
Japanese (ja)
Other versions
JP2014187158A (en
Inventor
祝迫 恭
恭 祝迫
裕之 大神
裕之 大神
幸太郎 古川
幸太郎 古川
田中 陽子
陽子 田中
光芳 永野
光芳 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2013060643A priority Critical patent/JP6088310B2/en
Publication of JP2014187158A publication Critical patent/JP2014187158A/en
Application granted granted Critical
Publication of JP6088310B2 publication Critical patent/JP6088310B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Description

本発明は、照明機器、紫外線照射装置、露光用光源装置などに用いる基板であり、発熱体や発光体からの熱を放熱部に効率的に伝導し、光反射率の高い基板に関する。
The present invention relates to a substrate used for lighting equipment, an ultraviolet irradiation device, an exposure light source device, and the like, and relates to a substrate having high light reflectivity by efficiently conducting heat from a heating element or a light emitting body to a heat radiating portion.

照明機器、紫外線照射装置、露光用光源装置などは、可視光線や紫外線、その他の様々な波長の光(まとめて以後、単に「光」と表記する)を発生する装置である。   An illumination device, an ultraviolet irradiation device, an exposure light source device, and the like are devices that generate visible light, ultraviolet light, and other various wavelengths of light (collectively referred to as “light” hereinafter).

これらの光を発生させる方法は、電気的なエネルギーで発光素子を励起させる方法が最もよく用いられている。   As a method of generating such light, a method of exciting a light emitting element with electric energy is most often used.

特に、近年大光量を発生する装置が用いられる傾向があり、それらは大きな電気エネルギーを変換する発光素子や、回路に素子を集中的に配置するような構造を有する。この際に、設置場所に空間的な余裕がある場合ばかりでなく、比較的小さな回路に大きな電気エネルギーを変換する発光素子や、素子を集中的に配置する場合には、発光時に発生する熱が問題となる。   In particular, devices that generate large amounts of light tend to be used in recent years, and they have a structure in which light-emitting elements that convert large electric energy and elements are concentratedly arranged in a circuit. At this time, not only when there is a space in the installation location, but also when a light emitting element that converts large electrical energy into a relatively small circuit or when the elements are arranged in a concentrated manner, heat generated during light emission is reduced. It becomes a problem.

たとえば、従来の水銀灯をLED照明にて置き換えるような場合は、水銀灯が納められていた空間と同様の空間に、多くのLED素子を集中して配置する必要がある。LEDに限らず、発光素子は電気エネルギーの光への変換であり、変換時には熱が発生する。よって素子を配置するための基板については、光の反射が十分であるだけでなく、素子からの熱を効率よく逃がす仕組みが欠かせない。熱の逃がし方が効率的でなければ、素子の耐用温度を超えたり、装置の電気抵抗率が異常に上昇したり、装置のその他の部分が過熱により劣化したり発火したりする。なお、ここでいう「光の反射」とは、鏡のように像をそのまま反射するような並行的な反射とは限らず、反射するもの自体が光を吸収せず、受けた光量を減らすことなく周囲に拡散する反射のことを指す。   For example, when replacing a conventional mercury lamp with LED illumination, it is necessary to concentrate and arrange many LED elements in a space similar to the space where the mercury lamp is housed. Not only LEDs, but light emitting elements convert electrical energy into light, and heat is generated during the conversion. Therefore, the substrate on which the element is arranged not only has sufficient light reflection, but also requires a mechanism for efficiently releasing heat from the element. If the heat release is not efficient, the device's service temperature will be exceeded, the electrical resistivity of the device will rise abnormally, and other parts of the device will deteriorate or ignite due to overheating. Note that “reflection of light” here is not limited to parallel reflection that reflects an image as it is like a mirror, but the reflected object itself does not absorb light and reduces the amount of light received. It refers to the reflection that diffuses to the surroundings.

そのために、このような大きな発熱量を生じさせる発光装置では、発熱体の熱を外部に放出するヒートシンクや放熱板などを備えて、発熱体の熱を放出する。   For this reason, the light emitting device that generates such a large amount of heat generation includes a heat sink or a heat radiating plate that releases the heat of the heating element to the outside, and releases the heat of the heating element.

しかしながら、一般にヒートシンクや放熱板は、熱伝導性の高さから銅やアルミニウムなどの金属で構成されるが、導電性であるために発光素子や回路をその上に実装することはできない。また、これらは、光を一定の量吸収してしまうために、光の反射率を一定以上(例えば80%以上)反射させることはできない。
However, heat sinks and heat sinks are generally made of a metal such as copper or aluminum because of their high thermal conductivity, but light emitting elements and circuits cannot be mounted thereon because they are conductive. In addition, since they absorb a certain amount of light, they cannot reflect light with a certain reflectance (for example, 80% or more).

特許文献1には、発熱体となる電子部品や機械部品を備える照明機器、電子機器、輸送機器および製造機器で、ヒートシンクや放熱板と発熱体との間に介在する中間体を有する放熱ユニットを用いたヒートシンクを備えるLEDパッケージが提案されている。   Patent Document 1 discloses a heat radiating unit having an intermediate body interposed between a heat sink, a heat radiating plate, and a heating element in an illumination device, an electronic device, a transportation device, and a manufacturing device including an electronic component or a mechanical component that serves as a heating element. An LED package including the heat sink used has been proposed.

特許文献2には金属アルコキシドを加水分解および脱水重合されて形成される無機材質中にフィラーとしてAlN、cBN、hBN、Al、MgO,ダイヤモンドおよびグラファイトを分散した放熱ユニットが提案されている。
Patent Document 2 proposes a heat dissipation unit in which AlN, cBN, hBN, Al 2 O 3 , MgO, diamond and graphite are dispersed as fillers in an inorganic material formed by hydrolysis and dehydration polymerization of a metal alkoxide. .

特表平11−346029号公報Japanese National Patent Publication No. 11-346029 特開2013−4822号公報JP 2013-4822 A

特許文献1は、半導体レーザーチップの構造をヒートシンクと高熱伝導状態に接続することで、半導体レーザーチップからの熱を放出する技術を開示する。しかしながら、特許文献1は、半導体レーザーチップと周辺構造が複雑になり、多くの発熱体を実装する機器の放熱には適さない。   Patent Document 1 discloses a technique for releasing heat from a semiconductor laser chip by connecting the structure of the semiconductor laser chip to a heat sink and a high thermal conductivity state. However, Patent Document 1 has a complicated semiconductor laser chip and peripheral structure, and is not suitable for heat dissipation of a device on which many heating elements are mounted.

特許文献2の技術は光の反射率の高いTiO、ZrO、Al、MgOなどが選択でき、製造費用も大きく掛からない反射膜を得られる。また、AlNなどを選択することにより放熱性も十分に高い反射膜が得られる。 The technique of Patent Document 2 can select TiO 2 , ZrO 2 , Al 2 O 3 , MgO or the like having a high light reflectivity, and can obtain a reflective film that does not require a large manufacturing cost. Further, by selecting AlN or the like, a reflective film having sufficiently high heat dissipation can be obtained.

