JP6085213B2 - Heat pump equipment - Google Patents

Heat pump equipment Download PDF

Info

Publication number
JP6085213B2
JP6085213B2 JP2013073625A JP2013073625A JP6085213B2 JP 6085213 B2 JP6085213 B2 JP 6085213B2 JP 2013073625 A JP2013073625 A JP 2013073625A JP 2013073625 A JP2013073625 A JP 2013073625A JP 6085213 B2 JP6085213 B2 JP 6085213B2
Authority
JP
Japan
Prior art keywords
heat
heat source
heat exchanger
refrigerant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013073625A
Other languages
Japanese (ja)
Other versions
JP2014196893A (en
Inventor
真典 上田
真典 上田
剛史 佐藤
剛史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2013073625A priority Critical patent/JP6085213B2/en
Publication of JP2014196893A publication Critical patent/JP2014196893A/en
Application granted granted Critical
Publication of JP6085213B2 publication Critical patent/JP6085213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

この発明は、蒸発器として機能する熱源側熱交換器の不凍液流路での不凍液の凍結を防止するヒートポンプ装置に関するものである。   The present invention relates to a heat pump device that prevents freezing of antifreeze liquid in an antifreeze liquid flow path of a heat source side heat exchanger that functions as an evaporator.

従来この種のヒートポンプ装置においては、図6に示すように、室外機としてのヒートポンプユニット101、圧縮機102、負荷側熱交換器103の冷媒流路103a、膨張弁104、熱源側熱交換器105の冷媒流路105aを冷媒配管106で環状に接続したヒートポンプ回路107と、熱源側熱交換器105側の冷媒の温度を検出する蒸発温度センサ108と、熱源側熱交換器105の不凍液流路105bと地中に設置された地中熱交換器109とを不凍液配管110で環状に接続した地中熱循環回路111と、地中熱循環回路111に不凍液を循環させる地中熱循環ポンプ112と、負荷側熱交換器103の循環液流路103bと床暖房パネル等の負荷端末113とを循環液配管114で環状に接続した負荷側循環回路115と、負荷側循環回路115に循環液を循環させる負荷側循環ポンプ116と、負荷側熱交換器103の循環液流路103bに流入する循環液の温度を検出する負荷温度センサ117と、制御手段118とを備え、制御手段118は、圧縮機102、地中熱循環ポンプ112、負荷側循環ポンプ116を駆動させ、熱源側熱交換器105を蒸発器として機能させると共に、負荷側熱交換器103を凝縮器として機能させて、負荷端末113が設置された被空調空間を加熱する暖房運転を行うものがあり、制御手段118は、暖房運転中、負荷温度センサ117で検出する循環液の温度が設定された目標温度になるように圧縮機102の周波数を制御するものであった。(例えば、特許文献1参照。)   Conventionally, in this type of heat pump apparatus, as shown in FIG. 6, a heat pump unit 101 as an outdoor unit, a compressor 102, a refrigerant flow path 103a of a load side heat exchanger 103, an expansion valve 104, and a heat source side heat exchanger 105 The heat pump circuit 107 in which the refrigerant flow path 105a is connected in an annular shape by the refrigerant pipe 106, the evaporation temperature sensor 108 for detecting the temperature of the refrigerant on the heat source side heat exchanger 105 side, and the antifreeze liquid flow path 105b of the heat source side heat exchanger 105 A ground heat circulation circuit 111 in which a geothermal heat exchanger 109 installed in the ground is connected in an annular shape by an antifreeze pipe 110, a geothermal circulation pump 112 that circulates the antifreeze liquid in the ground heat circulation circuit 111, A load-side circulation circuit 115 in which a circulating fluid passage 103b of the load-side heat exchanger 103 and a load terminal 113 such as a floor heating panel are connected in an annular shape by a circulating fluid pipe 114; A load-side circulation pump 116 that circulates the circulating fluid in the load-side circulation circuit 115; a load temperature sensor 117 that detects the temperature of the circulating fluid that flows into the circulating fluid flow path 103b of the load-side heat exchanger 103; And the control means 118 drives the compressor 102, the underground heat circulation pump 112, and the load side circulation pump 116 so that the heat source side heat exchanger 105 functions as an evaporator and condenses the load side heat exchanger 103. The control means 118 is set with the temperature of the circulating fluid detected by the load temperature sensor 117 during the heating operation. The frequency of the compressor 102 is controlled so as to reach the target temperature. (For example, refer to Patent Document 1.)

特開2012−167902号公報JP 2012-167902 A

ところで、この従来のヒートポンプ装置を、図7に示すように、熱源側熱交換器105を地中熱交換器109に対して2台並列に接続し、図中上段のヒートポンプユニット101側で前記暖房運転を行い、且つ図中下段のヒートポンプユニット101(ここでは、説明を簡単にするために下段側のその他の構成部品の符号については省略する)側で暖房運転を行っていない場合、図中上段のヒートポンプユニット101では先に説明したように、制御手段118が、負荷温度センサ117で検出する循環液の温度が設定された目標温度になるように圧縮機102の周波数を制御し、ヒートポンプ回路107を循環する冷媒の循環流量を制御している。   By the way, in this conventional heat pump device, as shown in FIG. 7, two heat source side heat exchangers 105 are connected in parallel to the underground heat exchanger 109, and the heating pump unit 101 on the upper stage in the figure is connected to the heating unit. When the operation is performed and heating operation is not performed on the side of the heat pump unit 101 in the lower part of the figure (here, for the sake of simplicity, the reference numerals of other components on the lower part are omitted), the upper part of the figure In the heat pump unit 101, as described above, the control means 118 controls the frequency of the compressor 102 so that the temperature of the circulating fluid detected by the load temperature sensor 117 becomes the set target temperature, and the heat pump circuit 107. The circulation flow rate of the refrigerant circulating in the tank is controlled.

ここで、図7において、図中上段のヒートポンプユニット101側で暖房運転を行っている最中に、図中下段のヒートポンプユニット101側で暖房運転が開始されると、図中上段のヒートポンプユニット101側の地中熱循環回路111の循環流量が、図中下段のヒートポンプユニット101側に奪われるため、図中上段のヒートポンプユニット101側の地中熱循環回路111の循環流量が不足する。そうすると、熱源側熱交換器105での熱交換量が減り、蒸発温度センサ108で検出される熱源側熱交換器105側の冷媒の温度が急激に低下していく。   Here, in FIG. 7, when the heating operation is started on the lower heat pump unit 101 side in the drawing while the heating operation is performed on the upper heat pump unit 101 side in the drawing, the upper heat pump unit 101 in the drawing is started. Since the circulation flow rate of the underground heat circulation circuit 111 on the side is deprived to the heat pump unit 101 side in the lower part of the figure, the circulation flow rate of the underground heat circulation circuit 111 on the upper side of the figure in the figure is insufficient. Then, the amount of heat exchange in the heat source side heat exchanger 105 decreases, and the temperature of the refrigerant on the heat source side heat exchanger 105 side detected by the evaporation temperature sensor 108 rapidly decreases.

この時、熱源側熱交換器105での熱交換量低下により、圧縮機102に吸入される冷媒の温度も低下するので、圧縮機102から吐出される冷媒温度も低下し、負荷側熱交換器103側における熱交換量も低下していき、結果として、負荷端末113に供給される循環液の温度も低下し、負荷温度センサ117の検出する負荷側熱交換器103の循環液流路103bに流入する循環液の温度も低下していく。   At this time, the temperature of the refrigerant sucked into the compressor 102 also decreases due to a decrease in the amount of heat exchange in the heat source side heat exchanger 105. Therefore, the temperature of the refrigerant discharged from the compressor 102 also decreases, and the load side heat exchanger The amount of heat exchange on the 103 side also decreases, and as a result, the temperature of the circulating fluid supplied to the load terminal 113 also decreases, and the circulating fluid flow path 103b of the load side heat exchanger 103 detected by the load temperature sensor 117 enters. The temperature of the circulating fluid that flows in also decreases.

そして、制御手段118は、前記負荷温度センサ117の検出する温度の低下を検知すると、圧縮機102の周波数を増加させてヒートポンプ回路107を循環する冷媒の循環流量を増やし、負荷側熱交換器103での熱交換量を増やして負荷温度センサ117で検出される循環液の温度を上昇させようとするが、圧縮機102の周波数を増加させてヒートポンプ回路107を循環する冷媒の循環流量を増やすと、熱源側熱交換器105において、熱源側熱交換器105の不凍液流路105bを流通する不凍液の循環流量に比べて、熱源側熱交換器105の冷媒流路105aを流通する冷媒流量が増加することになり、熱源側熱交換器105での熱交換量はさらに低下し、熱源側熱交換器105側の冷媒の温度がさらに低下していく。そして、熱源側熱交換器105側の冷媒の温度が、例えば−15℃を下回ると、熱交換器の種類によっては、熱源側熱交換器105の不凍液流路105b側で流通する不凍液中の水分が凍結し始め、不凍液流路105b内壁に徐々に氷が張るにつれて、不凍液流路105bが閉塞されていき、地中熱循環回路111を循環する不凍液の循環流量が低下すると共に、熱源側熱交換器105での熱交換量が不足していくため、熱源側熱交換器105側の冷媒の温度がさらに低下する。そうすると、圧縮機102に吸入される冷媒の温度の低下、圧縮機102から吐出される冷媒温度の低下、負荷端末113に供給される循環液の温度の低下、負荷温度センサ117の検出する負荷側熱交換器103の循環液流路103bに流入する循環液の温度の低下が生じ、圧縮機102の周波数をさらに増加させる制御が行われ、熱源側熱交換器105の冷媒の温度がよりいっそう低下するという悪循環となり、その結果、不凍液流路105b内で氷が成長していき、熱源側熱交換器105が破損するおそれがあった。   When the control means 118 detects a decrease in temperature detected by the load temperature sensor 117, the control means 118 increases the frequency of the compressor 102 to increase the circulation flow rate of the refrigerant circulating in the heat pump circuit 107, and the load-side heat exchanger 103. If the heat exchange amount in the engine is increased to increase the temperature of the circulating fluid detected by the load temperature sensor 117, the frequency of the compressor 102 is increased to increase the circulation flow rate of the refrigerant circulating in the heat pump circuit 107. In the heat source side heat exchanger 105, the flow rate of the refrigerant flowing through the refrigerant flow path 105a of the heat source side heat exchanger 105 is increased as compared with the circulation flow rate of the antifreeze liquid flowing through the antifreeze flow path 105b of the heat source side heat exchanger 105. As a result, the amount of heat exchange in the heat source side heat exchanger 105 further decreases, and the temperature of the refrigerant on the heat source side heat exchanger 105 side further decreases. And if the temperature of the refrigerant | coolant by the side of the heat source side heat exchanger 105 is less than -15 degreeC, for example, depending on the kind of heat exchanger, the water | moisture content in the antifreeze liquid distribute | circulated by the antifreeze liquid flow path 105b side of the heat source side heat exchanger 105 As the ice begins to freeze and ice gradually builds up on the inner wall of the antifreeze liquid flow path 105b, the antifreeze liquid flow path 105b is closed, and the circulation flow rate of the antifreeze liquid circulating in the underground heat circulation circuit 111 decreases and heat source side heat exchange is performed. Since the amount of heat exchange in the heat exchanger 105 becomes insufficient, the temperature of the refrigerant on the heat source side heat exchanger 105 side further decreases. Then, the temperature of the refrigerant sucked into the compressor 102 is decreased, the temperature of the refrigerant discharged from the compressor 102 is decreased, the temperature of the circulating fluid supplied to the load terminal 113 is decreased, and the load side detected by the load temperature sensor 117 is detected. The temperature of the circulating fluid flowing into the circulating fluid flow path 103b of the heat exchanger 103 is lowered, and control is performed to further increase the frequency of the compressor 102, and the temperature of the refrigerant in the heat source side heat exchanger 105 is further lowered. As a result, ice grows in the antifreeze liquid channel 105b, and the heat source side heat exchanger 105 may be damaged.

