JP6087686B2 - EGR device for engine - Google Patents

EGR device for engine Download PDF

Info

Publication number
JP6087686B2
JP6087686B2 JP2013064162A JP2013064162A JP6087686B2 JP 6087686 B2 JP6087686 B2 JP 6087686B2 JP 2013064162 A JP2013064162 A JP 2013064162A JP 2013064162 A JP2013064162 A JP 2013064162A JP 6087686 B2 JP6087686 B2 JP 6087686B2
Authority
JP
Japan
Prior art keywords
intake
egr
engine
temperature
wax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013064162A
Other languages
Japanese (ja)
Other versions
JP2014190171A (en
Inventor
小山 秀行
秀行 小山
寛 鍬崎
寛 鍬崎
長井 健太郎
健太郎 長井
智也 秋朝
智也 秋朝
秀隆 森永
秀隆 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2013064162A priority Critical patent/JP6087686B2/en
Publication of JP2014190171A publication Critical patent/JP2014190171A/en
Application granted granted Critical
Publication of JP6087686B2 publication Critical patent/JP6087686B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

本発明は、エンジンのEGR装置に関し、詳しくは、EGR率の調節に複雑な電子制御を必要としないエンジンのEGR装置に関する。   The present invention relates to an EGR device for an engine, and more particularly to an EGR device for an engine that does not require complicated electronic control for adjusting an EGR rate.

従来、エンジンのEGR装置として、排気経路がEGR経路で吸気経路に連通されたものがある(例えば、特許文献1参照)。   Conventionally, as an EGR device for an engine, there is one in which an exhaust path communicates with an intake path via an EGR path (see, for example, Patent Document 1).

この種のEGR装置によれば、排気の一部がEGRガスとして吸気に還流され、NOの発生が抑制される利点がある。 According to this type of EGR device, there is an advantage that a part of the exhaust gas is recirculated to the intake air as EGR gas, and NO X generation is suppressed.

しかし、この従来技術では、エンジン回転数やエンジン負荷を検出し、これらとEGR率との適正な相関関係を実験的に求めたマップや演算式に基づいて、電子制御装置でエンジン負荷に応じたEGR率の電子制御がなされているため、問題がある。   However, in this prior art, the engine speed and the engine load are detected, and the electronic control unit responds to the engine load based on a map and an arithmetic expression obtained by empirically obtaining an appropriate correlation between these and the EGR rate. There is a problem because the EGR rate is electronically controlled.

特開2005−273518号公報(図1、図2参照)Japanese Patent Laying-Open No. 2005-273518 (see FIGS. 1 and 2)

《問題点》 EGR率の調節に複雑な電子制御を必要とする。
エンジン回転数やエンジン負荷を検出し、これらとEGR率との適正な相関関係を実験的に求めたマップや演算式に基づいて、電子制御装置でエンジン負荷に応じたEGR率の電子制御がなされているため、EGR率の調節に複雑な電子制御を必要とする。
<< Problem >> Complex electronic control is required to adjust the EGR rate.
The electronic control of the EGR rate according to the engine load is performed by the electronic control unit based on a map or an arithmetic expression obtained by detecting the engine speed and the engine load and experimentally obtaining an appropriate correlation between them and the EGR rate. Therefore, complicated electronic control is required to adjust the EGR rate.

本発明の課題は、EGR率の調節に複雑な電子制御を必要としないエンジンのEGR装置を提供することにある。   An object of the present invention is to provide an EGR device for an engine that does not require complicated electronic control for adjusting the EGR rate.

請求項1に係る発明の発明特定事項は、次の通りである。
図3に例示するように、排気経路(1)がEGR経路(2)で吸気経路(3)に連通された、エンジンのEGR装置において、
図3に例示するように、エンジン放熱部(4)の放熱温度の昇降で変形する感温性変形部材(5)を備え、この感温性変形部品(5)に吸気経路(3)の吸気絞り弁(6)が連動連結され、
図1(A)(B)に例示するように、エンジン負荷の減少で、エンジン放熱部(4)の放熱温度が下降すると、感温性変形部品(5)が変形し、これに伴う出力部(5a)の変位で、吸気絞り弁(6)の開度が減少し、吸気経路(3)へのEGRガス(8)の吸い込み量が増加して、EGR率が増加するように構成されているとともに、
図1(A)(B)に例示するように、エンジン負荷の増加で、エンジン放熱部(4)の放熱温度が上昇すると、感温性変形部品(5)が変形し、これに伴う出力部(5a)の変位で、吸気絞り弁(6)の開度が増加し、吸気経路(3)へのEGRガス(8)の吸い込み量が減少して、EGR率が減少するように構成され、
図3に例示するように、前記エンジン放熱部(4)がシリンダヘッド(12)の壁面であり、EGR経路(2)がEGR導出パイプ(15)であり、EGR導出パイプ(15)は、シリンダヘッド(12)外で、排気経路(1)と吸気経路(3)の間に配置され、
吸気経路(1)を構成する吸気マニホルド(14)は、吸気入口(14a)と吸気コレクタ(14b)を備え、立形エンジンの平面視で、吸気コレクタ(14b)はクランク軸架設方向に伸び、
図3に例示するように、平面視で、シリンダヘッド(12)の幅方向を左右横方向として、吸気マニホルド(14)の左右両側のうち、シリンダヘッド(12)のある側とは反対側の横一側で、シリンダヘッド(12)外のEGR導出パイプ(15)が、吸気マニホルド(14)の吸気コレクタ(14b)に沿って設けられ、平面視で、このEGR導出パイプ(15)が吸気マニホルド(14)の吸気コレクタ(14b)のクランク軸架設方向の長さを越える長さで設けられている、ことを特徴とするエンジン。
Invention specific matters of the invention according to claim 1 are as follows.
As illustrated in FIG. 3, in an engine EGR device in which an exhaust path (1) is communicated with an intake path (3) by an EGR path (2),
As illustrated in FIG. 3, a temperature-sensitive deformation member (5) that is deformed by raising and lowering the heat radiation temperature of the engine heat radiation portion (4) is provided, and the intake air of the intake passage (3) is provided in the temperature-sensitive deformation component (5). The throttle valve (6) is linked and connected,
As illustrated in FIGS. 1 (A) and 1 (B), when the heat radiation temperature of the engine heat radiating section (4) decreases due to a decrease in engine load, the temperature-sensitive deformable component (5) is deformed, and the output section associated therewith. With the displacement (5a), the opening of the intake throttle valve (6) decreases, the amount of EGR gas (8) sucked into the intake passage (3) increases, and the EGR rate increases. And
As illustrated in FIGS. 1A and 1B, when the heat radiation temperature of the engine heat radiating section (4) rises due to an increase in engine load, the temperature-sensitive deformable component (5) is deformed, and the output section accompanying this. The displacement of (5a) increases the opening of the intake throttle valve (6), reduces the amount of EGR gas (8) sucked into the intake path (3), and decreases the EGR rate.
As illustrated in FIG. 3, the engine heat radiating section (4) is a wall surface of the cylinder head (12), the EGR path (2) is an EGR outlet pipe (15), and the EGR outlet pipe (15) is a cylinder Outside the head (12), it is arranged between the exhaust path (1) and the intake path (3) ,
The intake manifold (14) constituting the intake path (1) includes an intake inlet (14a) and an intake collector (14b), and the intake collector (14b) extends in a crankshaft erection direction in a plan view of the vertical engine.
As illustrated in FIG. 3, in the plan view, the width direction of the cylinder head (12) is the left and right lateral direction, and the left and right sides of the intake manifold (14) are opposite to the side where the cylinder head (12) is located. On one side, an EGR lead pipe (15) outside the cylinder head (12) is provided along the intake collector (14b) of the intake manifold (14). An engine characterized by being provided with a length that exceeds the length of the intake collector (14b) of the manifold (14) in the direction in which the crankshaft is erected.

