JP6085751B2 - Curing state detection method and curing time calculation method - Google Patents

Curing state detection method and curing time calculation method Download PDF

Info

Publication number
JP6085751B2
JP6085751B2 JP2011251697A JP2011251697A JP6085751B2 JP 6085751 B2 JP6085751 B2 JP 6085751B2 JP 2011251697 A JP2011251697 A JP 2011251697A JP 2011251697 A JP2011251697 A JP 2011251697A JP 6085751 B2 JP6085751 B2 JP 6085751B2
Authority
JP
Japan
Prior art keywords
time
viscosity
curing
rotational speed
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011251697A
Other languages
Japanese (ja)
Other versions
JP2013108760A (en
Inventor
茂生 笹原
茂生 笹原
基男 須永
基男 須永
貴文 松田
貴文 松田
大野 康年
康年 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Fuji Chemical Co Ltd
Original Assignee
Toa Corp
Fuji Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp, Fuji Chemical Co Ltd filed Critical Toa Corp
Priority to JP2011251697A priority Critical patent/JP6085751B2/en
Publication of JP2013108760A publication Critical patent/JP2013108760A/en
Application granted granted Critical
Publication of JP6085751B2 publication Critical patent/JP6085751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えばグラウト剤等に適用可能な硬化状態検出方法及び硬化時間算出方法に関する。   The present invention relates to a curing state detection method and a curing time calculation method applicable to, for example, a grout agent.

従来、地盤改良のために、グラウト剤(硬化性注入液)が使用されている(特許文献1参照)。グラウト剤は、調製時はゾル状態であり、時間の経過とともに粘度が増してゆき、やがて硬化(ゲル化)する。グラウト剤を適切に使用するには、施工現場において、グラウト剤の硬化時間を簡便に測定する必要がある。その方法として、次の方法が知られている。ゾル状態のグラウト剤中に、回転翼やロータを浸漬し、一定の回転数で継続的に回転させる。グラウト剤の粘度が時間の経過とともに増加すると、それに応じて、回転翼やロータの回転抵抗が増す。その回転抵抗の値から、グラウト剤の粘度を算出する。そして、硬化開始時刻から、グラウト剤の粘度が所定の粘度になるまでの時間(回転翼やロータの回転抵抗が所定の値に達するまでの時間)を、硬化時間とする。   Conventionally, a grout agent (curable injection solution) has been used for ground improvement (see Patent Document 1). The grouting agent is in a sol state at the time of preparation, and the viscosity increases with the passage of time and eventually hardens (gels). In order to properly use the grout agent, it is necessary to simply measure the curing time of the grout agent at the construction site. As the method, the following method is known. A rotor blade or a rotor is immersed in a sol grout agent and is continuously rotated at a constant rotation speed. As the viscosity of the grouting agent increases with time, the rotational resistance of the rotor blades and rotor increases accordingly. From the value of the rotational resistance, the viscosity of the grout agent is calculated. The time from the curing start time until the viscosity of the grout agent reaches a predetermined viscosity (the time until the rotational resistance of the rotor blades and the rotor reaches a predetermined value) is defined as the curing time.

特開平11−80731号公報Japanese Patent Laid-Open No. 11-80731

しかしながら、上記の方法では、グラウト剤の硬化時間を正確に測定することはできなかった。その理由は、上記の方法では、グラウト剤の硬化が進行した段階でも、回転翼やロータは一定の回転数で回転し続けるため、回転翼やロータによってグラウト剤中の微細構造(ゲル化時に徐々に生成するミクロゲル)が破壊され、回転翼やロータの回転がない場合に比べて、グラウト剤の硬化が遅くなってしまうためであると考えられる。   However, with the above method, the curing time of the grout agent could not be measured accurately. The reason is that, in the above method, since the rotor blades and the rotor continue to rotate at a constant rotational speed even when the grouting agent is hardened, the microstructure in the grout agent is gradually increased by the rotor blades and the rotor. This is thought to be because the hardening of the grout agent is delayed as compared with the case where the microgel generated in the above is broken and the rotor blades and the rotor do not rotate.