この発明は上記課題を解決するために、特に請求項1ではその構成を、第1圧縮機と、第1負荷側熱交換器の冷媒流路と、第1膨張弁と、第1熱源側熱交換器の冷媒流路とを第1冷媒配管で環状に接続した第1ヒートポンプ回路と、前記第1熱源側熱交換器側の冷媒の温度を検出する蒸発温度検出手段と、第2圧縮機と、第2負荷側熱交換器の冷媒流路と、第2膨張弁と、第2熱源側熱交換器の冷媒流路とを第2冷媒配管で環状に接続した第2ヒートポンプ回路と、前記第1熱源側熱交換器または前記第2熱源側熱交換器の冷媒を加熱する熱媒循環式の熱源部と、該熱源部の熱源に対して前記第1熱源側熱交換器と前記第2熱源側熱交換器とを並列に接続し、前記熱源部の熱源と前記第1熱源側熱交換器の不凍液流路との間を第1不凍液配管で環状に接続して形成した第1熱源側循環回路、および前記熱源部の熱源と前記第2熱源側熱交換器の不凍液流路との間を第2不凍液配管で環状に接続して形成した第2熱源側循環回路と、前記第1熱源側循環回路に不凍液を循環させる第1熱源側循環ポンプと、前記第2熱源側循環回路に不凍液を循環させる第2熱源側循環ポンプと、負荷端末と前記第1負荷側熱交換器の循環液流路との間を循環液配管で環状に接続した負荷側循環回路と、該負荷側循環回路に循環液を循環させる負荷側循環ポンプと、前記第1負荷側熱交換器の循環液流路に流入する循環液の温度を検出する負荷温度検出手段と、これらの作動を制御する制御手段とを備え、前記第1熱源側循環ポンプを駆動させて前記不凍液を循環させ前記第1熱源側熱交換器を蒸発器として機能させ、前記負荷側循環ポンプを駆動させて前記循環液を循環させ前記第1負荷側熱交換器を凝縮器として機能させて負荷側を加熱する暖房運転中に、前記制御手段が、前記負荷温度検出手段で検出される温度が設定された目標暖房温度になるように前記第1圧縮機の周波数または回転数を制御するヒートポンプ装置において、前記暖房運転中に、前記第2熱源側循環ポンプを駆動させて前記不凍液を循環させて前記第2熱源側熱交換器を蒸発器として機能させ、前記第2負荷側熱交換器を凝縮器として機能させる暖房運転が開始され、前記第1熱源側循環回路を循環している不凍液の循環流量が減少して前記蒸発温度検出手段で検出される冷媒の温度が低下した際に、前記制御手段は、前記蒸発温度検出手段で検出される冷媒の温度に応じて、前記第1圧縮機の周波数または回転数の上限値を設定するものとした。 In order to solve the above-mentioned problems, the present invention is particularly configured in the first aspect , which includes a first compressor, a refrigerant flow path of a first load side heat exchanger, a first expansion valve, and a first heat source side heat. A first heat pump circuit in which a refrigerant flow path of the exchanger is annularly connected by a first refrigerant pipe, an evaporating temperature detecting means for detecting a temperature of the refrigerant on the first heat source side heat exchanger side, a second compressor, a refrigerant flow path of the second load-side heat exchanger, a second expansion valve, a second heat pump circuit connected to the annular between the refrigerant flow path of the second heat source side heat exchanger in the second refrigerant pipe, wherein the 1 heat source side heat exchanger or heat medium circulation type heat source part for heating the refrigerant of the second heat source side heat exchanger, and the first heat source side heat exchanger and the second heat source with respect to the heat source of the heat source part connecting the side heat exchangers in parallel, between the antifreeze flow path with the heat source of the heat source unit the first heat source side heat exchanger first antifreeze pipe The formed by annularly connecting a first heat source-side circulation circuit is formed by connecting in a ring, and between the antifreeze flow path of the heat source and the second heat source-side heat exchanger of the heat source unit in the second antifreeze pipe 2 heat source side circulation circuit, first heat source side circulation pump for circulating antifreeze liquid in the first heat source side circulation circuit, second heat source side circulation pump for circulating antifreeze liquid in the second heat source side circulation circuit, and load terminal a load-side circulation circuit connected annularly circulating fluid piping between the circulating fluid flow path of the first load-side heat exchanger, and a load-side circulation pump for circulating the circulating fluid to the load-side circulation circuit, the first A load temperature detecting means for detecting the temperature of the circulating fluid flowing into the circulating fluid flow path of the one load side heat exchanger, and a control means for controlling the operation thereof, and driving the first heat source side circulating pump; evaporator the first heat source side heat exchanger to circulate the antifreeze And by function, into the load-side heating operation by function of heating the load side of the circulating pump is driven to circulate the circulation liquid of the first load-side heat exchanger as a condenser, said control means, In the heat pump device that controls the frequency or the rotation speed of the first compressor so that the temperature detected by the load temperature detecting means becomes a set target heating temperature, the second heat source side circulation is performed during the heating operation. A heating operation is started in which the pump is driven to circulate the antifreeze liquid so that the second heat source side heat exchanger functions as an evaporator, and the second load side heat exchanger functions as a condenser, and the first heat source When the circulating flow rate of the antifreeze circulating in the side circulation circuit decreases and the temperature of the refrigerant detected by the evaporating temperature detecting means decreases, the control means detects the refrigerant detected by the evaporating temperature detecting means. temperature The upper limit value of the frequency or the rotational speed of the first compressor is set accordingly.

また、請求項2では、前記制御手段は、前記蒸発温度検出手段で検出される冷媒の温度が低下するにつれて、前記第1圧縮機の周波数または回転数の上限値を下げるものとした。 According to a second aspect of the present invention, the control means lowers the upper limit value of the frequency or the rotational speed of the first compressor as the temperature of the refrigerant detected by the evaporation temperature detecting means decreases.

この発明の請求項1によれば、前記暖房運転中に、制御手段が、負荷温度検出手段で検出される温度が設定された目標暖房温度になるように第1圧縮機の周波数または回転数を制御するヒートポンプ装置において、前記暖房運転中に、前記第2熱源側循環ポンプを駆動させて前記不凍液を循環させて前記第2熱源側熱交換器を蒸発器として機能させ、前記第2負荷側熱交換器を凝縮器として機能させる暖房運転が開始され、前記第1熱源側循環回路を循環している不凍液の循環流量が減少して前記蒸発温度検出手段で検出される冷媒の温度が低下した際に、制御手段は、蒸発温度検出手段で検出される冷媒の温度に応じて、圧縮機の周波数または回転数の上限値を設定するようにしたことで、前記暖房運転中、特に、第2ヒートポンプ回路側でも暖房運転が開始されて、第2熱源側循環ポンプが駆動し第2熱源側循環回路にも不凍液が循環され、第1熱源側循環回路を循環している不凍液の循環流量が減少していくのに伴い、第1熱源側熱交換器での熱交換量が減少して、蒸発温度検出手段で検出される冷媒温度が、第1熱源側熱交換器の不凍液流路を流通する不凍液中の水分を凍結させるおそれのある温度に低下した際に、第1圧縮機の周波数または回転数の上限値を設定することにより、第1ヒートポンプ回路を循環する冷媒の循環流量が調節され第1熱源側熱交換器における冷媒から不凍液への熱交換量を調節することができるので、第1熱源側熱交換器の不凍液流路を流通する不凍液中の水分の凍結を防ぎ、熱源側熱交換器の破損を未然に防止することができるものである。 According to claim 1 of the present invention, during said heating operation, the control means, the first compressor such that the temperature detected by the load temperature detecting means becomes a set target heating temperature frequency or the number of revolutions In the heat pump device to be controlled, during the heating operation, the second heat source side circulation pump is driven to circulate the antifreeze liquid so that the second heat source side heat exchanger functions as an evaporator, and the second load side heat When the heating operation for causing the exchanger to function as a condenser is started, the circulating flow rate of the antifreeze liquid circulating in the first heat source side circulation circuit is decreased, and the temperature of the refrigerant detected by the evaporation temperature detecting means is lowered the control means, in accordance with the temperature of the refrigerant detected by the evaporation temperature detection means, by the upper limit of the frequency or rotational speed of the compressor and to set, in the heating operation, in particular, the second heat pump Circuit side Also, the heating operation is started, the second heat source side circulation pump is driven, the antifreeze liquid is circulated also in the second heat source side circulation circuit, and the circulation flow rate of the antifreeze liquid circulating in the first heat source side circulation circuit decreases. Accordingly, the amount of heat exchange in the first heat source side heat exchanger decreases, and the refrigerant temperature detected by the evaporating temperature detecting means is in the antifreeze liquid flowing through the antifreeze liquid flow path of the first heat source side heat exchanger. By setting the upper limit value of the frequency or rotation speed of the first compressor when the temperature drops to a temperature at which moisture may be frozen, the circulation flow rate of the refrigerant circulating in the first heat pump circuit is adjusted, and the first heat source side Since the amount of heat exchange from the refrigerant to the antifreeze liquid in the heat exchanger can be adjusted, the freezing of water in the antifreeze liquid flowing through the antifreeze liquid passage of the first heat source side heat exchanger is prevented, and the heat source side heat exchanger is damaged. Can be prevented in advance

また、請求項2によれば、制御手段は、蒸発温度検出手段で検出される冷媒の温度が低下するにつれて、第1圧縮機の周波数または回転数の上限値を下げるようにしたことで、第1ヒートポンプ回路を循環する冷媒の循環流量の上限を抑えて冷媒循環流量を低下させ、第1熱源側熱交換器における冷媒から不凍液への熱交換量を抑制し、第1熱源側熱交換器の不凍液流路を流通する不凍液中の水分の凍結を防ぎ、第1熱源側熱交換器の破損を未然に防止することができるものである。 According to claim 2, the control means reduces the upper limit value of the frequency or the rotational speed of the first compressor as the refrigerant temperature detected by the evaporation temperature detecting means decreases . 1 The upper limit of the circulation flow rate of the refrigerant circulating in the heat pump circuit is suppressed to lower the refrigerant circulation flow rate, the amount of heat exchange from the refrigerant to the antifreeze liquid in the first heat source side heat exchanger is suppressed, and the first heat source side heat exchanger It is possible to prevent freezing of water in the antifreeze liquid flowing through the antifreeze liquid flow path and to prevent the first heat source side heat exchanger from being damaged.

この発明の一実施形態のヒートポンプ装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the heat pump apparatus of one Embodiment of this invention. 同一実施形態の暖房運転時の動作を示すフローチャート。The flowchart which shows the operation | movement at the time of the heating operation of the same embodiment. 同一実施形態の熱源側熱交換器側の気液混合状態の冷媒温度と圧縮機の周波数の上限値との関係を示す図。The figure which shows the relationship between the refrigerant | coolant temperature of the gas-liquid mixing state by the side of the heat source side heat exchanger of the same embodiment, and the upper limit of the frequency of a compressor. 同一実施形態の暖房運転時の動作を示すタイムチャート。The time chart which shows the operation | movement at the time of the heating operation of the same embodiment. 従来のヒートポンプ装置の暖房運転時の動作を示すタイムチャート。The time chart which shows the operation | movement at the time of the heating operation of the conventional heat pump apparatus. 従来のヒートポンプ装置の概略構成図。The schematic block diagram of the conventional heat pump apparatus. 従来のヒートポンプ装置の熱源側熱交換器を地中熱交換器に対して2台並列接続した場合の概略構成図。The schematic block diagram at the time of connecting two heat source side heat exchangers of the conventional heat pump apparatus in parallel with respect to the underground heat exchanger.

次に、この発明の一実施形態のヒートポンプ装置を図1に基づき説明する。
図示のように、本実施形態のヒートポンプ装置は、大きく分けて室外機としてのヒートポンプユニット1A・1Bと、熱源部としての熱媒循環式の熱源熱交換部2と、負荷熱交換部3A・3Bとから構成されるものである。
Next, a heat pump device according to an embodiment of the present invention will be described with reference to FIG.
As shown in the figure, the heat pump device of this embodiment is roughly divided into heat pump units 1A and 1B as outdoor units, a heat medium circulation type heat source heat exchange unit 2 as a heat source unit, and load heat exchange units 3A and 3B. It is comprised from.

前記ヒートポンプユニット1Aは、冷媒を圧縮する作動周波数または作動回転数可変の第1圧縮機4と、第1圧縮機4から吐出された高温高圧冷媒を流通させ、この高温高圧冷媒と負荷熱交換部3Aの負荷側の熱媒との熱交換を行う第1凝縮器としての第1負荷側熱交換器5と、第1負荷側熱交換器5から流出する冷媒を減圧する第1減圧手段としての第1膨張弁6と、第1膨張弁6によって減圧された低温低圧冷媒と熱源熱交換部2の熱源側の熱媒との熱交換を行う第1蒸発器としての第1熱源側熱交換器7とを備え、第1圧縮機4と第1負荷側熱交換器5の冷媒流路5aと第1膨張弁6と第1熱源側熱交換器7の冷媒流路7aとを第1冷媒配管8で環状に接続して第1ヒートポンプ回路9を形成しているものである。なお、第1ヒートポンプ回路9を循環する冷媒としては、二酸化炭素冷媒やHFC冷媒等の任意の冷媒を用いることができるものである。また、10は第1圧縮機4から吐出された冷媒の温度を検出する第1吐出温度検出手段としての第1吐出温度センサ、11は第1熱源側熱交換器7側の冷媒の温度、つまり第1膨張弁6の出口から第1熱源側熱交換器7の出口までの気液混合状態の冷媒の温度を検出する第1蒸発温度検出手段としての第1蒸発温度センサである。   The heat pump unit 1A circulates a first compressor 4 having a variable operating frequency or operating speed and a high-temperature and high-pressure refrigerant discharged from the first compressor 4 for compressing the refrigerant. A first load-side heat exchanger 5 as a first condenser that performs heat exchange with the heat medium on the load side of 3A, and a first decompression unit that decompresses the refrigerant flowing out of the first load-side heat exchanger 5 The first heat source side heat exchanger as a first evaporator that performs heat exchange between the first expansion valve 6 and the low-temperature and low-pressure refrigerant decompressed by the first expansion valve 6 and the heat medium on the heat source side of the heat source heat exchange unit 2 7, and the first compressor 4, the refrigerant flow path 5 a of the first load side heat exchanger 5, the first expansion valve 6, and the refrigerant flow path 7 a of the first heat source side heat exchanger 7 are connected to the first refrigerant pipe. In FIG. 8, the first heat pump circuit 9 is formed in a ring shape. In addition, as a refrigerant | coolant which circulates through the 1st heat pump circuit 9, arbitrary refrigerant | coolants, such as a carbon dioxide refrigerant | coolant and a HFC refrigerant | coolant, can be used. Further, 10 is a first discharge temperature sensor as a first discharge temperature detecting means for detecting the temperature of the refrigerant discharged from the first compressor 4, and 11 is the temperature of the refrigerant on the first heat source side heat exchanger 7 side, that is, 2 is a first evaporation temperature sensor as first evaporation temperature detection means for detecting the temperature of the refrigerant in the gas-liquid mixed state from the outlet of the first expansion valve 6 to the outlet of the first heat source side heat exchanger 7.