(請求項1に係る発明)
請求項1に係る発明は、次の効果を奏する。
《効果》 EGR率の調節に複雑な電子制御を必要としない。
図1(A)(B)に例示するように、エンジン負荷の増減で、エンジン放熱部(4)の放熱温度が昇降すると、感温性変形部品(5)が変形し、これに伴う出力部(5a)の変位で、吸気絞り弁(6)の開度が増減し、吸気経路(3)へのEGRガス(8)の吸い込み量が増減して、EGR率が増減するように構成されているので、EGR率の調節に複雑な電子制御を必要としない。
(Invention of Claim 1)
The invention according to claim 1 has the following effects.
<Effect> Complex electronic control is not required to adjust the EGR rate.
As illustrated in FIGS. 1 (A) and 1 (B), when the heat radiation temperature of the engine heat radiating section (4) rises or falls due to the increase or decrease of the engine load, the temperature sensitive deformable component (5) is deformed, and the output section accompanying this The displacement of (5a) increases or decreases the opening of the intake throttle valve (6), increases or decreases the amount of EGR gas (8) sucked into the intake passage (3), and increases or decreases the EGR rate. Therefore, complicated electronic control is not required for adjusting the EGR rate.

《効果》 低負荷運転時には、NOの発生を抑制することができる。
図1(A)(B)に例示するように、エンジン負荷の減少で、エンジン放熱部(4)の放熱温度が下降すると、感温性変形部品(5)が変形し、これに伴う出力部(5a)の変位で、吸気絞り弁(6)の開度が減少し、吸気経路(3)へのEGRガス(8)の吸い込み量が増加して、EGR率が増加するように構成されているので、低負荷運転時には、NOの発生を抑制することができる。
<Effect> It is possible to suppress the generation of NO X during low load operation.
As illustrated in FIGS. 1 (A) and 1 (B), when the heat radiation temperature of the engine heat radiating section (4) decreases due to a decrease in engine load, the temperature-sensitive deformable component (5) is deformed, and the output section associated therewith. With the displacement (5a), the opening of the intake throttle valve (6) decreases, the amount of EGR gas (8) sucked into the intake passage (3) increases, and the EGR rate increases. Therefore, NO X generation can be suppressed during low-load operation.

《効果》 高負荷運転時には、PMの発生が抑制される。
図1(A)(B)に例示するように、エンジン負荷の増加で、エンジン放熱部(4)の放熱温度が上昇すると、感温性変形部品(5)が変形し、これに伴う出力部(5a)の変位で、吸気絞り弁(6)の開度が増加し、吸気経路(3)へのEGRガス(8)の吸い込み量が減少して、EGR率が減少するように構成されているので、高負荷運転時には、不完全燃焼が抑制され、PMの発生が抑制される。
<Effect> PM generation is suppressed during high-load operation.
As illustrated in FIGS. 1A and 1B, when the heat radiation temperature of the engine heat radiating section (4) rises due to an increase in engine load, the temperature-sensitive deformable component (5) is deformed, and the output section accompanying this. With the displacement (5a), the opening of the intake throttle valve (6) increases, the amount of EGR gas (8) sucked into the intake passage (3) decreases, and the EGR rate decreases. Therefore, during high-load operation, incomplete combustion is suppressed and PM generation is suppressed.

(請求項2に係る発明)
請求項2に係る発明は、請求項1に係る発明の効果に加え、次の効果を奏する。
《効果》 バッテリや商用電源等の給電装置がない場合でもEGR率の調節を行うことができる。
図1(A)(B)に例示するように、エンジン負荷の増減で、エンジン放熱部(4)の放熱温度が昇降すると、ワックスペレット(7b)内のワックス(7c)の液体と固体間の相変化で、ワックスペレット型変形部品(7)が伸縮変形し、これに伴う出力ロッド(7c)の変位で、吸気絞り弁(6)の開度が増減し、吸気経路(3)へのEGRガス(8)の吸い込み量が増減して、EGR率が増減するので、バッテリや商用電源等の給電装置がない場合でもEGR率の調節を行うことができる。
(Invention of Claim 2)
The invention according to claim 2 has the following effect in addition to the effect of the invention according to claim 1.
<Effect> The EGR rate can be adjusted even when there is no power supply device such as a battery or a commercial power source.
As illustrated in FIGS. 1 (A) and 1 (B), when the heat release temperature of the engine heat dissipating part (4) rises and falls as the engine load increases and decreases, the liquid between the wax (7c) and the solid in the wax pellet (7b) is increased. Due to the phase change, the wax pellet type deformable part (7) expands and contracts, and the displacement of the output rod (7c) accompanying this causes the opening degree of the intake throttle valve (6) to increase or decrease, and EGR to the intake path (3) Since the amount of gas (8) sucked up and down increases and the EGR rate increases and decreases, the EGR rate can be adjusted even when there is no power supply device such as a battery or a commercial power source.