本発明は以上の点に鑑みなされたものであり、硬化時間の正確な算出に利用できる硬化状態検出方法及び硬化時間算出方法を提供することを目的とする。   This invention is made | formed in view of the above point, and it aims at providing the hardening state detection method and hardening time calculation method which can be utilized for the exact calculation of hardening time.

本発明の硬化状態検出方法は、時間の経過とともに粘度が増す検出対象物中に、一定のトルクで回転駆動される回転体を設置し、前記一定のトルクで回転駆動されている前記回転体の単位時間あたりの回転数を測定し、その測定した単位時間あたりの回転数が所定の回転数となったときに、前記検出対象物の粘度が、前記所定の回転数に対応する所定の粘度に達したことを検出することを特徴とする。 The curing state detection method of the present invention includes a rotating body that is rotationally driven with a constant torque in a detection object whose viscosity increases with time, and the rotational body that is rotationally driven with the constant torque . When the number of rotations per unit time is measured and the measured number of rotations per unit time reaches a predetermined number of rotations, the viscosity of the detection object becomes a predetermined viscosity corresponding to the predetermined number of rotations. It is characterized by detecting that it has been reached.

本発明の硬化状態検出方法では、回転体を回転駆動するトルクが一定であるので、時間の経過とともに検出対象物の粘度が増すにつれて、回転体の回転数(単位時間あたりの回転数)が低下する。よって、検出対象物の粘度と回転体の回転数とは相関関係を有するので、回転体の回転数が所定の回転数となったときに、検出対象物の粘度が、その所定の回転数に対応する所定の粘度(あるいは所定の粘度範囲)に達したことを検出することができる。   In the curing state detection method of the present invention, since the torque for rotating the rotating body is constant, the rotational speed (rotational speed per unit time) of the rotating body decreases as the viscosity of the detection object increases with time. To do. Therefore, since the viscosity of the detection object and the rotational speed of the rotating body have a correlation, when the rotational speed of the rotating body reaches a predetermined rotational speed, the viscosity of the detection target becomes the predetermined rotational speed. It can be detected that a corresponding predetermined viscosity (or a predetermined viscosity range) has been reached.

特に、本発明の硬化状態検出方法では、時間の経過とともに検出対象物中の粘度が増したとき、回転体の回転数は低下するので、回転体の回転によって検出対象物中の微細構造(例えばゲル化時に徐々に生成するミクロゲル)を破壊してしまうことが起こりにくく、検出対象物中の硬化が回転体の回転によって遅延してしまうようなことがない。   In particular, in the curing state detection method of the present invention, when the viscosity in the detection object increases with time, the rotational speed of the rotating body decreases. It is unlikely that the microgel that is gradually formed during gelation will be destroyed, and curing in the detection object is not delayed by the rotation of the rotating body.

本発明の硬化状態検出方法では、例えば、それまで回転していた回転体の回転数が0となったとき(停止したとき)に、検出対象物の粘度が所定の粘度(回転数が0である状態に対応した粘度)に達したことを検出することができる。また、回転体の回転数が0ではない所定の回転数にまで低下したときに、検出対象物の粘度が所定の粘度(0ではない所定の回転数に対応する粘度)に達したことを検出してもよい。   In the cured state detection method of the present invention, for example, when the number of rotations of a rotating body that has been rotating until then becomes zero (when stopped), the viscosity of the detection target is a predetermined viscosity (the number of rotations is zero). It is possible to detect that the viscosity has reached a certain state. Further, when the rotational speed of the rotating body has decreased to a predetermined rotational speed that is not zero, it is detected that the viscosity of the detection target has reached a predetermined viscosity (viscosity corresponding to a predetermined rotational speed that is not zero). May be.