ところが、例えばMgOのような白色度が高いフィラーであっても、フィラーの屈折率がそれほど高くない場合は(MgOの550nmの波長に対する屈折率約1.73)、結晶内で受けた光が減衰するために、受けた光量に対して反射後の光量を例えば80%以上と一定に保つことは難しい。白色度がある程度高く、屈折率が高いフィラーとしてはTiO(550nmの波長に対する屈折率約2.6)、ZrO(同2.03)、Y(同約1.87)などが挙げられる。これらは熱伝導率こそ極めて高くはないが、光の反射率に関しては非常に高い。 However, even if the filler has a high whiteness such as MgO, if the refractive index of the filler is not so high (refractive index of about 1.73 for the wavelength of 550 nm of MgO), the light received in the crystal is attenuated. Therefore, it is difficult to keep the reflected light quantity constant at, for example, 80% or more with respect to the received light quantity. TiO 2 (refractive index of about 2.6 with respect to a wavelength of 550 nm), ZrO 2 (2.03 of the same), Y 2 O 3 (about 1.87 of the same) and the like are fillers having a high degree of whiteness and a high refractive index. Can be mentioned. These are not very high in thermal conductivity, but are very high in light reflectivity.

ところが、これらのフィラーを用いた場合でも、膜の厚さを十分に厚く、例えば100μm以上としなければ、光の一部が透過することにより、反射率が落ちてしまう。また、かといって、100μm以上と反射膜を厚くした場合には、今度は熱伝導が十分でなくなり、基板上の素子などの過熱が問題となる。
However, even when these fillers are used, if the thickness of the film is not sufficiently thick, for example, not less than 100 μm, a part of the light is transmitted and the reflectance is lowered. On the other hand, if the reflective film is made thicker than 100 μm, heat conduction is not sufficient, and overheating of elements on the substrate becomes a problem.

本発明では、前記特許文献2の技術を利用し、反射膜を一層ではなく二層以上とし、表面により反射率の高いフィラーを用いた膜を、内部により熱伝導率の高い膜を設けることにより反射率と熱伝導率を両立した反射膜を有する基板を得た。
In the present invention, by using the technique of the above-mentioned Patent Document 2, the reflective film is formed of two or more layers instead of one layer, and a film using a filler having a higher reflectivity on the surface is provided, and a film having a higher thermal conductivity is provided inside. A substrate having a reflective film having both reflectivity and thermal conductivity was obtained.

本発明は、光の反射率が十分高く、なおかつ放熱性が十分に高く、基板上に発熱する発光体を装着可能な発光体保持基板を提供する。
The present invention provides a light-emitting body holding substrate that has a sufficiently high light reflectivity and a sufficiently high heat dissipation property and can mount a light-emitting body that generates heat on the substrate.

本発明の発光体保持基板の一形態の模式図Schematic diagram of one embodiment of the light emitter holding substrate of the present invention

本発明は、
ベース上に、ベースに近いほうから第1膜と、第1膜に重なる第2膜と、回路及び発光体を有し、
前記第1膜は厚さが20〜200μmで、第1のオルガノポリシロキサン成分中に第1フィラーが分散した組成を有し、
前記第1フィラーは単体の熱伝導率が50W/m・K以上の粒子を含み、
前記第2膜は厚さが5〜100μmで、第2のオルガノポリシロキサン成分中に第2フィラーが分散した組成を有し、
前記第2フィラーは屈折率が1.75以上の粒子を含む
発光体保持基板である。
The present invention
On the base, there is a first film from the side closer to the base, a second film overlapping the first film, a circuit and a light emitter.
The first film has a thickness of 20 to 200 μm and a composition in which a first filler is dispersed in a first organopolysiloxane component,
The first filler includes particles having a single thermal conductivity of 50 W / m · K or more,
The second film has a thickness of 5 to 100 μm, and has a composition in which a second filler is dispersed in a second organopolysiloxane component,
The second filler is a light emitter holding substrate including particles having a refractive index of 1.75 or more.

具体的なフィラーとしては、前記第1フィラーとしてAlN(窒化アルミ)、SiC(炭化ケイ素)、c−BN(立方晶窒化ホウ素)、ダイヤモンドのいずれか1種または2種以上が、前記第2フィラーとしてZrO(酸化ジルコニウム)、Y(酸化イットリウム)、h−BN(六方晶窒化ホウ素)、TiO(酸化チタン)、Nb(酸化ニオブ)のいずれか1種または2種以上が挙げられる。 As a specific filler, as the first filler, one or more of AlN (aluminum nitride), SiC (silicon carbide), c-BN (cubic boron nitride), and diamond is used as the second filler. As ZrO 2 (zirconium oxide), Y 2 O 3 (yttrium oxide), h-BN (hexagonal boron nitride), TiO 2 (titanium oxide), or Nb 2 O 5 (niobium oxide) The above is mentioned.

この「発光体」は、可視光、紫外光、極紫外光、レーザー光などを発生する部材を指す。発光体は基板上に直接または回路や他の部材を介して固定される。発光体には、電力を供給するための回路が必要であり、回路は少なくとも一部が基板上に設けられる。   The “light emitter” refers to a member that generates visible light, ultraviolet light, extreme ultraviolet light, laser light, and the like. The light emitter is fixed on the substrate directly or via a circuit or other member. The light-emitting body requires a circuit for supplying power, and at least a part of the circuit is provided on the substrate.

発光体から発生した光の一部は、基板上で反射することによって照射対象へと向かう。よって、基板の表面部分には光の反射率が高い材料を用いる必要がある。反射率の低い材料であれば、光は反射せずに材料中に吸収され、発光体の発光量に対して照射対象が受ける光量が下がる。これは電力効率が悪い上に、発光体をより過熱させる原因となる。   A part of the light generated from the light emitter is directed to the irradiation target by being reflected on the substrate. Therefore, it is necessary to use a material having a high light reflectance for the surface portion of the substrate. In the case of a material having a low reflectance, light is not reflected but is absorbed in the material, and the amount of light received by the irradiation target is reduced with respect to the amount of light emitted from the light emitter. This is not only power efficient but also causes the light emitter to overheat.

そのために、本発明では第2膜中に白色度が高く、屈折率の高い第2フィラーを用いる。第2フィラーはZrO、Al、Y、h−BN、TiO、Nb粒子のいずれか1種以上を含むとよい。これらのセラミックス粒子は白色度が高いだけでなく、屈折率が高い。白色度が高いことにより可視光を中心とした広い波長を、吸収せずに反射できる。また、光が紫外線の場合は、特にh−BNまたはZrOが有効である。また、屈折率が高いために、粒子内部での光の減衰が小さく、受けた光量と反射する光量の差が小さい。つまり、反射効率が高い。好ましくは第2フィラーの90体積%以上、より好ましくは第2フィラーの全てが前記成分の1種または2種以上で占められているのがよい。 Therefore, in the present invention, a second filler having a high whiteness and a high refractive index is used in the second film. The second filler may comprise a ZrO 2, Al 2 O 3, Y 2 O 3, h-BN, TiO 2, Nb 2 any one or more O 5 particles. These ceramic particles not only have high whiteness but also a high refractive index. Due to the high whiteness, a wide wavelength centered on visible light can be reflected without being absorbed. Moreover, when light is an ultraviolet ray, h-BN or ZrO 2 is particularly effective. Further, since the refractive index is high, the attenuation of light inside the particles is small, and the difference between the received light amount and the reflected light amount is small. That is, the reflection efficiency is high. Preferably, 90% by volume or more of the second filler, more preferably all of the second filler is occupied by one or more of the components.