本発明の実施形態に係るエンジンのEGR装置を説明する図で、図1(A)はシリンダヘッド放熱温度低温時の感温性変形部品と吸気絞り弁の状態を示す模式図、図1(B)はシリンダヘッド放熱温度高温時の感温性変形部品と吸気絞り弁の状態を示す模式図である。FIG. 1A is a diagram for explaining an EGR device for an engine according to an embodiment of the present invention. FIG. 1A is a schematic diagram showing states of a temperature-sensitive deformable part and an intake throttle valve when the cylinder head heat radiation temperature is low, and FIG. ) Is a schematic diagram showing the state of the temperature-sensitive deformable component and the intake throttle valve when the cylinder head heat dissipation temperature is high. 本発明の実施形態に係るエンジンのEGR装置の制御特性を説明するグラフで、図2(A)はシリンダヘッド放熱温度に対する吸気絞り弁の開度の制御特性、図2(B)はシリンダヘッド放熱温度に対するEGR率の制御特性をそれぞれ示している。2A and 2B are graphs for explaining the control characteristics of the engine EGR device according to the embodiment of the present invention. FIG. 2A is a control characteristic of the opening degree of the intake throttle valve with respect to the cylinder head heat release temperature, and FIG. The control characteristic of the EGR rate with respect to temperature is shown, respectively. 本発明の実施形態に係るEGR装置を備えたエンジンの模式平面図である。1 is a schematic plan view of an engine provided with an EGR device according to an embodiment of the present invention. 本発明の参考形態に係るエンジンのEGR装置を説明する図で、図4(A)は排気マニホルド放熱温度低温時の感温性変形部品と吸気絞り弁の状態を示す模式図、図4(B)は排気マニホルド放熱温度高温時の感温性変形部品と吸気絞り弁の状態を示す模式図である。FIG. 4A is a diagram for explaining an engine EGR device according to a reference embodiment of the present invention, and FIG. 4A is a schematic diagram showing a state of a temperature-sensitive deformable component and an intake throttle valve when the exhaust manifold heat radiation temperature is low, and FIG. ) Is a schematic diagram showing the state of the temperature-sensitive deformable part and the intake throttle valve when the exhaust manifold heat radiation temperature is high. 本発明の参考形態に係るエンジンのEGR装置の制御特性を説明するグラフで、図5(A)は排気マニホルド放熱温度に対する吸気絞り弁の開度の制御特性、図5(B)は排気マニホルド放熱温度に対するEGR率の制御特性をそれぞれ示している。FIG. 5A is a graph for explaining control characteristics of an engine EGR device according to a reference embodiment of the present invention. FIG. 5A is a control characteristic of the opening degree of the intake throttle valve with respect to the exhaust manifold heat radiation temperature, and FIG. The control characteristic of the EGR rate with respect to temperature is shown, respectively. 本発明の参考形態に係るEGR装置を備えたエンジンを説明する図で、図6(A)はエンジンの模式平面図、図6(B)は熱電素子デバイスの横断平面図である。FIG. 6A is a schematic plan view of the engine, and FIG. 6B is a cross-sectional plan view of a thermoelectric device. FIG. 6A is a diagram illustrating an engine including an EGR device according to a reference embodiment of the present invention.

図1〜図3は本発明の実施形態に係るエンジンのEGR装置を説明する図、図4〜図6は本発明の参考形態に係るエンジンのEGR装置を説明する図であり、各実施形態と参考形態では、立形の直列多気筒ディーゼルエンジンのEGR装置について説明する。 FIG, 4 to 6 1 to 3 for explaining the EGR device for an engine according to an embodiment of the present invention is a diagram for explaining the EGR device for an engine according to the reference embodiment of the present invention, and the embodiments In the reference embodiment , an EGR device for a vertical in-line multi-cylinder diesel engine will be described.

まず、実施形態について説明する。
図3に示すように、このエンジンの概要は、次の通りである。
このエンジンは立形の直列4気筒エンジンで、シリンダブロック(11)の上部にシリンダヘッド(12)が組み付けられ、シリンダヘッド(12)の横一側に排気マニホルド(13)が組み付けられ。横他側に吸気マニホルド(14)が組み付けられている。このエンジンにはEGR装置が組み付けられている。
First, an embodiment will be described.
As shown in FIG. 3, the outline of this engine is as follows.
This engine is a vertical in-line four-cylinder engine. A cylinder head (12) is assembled to the upper part of a cylinder block (11), and an exhaust manifold (13) is assembled to one side of the cylinder head (12). An intake manifold (14) is assembled on the other side. An EGR device is assembled to this engine.

EGR装置の概要は、次の通りである。
図3に示すように、排気経路(1)がEGR経路(2)で吸気経路(3)に連通されている。
排気経路(1)は排気マニホルド(13)、EGR経路(2)はEGR導出パイプ(15)、吸気経路(3)は吸気マニホルド(14)である。排気マニホルド(13)は、4本の排気ブランチ(13a)とクランク軸架設方向に伸びた排気コレクタ(13b)と排気出口(13c)とを備えている。吸気マニホルド(14)は、吸気入口(14a)とクランク軸架設方向に伸びた吸気コレクタ(14b)と4本の吸気ブランチ(14c)とを備えている。吸気入口(14a)は吸気コレクタ(14b)の前端部に設けられている。EGR導出パイプ(15)は金属パイプで、パイプ入口(15a)が排気マニホルド(13)のコレクタ(13b)の後端部に接続され、パイプ出口(15b)が吸気マニホルド(14)の吸気入口(14a)に接続されている。EGR導出パイプ(15)には多数の放熱フィン(15c)が設けられている。EGR経路(2)にはEGRバルブは設けられておらず、排気経路(1)と吸気経路(3)はEGR経路(2)で常に連通状態とされ、排気経路(1)と吸気経路(3)の差圧により、吸気経路(3)にEGRガス(8)が吸い込まれる。
The outline of the EGR device is as follows.
As shown in FIG. 3, the exhaust path (1) communicates with the intake path (3) through the EGR path (2).
The exhaust path (1) is an exhaust manifold (13), the EGR path (2) is an EGR lead pipe (15), and the intake path (3) is an intake manifold (14). The exhaust manifold (13) includes four exhaust branches (13a), an exhaust collector (13b) extending in the crankshaft installation direction, and an exhaust outlet (13c). The intake manifold (14) includes an intake inlet (14a), an intake collector (14b) extending in the crankshaft erection direction, and four intake branches (14c). The intake inlet (14a) is provided at the front end of the intake collector (14b). The EGR outlet pipe (15) is a metal pipe, the pipe inlet (15a) is connected to the rear end of the collector (13b) of the exhaust manifold (13), and the pipe outlet (15b) is the intake inlet (14) of the intake manifold (14). 14a). The EGR lead pipe (15) is provided with a number of heat radiation fins (15c). The EGR path (2) is not provided with an EGR valve, the exhaust path (1) and the intake path (3) are always in communication with each other through the EGR path (2), and the exhaust path (1) and the intake path (3 ), The EGR gas (8) is sucked into the intake passage (3).