前記第1熱源側熱交換器7はプレート式熱交換器で構成され、プレート式熱交換器は複数の伝熱プレートが積層され、冷媒を流通させる冷媒流路7aと不凍液を流通させる不凍液流路7bとが各伝熱プレートを境にして交互に形成されているものである。   The first heat source side heat exchanger 7 is constituted by a plate heat exchanger, and the plate heat exchanger is formed by stacking a plurality of heat transfer plates, and a refrigerant flow path 7a for circulating the refrigerant and an antifreeze liquid path for circulating the antifreeze liquid. 7b are alternately formed with each heat transfer plate as a boundary.

前記熱源熱交換部2は、第1熱源側熱交換器7のうち不凍液を流通させる不凍液流路7bと、第1熱源側熱交換器7の冷媒流路7aを流通する冷媒を加熱する熱源としての地中に設置された地中熱交換器12とを、第1不凍液配管としての第1熱交往き管13、往きヘッダ−14、地中往き管15、地中戻り管16、戻りヘッダー17、第1熱交戻り管18で環状に接続する第1熱源側循環回路としての第1地中熱循環回路19と、第1地中熱循環回路19にエチレングリコールやプロピレングリコール等を添加した不凍液を循環させる回転数可変の第1熱源側循環ポンプとしての第1地中熱循環ポンプ20とを備えているものである。   The heat source heat exchanging unit 2 serves as a heat source for heating the refrigerant flowing through the antifreeze liquid flow path 7b through which the antifreeze liquid flows in the first heat source side heat exchanger 7 and the refrigerant flow path 7a of the first heat source side heat exchanger 7. The underground heat exchanger 12 installed in the ground is connected to a first heat transfer pipe 13 as a first antifreeze liquid pipe, an outgoing header -14, an underground outgoing pipe 15, an underground return pipe 16, and a return header 17 A first ground heat circulation circuit 19 as a first heat source side circulation circuit connected in a ring shape by the first heat exchange return pipe 18, and an antifreeze liquid in which ethylene glycol, propylene glycol or the like is added to the first ground heat circulation circuit 19 And a first underground heat circulation pump 20 as a first heat source side circulation pump with variable rotation speed.

ここで、前記熱源熱交換部2では、後述する暖房運転をヒートポンプユニット1A側で行う際に、地中熱交換器12によって地中から地中熱を採熱し、その熱を帯びた不凍液が第1地中熱循環ポンプ20により第1熱源側熱交換器7の不凍液流路7bに供給される。そして、第1熱源側熱交換器7にて、冷媒流路7aを流通する冷媒と不凍液流路7bを流通する不凍液とが対向して流れて熱交換が行われ、地中熱交換器12にて採熱された地中熱がヒートポンプユニット1Aの冷媒側に汲み上げられて冷媒が加熱され、第1熱源側熱交換器7は蒸発器として機能するものとなる。   Here, in the heat source heat exchanging unit 2, when the heating operation described later is performed on the heat pump unit 1A side, the underground heat exchanger 12 collects the ground heat from the ground, and the antifreeze liquid with the heat is the first. 1 The ground heat circulation pump 20 supplies the antifreeze liquid flow path 7b of the first heat source side heat exchanger 7. And in the 1st heat source side heat exchanger 7, the refrigerant | coolant which distribute | circulates the refrigerant | coolant flow path 7a and the antifreeze liquid which distribute | circulates the antifreeze liquid flow path 7b flow oppositely, heat exchange is performed, and the underground heat exchanger 12 is passed. The ground heat collected in this manner is pumped up to the refrigerant side of the heat pump unit 1A to heat the refrigerant, and the first heat source side heat exchanger 7 functions as an evaporator.

前記負荷熱交換部3Aは、第1負荷側熱交換器5のうち循環液を流通させる循環液流路5bと、被空調空間を加熱する床暖房パネル等の第1負荷端末21とを第1循環液配管22で環状に接続する第1負荷側循環回路23と、第1負荷側循環回路23に水や不凍液等の循環液を循環させる第1負荷側循環ポンプ24と、第1負荷側循環回路23に設けられ第1負荷端末21から流出し第1負荷側熱交換器5の循環液流路5bに流入する循環液の温度を検出する第1負荷温度検出手段としての第1戻り温度センサ25とを備えているものである。   The load heat exchanging unit 3A firstly connects the circulating fluid passage 5b for circulating the circulating fluid in the first load-side heat exchanger 5 and the first load terminal 21 such as a floor heating panel for heating the air-conditioned space. A first load-side circulation circuit 23 connected in a ring shape with a circulating fluid pipe 22, a first load-side circulation pump 24 that circulates a circulating fluid such as water or antifreeze into the first load-side circulation circuit 23, and a first load-side circulation A first return temperature sensor as a first load temperature detecting means provided in the circuit 23 for detecting the temperature of the circulating fluid flowing out from the first load terminal 21 and flowing into the circulating fluid flow path 5b of the first load side heat exchanger 5 25.

前記第1負荷端末21によって加熱される被空調空間には、第1リモコン(図示せず)が設置されており、この第1リモコンにより第1負荷端末21が設けられた被空調空間の暖房の指示がなされると、第1圧縮機4および第1地中熱循環ポンプ20および第1負荷側循環ポンプ24の駆動が開始され、第1熱源側熱交換器7を蒸発器として機能させると共に、第1負荷側熱交換器5を凝縮器として機能させて負荷側を加熱する暖房運転が行われる。この暖房運転の際、第1負荷側熱交換器5では、冷媒流路5aを流通する冷媒と循環液流路5bを流通する循環液とが対向して流れて熱交換が行われ、第1負荷側熱交換器5にて加熱された循環液は、第1負荷端末21に送られ、第1リモコンにより指示を受けた被空調空間を加熱するものである。   A first remote controller (not shown) is installed in the air-conditioned space heated by the first load terminal 21, and heating of the air-conditioned space where the first load terminal 21 is provided by the first remote controller. When instructed, driving of the first compressor 4, the first underground heat circulation pump 20, and the first load side circulation pump 24 is started, and the first heat source side heat exchanger 7 functions as an evaporator, A heating operation is performed in which the first load-side heat exchanger 5 functions as a condenser to heat the load side. During the heating operation, in the first load-side heat exchanger 5, the refrigerant flowing through the refrigerant flow path 5a and the circulating liquid flowing through the circulating liquid flow path 5b flow oppositely to perform heat exchange. The circulating fluid heated in the load-side heat exchanger 5 is sent to the first load terminal 21 and heats the air-conditioned space that is instructed by the first remote controller.

26は第1吐出温度センサ10、第1蒸発温度センサ11、第1戻り温度センサ25の入力や前記第1リモコンからの信号を受けて、第1圧縮機4、第1膨張弁6、第1地中熱循環ポンプ20、第1負荷側循環ポンプ24の各アクチュエータの作動を制御するマイコンを有する第1制御手段である。   26 receives the input from the first discharge temperature sensor 10, the first evaporation temperature sensor 11, the first return temperature sensor 25 and the signal from the first remote controller, and receives the first compressor 4, the first expansion valve 6, and the first. The first control means includes a microcomputer that controls the operation of each actuator of the geothermal circulation pump 20 and the first load-side circulation pump 24.

この第1制御手段26は、前記暖房運転中、第1リモコンで設定される第1負荷端末21の設定温度に基づき目標暖房温度を設定し、第1戻り温度センサ25の検出する循環液の温度が、設定された目標暖房温度になるように第1圧縮機4の周波数を制御し、例えば、第1戻り温度センサ25の検出する循環液の温度が、設定された目標暖房温度よりも低下すると、第1圧縮機4の周波数を増加させるよう制御するものである。   The first control means 26 sets the target heating temperature based on the set temperature of the first load terminal 21 set by the first remote controller during the heating operation, and the temperature of the circulating fluid detected by the first return temperature sensor 25. However, if the frequency of the 1st compressor 4 is controlled so that it may become the set target heating temperature, for example, the temperature of the circulating fluid which the 1st return temperature sensor 25 detects will fall from the set target heating temperature. The frequency of the first compressor 4 is controlled to increase.

さらに、前記第1制御手段26は、前記暖房運転時、第1リモコンで設定される第1負荷端末21の設定温度に基づき第1圧縮機4から吐出される冷媒の目標吐出温度を設定し、第1吐出温度センサ10の検出する冷媒の温度が設定された目標吐出温度になるように第1膨張弁6の開度を開閉制御し、例えば、第1吐出温度センサ10の検出する冷媒の温度が目標吐出温度よりも低下すると開度を閉じる方向に制御するものである。   Further, the first control means 26 sets a target discharge temperature of the refrigerant discharged from the first compressor 4 based on the set temperature of the first load terminal 21 set by the first remote controller during the heating operation, The opening degree of the first expansion valve 6 is controlled so that the refrigerant temperature detected by the first discharge temperature sensor 10 becomes the set target discharge temperature. For example, the refrigerant temperature detected by the first discharge temperature sensor 10 is controlled. When the temperature drops below the target discharge temperature, the opening degree is controlled in the closing direction.

その上、前記第1制御手段26は、暖房運転中、第1蒸発温度センサ11の検出する第1膨張弁6の出口から第1熱源側熱交換器7の出口までの気液混合状態の冷媒の温度が、設定された目標蒸発温度になるように第1地中熱循環ポンプ20の回転数を制御し、例えば、第1蒸発温度センサ11の検出する冷媒温度が、設定された目標蒸発温度よりも低下すると、第1地中熱循環ポンプ20の回転数を増加させるよう制御するものである。   In addition, during the heating operation, the first control means 26 is a refrigerant in a gas-liquid mixed state from the outlet of the first expansion valve 6 detected by the first evaporation temperature sensor 11 to the outlet of the first heat source side heat exchanger 7. The number of revolutions of the first underground heat circulation pump 20 is controlled so that the temperature of the refrigerant reaches the set target evaporation temperature. For example, the refrigerant temperature detected by the first evaporation temperature sensor 11 is set to the set target evaporation temperature. If it falls below, it will control to increase the rotation speed of the 1st underground heat circulation pump 20.

また、前記ヒートポンプユニット1Bは、冷媒を圧縮する作動周波数または作動回転数可変の第2圧縮機27と、第2圧縮機27から吐出された高温高圧冷媒を流通させ、この高温高圧冷媒と負荷熱交換部3Bの負荷側の熱媒との熱交換を行う第2凝縮器としての第2負荷側熱交換器28と、第2負荷側熱交換器28から流出する冷媒を減圧する第2減圧手段としての第2膨張弁29と、第2膨張弁29によって減圧された低温低圧冷媒と熱源熱交換部2の熱源側の熱媒との熱交換を行う第2蒸発器としての第2熱源側熱交換器30とを備え、第2圧縮機27と第2負荷側熱交換器28の冷媒流路28aと第2膨張弁29と第2熱源側熱交換器30の冷媒流路30aとを第2冷媒配管31で環状に接続して第2ヒートポンプ回路32を形成しているものである。なお、第2ヒートポンプ回路32を循環する冷媒としては、二酸化炭素冷媒やHFC冷媒等の任意の冷媒を用いることができるものである。また、33は第2圧縮機27から吐出された冷媒の温度を検出する第2吐出温度検出手段としての第2吐出温度センサ、34は、第2熱源側熱交換器30側の冷媒の温度、つまり第2膨張弁29の出口から第2熱源側熱交換器30の出口までの気液混合状態の冷媒の温度を検出する第2蒸発温度検出手段としての第2蒸発温度センサである。   Further, the heat pump unit 1B circulates the second compressor 27 having a variable operating frequency or operating speed and compressing the refrigerant, and the high-temperature and high-pressure refrigerant discharged from the second compressor 27. A second load-side heat exchanger 28 serving as a second condenser that performs heat exchange with the load-side heat medium of the exchange unit 3B, and second decompression means for decompressing the refrigerant flowing out of the second load-side heat exchanger 28 The second expansion valve 29 as a second heat source side heat as a second evaporator that performs heat exchange between the low-temperature and low-pressure refrigerant decompressed by the second expansion valve 29 and the heat medium on the heat source side of the heat source heat exchanging unit 2 The second compressor 27, the refrigerant flow path 28a of the second load side heat exchanger 28, the second expansion valve 29, and the refrigerant flow path 30a of the second heat source side heat exchanger 30. A second heat pump circuit 32 is formed by connecting the refrigerant pipe 31 in a ring shape. It is those who are. In addition, as a refrigerant | coolant which circulates through the 2nd heat pump circuit 32, arbitrary refrigerant | coolants, such as a carbon dioxide refrigerant | coolant and a HFC refrigerant | coolant, can be used. Reference numeral 33 denotes a second discharge temperature sensor as second discharge temperature detecting means for detecting the temperature of the refrigerant discharged from the second compressor 27, and 34 denotes the temperature of the refrigerant on the second heat source side heat exchanger 30 side, That is, it is a second evaporation temperature sensor as a second evaporation temperature detecting means for detecting the temperature of the refrigerant in the gas-liquid mixed state from the outlet of the second expansion valve 29 to the outlet of the second heat source side heat exchanger 30.