前記検出対象物としては、例えば、時間の経過とともにゲル化するゾル状の物質が挙げられる。そのような物質としては、例えば、グラウト剤が挙げられる。
前記回転体は、一定のトルクで回転駆動できるものであれば、材質、形状は特に限定されない。回転体は、検出対象物中において、同じ回転数であれば、回転抵抗が同じとなるように、一定の形状を有し、回転軸の位置が一定であることが好ましい。回転体としては、例えば、マグネチックスターラ用の攪拌子等が挙げられる。
Examples of the detection target include sol-like substances that gel with the passage of time. An example of such a substance is a grouting agent.
The material and shape of the rotating body are not particularly limited as long as the rotating body can be rotationally driven with a constant torque. It is preferable that the rotator has a constant shape and the position of the rotating shaft is constant so that the rotational resistance is the same at the same rotational speed in the detection target. Examples of the rotating body include a magnetic stirrer and the like.

検出対象物の粘度と、回転体の回転数との相関関係は、例えば、以下のように取得することができる。粘度が既知の値X1である基準液体R1と、粘度が既知の値X2である基準液体R2とを用意する。ここで、X1<X2である。基準液体R1、基準液体R2の粘度は、B型粘度計等を用いて正確に測定することができる。基準液体R1中で回転体を一定のトルクで回転させたときの回転数がY1であり、基準液体R2中で回転体を一定のトルクで回転させたときの回転数がY2(Y1より小さい値であり、0であってもよい)であるとする。この場合、検出対象物中で回転体を一定のトルクで回転させたときの回転数がY2〜Y1の範囲内であれば、その検出対象物の粘度は、X1〜X2の範囲内であり、Y2以下(0であってもよい)であれば、その検出対象物の粘度はX2以上であり、Y1以上であれば、その検出対象物の粘度はX1以下ということになる。   The correlation between the viscosity of the detection object and the rotational speed of the rotating body can be acquired as follows, for example. A reference liquid R1 having a known value X1 and a reference liquid R2 having a known value X2 are prepared. Here, X1 <X2. The viscosities of the reference liquid R1 and the reference liquid R2 can be accurately measured using a B-type viscometer or the like. The rotational speed when the rotating body is rotated with a constant torque in the reference liquid R1 is Y1, and the rotational speed when the rotating body is rotated with a constant torque in the reference liquid R2 is Y2 (a value smaller than Y1). And may be 0). In this case, if the rotational speed when rotating the rotating body with a constant torque in the detection target is within the range of Y2 to Y1, the viscosity of the detection target is within the range of X1 to X2. If it is Y2 or less (may be 0), the viscosity of the detection object is X2 or more, and if it is Y1 or more, the viscosity of the detection object is X1 or less.

本発明の硬化時間算出方法は、所定の基準時刻T1から、上述した硬化状態検出方法により決定した、検出対象物の粘度が所定の粘度に達した時刻T2までの時間を、硬化時間として算出することを特徴とする。
本発明の硬化時間算出方法によれば、上述したように、検出対象物の硬化が回転体の回転によって遅延してしまうようなことがないので、硬化時間を正確に測定できる。
In the curing time calculation method of the present invention, the time from the predetermined reference time T1 to the time T2 when the viscosity of the detection object reaches the predetermined viscosity, determined by the above-described curing state detection method, is calculated as the curing time. It is characterized by that.
According to the curing time calculation method of the present invention, as described above, the curing of the detection object is not delayed by the rotation of the rotating body, so that the curing time can be accurately measured.

前記所定の基準時刻T1としては、例えば、検出対象物が複数の液を混合して成るものの場合、混合完了時刻がある。また、他の前記所定の基準時刻T1としては、検出対象物の粘度が増加し始める(ゲル化し始める)時刻、又は粘度の増加速度(ゲル化速度)がそれまでより大きくなる時刻等が挙げられる。検出対象物の粘度が増加し始める時刻としては、例えば、検出対象物が、単独では硬化しない複数の液を混合して成るものであって、混合時から粘度が増加するものである場合、その混合の時刻が挙げられる。   As the predetermined reference time T1, for example, when the detection target is a mixture of a plurality of liquids, there is a mixing completion time. Other examples of the predetermined reference time T1 include a time when the viscosity of the detection target starts to increase (gelation starts), a time when the viscosity increase rate (gelation speed) becomes larger than before, and the like. . As the time at which the viscosity of the detection object starts to increase, for example, when the detection object is a mixture of a plurality of liquids that are not cured alone, and the viscosity increases from the time of mixing, The time of mixing is mentioned.