第2膜は基板上に形成された第1膜のさらに上に形成される(この場合の「上」というのは第1膜から見てベースと反対側を意味するもので、位置的な上下を意味するものではない)。   The second film is formed further on the first film formed on the substrate (in this case, “above” means the side opposite to the base when viewed from the first film, Does not mean).

第2膜は反射率だけを考えると、厚くする方が効果は高い。また、例えば金属ベース上に5μmの厚さで第2被膜のみを形成すると、一部の光は透過してベースまで到達してしまう。これは、第2フィラーがオルガノポリシロキサン中に分散しているためであり、塗布して用いる用途を考えると一定以上の粒子濃度にするのは難しい。   Considering only the reflectance of the second film, it is more effective to make it thicker. Further, for example, when only the second film is formed with a thickness of 5 μm on the metal base, a part of the light is transmitted and reaches the base. This is because the second filler is dispersed in the organopolysiloxane, and it is difficult to achieve a particle concentration of a certain level or more in consideration of the application to be applied.

また、第2膜は熱伝導率が、樹脂等と比較すると高いが、アルミニウムなどの金属と比較するとかなり低い。そのために、あまり第2膜をあまり厚くしてしまうと発光体からの発熱をベースにまで逃がす効率が悪くなる。この両方を満たす第2膜の厚さは5〜100μmである。5μmよりも薄ければ、光の透過が多くなってしまう。100μmよりも厚ければ素子から発生した熱をベースへと逃がしにくくなる。   The second film has a higher thermal conductivity than a resin or the like, but is considerably lower than a metal such as aluminum. Therefore, if the second film is made too thick, the efficiency of releasing the heat generated from the light emitter to the base is deteriorated. The thickness of the second film satisfying both of these is 5 to 100 μm. If it is thinner than 5 μm, light transmission will increase. If it is thicker than 100 μm, it is difficult for heat generated from the element to escape to the base.

本発明では第2膜とベースとの間に、第1膜を必ず有する。   In the present invention, the first film is necessarily provided between the second film and the base.

第1膜は熱伝導率の高い、例を挙げるとAlN、SiC、c−BN、ダイヤモンドなどの粒子のいずれかを含む第1フィラーを、オルガノポリシロキサン中に分散した膜である。第1膜に用いる第1フィラーは、熱伝導率が高いという特徴がある。高い熱伝導を有しているために、第2膜の熱を容易にベース方向へと逃がすことができる。   The first film has a high thermal conductivity. For example, the first film is a film in which a first filler containing any one of particles such as AlN, SiC, c-BN, and diamond is dispersed in organopolysiloxane. The first filler used for the first film is characterized by high thermal conductivity. Since it has high heat conduction, the heat of the second film can be easily released toward the base.

また、第1フィラーに用いる粒子は、白色度は特に高くないが、屈折率は非常に高い。そのために、第2膜を透過してきた光の大部分を、ベース方向に逃がすことなく、第2フィラー方向に反射して戻す。   The particles used for the first filler are not particularly high in whiteness, but have a very high refractive index. For this purpose, most of the light transmitted through the second film is reflected back in the second filler direction without escaping in the base direction.

第1膜が以上に述べた性質を持つことから、第2膜は完全に反射をするほど厚く形成する必要が無い。そのために、第2膜の厚さは、熱伝導の観点からも許容できる範囲である100μm以下でよいことになる。   Since the first film has the properties described above, the second film does not need to be formed thick enough to be completely reflected. Therefore, the thickness of the second film may be 100 μm or less, which is an allowable range from the viewpoint of heat conduction.

以上に述べた第1膜と第2膜の組み合わせで、発光体から発生した熱を効率よくベース方向に逃がすことができ、光反射率も十分に高い発光体保持基板とすることができる。   With the combination of the first film and the second film described above, the heat generated from the light emitter can be efficiently released in the base direction, and the light emitter holding substrate having a sufficiently high light reflectance can be obtained.

配線や発光体は、第2膜の上に形成する、または設ける。第2膜は前述のように反射率が高いために、その上に配線や発光体を設ける場合は、なるべく小さな面積とするほうが望ましい。望ましくは、第2膜の表面積の85%以上が、配線や発光体などに遮られずに露出することである。配線や発光体は第2膜に直接設けてもよいし、両者の間に白色または透明なコーティング剤などを介して設けてもよい。   The wiring and the light emitter are formed or provided on the second film. Since the second film has a high reflectance as described above, it is desirable to make the area as small as possible when a wiring or a light emitter is provided on the second film. Desirably, 85% or more of the surface area of the second film is exposed without being blocked by the wiring or the light emitter. The wiring and the light emitter may be provided directly on the second film, or may be provided between them via a white or transparent coating agent.

また、第1膜と第2膜は、あまりにも薄ければ、絶縁耐圧が高くならずに、大きな電圧を掛けると用意に絶縁破壊する。そのためにベースと素子間に第1膜、第2膜を通して通電してしまい、電気回路が成立しなくなる懸念がある。   Also, if the first film and the second film are too thin, the dielectric breakdown voltage will not increase, and dielectric breakdown will occur readily when a large voltage is applied. For this reason, there is a concern that an electric circuit may not be established because current is passed through the first film and the second film between the base and the element.

第1膜と第2膜について説明する。   The first film and the second film will be described.

第1膜と第2膜は、オルガノポリシロキサン中に、セラミックスやダイヤモンドの粒子を含む無機フィラーを分散した組成を有する。   The first film and the second film have a composition in which an inorganic filler containing ceramic or diamond particles is dispersed in organopolysiloxane.

オルガノポリシロキサン成分は、使用温度にて耐熱性を有し、十分に透明で、耐候性が高いという性質を持つ。   The organopolysiloxane component has heat resistance at the use temperature, is sufficiently transparent, and has high weather resistance.

また、オルガノポリシロキサンの中でも特に容易に製造できるのはオルガノアルコキシシランの脱水縮合物である。   Among the organopolysiloxanes, organoalkoxysilane dehydrated condensates can be particularly easily produced.