前記第2熱源側熱交換器30はプレート式熱交換器で構成され、プレート式熱交換器は複数の伝熱プレートが積層され、冷媒を流通させる冷媒流路30aと不凍液を流通させる不凍液流路30bとが各伝熱プレートを境にして交互に形成されているものである。   The second heat source side heat exchanger 30 is composed of a plate heat exchanger, and the plate heat exchanger is formed by stacking a plurality of heat transfer plates, and a refrigerant flow path 30a for circulating a refrigerant and an antifreeze liquid path for circulating an antifreeze liquid. 30b are alternately formed with each heat transfer plate as a boundary.

また、前記熱源熱交換部2は、第2熱源側熱交換器30のうち不凍液を流通させる不凍液流路30bと、第2熱源側熱交換器30の冷媒流路30aを流通する冷媒を加熱する熱源としての地中に設置された地中熱交換器12とを第2不凍液配管としての第2熱交往き管35、往きヘッダー14、地中往き管15、地中戻り管16、戻りヘッダー17、第2熱交戻り管36で環状に接続する第2熱源側循環回路としての第2地中熱循環回路37と、第2地中熱循環回路37にエチレングリコールやプロピレングリコール等を添加した不凍液を循環させる回転数可変の第2熱源側循環ポンプとしての第2地中熱循環ポンプ38とを備えているものであり、熱源熱交換部2では、ヒートポンプユニット1Aの第1熱源側熱交換器7とヒートポンプユニット1Bの第2熱源側熱交換器30とが地中熱交換器12に対して並列に接続されているものである。   The heat source heat exchanging unit 2 heats the refrigerant flowing through the antifreeze liquid flow path 30b through which the antifreeze liquid flows in the second heat source side heat exchanger 30 and the refrigerant flow path 30a of the second heat source side heat exchanger 30. The underground heat exchanger 12 installed in the ground as a heat source is connected to the second heat exchange pipe 35 as the second antifreeze pipe, the forward header 14, the underground forward pipe 15, the underground return pipe 16, and the return header 17 A second ground heat circulation circuit 37 as a second heat source side circulation circuit connected in a ring shape by the second heat exchange return pipe 36, and an antifreeze liquid obtained by adding ethylene glycol, propylene glycol or the like to the second ground heat circulation circuit 37 And a second underground heat circulation pump 38 as a second heat source side circulation pump with variable rotation speed, and the heat source heat exchanging unit 2 includes a first heat source side heat exchanger of the heat pump unit 1A. 7 and heat pump Tsu and second heat source side heat exchanger 30 of the bets 1B is one that is connected in parallel with the underground heat exchanger 12.

ここで、前記熱源熱交換部2では、後述する暖房運転をヒートポンプユニット1B側で行う際に、地中熱交換器12によって地中から地中熱を採熱し、その熱を帯びた不凍液が第2地中熱循環ポンプ38により第2熱源側熱交換器30の不凍液流路30bに供給される。そして、第2熱源側熱交換器30にて、冷媒流路30aを流通する冷媒と不凍液流路30bを流通する不凍液とが対向して流れて熱交換が行われ、地中熱交換器12にて採熱された地中熱がヒートポンプユニット1B側の冷媒に汲み上げられて冷媒が加熱され、第2熱源側熱交換器30は蒸発器として機能するものとなる。   Here, in the heat source heat exchanging unit 2, when the heating operation described later is performed on the heat pump unit 1B side, the underground heat exchanger 12 collects the ground heat from the ground, and the antifreeze liquid with the heat is the first. 2 The ground heat circulation pump 38 supplies the antifreeze liquid flow path 30b of the second heat source side heat exchanger 30. And in the 2nd heat source side heat exchanger 30, the refrigerant | coolant which distribute | circulates the refrigerant | coolant flow path 30a and the antifreeze liquid which distribute | circulates the antifreeze liquid flow path 30b flow oppositely, heat exchange is performed, and the underground heat exchanger 12 is passed. The ground heat collected in this manner is pumped up to the refrigerant on the heat pump unit 1B side, and the refrigerant is heated, and the second heat source side heat exchanger 30 functions as an evaporator.

前記負荷熱交換部3Bは、第2負荷側熱交換器28のうち循環液を流通させる循環液流路28bと、被空調空間を加熱する床暖房パネル等の第2負荷端末39とを第2循環液配管40で環状に接続する第2負荷側循環回路41と、第2負荷側循環回路41に水や不凍液等の循環液を循環させる第2負荷側循環ポンプ42と、第2負荷側循環回路41に設けられ第2負荷端末39から流出し第2負荷側熱交換器28の循環液流路28bに流入する循環液の温度を検出する第2負荷温度検出手段としての第2戻り温度センサ43とを備えているものである。   The load heat exchanging unit 3B includes a circulating fluid passage 28b for circulating the circulating fluid in the second load side heat exchanger 28 and a second load terminal 39 such as a floor heating panel for heating the air-conditioned space. A second load-side circulation circuit 41 connected in a ring shape with a circulating fluid pipe 40, a second load-side circulation pump 42 for circulating a circulating fluid such as water or antifreeze into the second load-side circulation circuit 41, and a second load-side circulation A second return temperature sensor as a second load temperature detecting means provided in the circuit 41 for detecting the temperature of the circulating fluid flowing out from the second load terminal 39 and flowing into the circulating fluid flow path 28b of the second load side heat exchanger 28. 43.

前記第2負荷端末39によって加熱される被空調空間には、第2リモコン(図示せず)が設置されており、この第2リモコンにより第2負荷端末39が設けられた被空調空間の暖房の指示がなされると、第2圧縮機27および第2地中熱循環ポンプ38および第2負荷側循環ポンプ42の駆動が開始され、第2熱源側熱交換器30を蒸発器として機能させると共に、第2負荷側熱交換器28を凝縮器として機能させて負荷側を加熱する暖房運転が行われる。この暖房運転の際、第2負荷側熱交換器28では、冷媒流路28aを流通する冷媒と循環液流路28bを流通する循環液とが対向して流れて熱交換が行われ、第2負荷側熱交換器28にて加熱された循環液は、第2負荷端末39に送られ、第2リモコンにより指示を受けた被空調空間を加熱するものである。   A second remote controller (not shown) is installed in the air-conditioned space heated by the second load terminal 39, and heating of the air-conditioned space in which the second load terminal 39 is provided by the second remote controller. When instructed, driving of the second compressor 27, the second underground heat circulation pump 38, and the second load side circulation pump 42 is started, and the second heat source side heat exchanger 30 functions as an evaporator, Heating operation for heating the load side by causing the second load side heat exchanger 28 to function as a condenser is performed. During the heating operation, in the second load side heat exchanger 28, the refrigerant flowing through the refrigerant flow path 28a and the circulating liquid flowing through the circulating liquid flow path 28b flow oppositely to perform heat exchange. The circulating fluid heated by the load-side heat exchanger 28 is sent to the second load terminal 39 and heats the air-conditioned space that is instructed by the second remote controller.

44は第2吐出温度センサ33、第2蒸発温度センサ34、第2戻り温度センサ43の入力や第2リモコンからの信号を受けて、第2圧縮機27、第2膨張弁29、第2地中熱循環ポンプ38、第2負荷側循環ポンプ42の各アクチュエータの作動を制御するマイコンを有する第2制御手段である。   44 receives the input of the 2nd discharge temperature sensor 33, the 2nd evaporation temperature sensor 34, the 2nd return temperature sensor 43, and the signal from the 2nd remote control, the 2nd compressor 27, the 2nd expansion valve 29, the 2nd ground The second control means includes a microcomputer that controls the operation of each actuator of the intermediate heat circulation pump 38 and the second load side circulation pump 42.

前記第2制御手段44は、前記暖房運転中、第2リモコンで設定される第2負荷端末39の設定温度に基づき目標暖房温度を設定し、第2戻り温度センサ43の検出する循環液の温度が、設定された目標暖房温度になるように第2圧縮機27の周波数を制御し、例えば、第2戻り温度センサ43の検出する循環液の温度が、設定された目標暖房温度よりも低下すると、第2圧縮機27の周波数を増加させるよう制御するものである。   The second control means 44 sets the target heating temperature based on the set temperature of the second load terminal 39 set by the second remote controller during the heating operation, and the temperature of the circulating fluid detected by the second return temperature sensor 43. However, if the frequency of the 2nd compressor 27 is controlled so that it may become the set target heating temperature, for example, the temperature of the circulating fluid which the 2nd return temperature sensor 43 detects will fall from the set target heating temperature. The control is performed to increase the frequency of the second compressor 27.

さらに、前記第2制御手段44は、前記暖房運転時、第2リモコンで設定される第2負荷端末39の設定温度に基づき第2圧縮機27から吐出される冷媒の目標吐出温度を設定し、第2吐出温度センサ33の検出する冷媒の温度が設定された目標吐出温度になるように第2膨張弁29の開度を開閉制御し、例えば、第2吐出温度センサ33の検出する冷媒の温度が目標吐出温度よりも低下すると開度を閉じる方向に制御するものである。   Further, the second control means 44 sets a target discharge temperature of the refrigerant discharged from the second compressor 27 based on the set temperature of the second load terminal 39 set by the second remote controller during the heating operation, The opening of the second expansion valve 29 is controlled to open and close so that the temperature of the refrigerant detected by the second discharge temperature sensor 33 becomes the set target discharge temperature. For example, the temperature of the refrigerant detected by the second discharge temperature sensor 33 When the temperature drops below the target discharge temperature, the opening degree is controlled in the closing direction.

その上、前記第2制御手段44は、暖房運転中、第2蒸発温度センサ34の検出する第2膨張弁29の出口から第2熱源側熱交換器30の出口までの気液混合状態の冷媒の温度が、設定された目標蒸発温度になるように第2地中熱循環ポンプ38の回転数を制御し、例えば、第2蒸発温度センサ34の検出する冷媒温度が、設定された目標蒸発温度よりも低下すると、第2地中熱循環ポンプ38の回転数を増加させるよう制御するものである。   In addition, during the heating operation, the second control means 44 is a refrigerant in a gas-liquid mixed state from the outlet of the second expansion valve 29 detected by the second evaporation temperature sensor 34 to the outlet of the second heat source side heat exchanger 30. The number of rotations of the second underground heat circulation pump 38 is controlled so that the temperature of the second underground heat circulation pump 38 becomes the set target evaporation temperature. For example, the refrigerant temperature detected by the second evaporation temperature sensor 34 is set to the set target evaporation temperature. If it falls below, it controls so that the rotation speed of the 2nd underground heat circulation pump 38 may be increased.

次に、図1に示す一実施形態のヒートポンプ装置の暖房運転時の特徴的な動作について図2に示すフローチャートに基づき説明するが、ここでは、ヒートポンプユニット1Aが暖房運転を行っている場合を例に挙げて説明を行う。   Next, characteristic operations during the heating operation of the heat pump apparatus according to the embodiment shown in FIG. 1 will be described based on the flowchart shown in FIG. 2. Here, the case where the heat pump unit 1 </ b> A is performing the heating operation will be described as an example. Will be described.

前記第1リモコン(図示せず)により、第1負荷端末21による被空調空間の暖房の指示がなされると、前記第1制御手段26は第1圧縮機4、第1地中熱循環ポンプ20、第1負荷側循環ポンプ24の駆動を開始させ、暖房運転が開始される。暖房運転が開始されると、第1負荷側熱交換器5では第1負荷側循環ポンプ24により循環される暖房循環液と第1圧縮機4から吐出された高温高圧の冷媒とが熱交換され、加熱された暖房循環液が第1負荷端末21に供給され被空調空間を加熱すると共に、第1熱源側熱交換器7では、第1地中熱循環ポンプ20により循環され地中熱交換器12を介して地中熱を採熱した不凍液と第1膨張弁6から吐出された低温低圧の冷媒とが熱交換され、地中熱により冷媒を加熱し蒸発させるものである。   When an instruction to heat the air-conditioned space is given by the first load terminal 21 by the first remote controller (not shown), the first control means 26 includes the first compressor 4 and the first underground heat circulation pump 20. Then, the driving of the first load side circulation pump 24 is started, and the heating operation is started. When the heating operation is started, the first load-side heat exchanger 5 exchanges heat between the heating circulation liquid circulated by the first load-side circulation pump 24 and the high-temperature and high-pressure refrigerant discharged from the first compressor 4. The heated heating circulating fluid is supplied to the first load terminal 21 to heat the air-conditioned space, and in the first heat source side heat exchanger 7, the ground heat exchanger is circulated by the first ground heat circulation pump 20. The antifreeze obtained by collecting the geothermal heat via 12 and the low-temperature and low-pressure refrigerant discharged from the first expansion valve 6 are subjected to heat exchange, and the refrigerant is heated and evaporated by the underground heat.