硬化状態検出方法及び硬化時間算出方法を表す説明図である。It is explanatory drawing showing the hardening state detection method and the hardening time calculation method.

本発明の実施形態を図面に基づいて説明する。
1.硬化状態検出方法及び硬化時間算出方法
まず、図1に示すように、マグネチックスターラ1の上にスペーサ2を載せ、さらにその上に、透明なガラスから成るカップ11を載せた。スペーサ2の材料は、強磁性体以外の材料(例えば木材、ブロック、紙、発泡スチロール等)から適宜選択できる。
Embodiments of the present invention will be described with reference to the drawings.
1. Curing State Detection Method and Curing Time Calculation Method First, as shown in FIG. 1, a spacer 2 was placed on a magnetic stirrer 1 and a cup 11 made of transparent glass was placed thereon. The material of the spacer 2 can be appropriately selected from materials other than the ferromagnetic material (for example, wood, block, paper, and polystyrene foam).

次に、カップ11の内部に、ゾル状のグラウト剤(硬化性注入液、検出対象物)Sを300ml収容し、その中に、マグネチックスターラ1用の攪拌子(回転体)3を投入した。攪拌子3は、カップ11の底に沈み、攪拌子3の全体がグラウト剤S中に浸漬された。攪拌子3は、マグネチックスターラ1により、一定のトルクで回転駆動することができる。グラウト剤Sの温度は25℃とし、以降の工程でもその温度に保った。   Next, 300 ml of a sol grout agent (curable injection solution, detection target) S is accommodated in the cup 11, and a stirrer (rotary body) 3 for the magnetic stirrer 1 is put therein. . The stirrer 3 sank to the bottom of the cup 11, and the entire stirrer 3 was immersed in the grout agent S. The stirrer 3 can be driven to rotate with a constant torque by the magnetic stirrer 1. The temperature of the grout agent S was 25 ° C., and the temperature was maintained in the subsequent steps.

グラウト剤Sは、表1に示すC液に、B液、Aを順次加えて調製したものである。このグラウト剤Sは、調整の時点から、時間の経過とともに粘度が増し、やがてゲル化するものである。なお、表1におけるコロイダルシリカは日産化学(株)製のスノーテックス40であり、水ガラスは富士化学(株)製の5号である。上記のようにグラウト剤Sを調製した時刻を時刻T1とする。グラウト剤Sのカップ11への投入は、時刻T1の直後に行った。   Grout agent S is prepared by sequentially adding B liquid and A to C liquid shown in Table 1. This grout agent S increases in viscosity with the passage of time from the time of adjustment and eventually gels. In Table 1, colloidal silica is Snowtex 40 manufactured by Nissan Chemical Co., Ltd., and water glass is No. 5 manufactured by Fuji Chemical Co., Ltd. The time when the grout agent S is prepared as described above is defined as time T1. The grout agent S was charged into the cup 11 immediately after time T1.

グラウト剤S及び攪拌子3をカップ11に入れてからすぐに、マグネチックスターラ1により、攪拌子3を一定のトルクで継続的に回転駆動した。攪拌子3は、カップ11の底面上で回転した。このとき、ビデオカメラ4により、攪拌子3を継続的に撮影した。攪拌子3の回転数は、ビデオカメラ4で撮影した画像から算出できる。なお、攪拌子3を回転駆動するトルクは、スペーサ2の厚みに依存するが、スペーサ2の厚みは、予め、以下のように設定しておいた。すなわち、スペーサ2の厚みは、カップ11に粘度が20〜50mPa・sの基準液体R1と攪拌子3とを入れたときは、マグネチックスターラ1によって攪拌子3を回転させることができるが、カップ11に粘度が260mPa・sの基準液体R2と攪拌子3とを入れたときは攪拌子3を回転させることができない厚みとした。基準液体R1としては、5号水ガラスを用いることができ、基準液体R2としては、1号水ガラスを用いることができる。 Immediately after putting the grouting agent S and the stirrer 3 in the cup 11, the stirrer 3 was continuously rotated at a constant torque by the magnetic stirrer 1. The stirring bar 3 rotated on the bottom surface of the cup 11. At this time, the stirrer 3 was continuously photographed by the video camera 4. The rotation speed of the stirrer 3 can be calculated from an image taken by the video camera 4. Although the torque for rotationally driving the stirrer 3 depends on the thickness of the spacer 2, the thickness of the spacer 2 is set in advance as follows. That is, the thickness of the spacer 2 is such that when the reference liquid R1 having a viscosity of 20 to 50 mPa · s and the stirrer 3 are put into the cup 11, the stirrer 3 can be rotated by the magnetic stirrer 1. When the reference liquid R2 having a viscosity of 260 mPa · s and the stirrer 3 were added to No. 11, the stirrer 3 could not be rotated. No. 5 water glass can be used as the reference liquid R1, and No. 1 water glass can be used as the reference liquid R2.