このオルガノアルコキシシランは分子式
mSi(OR4−m(ただし、Rは炭素数1〜8の有機基、Rは炭素数1〜5のアルキル基、mは0〜2の整数)
で表される有機シリコンである。
This organoalkoxysilane has a molecular formula R 1 mSi (OR 2 ) 4-m (where R 1 is an organic group having 1 to 8 carbon atoms, R 2 is an alkyl group having 1 to 5 carbon atoms, and m is an integer of 0 to 2). )
It is an organic silicon represented by

式中のRの「炭素数1〜8の有機基」としては、メチル、エチル、n−プロピル、n−ブチル、n−ペンチル、ヘキシル、ヘプチル、オクチル等の直鎖状アルキル基;iso−プロピル、iso−ブチル、sec−ブチル、tert−ブチル、iso−ペンチル、tert−ペンチル、neo−ペンチル、メチルヘキシル、ジメチルヘキシル、エチルヘキシル、メチルヘプチル等の分枝状アルキル基;ビニル、アリル、iso−プロペニル、ブテニル、ペンテニル、ヘキセニル、ヘプセニル、オクテニル等;エチニル、プロピニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ブタジニル、ペンタジニル、ヘキサジニル、ヘプタジニル、オクタジニル等の直鎖状アルケニル基又はアルキニル基;メチルペンテニル、エチルペンテニル、ジメチルペンテニル、メチルヘキセニル、エチルヘキセニル、ジメチルヘキセニル、メチルヘプセニル等;メチルペンチニル、エチルペンチニル、ジメチルペンチニル、メチルヘキシニル、エチルヘキシニル、ジメチルヘキシニル、メチルヘプチニル等の分枝状アルケニル基又はアルキニル基;フェニル、トリル、キシリル等のアリール基;γ−クロロプロピル、γ−メタクリロイルオキシプロピル、γ−メルカプトプロピル等の置換直鎖状アルキル基が挙げられる。中でも、メチル、エチル、n−プロピル、iso−プロピル、n−ブチル、ビニル、フェニル、γ−メタクリロイルオキシプロピル、γ−メルカプトプロピル等が好ましい。 As the “organic group having 1 to 8 carbon atoms” for R 1 in the formula, a linear alkyl group such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, hexyl, heptyl, octyl; Branched alkyl groups such as propyl, iso-butyl, sec-butyl, tert-butyl, iso-pentyl, tert-pentyl, neo-pentyl, methylhexyl, dimethylhexyl, ethylhexyl, methylheptyl; vinyl, allyl, iso- Propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, etc .; linear alkenyl groups such as ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, butazinyl, pentazinyl, hexazinyl, heptazinyl, octadinyl, etc .; methylpentenyl, Echi Rupentenyl, dimethylpentenyl, methylhexenyl, ethylhexenyl, dimethylhexenyl, methylheptenyl, etc .; branched alkenyl groups or alkynyl groups such as methylpentynyl, ethylpentynyl, dimethylpentynyl, methylhexynyl, ethylhexynyl, dimethylhexynyl, methylheptynyl; phenyl And aryl groups such as tolyl and xylyl; substituted linear alkyl groups such as γ-chloropropyl, γ-methacryloyloxypropyl, and γ-mercaptopropyl. Of these, methyl, ethyl, n-propyl, iso-propyl, n-butyl, vinyl, phenyl, γ-methacryloyloxypropyl, γ-mercaptopropyl and the like are preferable.

式1の置換基Rの「炭素数1〜5のアルキル基」としては、メチル、エチル、n−プロピル、n−ブチル、n−ペンチル等の直鎖状アルキル基;iso−プロピル、iso−ブチル、sec−ブチル、tert−ブチル、iso−ペンチル、tert−ペンチル、neo−ペンチル等の分枝状アルキル基等が挙げられる。 Examples of the “alkyl group having 1 to 5 carbon atoms” of the substituent R 2 of Formula 1 include linear alkyl groups such as methyl, ethyl, n-propyl, n-butyl, n-pentyl; iso-propyl, iso- Examples thereof include branched alkyl groups such as butyl, sec-butyl, tert-butyl, iso-pentyl, tert-pentyl and neo-pentyl.

オルガノアルコキシシランの具体例としては、mが0の場合、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトライソプロポキシシラン、テトラ−n−ブトキシシラン等;mが1の場合、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリイソプロポキシシラン、メチルトリ−n−ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン等;mが2の場合、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等が挙げられる。これらのオルガノアルコキシシランは、いずれか1種を単独で、又は2種以上を併用して用いることができ、中でも、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシランからなる群から少なくとも1種から選択されることが好ましい。   As specific examples of organoalkoxysilane, when m is 0, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, etc .; Trimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltriisopropoxysilane, methyltri-n-butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltri Ethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, etc .; when m is 2, dimethyl Examples include dimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane. These organoalkoxysilanes can be used alone or in combination of two or more, and among them, a group consisting of tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane It is preferable that at least one selected from

以上に述べたオルガノポリシロキサン中に、フィラーとして体積分率で20〜75%加えたものを「塗料」と呼ぶ。   What added 20-75% of the volume fraction as a filler in the organopolysiloxane described above is called "paint".

オルガノポリシロキサンとしてオルガノアルコキシシランの脱水縮合物を用いる場合は、オルガノアルコキシシラン1モルに対して、酸性下で水を0.05〜10モルを加えて20〜80℃にて加水分解し、フィラーを加えることにより、フィラーを分散した液状のオルガノポリシロキサン組成物が得られる。フィラーの量は体積分率で20〜75%が適当であり、残部はオルガノポリシロキサン成分である。   When a dehydration condensate of organoalkoxysilane is used as organopolysiloxane, 0.05 to 10 mol of water is added to 1 mol of organoalkoxysilane and hydrolyzed at 20 to 80 ° C. Is added to obtain a liquid organopolysiloxane composition in which a filler is dispersed. The amount of filler is suitably 20 to 75% in terms of volume fraction, and the balance is the organopolysiloxane component.

また、オルガノアルコキシシランの脱水縮合物を用いる場合は、オルガノアルコキシシランの前記式中のR、R、mの種類および数値を変えることにより、様々な特徴を持つ別の塗料が製作できる。 In the case where an organoalkoxysilane dehydration condensate is used, different paints having various characteristics can be produced by changing the types and values of R 1 , R 2 and m in the above-mentioned formula of the organoalkoxysilane.

フィラーとしては、前記のオルガノポリシロキサンに対して、第1膜とするにはAlN、ダイヤモンド、SiC、c−BNのように熱伝導率が極めて高い粒子を第1フィラーとして添加する。これを第1塗料と呼ぶ。同様に、第2膜とするにはZrO、Al、Y、h−BN、TiO、Nbのような白色度が高く、反射率の高い粒子を第2フィラーとして添加する。これを第2塗料と呼ぶ。 As the filler, particles having extremely high thermal conductivity such as AlN, diamond, SiC, and c-BN are added as the first filler to form the first film with respect to the organopolysiloxane. This is called the first paint. Similarly, for the second film, particles having high whiteness and high reflectance such as ZrO 2 , Al 2 O 3 , Y 2 O 3 , h-BN, TiO 2 , and Nb 2 O 5 are used as the second film. Add as a filler. This is called the second paint.

第1フィラー、第2フィラー共に、フィラーの粒子径の好ましい範囲は0.1〜50μm程度である。ある程度入手が容易であり、膜中に均一に分散できる粒子径はこの範囲である。   For both the first filler and the second filler, the preferred range of the filler particle size is about 0.1 to 50 μm. The particle diameter that can be easily obtained to some extent and can be uniformly dispersed in the film is within this range.