このエンジンは、エンジン放熱部(4)の放熱温度の昇降で変形する感温性変形部材(5)を備えている。
図3に示すように、エンジン放熱部(4)に感温性変形部品(5)が取り付けられ、この感温性変形部品(5)に吸気経路(3)の吸気絞り弁(6)が連動連結されている。
図1(A)(B)に示すように、エンジン負荷の減少で、エンジン放熱部(4)の放熱温度が下降すると、感温性変形部品(5)が変形し、これに伴う出力部(5a)の変位で、吸気絞り弁(6)の開度が減少し、吸気経路(3)へのEGRガス(8)の吸い込み量が増加して、EGR率が増加するように構成されている。
図1(A)(B)に示すように、エンジン負荷の増加で、エンジン放熱部(4)の放熱温度が上昇すると、感温性変形部品(5)が変形し、これに伴う出力部(5a)の変位で、吸気絞り弁(6)の開度が増加し、吸気経路(3)へのEGRガス(8)の吸い込み量が減少して、EGR率が減少するように構成されている。
This engine includes a temperature-sensitive deformation member (5) that is deformed by raising and lowering the heat radiation temperature of the engine heat radiation portion (4).
As shown in FIG. 3, a temperature-sensitive deformable part (5) is attached to the engine heat dissipating part (4), and the intake throttle valve (6) of the intake passage (3) is interlocked with the temperature-sensitive deformable part (5). It is connected.
As shown in FIGS. 1 (A) and 1 (B), when the heat radiation temperature of the engine heat radiating section (4) decreases due to a decrease in engine load, the temperature-sensitive deformable component (5) is deformed, and the output section ( With the displacement 5a), the opening of the intake throttle valve (6) decreases, the amount of EGR gas (8) sucked into the intake passage (3) increases, and the EGR rate increases. .
As shown in FIGS. 1 (A) and 1 (B), when the heat radiation temperature of the engine heat radiating section (4) rises due to an increase in engine load, the temperature sensitive deformable component (5) is deformed, and the output section ( With the displacement 5a), the opening degree of the intake throttle valve (6) increases, the amount of EGR gas (8) sucked into the intake passage (3) decreases, and the EGR rate decreases. .

エンジン放熱部(4)はシリンダヘッド(12)の壁面である。吸気絞り弁(6)はバタフライ弁であり、吸気マニホルド(14)の吸気入口(14a)に配置され、その下流側にEGR導出パイプ(15)のパイプ出口(15b)が開口されている。
EGR導出パイプ(15)は、シリンダヘッド(12)外で、排気経路(1)と吸気経路(3)の間に配置されている。
吸気経路(1)を構成する吸気マニホルド(14)は、吸気入口(14a)と吸気コレクタ(14b)を備え、立形エンジンの平面視で、吸気コレクタ(14b)はクランク軸架設方向に伸びている。
平面視で、シリンダヘッド(12)の幅方向を左右横方向として、吸気マニホルド(14)の左右両側のうち、シリンダヘッド(12)のある側とは反対側の横一側で、シリンダヘッド(12)外のEGR導出パイプ(15)が、吸気マニホルド(14)の吸気コレクタ(14b)に沿って設けられ、平面視で、このEGR導出パイプ(15)が吸気マニホルド(14)の吸気コレクタ(14b)のクランク軸架設方向の長さを越える長さで設けられている。

The engine heat radiation part (4) is a wall surface of the cylinder head (12). The intake throttle valve (6) is a butterfly valve, which is disposed at the intake inlet (14a) of the intake manifold (14), and the pipe outlet (15b) of the EGR outlet pipe (15) is opened downstream thereof.
The EGR lead pipe (15) is disposed outside the cylinder head (12) and between the exhaust path (1) and the intake path (3).
The intake manifold (14) constituting the intake path (1) includes an intake inlet (14a) and an intake collector (14b), and the intake collector (14b) extends in the crankshaft erection direction in a plan view of the vertical engine. Yes.
In the plan view, the cylinder head (12) is set to the left and right lateral direction, and the left and right sides of the intake manifold (14) are arranged on one side opposite to the side where the cylinder head (12) is located. 12) An outer EGR lead pipe (15) is provided along the intake collector (14b) of the intake manifold (14), and the EGR lead pipe (15) is seen in plan view from the intake collector (14) of the intake manifold (14). 14b) is provided with a length exceeding the length of the crankshaft erection direction.

図1(A)(B)に示すように、感温性変形部品(5)として、ワックスペレット型変形部品(7)が用いられ、このワックスペレット型変形部品(7)は、本体(7a)に出力ロッド(7c)が挿入され、本体(7a)にワックスペレット(7b)が収容され、ワックスペレット(7b)に出力ロッド(7c)が連結されている。
図1(A)(B)に示すように、エンジン負荷の減少で、エンジン放熱部(4)の放熱温度が下降すると、ワックスペレット(7b)内のワックス(7d)の液体から固体への相変化で、ワックスペレット型変形部品(7)が縮小変形し、これに伴う本体(7a)への出力ロッド(7c)の引き込み変位で、吸気絞り弁(6)の開度が減少し、吸気経路(3)へのEGRガス(8)の吸い込み量が増加して、EGR率が増加するように構成されている。
図1(B)に示すように、エンジン負荷の増加で、エンジン放熱部(4)の放熱温度が上昇すると、ワックスペレット(7b)内のワックス(7d)の固体から液体への相変化で、ワックスペレット型変形部品(7)が伸長変形し、これに伴う本体(7a)への出力ロッド(7c)の押し出し変位で、吸気絞り弁(6)の開度が増加し、吸気経路(3)へのEGRガス(8)の吸い込み量が減少して、EGR率が減少するように構成されている。
As shown in FIGS. 1A and 1B, a wax pellet type deformable part (7) is used as the temperature sensitive deformable part (5). The wax pellet type deformable part (7) is composed of a main body (7a). The output rod (7c) is inserted into the main body (7a), the wax pellet (7b) is accommodated in the main body (7a), and the output rod (7c) is connected to the wax pellet (7b).
As shown in FIGS. 1 (A) and 1 (B), when the heat release temperature of the engine heat radiating section (4) decreases due to a decrease in engine load, the phase of the wax (7d) in the wax pellet (7b) from liquid to solid phase is reduced. With the change, the wax pellet type deformable part (7) is contracted and deformed, and the opening rod of the intake throttle valve (6) is decreased by the pulling displacement of the output rod (7c) to the main body (7a). The amount of EGR gas (8) sucked into (3) is increased, and the EGR rate is increased.
As shown in FIG. 1B, when the heat release temperature of the engine heat radiating section (4) rises due to an increase in engine load, the phase change from the solid of the wax (7d) in the wax pellet (7b) to the liquid, The wax pellet type deformable part (7) is extended and deformed, and as a result, the displacement of the output rod (7c) to the main body (7a) increases the opening of the intake throttle valve (6), and the intake path (3) The amount of the EGR gas (8) sucked into the gas is reduced, and the EGR rate is reduced.