グラウト剤S内で攪拌子3を回転させているとき、時間の経過とともに、グラウト剤Sの粘度が徐々に増してゆき、攪拌子3の回転数(単位時間あたりの回転数)は徐々に低下してゆき、やがて攪拌子3の回転が停止した。攪拌子3の回転が停止した時刻を、時刻T2とする。時刻T2は、グラウト剤Sの粘度が、基準液体R1の粘度と基準液体R2の粘度との間にある、所定の粘度に達した(所定の硬化状態に達した)時刻である。そして、時刻T1から時刻T2までの時間を、ゲル化時間(硬化時間)とした。本実施形態におけるゲル化時間を、表2に示す。   When the stirrer 3 is rotated in the grout agent S, the viscosity of the grout agent S gradually increases with time, and the rotation speed of the stirrer 3 (the number of rotations per unit time) gradually decreases. Eventually, the rotation of the stirring bar 3 stopped. The time at which the rotation of the stirring bar 3 is stopped is defined as time T2. Time T2 is the time when the viscosity of the grout agent S has reached a predetermined viscosity (has reached a predetermined curing state) between the viscosity of the reference liquid R1 and the viscosity of the reference liquid R2. The time from time T1 to time T2 was defined as the gel time (curing time). Table 2 shows the gelation time in this embodiment.

表2には、別途、参考例1、2の方法で同じグラウト剤Sのゲル化時間を測定した結果も示す。参考例1の方法は、時刻T1において調製したグラウト剤Sを静置しておき、適宜(例えば1時間ごとに、ただし、目視でゲル化が進んだと確認すれば10分ごとに)、B型粘度計によって粘度を測定し、その粘度が100mPa・sを超えた時刻を時刻T2とする方法である。この参考例1の方法は、B型粘度計が必要であるため、施工現場での簡便な実施は困難であるが、測定結果は正確であるとされている方法である。 Table 2 also shows the results of separately measuring the gelation time of the same grout agent S by the methods of Reference Examples 1 and 2. In the method of Reference Example 1, the grout agent S prepared at time T1 is allowed to stand, and appropriately (for example, every hour, but every 10 minutes if it is confirmed that gelation has progressed visually), B In this method, the viscosity is measured with a mold viscometer, and the time when the viscosity exceeds 100 mPa · s is defined as time T2. Since the method of Reference Example 1 requires a B-type viscometer, it is difficult to carry out simply at the construction site, but the measurement result is considered to be accurate.

参考例2の方法は、時刻T1において調製したグラウト剤Sを、一定の回転数で回転する攪拌羽根によって常時攪拌しながら、適宜(例えば1時間ごとに、ただし、目視でゲル化が進んだと確認すれば10分ごとに)、B型粘度計によって粘度を測定し、その粘度が100mPa・sを超えた時刻を時刻T2とする方法である。   In the method of Reference Example 2, the grouting agent S prepared at time T1 is appropriately stirred (eg, every hour, however, when gelation has progressed visually) while constantly stirring with a stirring blade rotating at a constant rotational speed. This is a method in which the viscosity is measured with a B-type viscometer and the time when the viscosity exceeds 100 mPa · s is set as time T2 if it is confirmed (every 10 minutes).