オルガノポリシロキサンとフィラーの混合は、不純物の混入が少なく、均一に混合できる混合機を用いるのであればその装置や方法は問わない。例えば、ボールミル、アトライター、スターミル、らいかい機、食品用のミキサーなどから選べばよい。混合時間は20分〜24時間程度である。   The mixing of the organopolysiloxane and the filler is not limited as long as an apparatus and a method are used as long as a mixer capable of mixing uniformly is used with little mixing of impurities. For example, a ball mill, attritor, star mill, rakai machine, food mixer, etc. may be selected. The mixing time is about 20 minutes to 24 hours.

以上に述べたように、オルガノポリシロキサンとフィラーとの混合物として、第1塗料および第2塗料を得る。   As described above, the first paint and the second paint are obtained as a mixture of the organopolysiloxane and the filler.

第1塗料と第2塗料がほぼ同様の収縮を示すのであれば、熱処理硬化時に両者の収縮率の相違による膜の割れや剥がれといった問題が起こらなくなるために、第1塗料と第2塗料に用いるオルガノポリシロキサン成分は後述の熱処理の際に同様の収縮をすることが望ましい。   If the first paint and the second paint exhibit substantially the same shrinkage, a problem such as cracking or peeling of the film due to the difference in shrinkage between the two during heat treatment curing does not occur, so the first paint and the second paint are used. The organopolysiloxane component desirably undergoes similar shrinkage during the heat treatment described below.

さらに望ましいのは、第1塗料と第2塗料に使用するオルガノポリシロキサン成分を、同じ成分とすることである。   More desirably, the organopolysiloxane component used in the first paint and the second paint is the same component.

オルガノポリシロキサンの出発原料であるオルガノアルコキシシランは、前述のR、R、mが異なる種類、数値であっても構わないが、これらが同じものを用いることがより好ましい。また、加水分解の際に添加する水のモル比はなるべく近いほうが好ましい。R、R、mの種類、数値が同じオルガノアルコキシシランを原料とし、加水分解する水のモル比が一定であれば、生成されるオルガノポリシロキサンの主鎖部分が第1塗料と第2塗料とで同一または類似したものになり、2つの膜が後述する塗布後の熱処理硬化にてほぼ同様の収縮を示すからである。 The organoalkoxysilane that is the starting material of the organopolysiloxane may be of the same type or numerical value as those described above for R 1 , R 2 , and m, but it is more preferable to use the same one. Moreover, it is preferable that the molar ratio of water added in the hydrolysis is as close as possible. If organoalkoxysilanes having the same types and values of R 1 , R 2 , and m are used as raw materials and the molar ratio of water to be hydrolyzed is constant, the main chain portion of the generated organopolysiloxane is the first paint and the second paint. This is because it is the same as or similar to the paint, and the two films exhibit substantially the same shrinkage in the heat treatment curing after application described later.

得られた塗料を、発光体保持基盤を構成するベースに第1塗料、第2塗料の順で塗布し、空気中150〜300℃の温度にて熱処理を行なうことにより、ベース表面にて硬化する。こうして、ベースの表面に第1膜、第2膜の順に膜を形成できる。雰囲気は空気中、還元雰囲気中、真空雰囲気中のいずれでも構わない。   The obtained paint is applied to the base constituting the luminous body holding base in the order of the first paint and the second paint, and is heat-treated in air at a temperature of 150 to 300 ° C. to be cured on the base surface. . Thus, a film can be formed on the surface of the base in the order of the first film and the second film. The atmosphere may be any of air, a reducing atmosphere, and a vacuum atmosphere.

第1塗料を先に塗布し、硬化処理した後に第2塗料を塗布して硬化する方法もあるが、両方塗布した後に硬化処理するほうが望ましい。なぜならば、硬化処理の際に収縮が起こるために、既に収縮した第1膜の上で第2塗料が収縮すると、割れの原因となるからである。また、第1塗料と第2塗料の樹脂成分が接触した状態で熱処理硬化が行なわれれば、両者の界面にて互いにオルガノポリシロキサン成分が相手方の組織を取り込みながら硬化する。第1塗料に用いるオルガノポリシロキサン成分と、第2塗料に用いるオルガノポリシロキサン成分が同じ成分であれば、この働きが最も高くなる。   There is also a method in which the first coating is applied first and cured, and then the second coating is applied and cured. However, it is preferable to perform the curing after both are applied. This is because shrinkage occurs during the curing process, and if the second paint shrinks on the already shrunk first film, it causes cracking. Further, if heat treatment curing is performed in a state where the resin components of the first paint and the second paint are in contact with each other, the organopolysiloxane components are cured while taking up the structure of the other party at the interface between the two. If the organopolysiloxane component used for the first paint and the organopolysiloxane component used for the second paint are the same component, this function becomes the highest.

このようにして得られた2膜は、結合力が高いので、単一の塗料を使った場合とほぼ同様に強固であり、両者の界面からの剥がれの懸念が無い。また、事実上界面が存在しない程度に結合するために、界面が熱伝導を妨げる要因とならずに、第1膜と第2膜間の熱伝導率が下がらない。   Since the two films thus obtained have high bonding strength, they are almost as strong as when a single paint is used, and there is no fear of peeling from the interface between them. In addition, since the bonding is performed to such an extent that there is virtually no interface, the interface does not hinder heat conduction, and the thermal conductivity between the first film and the second film does not decrease.

回路や発光体の形成は、この第2膜を形成した後、その膜上に行なう。これらは、直接第2膜に接触するように設けてもよいし、第2膜のさらに上に何らかの透光性の高い処理層などを介して設けてもよい。また、回路や発光体を設ける箇所は、第1膜の上でも構わない。この際には、第2膜を重ねられないために、第2膜を形成する際にマスクなどを用いる必要がある。   The circuit and the light emitter are formed on the film after the second film is formed. These may be provided so as to be in direct contact with the second film, or may be provided further on the second film via some highly translucent processing layer. Further, the place where the circuit and the light emitter are provided may be on the first film. At this time, since the second film cannot be overlaid, it is necessary to use a mask or the like when forming the second film.

ベースについては、ある程度の平面度とすることが可能で、膜、回路や発光体などを形成できる熱伝導性の高い材料であれば問わない。具体的には銅板、アルミ板、カーボン板、カーボンファイバー板、タングステン板などが挙げられる。
The base may have a certain degree of flatness and may be any material having high thermal conductivity that can form a film, a circuit, a light emitter, and the like. Specific examples include a copper plate, an aluminum plate, a carbon plate, a carbon fiber plate, and a tungsten plate.

(第1塗料の製法)
出発原料として、メチルトリエトキシシラン1(mol)、水0.1(mol)とpH調整剤としての酢酸少量を混合し、1時間室温にて攪拌混合した。
(Manufacturing method of the first paint)
As starting materials, 1 (mol) of methyltriethoxysilane, 0.1 (mol) of water and a small amount of acetic acid as a pH adjuster were mixed and stirred at room temperature for 1 hour.

ついで、30℃にて24時間の加水分解を行い、溶液を得た。   Subsequently, hydrolysis was performed at 30 ° C. for 24 hours to obtain a solution.