ワックスペレット型変形部品(7)の具体的構造は、次の通りである。
図1(A)(B)に示すように、本体(7a)の端壁(7e)にスピンドル(7f)が取り付けられ、このスピンドル(7f)がワックスペレット(7b)に差し込まれ、スピンドル(7f)がゴム筒(7g)で取り囲まれ、ゴム筒(7g)がワックス(7d)に取り囲まれている。ワックスペレット(7b)は付勢バネ(7h)の付勢力(7i)で出力ロッド引き込み側に付勢されている。ワックス(7d)の液体から固体への相変化で、図1(A)に示すように、ワックス(7d)の体積は小さくなり、ワックスペレット(7b)は付勢バネ(7h)の付勢力(7i)で出力ロッド引き込み側に位置するが、ワックス(7d)の固体から液体への相変化で、図1(B)に示すように、ワックス(7d)の体積が増加し、ワックス(7d)でゴム筒(7g)が周囲から圧迫されると、スピンドル(7f)の先端部(7j)とワックスペレット(7b)の前端壁(7k)との間にゴム筒(7g)の圧搾部(7m)が形成され、ワックスペレット(7b)がスピンドル(7f)から抜け出す方向に移動し、ワックスペレット(7b)が出力ロッド押し出し側に位置する。
The specific structure of the wax pellet type deformable part (7) is as follows.
As shown in FIGS. 1A and 1B, a spindle (7f) is attached to an end wall (7e) of a main body (7a), and the spindle (7f) is inserted into a wax pellet (7b). ) Is surrounded by a rubber cylinder (7g), and the rubber cylinder (7g) is surrounded by wax (7d). The wax pellet (7b) is urged toward the output rod retracting side by the urging force (7i) of the urging spring (7h). As a result of the phase change of the wax (7d) from liquid to solid, as shown in FIG. 1 (A), the volume of the wax (7d) is reduced, and the wax pellet (7b) is biased by the biasing spring (7h) ( 7i), the volume of the wax (7d) increases as shown in FIG. 1 (B) due to the phase change of the wax (7d) from the solid to the liquid. When the rubber cylinder (7g) is pressed from the periphery, the pressing part (7m) of the rubber cylinder (7g) is placed between the front end (7j) of the spindle (7f) and the front end wall (7k) of the wax pellet (7b). ) Is formed, and the wax pellet (7b) moves in the direction of coming out of the spindle (7f), and the wax pellet (7b) is positioned on the output rod extrusion side.

EGR装置の制御特性は、次の通りである。
エンジン負荷の減少で、シリンダヘッド放熱温度が下降すると、図2(A)に示すように、吸気絞り弁(6)の開度が減少し、吸気経路(3)へのEGRガス(8)の吸い込み量が増加して、図2(B)に示すように、EGR率が増加する。
エンジン負荷の増加で、シリンダヘッド放熱温度が上昇すると、図2(A)に示すように、吸気絞り弁(6)の開度が増加し、図2(B)に示すように、吸気経路(3)へのEGRガス(8)の吸い込み量が減少して、EGR率が減少する。
The control characteristics of the EGR device are as follows.
When the cylinder head heat radiation temperature decreases due to a decrease in engine load, the opening of the intake throttle valve (6) decreases as shown in FIG. 2 (A), and the EGR gas (8) flows into the intake path (3). The amount of suction increases, and the EGR rate increases as shown in FIG.
When the cylinder head heat release temperature rises due to an increase in engine load, the opening of the intake throttle valve (6) increases as shown in FIG. 2 (A), and the intake path ( The amount of EGR gas (8) sucked into 3) decreases, and the EGR rate decreases.

次に、参考形態について説明する。
参考形態は、次の点を除き、実施形態と同一に構成されている。図4(A)(B)、図6(A)(B)中、実施形態と同一の要素には図1(A)(B)、図3と同一の符号を付しておく。
図6(A)に示すように、エンジン放熱部(4)に熱電素子デバイス(9)が取り付けられ、この熱電素子デバイス(9)に電動アクチュエータ(10)が接続され、この電動アクチュエータ(10)に吸気経路(3)の吸気絞り弁(6)が連動連結されている。
図4(A)(B)に示すように、エンジン負荷の減少で、エンジン放熱部(4)の放熱温度が下降すると、熱電素子デバイス(9)の発電量が減少し、これに伴う電動アクチュエータ(10)の出力部(10a)の変位で、吸気絞り弁(6)の開度が減少し、吸気経路(3)へのEGRガス(8)の吸い込み量が増加して、EGR率が増加するように構成されている。
図4(A)(B)に示すように、エンジン負荷の増加で、エンジン放熱部(4)の放熱温度が上昇すると、熱電素子デバイス(9)の発電量が増加し、これに伴う電動アクチュエータ(10)の出力部(10a)の変位で、吸気絞り弁(6)の開度が増加し、吸気経路(3)へのEGRガス(8)の吸い込み量が減少して、EGR率が減少するように構成されている。
Next, a reference form will be described.
The reference form is configured the same as the embodiment except for the following points. Figure 4 (A) (B), in FIG. 6 (A) (B), FIG. 1, the same elements as the embodiment (A) (B), previously designated by the same reference numerals as in FIG. 3.
As shown in FIG. 6 (A), a thermoelectric element device (9) is attached to the engine heat dissipation section (4), and an electric actuator (10) is connected to the thermoelectric element device (9). Further, the intake throttle valve (6) of the intake path (3) is linked and connected.
As shown in FIGS. 4 (A) and 4 (B), when the heat radiation temperature of the engine heat radiating section (4) decreases due to a decrease in engine load, the power generation amount of the thermoelectric device (9) decreases, and the electric actuator associated therewith. Due to the displacement of the output part (10a) of (10), the opening of the intake throttle valve (6) decreases, the amount of EGR gas (8) sucked into the intake path (3) increases, and the EGR rate increases. Is configured to do.
As shown in FIGS. 4 (A) and 4 (B), when the heat radiation temperature of the engine heat radiating section (4) rises due to an increase in engine load, the power generation amount of the thermoelectric device (9) increases, and the electric actuator associated therewith Due to the displacement of the output part (10a) of (10), the opening of the intake throttle valve (6) increases, the amount of EGR gas (8) sucked into the intake path (3) decreases, and the EGR rate decreases. Is configured to do.