2.硬化状態検出方法及び硬化時間算出方法が奏する効果
(1)上記表2に示すように、本実施形態の方法で算出したゲル化時間は、参考例1の方法で算出したゲル化時間に近く、正確であることが確認できた。それに対し、参考例2の方法で算出したゲル化時間は、本実施形態及び参考例1の方法で算出した値に比べて顕著に長く、不正確であった。これは、参考例2の方法のように、ゲル化する直前の時間帯まで、一定の回転数でグラウト剤Sを攪拌し続けると、グラウト剤Sの微細構造(ゲル化時に徐々に生成するミクロゲル)が破壊され、ゲル化しにくくなってしまうためであると考えられる。
(2)本実施形態の方法は、簡便な装置により実施できるので、施工現場において容易に実施できる。
2. Effect (1) Effect of Curing State Detection Method and Curing Time Calculation Method As shown in Table 2 above, the gelation time calculated by the method of the present embodiment is close to the gelation time calculated by the method of Reference Example 1, It was confirmed that it was accurate. On the other hand, the gelation time calculated by the method of Reference Example 2 was significantly longer and inaccurate than the values calculated by the method of this embodiment and Reference Example 1. This is because, as in the method of Reference Example 2, when the grout agent S is continuously stirred at a constant rotational speed until a time period immediately before gelation, the fine structure of the grout agent S (a microgel that gradually forms during gelation). ) Is destroyed and is difficult to gel.
(2) Since the method of this embodiment can be implemented with a simple apparatus, it can be easily implemented at a construction site.

尚、本発明は前記実施形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
例えば、攪拌子3の回転数が徐々に低下し、所定の回転数(0ではない値)、あるいは所定の回転数の範囲内に達したときの時刻を、時刻T2としてもよい。その場合、攪拌子3の回転数が所定の回転数となったときに、グラウト剤Sの粘度が狙いの値となるように、スペーサ2の厚みを調整しておけばよい。
In addition, this invention is not limited to the said embodiment at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.
For example, the time when the rotational speed of the stirrer 3 gradually decreases and reaches a predetermined rotational speed (a value other than 0) or within a predetermined rotational speed range may be set as the time T2. In that case, the thickness of the spacer 2 may be adjusted so that the viscosity of the grout agent S becomes a target value when the rotational speed of the stirrer 3 reaches a predetermined rotational speed.

また、検出対象物は、グラウト剤に限定されず、時間の経過とともに粘度が増す物質の中から適宜選択できる。
また、攪拌子3は、マグネチックスターラ1により回転駆動されるものには限定されず、種々の駆動力で駆動されるものであってもよい。
The detection target is not limited to the grout agent, and can be appropriately selected from substances whose viscosity increases with time.
Further, the stirrer 3 is not limited to one that is rotationally driven by the magnetic stirrer 1 and may be driven by various driving forces.

1・・・マグネチックスターラ、2・・・スペーサ、3・・・攪拌子、
4・・・ビデオカメラ、11・・・カップ、S・・・グラウト剤
1 ... Magnetic stirrer, 2 ... Spacer, 3 ... Stir bar,
4 ... Video camera, 11 ... Cup, S ... Grout

Claims (2)

時間の経過とともに粘度が増し、ゲル化する検出対象物中に、一定のトルクで回転駆動される回転体を設置し、
前記一定のトルクで回転駆動されている前記回転体の単位時間あたりの回転数を測定し、その測定した単位時間あたりの回転数がとなったときに、前記検出対象物の粘度が、回転数0に対応する所定の粘度に達したことを検出することを特徴とする硬化状態検出方法。
A rotating body that is rotationally driven with a constant torque is installed in the detection object that increases in viscosity with time and gels.
The rotational speed per unit time of the rotating body that is rotationally driven at the constant torque is measured, and when the measured rotational speed per unit time becomes 0 , the viscosity of the detection object is the rotational speed. A curing state detection method comprising detecting that a predetermined viscosity corresponding to the number 0 is reached.
所定の基準時刻T1から、請求項1記載の硬化状態検出方法により決定した、前記検出対象物の粘度が前記所定の粘度に達した時刻T2までの時間を算出する硬化時間算出方法。 From a predetermined reference time T1, was determined by cured state detecting method according to claim 1, the curing time calculation method the viscosity of the detection target to calculate the time until the time T2 has been reached the predetermined viscosity.
JP2011251697A 2011-11-17 2011-11-17 Curing state detection method and curing time calculation method Active JP6085751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011251697A JP6085751B2 (en) 2011-11-17 2011-11-17 Curing state detection method and curing time calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011251697A JP6085751B2 (en) 2011-11-17 2011-11-17 Curing state detection method and curing time calculation method