さらに、溶液に対して40体積%となるように、平均粒子径が2μmのAlN(窒化アルミニウム)粒子を混合し、さらに常温にてらいかい機を用いて10時間混合した。得られた溶液を塗料1号とする。
(第2の塗料の製法)
出発原料として、メチルトリエトキシシラン1(mol)、水0.1(mol)とpH調整剤としての酢酸少量を混合し、1時間室温にて攪拌混合した。
Furthermore, AlN (aluminum nitride) particles having an average particle diameter of 2 μm were mixed so as to be 40% by volume with respect to the solution, and further mixed for 10 hours at a room temperature using a mechanical machine. The resulting solution is designated as Paint No. 1.
(Manufacturing method of the second paint)
As starting materials, 1 (mol) of methyltriethoxysilane, 0.1 (mol) of water and a small amount of acetic acid as a pH adjuster were mixed and stirred at room temperature for 1 hour.

ついで、80℃にて100時間の縮合反応処理を行い、溶液を得た。   Then, a condensation reaction treatment was performed at 80 ° C. for 100 hours to obtain a solution.

さらに、溶液に対して40体積%となるように、平均粒子径が2μmのTiO(酸化チタン)粒子を混合し、さらに常温にてらいかい機を用いて10時間混合した。得られた溶液を塗料2号とする。

(ベースへの被覆)
発光体および回路を保持するベースとして、板状のアルミニウム合金を選択した。アルミニウム合金は熱伝導率が極めて高く、安価であり、腐食しにくく、加工が容易である。
Furthermore, TiO 2 (titanium oxide) particles having an average particle diameter of 2 μm were mixed so as to be 40% by volume with respect to the solution, and further mixed for 10 hours at room temperature using a mechanical machine. The resulting solution is designated as Paint No. 2.

(Coating on base)
A plate-like aluminum alloy was selected as the base for holding the light emitter and the circuit. Aluminum alloys have extremely high thermal conductivity, are inexpensive, hardly corrode, and are easy to process.

このアルミニウムベースに塗料1号をスキージにて厚さ約100μm塗布した。   Paint No. 1 was applied to the aluminum base with a thickness of about 100 μm using a squeegee.

塗料1号を常温で24時間乾燥させた後、大気中120℃でさらに10分間乾燥させた。   Paint No. 1 was dried at room temperature for 24 hours, and then further dried at 120 ° C. in the atmosphere for 10 minutes.

乾燥後の塗料1号の塗布面に重ねて、塗料2号を厚さ約100μm塗布した。塗料2号を常温にて1日乾燥させたあと、さらに大気中120℃でさらに10分間乾燥させた。   The coating No. 2 was applied to a thickness of about 100 μm so as to overlap the coating surface of the coating No. 1 after drying. The paint No. 2 was dried at room temperature for 1 day, and further dried in the atmosphere at 120 ° C. for 10 minutes.

乾燥後に、大気雰囲気中でオーブンにて300℃まで加熱し、30分間保持した。この加熱により、塗料1号と塗料2号中の縮重合が完全に終了し、ベース表面にて2相の硬化膜が得られた。完全な乾燥および縮重合により塗布時点よりも塗料1号部分の第1膜、塗料2号部分の第2膜ともに収縮していた。第1膜および第2膜の厚さいずれも約80μmであった。メチルトリエトキシシランは、前記処理により、オルガノポリシロキサンであるメチルポリシロキサンとなっていた。

(回路パターンおよび発光体の実装)
前述のようにして得られた第1膜、第2膜を有する基盤に、図1に示すように銀製の回路パターンを印刷し、発光体としてはLED(発光ダイオード)素子を選択して、回路パターン上の通電経路に設けた。LED素子は一方の極は回路パターン上に乗っており、もう一方の極はボンディングにて回路の別の部分と導通している。この回路を電源と接続して、LED素子を発光させた。

(基板性能の評価)
得られた基板に以下の試験を行い評価した。
1.反射率測定
基板に対して積分球を用いて光反射率の測定を行なった。その結果、基板は可視光全域に対して92%の反射率を示した。
2.熱伝導試験
素子に対して合計10W/hrの電力をかけて、LED素子、基板、周囲の温度変化が見られなくなり、安定した時点で、LED素子の温度を測定した。
After drying, it was heated to 300 ° C. in an oven in an air atmosphere and held for 30 minutes. By this heating, the condensation polymerization in Paint No. 1 and Paint No. 2 was completely completed, and a two-phase cured film was obtained on the base surface. Due to complete drying and condensation polymerization, both the first film of the paint No. 1 part and the second film of the paint No. 2 part contracted from the time of application. The thicknesses of the first film and the second film were both about 80 μm. Methyltriethoxysilane was converted to methylpolysiloxane, an organopolysiloxane, by the above treatment.

(Circuit pattern and luminous body mounting)
A circuit pattern made of silver is printed on the substrate having the first film and the second film obtained as described above, as shown in FIG. 1, and an LED (light emitting diode) element is selected as a light emitter, and a circuit is formed. It was provided in the energization path on the pattern. The LED element has one pole on the circuit pattern, and the other pole is connected to another part of the circuit by bonding. This circuit was connected to a power source to cause the LED element to emit light.

(Evaluation of board performance)
The obtained substrate was evaluated by performing the following tests.
1. Reflectance measurement Light reflectance was measured using an integrating sphere on the substrate. As a result, the substrate showed a reflectance of 92% with respect to the entire visible light region.
2. Thermal conductivity test A total of 10 W / hr of electric power was applied to the device, and the temperature of the LED device was measured when the temperature of the LED device, the substrate, and the surroundings was not changed.

その結果、LED素子の温度は56℃で安定していた。この温度は、LED素子を連続で数万時間発光させた場合でも、素子に悪影響を及ぼさない程度の温度である。

(その他の実施例およびその評価)
以上に実施例として、本発明の実施の一形態を示した。
As a result, the temperature of the LED element was stable at 56 ° C. This temperature is a temperature that does not adversely affect the device even when the LED device is continuously lit for several tens of thousands of hours.

(Other examples and their evaluation)
As described above, an embodiment of the present invention has been shown as an example.

次に、本発明の範囲内で膜の組成および厚さを変えて同様の試験を行った。なお、第1フィラーおよび第2フィラーは、平均粒子径1〜10μmのものを用いた。   Next, the same test was conducted by changing the composition and thickness of the film within the scope of the present invention. In addition, the thing with an average particle diameter of 1-10 micrometers was used for the 1st filler and the 2nd filler.

Figure 0006088310
Figure 0006088310

Figure 0006088310
Figure 0006088310

表1には左から、第1膜の組成、第1膜の厚さ、第2膜の組成、第2膜の厚さを示している(後述の表3も同様)。   Table 1 shows, from the left, the composition of the first film, the thickness of the first film, the composition of the second film, and the thickness of the second film (the same applies to Table 3 described later).