各構成要素の内容は、次の通りである。
図6(A)に示すように、エンジン放熱部(4)は排気マニホルド(13)の排気コレクタ(13b)の壁面である。熱電素子デバイス(9)はベーゼック素子デバイスである。図4(A)(B)に示すように、電動アクチュエータ(10)は電磁ソレノイド(16)で、本体(16a)に出力ロッド(16b)が差し込まれ、本体(16a)内で出力ロッド(16b)が電磁コイル(16c)に取り囲まれ、出力ロッド(16b)が付勢バネ(16d)の付勢力(16e)で本体(16a)への出力ロッド引き込み方向に付勢されている。熱電素子デバイス(9)の発電量が減少すると、本体(16a)からの出力ロッド(16b)の押し出し力が低下して、図4(A)に示すように、本体(16a)に出力ロッド(16b)が引き込まれ、出力ロッド(16b)の引き込み変位で、吸気絞り弁(6)の開度が減少し、吸気経路(3)へのEGRガス(8)の吸い込み量が増加して、EGR率が増加する。熱電素子デバイス(9)の発電量が増加すると、本体(16a)からの出力ロッド(16b)の押し出し力が増加して、図4(B)に示すように、本体(16a)から出力ロッド(16b)が押し出され、出力ロッド(16b)の押し出し変位で、吸気絞り弁(6)の開度が増加し、吸気経路(3)へのEGRガス(8)の吸い込み量が減少して、EGR率が減少する。
The contents of each component are as follows.
As shown in FIG. 6A, the engine heat radiating section (4) is a wall surface of the exhaust collector (13b) of the exhaust manifold (13). The thermoelectric device (9) is a Bezek device. 4 (A) and 4 (B), the electric actuator (10) is an electromagnetic solenoid (16), and an output rod (16b) is inserted into the main body (16a), and the output rod (16b) is inserted into the main body (16a). ) Is surrounded by the electromagnetic coil (16c), and the output rod (16b) is urged in the direction of drawing the output rod into the main body (16a) by the urging force (16e) of the urging spring (16d). When the power generation amount of the thermoelectric device (9) decreases, the pushing force of the output rod (16b) from the main body (16a) decreases, and as shown in FIG. 4 (A), the output rod ( 16b) is pulled, and the opening of the intake throttle valve (6) is decreased by the pulling displacement of the output rod (16b), the amount of EGR gas (8) sucked into the intake path (3) is increased, and EGR The rate increases. As the power generation amount of the thermoelectric device (9) increases, the pushing force of the output rod (16b) from the main body (16a) increases, and as shown in FIG. 4 (B), the output rod ( 16b) is pushed out, and the opening degree of the intake throttle valve (6) is increased by the pushing displacement of the output rod (16b), the amount of EGR gas (8) sucked into the intake passage (3) is reduced, and EGR The rate decreases.

図6(B)に示すように、熱電素子デバイス(9)は、ケース(9g)と、ケース(9g)の開口を塞いで取り付けられた低温側基板(9a)と、この低温側基板(9a)の内面に沿って設けられた低温側電極(9b)と、ケース(9g)の奥端面に沿って設けられた高温側基板(9c)と、この高温側基板(9c)の表面に沿って設けられた高温側電極(9d)と、この高温側電極(9d)と低温側電極(9b)との間に設けられた熱電素子(9e)とで構成され、ケース(9g)内は不活性ガスで満たされている。この熱電素子デバイス(9)は、高温側電極(9d)寄りのケース奥端壁(9f)をエンジン放熱部(4)に沿って取り付け、低温側電極(9b)寄りの低温側基板(9a)をエンジンルーム内に露出させている。熱電素子デバイス(9)では、高温側基板(9c)と低温側基板(9a)との温度差で、ベーセック効果によって発電がなされる。   As shown in FIG. 6B, the thermoelectric element device (9) includes a case (9g), a low-temperature side substrate (9a) attached by closing the opening of the case (9g), and the low-temperature side substrate (9a). ) On the low temperature side electrode (9b) provided along the inner surface, the high temperature side substrate (9c) provided along the back end surface of the case (9g), and the surface of the high temperature side substrate (9c). It is composed of a high temperature side electrode (9d) provided and a thermoelectric element (9e) provided between the high temperature side electrode (9d) and the low temperature side electrode (9b), and the inside of the case (9g) is inactive. Filled with gas. This thermoelectric device (9) has a case back end wall (9f) near the high temperature side electrode (9d) attached along the engine heat radiation part (4), and a low temperature side substrate (9a) near the low temperature side electrode (9b). Is exposed in the engine room. In the thermoelectric element device (9), power is generated by the Beseck effect due to the temperature difference between the high temperature side substrate (9c) and the low temperature side substrate (9a).