前記暖房運転中、第1制御手段26は、第1蒸発温度センサ11の検出する冷媒温度を監視し(ステップS1)、その温度に応じて、後述する設定方法に基づき、第1圧縮機4の周波数の上限値を設定するものであり(ステップS2)、その設定に基づいて、第1制御手段26は、第1圧縮機4の周波数を制御するものである。   During the heating operation, the first control means 26 monitors the refrigerant temperature detected by the first evaporation temperature sensor 11 (step S1), and according to the temperature, the first compressor 4 of the first compressor 4 is based on a setting method to be described later. The upper limit value of the frequency is set (step S2), and the first control means 26 controls the frequency of the first compressor 4 based on the setting.

ここで、前記ステップS2における第1圧縮機4の周波数の上限値を設定する設定方法について説明すると、図3に示すように、第1蒸発温度センサ11で検出される第1膨張弁6の出口から第1熱源側熱交換器7の出口までの気液混合状態の冷媒温度に応じた複数のゾーンz1〜z3を設け、各々のゾーンz1〜z3に第1圧縮機4の周波数の上限値が設定されており、例えば、太線αより上の領域であるゾーンz1では第1圧縮機4の周波数の上限値を90Hz、太線αと太線βとで挟まれた領域であるゾーンz2では第1圧縮機4の周波数の上限値を60Hz、太線βより下の領域であるゾーンz3では第1圧縮機4の周波数の上限値を35Hzとした場合、前記暖房運転中に、第1蒸発温度センサ11で検出される温度が−5℃のときは、第1圧縮機4の周波数の上限値を90Hzに設定し、第1蒸発温度センサ11で検出される温度が−10.5℃のときは、第1圧縮機4の周波数の上限値を60Hzに設定し、第1蒸発温度センサ11で検出される温度が−14℃のときは、第1圧縮機4の周波数の上限値を35Hzに設定するものである。   Here, the setting method for setting the upper limit value of the frequency of the first compressor 4 in step S2 will be described. As shown in FIG. 3, the outlet of the first expansion valve 6 detected by the first evaporation temperature sensor 11 is described. A plurality of zones z1 to z3 corresponding to the refrigerant temperature in the gas-liquid mixed state from the first heat source side heat exchanger 7 to the outlet of the first heat source side heat exchanger 7 are provided, and the upper limit value of the frequency of the first compressor 4 is set in each of the zones z1 to z3. For example, in the zone z1 that is an area above the thick line α, the upper limit value of the frequency of the first compressor 4 is 90 Hz, and in the zone z2 that is the area between the thick line α and the thick line β, the first compression is performed. When the upper limit value of the frequency of the machine 4 is 60 Hz and the upper limit value of the frequency of the first compressor 4 is set to 35 Hz in the zone z3 which is an area below the thick line β, the first evaporating temperature sensor 11 is used during the heating operation. When the detected temperature is -5 ° C When the upper limit value of the frequency of the first compressor 4 is set to 90 Hz and the temperature detected by the first evaporation temperature sensor 11 is −10.5 ° C., the upper limit value of the frequency of the first compressor 4 is set to 60 Hz. When the temperature detected by the first evaporation temperature sensor 11 is −14 ° C., the upper limit value of the frequency of the first compressor 4 is set to 35 Hz.

また、第1蒸発温度センサ11で検出される冷媒温度が、図3に示した下向き矢印d1のように、ゾーンz1に含まれる冷媒温度からゾーンz1とゾーンz5の境界線である太線αを越えてゾーンz2に含まれる冷媒温度へと下がる場合、すなわち、第1蒸発温度センサ11で検出される冷媒温度が−5℃からゾーンz1とゾーンz2の境界である−10℃を越えて−10.5℃に下がった場合、第1圧縮機4の周波数の上限値は、90Hzから60Hzに設定変更されるものであり、さらに、図3に示した下向き矢印d2のように、ゾーンz2に含まれる冷媒温度からゾーンz2とゾーンz3の境界線である太線βを越えてゾーンz3に含まれる冷媒温度へと下がる場合、すなわち、第1蒸発温度センサ11で検出される冷媒温度が−10.5℃からゾーンz2とゾーンz3の境界である−13℃を越えて−14℃に下がった場合、第1圧縮機4の周波数の上限値は、60Hzから35Hzに設定変更されるものである。   Further, the refrigerant temperature detected by the first evaporation temperature sensor 11 exceeds the thick line α, which is the boundary line between the zone z1 and the zone z5, from the refrigerant temperature included in the zone z1, as indicated by the downward arrow d1 shown in FIG. When the refrigerant temperature falls to the refrigerant temperature included in the zone z2, that is, the refrigerant temperature detected by the first evaporation temperature sensor 11 exceeds -10 ° C, which is the boundary between the zone z1 and the zone z2, from -5 ° C to -10. When the temperature falls to 5 ° C., the upper limit value of the frequency of the first compressor 4 is changed from 90 Hz to 60 Hz, and is included in the zone z2 as indicated by the downward arrow d2 shown in FIG. When the refrigerant temperature falls from the refrigerant line temperature exceeding the thick line β that is the boundary line between the zone z2 and the zone z3 to the refrigerant temperature contained in the zone z3, that is, the refrigerant temperature detected by the first evaporation temperature sensor 11 is −10. When the temperature falls from −5 ° C. to −14 ° C. exceeding −13 ° C. which is the boundary between the zone z2 and the zone z3, the upper limit value of the frequency of the first compressor 4 is changed from 60 Hz to 35 Hz.

逆に、図3に示した上向き矢印u1のように、ゾーンz3に含まれる冷媒温度からゾーンz3とゾーンz2の境界線である太線βを越えてゾーンz2に含まれる冷媒温度へと上がる場合、すなわち、第1蒸発温度センサ11で検出される冷媒温度が−14℃からゾーンz3とゾーンz2の境界である−11℃を越えて−10.5℃に上がった場合、第1圧縮機4の周波数の上限値は、35Hzから60Hzに設定変更されるものであり、さらに、図3に示した上向き矢印u2のように、ゾーンz2に含まれる冷媒温度からゾーンz2とゾーンz1の境界線である太線αを越えてゾーンz1に含まれる冷媒温度へと上がる場合、すなわち、第1蒸発温度センサ11で検出される冷媒温度が−10.5℃からゾーンz2とゾーンz1の境界である−8℃を越えて−5℃に上がった場合、第1圧縮機4の周波数の上限値は、60Hzから90Hzに設定変更されるものである。   On the contrary, as shown by the upward arrow u1 shown in FIG. 3, when the refrigerant temperature rises from the refrigerant temperature contained in the zone z3 to the refrigerant temperature contained in the zone z2 beyond the thick line β that is the boundary line between the zone z3 and the zone z2. That is, when the refrigerant temperature detected by the first evaporating temperature sensor 11 rises from −14 ° C. to −10.5 ° C. beyond −11 ° C., which is the boundary between the zones z 3 and z 2, the first compressor 4 The upper limit value of the frequency is changed from 35 Hz to 60 Hz, and is a boundary line between the zone z2 and the zone z1 from the refrigerant temperature contained in the zone z2, as indicated by the upward arrow u2 shown in FIG. When the temperature rises to the refrigerant temperature included in the zone z1 beyond the thick line α, that is, the refrigerant temperature detected by the first evaporation temperature sensor 11 is a boundary between the zone z2 and the zone z1 from −10.5 ° C. − When the temperature exceeds 8 ° C. and rises to −5 ° C., the upper limit value of the frequency of the first compressor 4 is changed from 60 Hz to 90 Hz.

なお、前記第1制御手段26には、この図3に示した第1膨張弁6の出口から第1熱源側熱交換器7の出口までの気液混合状態の冷媒温度と第1圧縮機4の周波数の上限値との関係が予め記憶されており、第1制御手段26は暖房運転中はその情報を基に、第1蒸発温度センサ11で検出される第1熱源側熱交換器7側の冷媒の温度に応じて第1圧縮機4の周波数の上限値を設定しているものである。また、暖房運転中、第1蒸発温度センサ11で検出される冷媒温度がゾーンz3に含まれる冷媒温度の場合は、第1熱源側熱交換器7の不凍液流路7bを流通する不凍液中の水分が凍結するおそれがあるため、第1圧縮機4の周波数の上限値を35Hzとして、第1制御手段26は第1膨張弁6の開度を全開にして、第1膨張弁6に流入する冷媒を減圧させることなく通過させ第1熱源側熱交換器7の冷媒流路7aに流し、冷媒と不凍液との熱交換によって、第1熱源側熱交換器7の不凍液流路7bを流通する不凍液中の水分の凍結を防止する、または第1熱源側熱交換器7の不凍液流路7bを流通する不凍液中の水分が凍結したものを解かすものである。   The first control means 26 includes the refrigerant temperature in the gas-liquid mixed state from the outlet of the first expansion valve 6 to the outlet of the first heat source side heat exchanger 7 shown in FIG. The first control means 26 is based on the information during the heating operation, and the first heat source side heat exchanger 7 side detected by the first evaporation temperature sensor 11 is stored in advance. The upper limit of the frequency of the first compressor 4 is set according to the temperature of the refrigerant. Further, when the refrigerant temperature detected by the first evaporation temperature sensor 11 is the refrigerant temperature included in the zone z3 during the heating operation, the moisture in the antifreeze liquid flowing through the antifreeze liquid flow path 7b of the first heat source side heat exchanger 7 is obtained. Since the upper limit of the frequency of the first compressor 4 is set to 35 Hz, the first control means 26 fully opens the opening of the first expansion valve 6 and the refrigerant flows into the first expansion valve 6. In the antifreeze liquid flowing through the refrigerant flow path 7a of the first heat source side heat exchanger 7 and flowing through the antifreeze liquid flow path 7b of the first heat source side heat exchanger 7 by heat exchange between the refrigerant and the antifreeze liquid. The water in the antifreeze liquid flowing through the antifreeze liquid flow path 7b of the first heat source side heat exchanger 7 is released.

次に、本実施形態における暖房運転の動作を、先に説明した図2の制御を交えて図4のタイムチャートを用いて説明するが、ここでは、ヒートポンプユニット1Aが暖房運転を行っている最中に、ヒートポンプユニット1Bにて暖房運転が開始される場合について説明を行うものであり、図4のタイムチャートにおける暖房出力や検出冷媒温度等の各種パラメータは、ヒートポンプユニット1A側のパラメータである。また、図5は図7に示した従来のヒートポンプ装置で、従来のヒートポンプ装置における図中上段のヒートポンプユニット101が暖房運転を行っている最中に、従来のヒートポンプ装置における図中下段のヒートポンプユニット101にて暖房運転が開始される場合のタイムチャートで、図4のタイムチャートとの比較に用いるものである。なお、図4のタイムチャートにおいて、時間t0は暖房運転を開始した時間ではなく、暖房運転がある程度行われ安定した後の任意の時間とし、時間t0〜時間t4は図5のタイムチャートの時間t0〜時間t4と同タイミングを表しているものである。さらに、図5のタイムチャート中において、圧縮機の周波数の上限値は固定の上限値(90Hz)に設定してあるものとする。   Next, the operation of the heating operation in the present embodiment will be described using the time chart of FIG. 4 with the control of FIG. 2 described above. Here, the heat pump unit 1A is performing the heating operation. The case where the heating operation is started in the heat pump unit 1B will be described. Various parameters such as the heating output and the detected refrigerant temperature in the time chart of FIG. 4 are parameters on the heat pump unit 1A side. FIG. 5 shows the conventional heat pump apparatus shown in FIG. 7. While the upper heat pump unit 101 in the conventional heat pump apparatus is performing the heating operation, the lower heat pump unit in the conventional heat pump apparatus in the figure. 101 is a time chart when the heating operation is started at 101, and is used for comparison with the time chart of FIG. In the time chart of FIG. 4, the time t0 is not the time when the heating operation is started, but is an arbitrary time after the heating operation is performed and stabilized to some extent, and the time t0 to the time t4 are time t0 of the time chart of FIG. ~ Represents the same timing as time t4. Furthermore, in the time chart of FIG. 5, it is assumed that the upper limit value of the compressor frequency is set to a fixed upper limit value (90 Hz).