また、表2には、表1で得られた基板の、可視光全域に対する反射率、LED素子の温度を示した(後述の表4も同様)。記載の無い実験条件は前記試験と同様である。   Table 2 shows the reflectance of the substrate obtained in Table 1 with respect to the entire visible light range and the temperature of the LED element (the same applies to Table 4 described later). Experimental conditions not described are the same as in the above test.

これらの結果から、本発明の発光体保持基板は、反射率が可視光に対して十分高いことが分かった。また、素子の温度上昇は最高でも60℃程度であり、使用に十分耐えることが分かった。
From these results, it was found that the light emitter holding substrate of the present invention has a sufficiently high reflectance with respect to visible light. Further, the temperature rise of the element was about 60 ° C. at the maximum, and it was found that the element could be sufficiently used.

(比較試料およびその評価)
本発明の範囲外の試料を比較のために同様の試験を行った。
(Comparative sample and its evaluation)
Samples outside the scope of the present invention were subjected to similar tests for comparison.

比較試料としては
(1)本発明の第1膜、第2膜と同様の膜材の厚さを変えたもの(比較試料11〜14)
(2)単一の塗料にて200μmの膜厚を形成したもの(比較試料21、22)
(3)本発明で使用した塗料ではなく、一般に用いられるエポキシ樹脂を用いたもの(比較試料31、32)
の3通りについて行なった。
As comparative samples: (1) Thicknesses of film materials similar to those of the first film and the second film of the present invention are changed (Comparative Samples 11 to 14)
(2) Thickness of 200 μm formed with a single paint (Comparative Samples 21 and 22)
(3) Those using generally used epoxy resin instead of the paint used in the present invention (Comparative Samples 31, 32)
It was performed about three ways.

表3に膜について、表4に評価結果を示す。   Table 3 shows the membrane, and Table 4 shows the evaluation results.

なお、表4に示す素子温度が99℃に達した試料は、その時点で試験を打ち切った。   In addition, the test for which the element temperature shown in Table 4 reached 99 ° C. was terminated at that time.

Figure 0006088310
Figure 0006088310

表3に記載の試料は、本発明の範囲外の比較試料である。
The samples listed in Table 3 are comparative samples outside the scope of the present invention.

Figure 0006088310
Figure 0006088310

表4に記載の試料は、本発明の範囲外の比較試料である。
The samples listed in Table 4 are comparative samples outside the scope of the present invention.

比較例11および比較例13は、第1膜または第2膜が厚すぎるために、放熱性が下がり、素子温度が80〜95℃と高くなった。そのために、半導体である素子寿命は落ち、人体などへの接触により火傷や発火の危険が生じる。   In Comparative Example 11 and Comparative Example 13, since the first film or the second film was too thick, the heat dissipation decreased and the element temperature increased to 80 to 95 ° C. For this reason, the lifetime of the element, which is a semiconductor, is reduced, and there is a risk of burns or ignition by contact with the human body.

比較例12は絶縁耐力が十分でなく、早期に発光が不安定となった。これは、絶縁耐力の高い第1膜が薄すぎることに起因する。また、第1膜が薄すぎるために、反射率が十分でなかった。   In Comparative Example 12, the dielectric strength was not sufficient, and light emission became unstable at an early stage. This is because the first film having a high dielectric strength is too thin. Moreover, since the 1st film | membrane was too thin, the reflectance was not enough.

比較例14は第2膜が薄すぎるために、十分な白色光が得られず、可視光反射率も上がらなかった。   In Comparative Example 14, since the second film was too thin, sufficient white light could not be obtained, and the visible light reflectance did not increase.

比較例21はフィラーがAlNの第1膜のみを150μmの厚さで設けた比較試料である。また、比較例22はフィラーがZrOの第2膜のみを同じく150μmの厚さで設けた比較試料である。 Comparative Example 21 is a comparative sample in which only the first film whose filler is AlN is provided with a thickness of 150 μm. Further, Comparative Example 22 is a comparative sample in which only the second film whose filler is ZrO 2 is similarly provided with a thickness of 150 μm.

比較例21は、放熱性は十分であったが、反射率および白色度は試料1〜10と比較して大幅に劣った。   Although the comparative example 21 had sufficient heat dissipation, the reflectance and whiteness were significantly inferior compared with the samples 1-10.

一方、比較例22は、反射率および白色度は十分であったが、十分な放熱性を得られなかった。   On the other hand, in Comparative Example 22, the reflectance and whiteness were sufficient, but sufficient heat dissipation was not obtained.

比較例31および比較例32は本発明に用いる第1膜、第2膜ではなく、エポキシ樹脂による膜をそれぞれ100μm、200μm被覆した比較試料である。可視光反射率は一定の性能を示したが、放熱が十分ではなく素子温度は使用直後から上昇した。また、絶縁耐圧が低いために、動作が不安定で使用できなかった。

(その他の実施例)
銅板のベース上に、試料1〜試料10の第1フィラーをAlNに、第2フィラーをh−BNと置き換え、他の条件は全て同等な発光体保持基板を得た。h−BNは紫外線全般の反射率が極めて高い。
Comparative Example 31 and Comparative Example 32 are not the first film and the second film used in the present invention, but comparative samples in which a film made of an epoxy resin is coated by 100 μm and 200 μm, respectively. The visible light reflectivity showed a certain performance, but the heat dissipation was not sufficient and the element temperature rose immediately after use. Further, since the withstand voltage is low, the operation is unstable and cannot be used.

(Other examples)
On the base of the copper plate, the first filler of Samples 1 to 10 was replaced with AlN, the second filler was replaced with h-BN, and the other phosphor-supporting substrates were obtained under the same conditions. h-BN has a very high reflectivity for all ultraviolet rays.

得られた基板に真空紫外線の発生装置および回路を設け、反射率と熱伝導率の測定を行なった。   A vacuum ultraviolet ray generator and circuit were provided on the obtained substrate, and the reflectance and thermal conductivity were measured.

本発明の発光体保持基板は温度上昇が最高で70℃、反射率が85%超であり、連続1000時間の使用後も全く不具合が発生しなかった。
The luminous body holding substrate of the present invention had a maximum temperature rise of 70 ° C. and a reflectance of more than 85%, and no defect occurred after 1000 hours of continuous use.