Publications (2)

Publication Number Publication Date
JP2013108760A JP2013108760A (en) 2013-06-06
JP6085751B2 true JP6085751B2 (en) 2017-03-01

Family

ID=48705675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011251697A Active JP6085751B2 (en) 2011-11-17 2011-11-17 Curing state detection method and curing time calculation method

Country Status (1)

Country Link
JP (1) JP6085751B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133757B2 (en) * 1972-08-09 1976-09-21
JPS61132850A (en) * 1984-12-03 1986-06-20 Mitsubishi Heavy Ind Ltd Method for evaluating thermal stability of fluid substance
JPS6312936A (en) * 1986-07-04 1988-01-20 Mitsubishi Heavy Ind Ltd Viscosity measuring method
DE4339328C1 (en) * 1993-11-19 1995-02-23 Janke & Kunkel Kg Method and device for detecting viscosity alterations of a medium stirred by a magnetic stirrer
JPH10148632A (en) * 1996-11-15 1998-06-02 Nkk Corp Method and device for evaluating softening and melting characteristics of coal
JPH1180731A (en) * 1997-09-16 1999-03-26 Mitsui Chem Inc Grout agent for injection into ground, and improvement of ground by using the same
WO2006125057A1 (en) * 2005-05-16 2006-11-23 Haemoscope Corporation Hemostasis analysis device and method

Also Published As

Publication number Publication date
JP2013108760A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
US6997045B2 (en) Rheomixer device
FI125375B (en) Method and apparatus for making a concrete pulp
US20150198512A1 (en) Static Gel Strength Measurement Apparatus and Method
JP2020530415A5 (en)
JP6384954B2 (en) Method for estimating compressive strength of soil cement and soil cement storage
EP2397600A3 (en) Method for measuring the moment of inertia of a drum of a washing machine and washing machine arranged to implement said method
JP2009264982A5 (en)
Khayat et al. Evaluation of thixotropy of self-consolidating concrete and influence on concrete performance
JP6085751B2 (en) Curing state detection method and curing time calculation method
JP2015212637A (en) Concrete strength estimation method and concrete strength estimation system
Hudson et al. An enhanced rheometer inertia correction procedure (ERIC) for the study of gelling systems using combined motor-transducer rheometers
CN101975727B (en) Device for testing initial setting time of high-temperature static mixed plugging additive
Senda et al. Power characteristics of a rotationally reciprocating impeller
JP4885325B1 (en) Construction management system for ground improvement method
JP5458254B2 (en) Mortar consistency evaluation method and consistency evaluation apparatus
JP2016057178A (en) Gelation time measurement device
CN108801857B (en) Additive second compensation experimental rig and its control method
US8556498B2 (en) Method for scaling mixing operations
CN108680732B (en) Device and method for measuring pumpability of high-flow concrete
CN108225939B (en) Device and method for measuring yield stress of fresh concrete
JP5139388B2 (en) Air mortar quality confirmation management method
US20130247653A1 (en) Static gel strength testing
MX2015002329A (en) Static gel strength testing.
ES2305812T3 (en) A MEASUREMENT PROCEDURE FOR THE CONSISTENCY OF A MIXTURE AND APPLIANCE TO CARRY OUT THE PROCEDURE.
CN203465264U (en) Device for testing blending property of roller-compacted concrete mixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R150 Certificate of patent or registration of utility model

Ref document number: 6085751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250