まず、図4中のヒートポンプユニット1Aにて前記暖房運転がある程度行われ安定した後の時間t0において、第1蒸発温度センサ11で第1膨張弁6の出口から第1熱源側熱交換器7の出口までの気液混合状態の冷媒の温度を検出し(ステップS1)、第1制御手段26は、第1蒸発温度センサ11で検出された冷媒温度が2℃であるので、図3に示した第1膨張弁6の出口から第1熱源側熱交換器7の出口までの気液混合状態の冷媒の温度と第1圧縮機4の周波数の上限値との関係から、第1圧縮機4の周波数の上限値を90Hzに設定するものである(ステップS2)。時間t0から時間t1までは、第1蒸発温度センサ11で検出される冷媒温度は2℃なので、この期間は、第1圧縮機4の周波数の上限値を90Hzに設定しているものである。   First, at the time t0 after the heating operation is performed to some extent in the heat pump unit 1A in FIG. 4 and stabilized, the first evaporating temperature sensor 11 causes the first heat source side heat exchanger 7 to exit from the outlet of the first expansion valve 6. The temperature of the refrigerant in the gas-liquid mixed state up to the outlet is detected (step S1), and the first control means 26 is shown in FIG. 3 because the refrigerant temperature detected by the first evaporation temperature sensor 11 is 2 ° C. From the relationship between the refrigerant temperature in the gas-liquid mixed state from the outlet of the first expansion valve 6 to the outlet of the first heat source side heat exchanger 7 and the upper limit value of the frequency of the first compressor 4, The upper limit value of the frequency is set to 90 Hz (step S2). From time t0 to time t1, since the refrigerant temperature detected by the first evaporation temperature sensor 11 is 2 ° C., the upper limit value of the frequency of the first compressor 4 is set to 90 Hz during this period.

ここで、時間t1において、ヒートポンプユニット1Bにて暖房運転が開始されると、第2地中熱循環ポンプ38が駆動し、第2地中熱循環回路37にも不凍液が循環されることになり、時間t1から第1地中熱循環回路19を循環している不凍液の循環流量が減少していき、それに伴い、第1熱源側熱交換器7での熱交換量が減少するため、第1蒸発温度センサ11で検出される冷媒温度も低下していく。時間t1から時間t2の期間、第1制御手段26は、第1蒸発温度センサ11の検出する冷媒温度が設定された目標蒸発温度、ここでは2℃から低下していると判断し、目標蒸発温度の2℃になるように第1地中熱循環ポンプ20の回転数を増加させる制御を行うものである。また、時間t1から時間t2の期間、第1熱源側熱交換器7側の冷媒温度の低下に起因した、第1負荷側熱交換器5の循環液流路5bに流入する循環液の温度の低下が始まると、第1制御手段26は、第1戻り温度センサ25の検出する循環液の温度が設定された目標暖房温度、ここでは40℃から低下していると判断し、目標暖房温度の40℃になるように第1圧縮機4の周波数を増加させる制御を行うものである。   Here, at the time t1, when the heating operation is started in the heat pump unit 1B, the second underground heat circulation pump 38 is driven, and the antifreeze liquid is also circulated in the second underground heat circulation circuit 37. From the time t1, the circulation flow rate of the antifreeze circulating in the first underground heat circulation circuit 19 decreases, and accordingly, the amount of heat exchange in the first heat source side heat exchanger 7 decreases. The refrigerant temperature detected by the evaporation temperature sensor 11 also decreases. During the period from time t1 to time t2, the first control means 26 determines that the refrigerant temperature detected by the first evaporation temperature sensor 11 has decreased from the set target evaporation temperature, here 2 ° C., and the target evaporation temperature. Control is performed to increase the rotational speed of the first underground heat circulation pump 20 so as to be 2 ° C. Further, during the period from time t1 to time t2, the temperature of the circulating fluid flowing into the circulating fluid flow path 5b of the first load-side heat exchanger 5 due to the decrease in the refrigerant temperature on the first heat source side heat exchanger 7 side. When the decrease starts, the first control means 26 determines that the temperature of the circulating fluid detected by the first return temperature sensor 25 has decreased from the set target heating temperature, here 40 ° C. Control to increase the frequency of the first compressor 4 so as to be 40 ° C. is performed.

続いて、時間t2において、第1制御手段26は、第1蒸発温度センサ11で検出される冷媒温度が図3に示すゾーンz1とゾーンz2の境界である−10℃を越えて下がったことを検知すると、第1圧縮機4の周波数の上限値を90Hzから60Hzに設定変更するものである。この第1圧縮機4の周波数の上限値の設定変更に伴い、第1制御手段26は、時間t2から第1圧縮機4の周波数を減少させる制御を行い、それにより、第1ヒートポンプ回路9を循環する冷媒の循環流量を抑えていく。そうすると、第1蒸発温度センサ11の検出する冷媒温度の低下の度合いが小さくなり、冷媒温度の低下が収束していく。そして、時間t2から時間t3の期間、第1制御手段26は、第1蒸発温度センサ11の検出する温度が目標蒸発温度(2℃)になるように第1地中熱循環ポンプ20の回転数を増加させる制御を行うものであるが、第1地中熱循環ポンプ20の回転数増加に伴い、第1地中熱循環回路19を循環する不凍液の循環流量が減少から増加へと反転し、第1熱源側熱交換器7での熱交換量が増加するため第1蒸発温度センサ11で検出される冷媒温度が上昇し始める。また、この期間、第1蒸発温度センサ11の検出する冷媒温度は、図3に示すゾーンz2に含まれる冷媒温度なので、第1圧縮機4の周波数の上限値の設定は60Hzのままである。   Subsequently, at time t2, the first control means 26 confirms that the refrigerant temperature detected by the first evaporation temperature sensor 11 has dropped below -10 ° C., which is the boundary between the zone z1 and the zone z2 shown in FIG. When detected, the upper limit value of the frequency of the first compressor 4 is changed from 90 Hz to 60 Hz. Along with the setting change of the upper limit value of the frequency of the first compressor 4, the first control means 26 performs control to decrease the frequency of the first compressor 4 from time t 2, thereby causing the first heat pump circuit 9 to be changed. Reduce the circulation flow rate of the circulating refrigerant. If it does so, the fall degree of the refrigerant | coolant temperature which the 1st evaporation temperature sensor 11 detects will become small, and the fall of a refrigerant | coolant temperature will converge. Then, during the period from time t2 to time t3, the first control means 26 determines the rotation speed of the first underground heat circulation pump 20 so that the temperature detected by the first evaporation temperature sensor 11 becomes the target evaporation temperature (2 ° C.). However, as the rotation speed of the first underground heat circulation pump 20 increases, the circulation flow rate of the antifreeze circulating through the first underground heat circulation circuit 19 is reversed from decrease to increase, Since the heat exchange amount in the first heat source side heat exchanger 7 increases, the refrigerant temperature detected by the first evaporation temperature sensor 11 starts to rise. Further, during this period, the refrigerant temperature detected by the first evaporation temperature sensor 11 is the refrigerant temperature included in the zone z2 shown in FIG. 3, and therefore the upper limit value of the frequency of the first compressor 4 is set to 60 Hz.

そして、時間t3において、第1制御手段26は、第1蒸発温度センサ11で検出される冷媒温度が図3に示すゾーンz2とゾーンz1の境界である−8℃を越えて上がったことを検知すると、第1圧縮機4の周波数の上限値を60Hzから90Hzに設定変更するものである。この第1圧縮機4の周波数の上限値の設定変更に伴い、時間t3から、第1制御手段26は、第1戻り温度センサ25の検出する循環液の温度が設定された目標暖房温度(40℃)になるように第1圧縮機4の周波数を増加させる制御を行い、第1戻り温度センサ25の検出する循環液の温度が設定された目標暖房温度に到達すると、目標暖房温度に到達したときの第1圧縮機4の周波数(75Hz)を維持するものである。また、時間t3から時間t4の期間、第1蒸発温度センサ11の検出する温度が徐々に上昇していき目標蒸発温度である2℃に到達するので、第1制御手段26は、第1蒸発温度センサ11の検出する温度が目標蒸発温度(2℃)を維持するように、目標蒸発温度に到達したときの第1地中熱循環ポンプ20の回転数(4500rpm)を維持するものであり、前記第1リモコンから暖房運転の停止指示がなされるまで暖房運転を行うものである。   At time t3, the first control means 26 detects that the refrigerant temperature detected by the first evaporation temperature sensor 11 has risen beyond −8 ° C., which is the boundary between the zone z2 and the zone z1 shown in FIG. Then, the upper limit value of the frequency of the first compressor 4 is changed from 60 Hz to 90 Hz. Along with the setting change of the upper limit value of the frequency of the first compressor 4, from time t 3, the first control means 26 sets the target heating temperature (40) at which the temperature of the circulating fluid detected by the first return temperature sensor 25 is set. When the temperature of the circulating fluid detected by the first return temperature sensor 25 reaches the set target heating temperature, the target heating temperature is reached. The frequency of the first compressor 4 at the time (75 Hz) is maintained. Further, during the period from time t3 to time t4, the temperature detected by the first evaporation temperature sensor 11 gradually increases and reaches 2 ° C. which is the target evaporation temperature. Maintaining the rotation speed (4500 rpm) of the first underground heat circulation pump 20 when the target evaporation temperature is reached so that the temperature detected by the sensor 11 maintains the target evaporation temperature (2 ° C.), The heating operation is performed until an instruction to stop the heating operation is issued from the first remote controller.

なお、図4のタイムチャート中には表れていないが、前記暖房運転中に第1蒸発温度センサ11で検出される冷媒温度が、図3に示すゾーンz2とゾーンz3の境界としてマイナス域の所定温度である−13℃を越えて下がったことを検知したとき、または、−13℃を越えて下がったことを検知して予め設定された所定時間を経過したときは、第1制御手段26は、第1圧縮機4の周波数の上限値の設定を35Hzとし、第1膨張弁6の開度を全開にして、第1負荷側熱交換器5の冷媒流路5aを流出した冷媒が第1膨張弁6で減圧されることなく通過させてそのまま第1熱源側熱交換器7の冷媒流路7aに流し、暖かい冷媒と不凍液との熱交換によって、第1熱源側熱交換器7の不凍液流路7bを流通する不凍液中の水分の凍結を防止する、または第1熱源側熱交換器7の不凍液流路7bを流通する不凍液中の水分が凍結したものを解かすことができるものである。   Although not shown in the time chart of FIG. 4, the refrigerant temperature detected by the first evaporation temperature sensor 11 during the heating operation is a predetermined value in the minus region as the boundary between the zone z2 and the zone z3 shown in FIG. When it is detected that the temperature has dropped below -13 ° C, or when the temperature has dropped below -13 ° C and a predetermined time has passed, the first control means 26 The upper limit value of the frequency of the first compressor 4 is set to 35 Hz, the opening degree of the first expansion valve 6 is fully opened, and the refrigerant flowing out of the refrigerant flow path 5a of the first load side heat exchanger 5 is the first. The refrigerant is passed through the expansion valve 6 without being depressurized, and directly flows into the refrigerant flow path 7a of the first heat source side heat exchanger 7, and the antifreeze liquid flow of the first heat source side heat exchanger 7 is obtained by heat exchange between the warm refrigerant and the antifreeze liquid. Prevent freezing of water in antifreeze flowing through path 7b , Or moisture in the antifreeze circulating the antifreeze channel 7b of the first heat source-side heat exchanger 7 is capable of thawing those frozen.

また、図5のタイムチャートの時間t1〜時間t4にかけて、第1地中熱循環ポンプ20の回転数が増加していくのに対して、第1地中熱循環回路19を循環する不凍液の循環流量が減少していくが、この第1地中熱循環回路19を循環する不凍液の循環流量の減少の要因は、時間t1〜時間t4の期間の前半では、ヒートポンプユニット1Bの第2地中熱循環ポンプ38の駆動により第2地中熱循環回路37にも不凍液が循環されることによるもの、後半では、第1熱源側熱交換器7の不凍液流路7b内の凍結により不凍液が循環できない状態になることによるものである。そして、第1地中熱循環ポンプ20の回転数の増加については、第1地中熱循環ポンプ20付近の不凍液は凍結しておらず回転することはできるため、第1地中熱循環ポンプ20の回転数を増加させて、第1蒸発温度センサ11で検出される冷媒温度を目標温度にしようと制御するが、目標温度に達しないので回転数だけがどんどん増加していき、図5のタイムチャートでこのようなグラフとなるものである。   Further, while the rotation speed of the first underground heat circulation pump 20 increases from time t1 to time t4 in the time chart of FIG. 5, the circulation of the antifreeze liquid circulating in the first underground heat circulation circuit 19 is performed. Although the flow rate decreases, the cause of the decrease in the circulating flow rate of the antifreeze liquid circulating through the first underground heat circulation circuit 19 is the second ground heat of the heat pump unit 1B in the first half of the period from time t1 to time t4. The antifreeze is circulated also in the second underground heat circulation circuit 37 by driving the circulation pump 38. In the latter half, the antifreeze cannot be circulated due to freezing in the antifreeze flow path 7b of the first heat source side heat exchanger 7. Is by becoming. And about the increase in the rotation speed of the 1st underground heat circulation pump 20, since the antifreeze liquid of the 1st underground heat circulation pump 20 vicinity is not frozen and can rotate, the 1st underground heat circulation pump 20 is rotated. 5 is controlled so that the refrigerant temperature detected by the first evaporating temperature sensor 11 is set to the target temperature. However, since the target temperature is not reached, only the rotation speed increases and the time shown in FIG. The chart is such a graph.