1 ベース
2 第1膜
3 第2膜
4 発光体
5 配線パターン
6 電源へ
1 Base 2 First film 3 Second film 4 Light emitter 5 Wiring pattern 6 To power supply

Claims (8)

ベース上に、ベースに近いほうから第1膜と、第1膜に重なる第2膜と、回路および発光体を有し、
前記第1膜は厚さが20〜200μmで、第1のオルガノポリシロキサン成分中に第1フィラーが分散した組成を有し、
前記第1フィラーは単体の熱伝導率が50W/m・K以上の粒子を含み、
前記第2膜は厚さが5〜100μmで、第2のオルガノポリシロキサン成分中に第2フィラーが分散した組成を有し、
前記第2フィラーは屈折率が1.75以上の粒子を含む
発光体保持基板。
On the base, the first film from the side closer to the base, the second film overlapping the first film, the circuit and the light emitter,
The first film has a thickness of 20 to 200 μm and a composition in which a first filler is dispersed in a first organopolysiloxane component,
The first filler includes particles having a single thermal conductivity of 50 W / m · K or more,
The second film has a thickness of 5 to 100 μm, and has a composition in which a second filler is dispersed in a second organopolysiloxane component,
The light emitting element holding substrate, wherein the second filler includes particles having a refractive index of 1.75 or more.
前記第1フィラーがAlN、ダイヤモンド、SiC、c−BNのいずれか1種または2種以上を含む請求項1に記載の発光体保持基板。   The light emitter holding substrate according to claim 1, wherein the first filler contains one or more of AlN, diamond, SiC, and c-BN. 前記第2フィラーがZrO、Y、h−BN、TiO、Nbのいずれか1種または2種以上を含む請求項1または請求項2のいずれか1項に記載の発光体保持基板。 The second filler according to ZrO 2, Y 2 O 3, h-BN, any one of claim 1 or claim 2 comprising any one or more of TiO 2, Nb 2 O 5 Emitter holding substrate. 前記第1のオルガノポリシロキサン成分と前記第2のオルガノポリシロキサン成分が同じオルガノポリシロキサン成分である請求項1から請求項3のいずれか1項に記載の発光体保持基板。   The light emitter holding substrate according to any one of claims 1 to 3, wherein the first organopolysiloxane component and the second organopolysiloxane component are the same organopolysiloxane component. 前記オルガノポリシロキサン成分が、オルガノアルコキシシランの脱水縮合物である請求項1から請求項4のいずれか1項に記載の発光体保持基板。   The light emitter holding substrate according to claim 1, wherein the organopolysiloxane component is a dehydration condensate of an organoalkoxysilane. 前記発光体は可視光、紫外線のいずれかを中心に発生する請求項1から請求項5のいずれか1項に記載の発光体保持基板。   The light emitter holding substrate according to any one of claims 1 to 5, wherein the light emitter is generated centering on either visible light or ultraviolet light. 少なくとも、
高熱伝導性を有する板状のベース上に第1樹脂成分中にフィラーである単体での熱伝導率が50W/m・K以上の粒子が分散した液状の塗料を塗布して乾燥させる工程、
乾燥後の前記塗料に重ねて、第2樹脂成分中にフィラーである屈折率が1.75以上の粒子が分散した液状の塗料を塗布して乾燥する工程、
前記2層の塗料を150〜300℃の範囲にて熱処理する工程、
回路および発光体を形成または装着する工程
とを含む発光体保持基板の製造方法。
at least,
A step of applying and drying a liquid paint in which particles having a thermal conductivity of 50 W / m · K or more as a single substance in the first resin component are dispersed on a plate-like base having high thermal conductivity;
A step of applying and drying a liquid paint in which particles having a refractive index of 1.75 or more as a filler are dispersed in the second resin component, overlaid on the dried paint;
A step of heat-treating the two-layer paint in a range of 150 to 300 ° C;
A method for manufacturing a light emitter holding substrate, comprising: forming or mounting a circuit and a light emitter.
前記第1樹脂成分がオルガノアルコキシシランを加水分解及び縮合して得られたオルガノポリシロキサン、
前記第2樹脂成分がオルガノアルコキシシランを加水分解及び縮合して得られたオルガノポリシロキサン
である、請求項7に記載の発光体保持基板の製造方法。
Organopolysiloxane obtained by hydrolyzing and condensing organoalkoxysilane as the first resin component,
The manufacturing method of the light-emitting body holding | maintenance board | substrate of Claim 7 whose said 2nd resin component is the organopolysiloxane obtained by hydrolyzing and condensing organoalkoxysilane.
JP2013060643A 2013-03-22 2013-03-22 Luminescent body holding substrate and manufacturing method thereof Active JP6088310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013060643A JP6088310B2 (en) 2013-03-22 2013-03-22 Luminescent body holding substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013060643A JP6088310B2 (en) 2013-03-22 2013-03-22 Luminescent body holding substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014187158A JP2014187158A (en) 2014-10-02
JP6088310B2 true JP6088310B2 (en) 2017-03-01

Family

ID=51834455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013060643A Active JP6088310B2 (en) 2013-03-22 2013-03-22 Luminescent body holding substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6088310B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060134A (en) * 2001-08-17 2003-02-28 Polymatech Co Ltd Heat conductive sheet
JP2009004718A (en) * 2007-05-18 2009-01-08 Denki Kagaku Kogyo Kk Metal base circuit board
JP2009152536A (en) * 2007-08-17 2009-07-09 Shinshu Univ Circuit board of electronic apparatus assuring highly efficient heat radiation, and electronic controller, computer system, electrical home appliance, and industrial apparatus product including the same
JP2010263165A (en) * 2009-05-11 2010-11-18 Mitsubishi Plastics Inc Reflective substrate for led, and light emitting device
EP2448026A4 (en) * 2009-06-26 2013-08-14 Asahi Rubber Inc White color reflecting material and process for production thereof
JP2012039067A (en) * 2010-01-29 2012-02-23 Nitto Denko Corp Heat-conductive sheet and light-emitting diode packaging substrate
JP2012243846A (en) * 2011-05-17 2012-12-10 Sumitomo Chemical Co Ltd Metal base circuit board and light emitting element

Also Published As

Publication number Publication date
JP2014187158A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
TWI666263B (en) Curable silicone composition, cured product thereof, and optical semiconductor device
US7393469B2 (en) High performance sol-gel spin-on glass materials
TWI407583B (en) Illumination device
US9708492B2 (en) LED device and coating liquid used for production of same
US8535808B2 (en) Heat dissipation coating agent and heat-dissipating plate including same
JP5733743B2 (en) Optical semiconductor device
KR101565660B1 (en) Light emitting diode
US9657922B2 (en) Electrically insulative coatings for LED lamp and elements
JP2007324475A (en) Wavelength conversion member and light emitting device
JP2010199145A (en) Light source equipment
JP7168615B2 (en) Optoelectronic component manufacturing method, and optoelectronic component
JP2005310756A (en) Light source module and vehicular headlight
WO2007034919A1 (en) Member for semiconductor light emitting device and method for manufacturing such member, and semiconductor light emitting device using such member
JP2011168627A (en) Wavelength converting member, method for manufacturing the same and light-emitting equipment using the same
TW200305598A (en) Optoelectronic semiconductor component
JP2014519540A (en) Coated phosphor and light emitting device including the same
JP2007126536A (en) Wavelength conversion member and light emitting device
TWI649903B (en) Slice white light emitting diode, preparing chip white light emitting diode Body method and package adhesive
JP5675248B2 (en) Light source device and lighting device
TW201032360A (en) Light source apparatus
EP2943722B1 (en) Protective coating for led lamp
WO2013137079A1 (en) Method for producing optical semiconductor device and optical semiconductor device
TW201700549A (en) Silicone material, curable silicone composition, and optical device
JP2016186063A (en) Curable resin composition and optical semiconductor device
JP2009224754A (en) Semiconductor light emitting device, lighting apparatus, and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170203

R150 Certificate of patent or registration of utility model

Ref document number: 6088310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150