EGR装置の制御特性は、実施形態と同じである。
エンジン負荷の減少で、排気マニホルド放熱温度が下降すると、図5(A)に示すように、吸気絞り弁(6)の開度が減少し、吸気経路(3)へのEGRガス(8)の吸い込み量が増加して、図5(B)に示すように、EGR率が増加する。
エンジン負荷の増加で、排気マニホルド放熱温度が上昇すると、図5(A)に示すように、吸気絞り弁(6)の開度が増加し、吸気経路(3)へのEGRガス(8)の吸い込み量が減少して、図5(B)に示すように、EGR率が減少する。
参考形態に係る発明の効果は、次の通りである。
《効果》 EGR率の調節に複雑な電子制御を必要としない。
図4(A)(B)に例示するように、エンジン負荷の増減で、エンジン放熱部(4)の放熱温度が昇降すると、熱電素子デバイス(9)の発電量が増減し、これに伴うアクチュエータ(10)の出力部(10a)の変位で、吸気絞り弁(6)の開度が増減し、吸気経路(3)へのEGRガス(8)の吸い込み量が増減して、EGR率が増減するように構成されているので、EGR率の調節に複雑な電子制御を必要としない。
《効果》 低負荷運転時には、NO の発生を抑制することができる。
図4(A)(B)に例示するように、エンジン負荷の減少で、エンジン放熱部(4)の放熱温度が下降すると、熱電素子デバイス(9)の発電量が減少し、これに伴う電動アクチュエータ(10)の出力部(10a)の変位で、吸気絞り弁(6)の開度が減少し、吸気経路(3)へのEGRガス(8)の吸い込み量が増加して、EGR率が増加するように構成されているので、低負荷運転時には、NO の発生を抑制することができる。
《効果》 高負荷運転時には、PMの発生が抑制される。
図4(B)に例示するように、エンジン負荷の増加で、エンジン放熱部(4)の放熱温度が上昇すると、熱電素子デバイス(9)の発電量が増加し、これに伴う電動アクチュエータ(10)の出力部(10a)の変位で、吸気絞り弁(6)の開度が増加し、吸気経路(3)へのEGRガス(8)の吸い込み量が減少して、EGR率が減少するように構成されているので、高負荷運転時には、不完全燃焼が抑制され、PMの発生が抑制される。
The control characteristics of the EGR device are the same as in the embodiment .
When the exhaust manifold heat release temperature decreases due to a decrease in engine load, the opening of the intake throttle valve (6) decreases as shown in FIG. 5 (A), and the EGR gas (8) enters the intake path (3). The amount of suction increases and the EGR rate increases as shown in FIG.
When the exhaust manifold heat release temperature rises due to an increase in engine load, as shown in FIG. 5 (A), the opening of the intake throttle valve (6) increases, and the EGR gas (8) enters the intake path (3). The amount of suction decreases and the EGR rate decreases as shown in FIG.
The effects of the invention according to the reference form are as follows.
<Effect> Complex electronic control is not required to adjust the EGR rate.
As illustrated in FIGS. 4 (A) and 4 (B), when the heat dissipation temperature of the engine heat radiating section (4) rises and falls due to the increase / decrease in engine load, the power generation amount of the thermoelectric device (9) increases / decreases, and the accompanying actuator The displacement of the output part (10a) in (10) increases or decreases the opening of the intake throttle valve (6), increases or decreases the amount of EGR gas (8) sucked into the intake path (3), and increases or decreases the EGR rate. Therefore, complicated electronic control is not required for adjusting the EGR rate.
<Effect> It is possible to suppress the generation of NO X during low load operation .
As illustrated in FIGS. 4A and 4B, when the heat dissipation temperature of the engine heat radiating section (4) decreases due to a decrease in engine load, the amount of power generated by the thermoelectric device (9) decreases, and the electric Due to the displacement of the output part (10a) of the actuator (10), the opening of the intake throttle valve (6) decreases, the amount of EGR gas (8) sucked into the intake path (3) increases, and the EGR rate increases. Since it is configured to increase, NO X generation can be suppressed during low-load operation .
<Effect> PM generation is suppressed during high-load operation.
As illustrated in FIG. 4B, when the heat radiation temperature of the engine heat radiation portion (4) rises due to an increase in engine load, the power generation amount of the thermoelectric device (9) increases, and the electric actuator (10 ) Of the output portion (10a) increases the opening of the intake throttle valve (6), the amount of EGR gas (8) sucked into the intake passage (3) decreases, and the EGR rate decreases. Therefore, during high load operation, incomplete combustion is suppressed, and generation of PM is suppressed.

(1) 排気経路
(2) EGR経路
(3) 吸気経路
(4) エンジン放熱部
(5) 感温性変形部品
(5a) 出力部
(6) 吸気絞り弁
(7) ワックス内蔵部品
(7a) ワックス
(7b) 本体
(7c) 出力ロッド
(8) EGRガス
(9) 熱電素子デバイス
(10) 電動アクチュエータ
(10a) 出力部
(1) Exhaust route
(2) EGR route
(3) Intake route
(4) Engine heat radiation part
(5) Temperature sensitive deformation parts
(5a) Output section
(6) Inlet throttle valve
(7) Wax built-in parts
(7a) Wax
(7b) Body
(7c) Output rod
(8) EGR gas
(9) Thermoelectric device
(10) Electric actuator
(10a) Output section

Claims (2)