以上説明した暖房運転において、暖房運転中、第1戻り温度センサ25で検出する循環液の温度が設定された目標暖房温度になるように第1圧縮機4の周波数を制御するものにおいて、第1蒸発温度センサ11で検出される第1膨張弁6の出口から第1熱源側熱交換器7の出口までの気液混合状態の冷媒の温度に応じて、第1圧縮機4の周波数の上限値を設定するようにしたことで、暖房運転中、特に、第1地中熱循環回路19の不凍液の循環流量不足により、第1蒸発温度センサ11で検出される冷媒温度が、第1熱源側熱交換器7の不凍液流路7bを流通する不凍液中の水分を凍結させるおそれのあるマイナス域の温度に低下した際に、第1圧縮機4の周波数の上限値を設定することにより、第1ヒートポンプ回路9を循環する冷媒の循環流量が調整され第1熱源側熱交換器7における冷媒から不凍液への熱交換量を抑制する方向に調整することができるので、第1熱源側熱交換器7の不凍液流路7bを流通する不凍液中の水分の凍結を防ぎ、第1熱源側熱交換器7の破損を未然に防止することができ、第1熱源側熱交換器7の不凍液流路7bを流通する不凍液中の水分の凍結を防ぐことで、暖房運転が継続されるため無暖房状態となることがないものである。   In the heating operation described above, the frequency of the first compressor 4 is controlled so that the temperature of the circulating fluid detected by the first return temperature sensor 25 becomes the set target heating temperature during the heating operation. The upper limit value of the frequency of the first compressor 4 according to the temperature of the refrigerant in the gas-liquid mixed state from the outlet of the first expansion valve 6 to the outlet of the first heat source side heat exchanger 7 detected by the evaporation temperature sensor 11. Therefore, during the heating operation, the refrigerant temperature detected by the first evaporating temperature sensor 11 due to the insufficient circulation rate of the antifreeze liquid in the first underground heat circulation circuit 19 becomes the first heat source side heat. The first heat pump is set by setting an upper limit value of the frequency of the first compressor 4 when the temperature in the antifreeze liquid flowing through the antifreeze liquid flow path 7b of the exchanger 7 is lowered to a temperature in a minus range where the water may be frozen. Circulation of refrigerant circulating in circuit 9 Since the flow rate is adjusted and the amount of heat exchange from the refrigerant to the antifreeze liquid in the first heat source side heat exchanger 7 can be adjusted to be suppressed, the antifreeze liquid flowing through the antifreeze liquid flow path 7b of the first heat source side heat exchanger 7 is adjusted. It is possible to prevent freezing of moisture in the inside, prevent damage to the first heat source side heat exchanger 7 and prevent freezing of moisture in the antifreeze liquid flowing through the antifreeze liquid flow path 7b of the first heat source side heat exchanger 7. By preventing, since the heating operation is continued, no heating is not performed.

また、図4のタイムチャートと図5のタイムチャートとの比較から分かるように、図4のタイムチャートの時間t1〜時間t3のように、第1蒸発温度センサ11で検出される冷媒温度がマイナス域に達し低下するにつれて、第1圧縮機4の周波数の上限値を下げるようにしたことで、第1ヒートポンプ回路9を循環する冷媒の循環流量の上限を抑えて冷媒循環流量を低下させ、第1熱源側熱交換器7における冷媒から不凍液への熱交換量を抑制し、結果として、第1熱源側熱交換器7の不凍液流路7bを流通する不凍液中の水分の凍結を防ぎ、第1熱源側熱交換器7の破損を未然に防止することができるものである。   Further, as can be seen from the comparison between the time chart of FIG. 4 and the time chart of FIG. 5, the refrigerant temperature detected by the first evaporation temperature sensor 11 is negative like time t <b> 1 to time t <b> 3 of the time chart of FIG. 4. Since the upper limit value of the frequency of the first compressor 4 is lowered as it reaches and decreases, the upper limit value of the circulation flow rate of the refrigerant circulating in the first heat pump circuit 9 is suppressed, and the refrigerant circulation flow rate is lowered. The amount of heat exchange from the refrigerant to the antifreeze liquid in the first heat source side heat exchanger 7 is suppressed, and as a result, the freezing of moisture in the antifreeze liquid flowing through the antifreeze liquid flow path 7b of the first heat source side heat exchanger 7 is prevented, and the first Damage to the heat source side heat exchanger 7 can be prevented in advance.

なお、本発明は上記の一実施形態に限定されるものではなく、本実施形態では、第1蒸発温度センサ11の検出する冷媒温度に応じて、第1圧縮機4の周波数の上限値を設定するようにしたが、第1圧縮機4の周波数の代わりに第1圧縮機4の回転数を用いて、第1蒸発温度センサ11の検出する冷媒温度に応じて、第1圧縮機4の回転数の上限値を設定するようにしてもよいものである。   In addition, this invention is not limited to said one Embodiment, In this embodiment, the upper limit of the frequency of the 1st compressor 4 is set according to the refrigerant | coolant temperature which the 1st evaporation temperature sensor 11 detects. However, the rotation speed of the first compressor 4 is changed according to the refrigerant temperature detected by the first evaporation temperature sensor 11 using the rotation speed of the first compressor 4 instead of the frequency of the first compressor 4. An upper limit value of the number may be set.

また、本実施形態では、第1蒸発温度センサ11の検出する冷媒温度に応じて、3つの第1圧縮機4の周波数の上限値を設定できるようにしたが、3つに限定する必要はなく、第1蒸発温度センサ11の検出する冷媒温度に応じて、第1圧縮機4の周波数の上限値を必要分用意すればよいものである。   Further, in the present embodiment, the upper limit values of the frequencies of the three first compressors 4 can be set according to the refrigerant temperature detected by the first evaporation temperature sensor 11, but it is not necessary to limit the number to three. According to the refrigerant temperature detected by the first evaporating temperature sensor 11, a necessary upper limit value of the frequency of the first compressor 4 may be prepared.

また、本実施形態では、ヒートポンプユニット1Aの第1制御手段26において本発明の制御を適用したが、ヒートポンプユニット1Bの第2制御手段44において本発明の制御を適用してもよいものであり、ヒートポンプユニット1Aの第1制御手段26とヒートポンプユニット1Bの第2制御手段44の両方において本発明の制御を適用してもよいものである。   In the present embodiment, the control of the present invention is applied to the first control means 26 of the heat pump unit 1A. However, the control of the present invention may be applied to the second control means 44 of the heat pump unit 1B. The control of the present invention may be applied to both the first control means 26 of the heat pump unit 1A and the second control means 44 of the heat pump unit 1B.

また、本実施形態では、ヒートポンプユニット1Aの第1熱源側熱交換器7とヒートポンプユニット1Bの第2熱源側熱交換器30とが地中熱交換器12に対して並列に接続されているものにおいて、ヒートポンプユニット1Aが暖房運転を行っている最中に、ヒートポンプユニット1Bにて暖房運転が開始されるものを例に挙げ、第1地中熱循環回路19の循環流量が低下したことで、第1蒸発温度センサ11で検出される冷媒温度が低下する場合について本発明の制御を適用したが、それに限定されず、ヒートポンプユニット1B側が無く、1台のヒートポンプユニット1Aの第1熱源側熱交換器7に対して1つの地中熱交換器12が対応しているものにおいても、第1地中熱循環回路19の循環流量が低下する場合があり、例えば、ヒートポンプ装置を施工したときの第1地中熱循環回路19のエア抜きが完全でなく、前記暖房運転時にそのエアが移動して第1地中熱循環ポンプ20でエア噛みが発生し、それにより第1地中熱循環回路19の循環流量が低下してしまう場合や、ヒートポンプ装置を施工したときに不凍液配管内に混入した石、砂利、不凍液配管の接続部に使用されたシール材等が、前記暖房運転中に第1地中熱循環ポンプ20の駆動により第1地中熱循環回路19内を移動し、第1地中熱循環回路19の適所に設けられたストレーナ(図示せず)を閉塞し、それにより第1地中熱循環回路19の循環流量が低下してしまう場合があり、その場合は、第1蒸発温度センサ11で検出される冷媒温度が低下するものであり、その時に、本発明の制御を適用しても、ヒートポンプユニット1Aの第1熱源側熱交換器7とヒートポンプユニット1Bの第2熱源側熱交換器30とが地中熱交換器12に対して並列に接続されたものと同様、第1熱源側熱交換器7の不凍液流路7bを流通する不凍液中の水分の凍結を防ぎ、第1熱源側熱交換器7の破損を未然に防止することができるという効果を発揮するものである。   In the present embodiment, the first heat source side heat exchanger 7 of the heat pump unit 1A and the second heat source side heat exchanger 30 of the heat pump unit 1B are connected in parallel to the underground heat exchanger 12. In the case where the heating operation is started in the heat pump unit 1B while the heat pump unit 1A is performing the heating operation, the circulation flow rate of the first underground heat circulation circuit 19 is reduced. Although the control of the present invention is applied to the case where the refrigerant temperature detected by the first evaporating temperature sensor 11 is decreased, the present invention is not limited to this, and there is no heat pump unit 1B side, and the first heat source side heat exchange of one heat pump unit 1A is performed. Even in the case where one underground heat exchanger 12 corresponds to the cooler 7, the circulation flow rate of the first underground heat circulation circuit 19 may decrease. When the first pump is installed, the first ground heat circulation circuit 19 is not completely vented, and the air moves during the heating operation, and the first ground heat circulation pump 20 generates air bites. When the circulation flow rate of the first underground heat circulation circuit 19 is reduced, or when the heat pump device is installed, stones, gravel mixed in the antifreeze pipe, seal materials used for the connection part of the antifreeze pipe, During the heating operation, the first ground heat circulation pump 20 is driven to move through the first ground heat circulation circuit 19, and a strainer (not shown) provided at an appropriate position of the first ground heat circulation circuit 19 is installed. In this case, the circulation flow rate of the first underground heat circulation circuit 19 may be reduced. In this case, the refrigerant temperature detected by the first evaporation temperature sensor 11 is reduced. Even if the control of the present invention is applied The first heat source side heat is the same as that in which the first heat source side heat exchanger 7 of the heat pump unit 1A and the second heat source side heat exchanger 30 of the heat pump unit 1B are connected in parallel to the underground heat exchanger 12. The effect of preventing the freezing of the water in the antifreeze liquid flowing through the antifreeze liquid flow path 7b of the exchanger 7 and preventing the first heat source side heat exchanger 7 from being damaged can be exhibited.

また、本実施形態では、第1熱源側熱交換器7の冷媒流路7aまたは第2熱源側熱交換器30の冷媒流路30aを流通する冷媒を加熱する熱媒循環式の熱源部として、地中熱交換器12を介して地中から熱を採熱する熱源熱交換部2を採用したが、熱源部としては、川・湖・海の水を循環させて第1熱源側熱交換器7の冷媒流路7aまたは第2熱源側熱交換器30のの冷媒流路30aを流通する冷媒を加熱するような熱媒循環式のものでもよく、さらに、貯湯タンクに貯湯された湯水を直接的または間接的に利用、または井戸水を直接的または間接的に利用して第1熱源側熱交換器7の冷媒流路7aまたは第2熱源側熱交換器30の冷媒流路30aを流通する冷媒を加熱するような熱媒循環式のものでもよいものである。   Further, in the present embodiment, as a heat medium circulation type heat source section for heating the refrigerant flowing through the refrigerant flow path 7a of the first heat source side heat exchanger 7 or the refrigerant flow path 30a of the second heat source side heat exchanger 30, Although the heat source heat exchanging part 2 that collects heat from the ground through the underground heat exchanger 12 is adopted, as the heat source part, the first heat source side heat exchanger is circulated by circulating the water of the river, the lake, and the sea. 7 or a heat medium circulation type that heats the refrigerant flowing through the refrigerant flow path 30a of the second heat source side heat exchanger 30, and the hot water stored in the hot water storage tank can be directly used. Refrigerant that circulates through the refrigerant flow path 7a of the first heat source side heat exchanger 7 or the refrigerant flow path 30a of the second heat source side heat exchanger 30 using the water well or directly or using well water directly or indirectly It may be a heat medium circulating type that heats.

また、先に説明した本発明の一実施形態では、前記暖房運転のみが行えるヒートポンプ装置を示したが、ヒートポンプユニット1Aにおける第1ヒートポンプ回路9、またはヒートポンプユニット1Bにおける第2ヒートポンプ回路32に四方弁を備え、四方弁の切り換えにより、暖房運転と冷房運転の両方を行えるようなヒートポンプ装置において、暖房運転時に第1制御手段26または第2制御手段44が本発明の制御を適用してもよいものである。   Moreover, in one Embodiment of this invention demonstrated previously, although the heat pump apparatus which can perform only the said heating operation was shown, it is a four-way valve in the 1st heat pump circuit 9 in the heat pump unit 1A, or the 2nd heat pump circuit 32 in the heat pump unit 1B. In the heat pump apparatus that can perform both the heating operation and the cooling operation by switching the four-way valve, the first control means 26 or the second control means 44 may apply the control of the present invention during the heating operation. It is.

また、本実施形態では、第1蒸発温度センサ11は、第1膨張弁6の出口から第1熱源側熱交換器7の出口までの気液混合状態の冷媒の温度を検出するものであるが、第1熱源側熱交換器7がプレート式や二重管式等の水冷媒熱交換器であると、第1熱源側熱交換器7の冷媒流路7aにおける気液混合状態の冷媒の温度を検出するのは難しいので、図1に示したように、第1蒸発温度センサ11は第1膨張弁6の出口から第1熱源側熱交換器7の入口までの第1冷媒配管8に設けるのが取り付けも容易で好ましい。同様に、第2蒸発温度センサ34についても、第2膨張弁29の出口から第2熱源側熱交換器30の入口までの第2冷媒配管31に設けるのが取り付けも容易で好ましい。   In the present embodiment, the first evaporation temperature sensor 11 detects the temperature of the gas-liquid mixed refrigerant from the outlet of the first expansion valve 6 to the outlet of the first heat source side heat exchanger 7. When the first heat source side heat exchanger 7 is a plate-type or double-tube type water-refrigerant heat exchanger, the temperature of the refrigerant in the gas-liquid mixed state in the refrigerant flow path 7a of the first heat source-side heat exchanger 7 As shown in FIG. 1, the first evaporation temperature sensor 11 is provided in the first refrigerant pipe 8 from the outlet of the first expansion valve 6 to the inlet of the first heat source side heat exchanger 7 as shown in FIG. It is easy and easy to install. Similarly, it is preferable that the second evaporation temperature sensor 34 is provided in the second refrigerant pipe 31 from the outlet of the second expansion valve 29 to the inlet of the second heat source side heat exchanger 30 because it is easy to attach.

2 熱源熱交換部
4 第1圧縮機
5 第1負荷側熱交換器
5a 第1負荷側熱交換器の冷媒流路
5b 第1負荷側熱交換器の循環液流路
6 第1膨張弁
7 第1熱源側熱交換器
7a 第1熱源側熱交換器の冷媒流路
7b 第1熱源側熱交換器の不凍液流路
8 第1冷媒配管
9 第1ヒートポンプ回路
11 第1蒸発温度センサ
12 地中熱交換器
13 第1熱交往き管
15 地中往き管
16 地中戻り管
18 第1熱交戻り管
19 第1地中熱循環回路
20 第1地中熱循環ポンプ
21 第1負荷端末
22 第1循環液配管
23 第1負荷側循環回路
24 第1負荷側循環ポンプ
25 第1戻り温度センサ
26 第1制御手段
2 Heat source heat exchanger 4 First compressor 5 First load side heat exchanger 5a Refrigerant flow path of first load side heat exchanger 5b Circulating fluid flow path of first load side heat exchanger 6 First expansion valve 7 First 1 heat source side heat exchanger 7a refrigerant flow path of first heat source side heat exchanger 7b antifreeze liquid flow path of first heat source side heat exchanger 8 first refrigerant pipe 9 first heat pump circuit 11 first evaporating temperature sensor 12 underground heat Exchanger 13 First heat exchange pipe 15 Underground pipe 16 Underground return pipe 18 First heat exchange return pipe 19 First underground heat circulation circuit 20 First underground heat circulation pump 21 First load terminal 22 First Circulating fluid piping 23 First load side circulation circuit 24 First load side circulation pump 25 First return temperature sensor 26 First control means

Claims (2)

第1圧縮機と、第1負荷側熱交換器の冷媒流路と、第1膨張弁と、第1熱源側熱交換器の冷媒流路とを第1冷媒配管で環状に接続した第1ヒートポンプ回路と、前記第1熱源側熱交換器側の冷媒の温度を検出する蒸発温度検出手段と、第2圧縮機と、第2負荷側熱交換器の冷媒流路と、第2膨張弁と、第2熱源側熱交換器の冷媒流路とを第2冷媒配管で環状に接続した第2ヒートポンプ回路と、前記第1熱源側熱交換器または前記第2熱源側熱交換器の冷媒を加熱する熱媒循環式の熱源部と、該熱源部の熱源に対して前記第1熱源側熱交換器と前記第2熱源側熱交換器とを並列に接続し、前記熱源部の熱源と前記第1熱源側熱交換器の不凍液流路との間を第1不凍液配管で環状に接続して形成した第1熱源側循環回路、および前記熱源部の熱源と前記第2熱源側熱交換器の不凍液流路との間を第2不凍液配管で環状に接続して形成した第2熱源側循環回路と、前記第1熱源側循環回路に不凍液を循環させる第1熱源側循環ポンプと、前記第2熱源側循環回路に不凍液を循環させる第2熱源側循環ポンプと、負荷端末と前記第1負荷側熱交換器の循環液流路との間を循環液配管で環状に接続した負荷側循環回路と、該負荷側循環回路に循環液を循環させる負荷側循環ポンプと、前記第1負荷側熱交換器の循環液流路に流入する循環液の温度を検出する負荷温度検出手段と、これらの作動を制御する制御手段とを備え、前記第1熱源側循環ポンプを駆動させて前記不凍液を循環させ前記第1熱源側熱交換器を蒸発器として機能させ、前記負荷側循環ポンプを駆動させて前記循環液を循環させ前記第1負荷側熱交換器を凝縮器として機能させて負荷側を加熱する暖房運転中に、前記制御手段が、前記負荷温度検出手段で検出される温度が設定された目標暖房温度になるように前記第1圧縮機の周波数または回転数を制御するヒートポンプ装置において、前記暖房運転中に、前記第2熱源側循環ポンプを駆動させて前記不凍液を循環させて前記第2熱源側熱交換器を蒸発器として機能させ、前記第2負荷側熱交換器を凝縮器として機能させる暖房運転が開始され、前記第1熱源側循環回路を循環している不凍液の循環流量が減少して前記蒸発温度検出手段で検出される冷媒の温度が低下した際に、前記制御手段は、前記蒸発温度検出手段で検出される冷媒の温度に応じて、前記第1圧縮機の周波数または回転数の上限値を設定するようにしたことを特徴とするヒートポンプ装置。 1st heat pump which connected the 1st compressor, the refrigerant flow path of the 1st load side heat exchanger, the 1st expansion valve, and the refrigerant flow path of the 1st heat source side heat exchanger cyclically with the 1st refrigerant piping A circuit, an evaporation temperature detecting means for detecting the temperature of the refrigerant on the first heat source side heat exchanger side, a second compressor, a refrigerant flow path of the second load side heat exchanger, a second expansion valve, A second heat pump circuit in which the refrigerant flow path of the second heat source side heat exchanger is annularly connected by a second refrigerant pipe, and the refrigerant of the first heat source side heat exchanger or the second heat source side heat exchanger is heated. The heat source circulation type heat source unit, and the first heat source side heat exchanger and the second heat source side heat exchanger are connected in parallel to the heat source of the heat source unit, and the heat source of the heat source unit and the first heat source unit first heat-source-side circulation circuit is formed by connecting in a ring between at first antifreeze pipe with antifreeze passage of the heat source-side heat exchanger, and the heat of the heat source unit A second heat source side circulation circuit formed by connecting in a ring between the antifreeze flow path of the second heat source side heat exchanger in the second antifreeze piping, a circulating antifreeze to the first heat-source-side circulation circuit A circulating fluid pipe between the first heat source circulating pump, the second heat source circulating pump that circulates the antifreeze liquid in the second heat source circulating circuit, and the circulating fluid flow path of the load terminal and the first load heat exchanger; A load-side circulation circuit connected in a ring shape, a load-side circulation pump that circulates the circulation fluid in the load-side circulation circuit, and a temperature of the circulation fluid flowing into the circulation fluid passage of the first load-side heat exchanger Load temperature detection means for controlling, and control means for controlling these operations, driving the first heat source side circulation pump to circulate the antifreeze liquid, to function the first heat source side heat exchanger as an evaporator , Circulates the circulating fluid by driving the load-side circulation pump Was the first load-side heat exchanger during the heating operation for heating the load side is caused to function as a condenser, the control means, the temperature to be detected is set target heating temperature at the load temperature detecting means In the heat pump device for controlling the frequency or the rotational speed of the first compressor as described above, during the heating operation, the second heat source side circulation pump is driven to circulate the antifreeze liquid, thereby the second heat source side heat exchanger. Is operated as an evaporator and the second load-side heat exchanger is functioned as a condenser, and the circulation flow rate of the antifreeze circulating in the first heat source-side circulation circuit is reduced to reduce the evaporation temperature. When the temperature of the refrigerant detected by the detecting means decreases, the control means sets an upper limit value of the frequency or the rotational speed of the first compressor according to the temperature of the refrigerant detected by the evaporation temperature detecting means. I will set A heat pump device characterized by that. 前記制御手段は、前記蒸発温度検出手段で検出される冷媒の温度が低下するにつれて、前記第1圧縮機の周波数または回転数の上限値を下げるようにしたことを特徴とする請求項1記載のヒートポンプ装置。 2. The control means according to claim 1 , wherein the upper limit value of the frequency or the rotational speed of the first compressor is lowered as the temperature of the refrigerant detected by the evaporation temperature detecting means decreases. Heat pump device.
JP2013073625A 2013-03-29 2013-03-29 Heat pump equipment Active JP6085213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013073625A JP6085213B2 (en) 2013-03-29 2013-03-29 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073625A JP6085213B2 (en) 2013-03-29 2013-03-29 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2014196893A JP2014196893A (en) 2014-10-16
JP6085213B2 true JP6085213B2 (en) 2017-02-22

Family

ID=52357799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073625A Active JP6085213B2 (en) 2013-03-29 2013-03-29 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP6085213B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148949A (en) * 2017-09-25 2020-05-12 三菱电机株式会社 Refrigerating device
CN112254299A (en) * 2020-09-29 2021-01-22 青岛海尔空调器有限总公司 Method and device for controlling refrigeration equipment and refrigeration equipment

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173217A (en) * 2015-03-18 2016-09-29 株式会社コロナ Geothermal heat pump device
JP6619572B2 (en) 2015-07-01 2019-12-11 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicles
JP2017110892A (en) * 2015-12-18 2017-06-22 株式会社コロナ Heat pump device
JP6574392B2 (en) * 2016-02-23 2019-09-11 株式会社コロナ Heat pump equipment
JP6432546B2 (en) * 2016-02-26 2018-12-05 Jfeスチール株式会社 Heat source water piping, underground heat-utilizing heat pump system, cleaning method and heat exchanging method inside the primary side heat exchanger
JP6574393B2 (en) * 2016-02-26 2019-09-11 株式会社コロナ Combined heat source heat pump device
JP6681268B2 (en) * 2016-05-17 2020-04-15 株式会社コロナ Heat source device
JP6981905B2 (en) * 2018-03-27 2021-12-17 株式会社コロナ Heat pump heat source machine
JP6631670B2 (en) * 2018-09-20 2020-01-15 Jfeスチール株式会社 Heat source water piping, underground heat utilization heat pump system and heat exchange method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767736A (en) * 1980-10-13 1982-04-24 Toshiba Corp Air conditioner
JPH09126601A (en) * 1995-10-27 1997-05-16 Matsushita Electric Ind Co Ltd Controller for air conditioner
JP5763361B2 (en) * 2011-02-16 2015-08-12 株式会社コロナ Geothermal heat pump device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148949A (en) * 2017-09-25 2020-05-12 三菱电机株式会社 Refrigerating device
CN111148949B (en) * 2017-09-25 2021-09-10 三菱电机株式会社 Refrigerating device
CN112254299A (en) * 2020-09-29 2021-01-22 青岛海尔空调器有限总公司 Method and device for controlling refrigeration equipment and refrigeration equipment
CN112254299B (en) * 2020-09-29 2021-10-29 青岛海尔空调器有限总公司 Method and device for controlling refrigeration equipment and refrigeration equipment

Also Published As

Publication number Publication date
JP2014196893A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP6085213B2 (en) Heat pump equipment
US9341393B2 (en) Refrigerating cycle apparatus having an injection circuit and operating with refrigerant in supercritical state
JP6231395B2 (en) Combined heat source heat pump device
JP6085207B2 (en) Heat pump equipment
WO2016147389A1 (en) Heat pump system
JP6231403B2 (en) Combined heat source heat pump device
JP5763361B2 (en) Geothermal heat pump device
JP2007292351A (en) Operation control method of circulation type water cooler
JP6147659B2 (en) Heat pump equipment
JP6715655B2 (en) Cooling system
JP2017166773A (en) Heat pump type cold/hot water supply system
JP2008002743A (en) Refrigerating device
JP2014077560A (en) Air conditioner
JP6615363B2 (en) Refrigeration cycle equipment
JP6359398B2 (en) Combined heat source heat pump device
JP6208086B2 (en) Combined heat source heat pump device
JP2008051464A (en) Air conditioner
JP6258802B2 (en) Combined heat source heat pump device
JP6359397B2 (en) Combined heat source heat pump device
JP6143682B2 (en) Combined heat source heat pump device
WO2021014644A1 (en) Air conditioning apparatus
JP6208085B2 (en) Heat pump equipment
JP6039869B2 (en) Heat pump equipment
JP5811499B2 (en) Water heating system
JP6258800B2 (en) Combined heat source heat pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170127

R150 Certificate of patent or registration of utility model

Ref document number: 6085213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250