排気経路(1)がEGR経路(2)で吸気経路(3)に連通された、エンジンのEGR装置において、
エンジン放熱部(4)の放熱温度の昇降で変形する感温性変形部材(5)を備え、この感温性変形部品(5)に吸気経路(3)の吸気絞り弁(6)が連動連結され、
エンジン負荷の減少で、エンジン放熱部(4)の放熱温度が下降すると、感温性変形部品(5)が変形し、これに伴う出力部(5a)の変位で、吸気絞り弁(6)の開度が減少し、吸気経路(3)へのEGRガス(8)の吸い込み量が増加して、EGR率が増加するように構成されているとともに、
エンジン負荷の増加で、エンジン放熱部(4)の放熱温度が上昇すると、感温性変形部品(5)が変形し、これに伴う出力部(5a)の変位で、吸気絞り弁(6)の開度が増加し、吸気経路(3)へのEGRガス(8)の吸い込み量が減少して、EGR率が減少するように構成され、
前記エンジン放熱部(4)がシリンダヘッド(12)の壁面であり、EGR経路(2)がEGR導出パイプ(15)であり、EGR導出パイプ(15)は、シリンダヘッド(12)外で、排気経路(1)と吸気経路(3)の間に配置され、
吸気経路(1)を構成する吸気マニホルド(14)は、吸気入口(14a)と吸気コレクタ(14b)を備え、立形エンジンの平面視で、吸気コレクタ(14b)はクランク軸架設方向に伸び、
平面視で、シリンダヘッド(12)の幅方向を左右横方向として、吸気マニホルド(14)の左右両側のうち、シリンダヘッド(12)のある側とは反対側の横一側で、シリンダヘッド(12)外のEGR導出パイプ(15)が、吸気マニホルド(14)の吸気コレクタ(14b)に沿って設けられ、平面視で、このEGR導出パイプ(15)が吸気マニホルド(14)の吸気コレクタ(14b)のクランク軸架設方向の長さを越える長さで設けられている、ことを特徴とするエンジン。
In the engine EGR device in which the exhaust path (1) communicates with the intake path (3) by the EGR path (2).
A temperature-sensitive deformation member (5) that deforms by raising and lowering the heat radiation temperature of the engine heat radiation part (4) is provided, and the intake throttle valve (6) of the intake passage (3) is linked to this temperature-sensitive deformation part (5). And
When the heat radiation temperature of the engine heat radiating section (4) decreases due to the decrease in engine load, the temperature-sensitive deformable component (5) is deformed, and the displacement of the output section (5a) accompanying this causes the intake throttle valve (6) to move. The opening is decreased, the amount of EGR gas (8) sucked into the intake passage (3) is increased, and the EGR rate is increased.
When the heat dissipation temperature of the engine heat radiating section (4) rises due to an increase in engine load, the temperature-sensitive deformable part (5) is deformed, and the displacement of the output section (5a) accompanying this causes the intake throttle valve (6) to move. The opening is increased, the amount of EGR gas (8) sucked into the intake passage (3) is decreased, and the EGR rate is decreased.
The engine heat radiating section (4) is a wall surface of the cylinder head (12), the EGR path (2) is an EGR outlet pipe (15), and the EGR outlet pipe (15) is exhausted outside the cylinder head (12). Between the route (1) and the intake route (3) ,
The intake manifold (14) constituting the intake path (1) includes an intake inlet (14a) and an intake collector (14b), and the intake collector (14b) extends in a crankshaft erection direction in a plan view of the vertical engine.
In the plan view, the cylinder head (12) is set to the left and right lateral direction, and the left and right sides of the intake manifold (14) are arranged on one side opposite to the side where the cylinder head (12) is located. 12) An outer EGR lead pipe (15) is provided along the intake collector (14b) of the intake manifold (14), and the EGR lead pipe (15) is seen in plan view from the intake collector (14) of the intake manifold (14). The engine is provided with a length exceeding the length of the crankshaft erection direction of 14b).
請求項1に記載されたエンジンのEGR装置において、
感温性変形部品(5)として、ワックスペレット型変形部品(7)が用いられ、このワックスペレット型変形部品(7)は、本体(7a)に出力ロッド(7b)が挿入され、本体(7a)にワックスペレット(7b)が収容され、ワックスペレット(7b)に出力ロッド(7c)が連結され、
エンジン負荷の減少で、エンジン放熱部(4)の放熱温度が下降すると、ワックスペレット(7b)内のワックス(7c)の液体から固体への相変化で、ワックスペレット型変形部品(7)が縮小変形し、これに伴う本体(7b)への出力ロッド(7c)の引き込み変位で、吸気絞り弁(6)の開度が減少し、吸気経路(3)へのEGRガス(8)の吸い込み量が増加して、EGR率が増加するように構成されているとともに、
エンジン負荷の増加で、エンジン放熱部(4)の放熱温度が上昇すると、ワックスペレット(7b)内のワックス(7c)の固体から液体への相変化で、ワックスペレット型変形部品(7)が伸長変形し、これに伴う本体(7b)への出力ロッド(7c)の押し出し変位で、吸気絞り弁(6)の開度が増加し、吸気経路(3)へのEGRガス(8)の吸い込み量が減少して、EGR率が減少するように構成されている、ことを特徴とするエンジンのEGR装置。
The engine EGR device according to claim 1,
A wax pellet type deformable part (7) is used as the temperature sensitive deformable part (5). The wax pellet type deformable part (7) has an output rod (7b) inserted into the main body (7a), and the main body (7a ) Contains wax pellets (7b), and an output rod (7c) is connected to the wax pellets (7b).
When the heat radiation temperature of the engine heat radiation part (4) decreases due to the decrease in engine load, the wax pellet type deformable part (7) shrinks due to the phase change from liquid to solid of the wax (7c) in the wax pellet (7b). Due to the deformation, the pulling displacement of the output rod (7c) to the main body (7b) reduces the opening of the intake throttle valve (6), and the amount of EGR gas (8) sucked into the intake path (3) Is configured to increase the EGR rate,
When the heat dissipation temperature of the engine heat dissipation part (4) rises due to an increase in engine load, the wax pellet type deformable part (7) expands due to the phase change of the wax (7c) in the wax pellet (7b) from solid to liquid. Due to the deformation, the displacement of the output rod (7c) to the main body (7b) is increased, and the opening of the intake throttle valve (6) increases, and the amount of EGR gas (8) sucked into the intake passage (3). An EGR device for an engine, characterized in that the EGR rate decreases and the EGR rate decreases.
JP2013064162A 2013-03-26 2013-03-26 EGR device for engine Expired - Fee Related JP6087686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064162A JP6087686B2 (en) 2013-03-26 2013-03-26 EGR device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064162A JP6087686B2 (en) 2013-03-26 2013-03-26 EGR device for engine

Publications (2)

Publication Number Publication Date
JP2014190171A JP2014190171A (en) 2014-10-06
JP6087686B2 true JP6087686B2 (en) 2017-03-01

Family

ID=51836693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064162A Expired - Fee Related JP6087686B2 (en) 2013-03-26 2013-03-26 EGR device for engine

Country Status (1)

Country Link
JP (1) JP6087686B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6850250B2 (en) 2017-12-28 2021-03-31 株式会社クボタ Engine with EGR

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989153A (en) * 1995-09-27 1997-03-31 Giichi Kuze Thermo actuator
JPH1073053A (en) * 1996-06-24 1998-03-17 Toyota Autom Loom Works Ltd Intake throttle device
JP2004270632A (en) * 2003-03-11 2004-09-30 Yanmar Co Ltd Exhaust gas recirculation device for engine
JP2008163750A (en) * 2006-12-26 2008-07-17 Yanmar Co Ltd Engine

Also Published As

Publication number Publication date
JP2014190171A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
US7437925B2 (en) Intake system having a flow detecting device including a pressure receiving surface at the outflow passage of the bypass
US9506420B2 (en) External EGR rate feedback
JP5440806B2 (en) Intake device
WO2012176490A1 (en) Intake device for internal combustion engine with supercharger
US20140224226A1 (en) Charge air cooler control system and method
JP6087686B2 (en) EGR device for engine
JP2017227182A (en) diesel engine
Chen et al. Computational simulation of thermoelectric generators in marine power plants
EP2952711A1 (en) Device and method for controlling variable compression ratio internal combustion engine
US20180306097A1 (en) Coolant control systems and methods to prevent over temperature
CN103415680B (en) The warming-up of internal combustion engine promotes device
JP6115649B2 (en) Intake passage structure of internal combustion engine
US20120291519A1 (en) Method for adjusting flow measuring device
WO2008016426A3 (en) Power source thermal management and emissions reduction system
CN108882402A (en) Inlet air heating system for vehicle
US10557406B2 (en) System and method for regulating coolant flow through a charge air cooler of a vehicle
JP2008190337A (en) Engine
US20150167596A1 (en) Cooler for exhaust gas recirculation valve
CN101460337A (en) Structured component, in particular a shielding element in the form of a heat shield
JP2017145757A (en) Internal combustion engine control device
JP2011127614A (en) Cooling water control device for internal combustion engine
CN205534530U (en) Temperature -sensing valve and water heater
JP6514052B2 (en) Control device for internal combustion engine and throttle valve protection device
CN210639567U (en) Server case and server
CN203308612U (en) Coil structure of vacuum electromagnetic regulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170202

R150 Certificate of patent or registration of utility model

Ref document number: 6087686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees