JP6081831B2 - Honeycomb structure, honeycomb catalyst body using the same, and method for manufacturing honeycomb structure - Google Patents

Honeycomb structure, honeycomb catalyst body using the same, and method for manufacturing honeycomb structure Download PDF

Info

Publication number
JP6081831B2
JP6081831B2 JP2013049662A JP2013049662A JP6081831B2 JP 6081831 B2 JP6081831 B2 JP 6081831B2 JP 2013049662 A JP2013049662 A JP 2013049662A JP 2013049662 A JP2013049662 A JP 2013049662A JP 6081831 B2 JP6081831 B2 JP 6081831B2
Authority
JP
Japan
Prior art keywords
honeycomb structure
catalyst
cross
honeycomb
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013049662A
Other languages
Japanese (ja)
Other versions
JP2013223857A (en
Inventor
廣瀬 正悟
正悟 廣瀬
由紀夫 宮入
由紀夫 宮入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2013049662A priority Critical patent/JP6081831B2/en
Priority to US13/803,874 priority patent/US9248440B2/en
Priority to EP13159684.3A priority patent/EP2641888B1/en
Publication of JP2013223857A publication Critical patent/JP2013223857A/en
Application granted granted Critical
Publication of JP6081831B2 publication Critical patent/JP6081831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0051Water-absorbing polymers, hydrophilic polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • Y10T428/24157Filled honeycomb cells [e.g., solid substance in cavities, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)

Description

本発明は、排ガス浄化用の触媒を担持させるハニカム構造体およびこれを用いたハニカム触媒体、ならびにハニカム構造体の製造方法に関する。   The present invention relates to a honeycomb structure that supports a catalyst for exhaust gas purification, a honeycomb catalyst body using the honeycomb structure, and a method for manufacturing the honeycomb structure.

自動車のエンジンなどの内燃機関から排出される排ガスには、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)などの有害物質が含まれている。こうした有害物質を低減し、排ガスを浄化する際には、触媒反応が広く用いられている。この触媒反応では、排ガスを触媒に接触させるという簡便な手段により、一酸化炭素(CO)などの有害な物質から他の無害な物質を生成することが実現できる。よって、自動車などでは、エンジンからの排気系の途中に触媒を設置することにより、排ガスの浄化を行うことが一般的になっている。 Exhaust gas discharged from internal combustion engines such as automobile engines contains harmful substances such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO X ). Catalytic reactions are widely used to reduce such harmful substances and purify exhaust gas. In this catalytic reaction, it is possible to generate other harmless substances from harmful substances such as carbon monoxide (CO) by a simple means of contacting exhaust gas with the catalyst. Therefore, in automobiles and the like, it is common to purify exhaust gas by installing a catalyst in the middle of the exhaust system from the engine.

自動車などの排気系に触媒を設置する際には、ハニカム構造体に触媒を担持させたハニカム触媒体が用いられている。ハニカム触媒体では、触媒を担持させた隔壁によって蜂の巣構造(ハニカム構造)が形作られており、隔壁に囲まれた各セルが排ガスの流路として機能する。こうしたハニカム触媒体では、排ガスを複数のセルの各々に小分けして流し、各セル内において、小分された排ガスと隔壁の表面に担持させた触媒との接触を行わせる。このように、ハニカム触媒体では、複数に小分けした排ガスを同時に処理することにより、排ガスを高い浄化効率で処理することができる。   When installing a catalyst in an exhaust system of an automobile or the like, a honeycomb catalyst body in which a catalyst is supported on a honeycomb structure is used. In the honeycomb catalyst body, a honeycomb structure (honeycomb structure) is formed by the partition walls supporting the catalyst, and each cell surrounded by the partition walls functions as an exhaust gas flow path. In such a honeycomb catalyst body, exhaust gas is divided into a plurality of cells, and the exhaust gas thus subdivided is brought into contact with the catalyst supported on the surfaces of the partition walls. Thus, in the honeycomb catalyst body, exhaust gas can be processed with high purification efficiency by simultaneously processing a plurality of exhaust gases.

さらに、ハニカム触媒体については、無数の細孔を有した多孔質の隔壁でハニカム構造を形作り、隔壁の細孔の内壁面にも触媒を担持させる技術が提案されている(例えば、特許文献1)。この技術では、細孔内に触媒を担持させることによって、ハニカム触媒体における触媒の担持量を増加させる。さらに、この技術では、隔壁の細孔内に排ガスを流入させ、細孔内でも排ガスと触媒とを接触させることにより、排ガスと触媒との接触頻度をより高めている。   Furthermore, with regard to the honeycomb catalyst body, a technique has been proposed in which a honeycomb structure is formed by porous partition walls having innumerable pores, and the catalyst is supported on the inner wall surfaces of the partition wall pores (for example, Patent Document 1). ). In this technique, the catalyst loading in the honeycomb catalyst body is increased by loading the catalyst in the pores. Further, in this technique, the contact frequency between the exhaust gas and the catalyst is further increased by allowing the exhaust gas to flow into the pores of the partition walls and bringing the exhaust gas and the catalyst into contact with each other even in the pores.

特開2009−154148号公報JP 2009-154148 A

ところが、上述のハニカム触媒体では、細孔内に触媒を担持させることによって触媒の担持量を増加させることは可能になるが、細孔内に担持させた触媒を有効に機能させることができないことがある。上述のハニカム触媒体では、細孔が触媒によって塞がれてしまうあるいは隔壁表面の細孔の開口部が狭窄してしまうことが生じる。そのため、上述のハニカム触媒体では、細孔内に排ガスを流入させることができず、細孔内に担持させた触媒と排ガスとの接触が不可能となることがある。   However, in the above honeycomb catalyst body, it is possible to increase the amount of the catalyst supported by supporting the catalyst in the pores, but it is impossible to effectively function the catalyst supported in the pores. There is. In the above honeycomb catalyst body, the pores may be blocked by the catalyst, or the pore openings on the partition wall surface may be narrowed. Therefore, in the above honeycomb catalyst body, the exhaust gas cannot flow into the pores, and the catalyst supported in the pores may not be able to contact the exhaust gas.

上記の問題に鑑みて、本発明の目的は、多量の触媒を担持させることを可能にし、かつ担持させた触媒に触媒作用を有効に発揮させることを可能にする技術を提供することにある。   In view of the above problems, an object of the present invention is to provide a technique that enables a large amount of catalyst to be supported and allows the supported catalyst to exhibit a catalytic action effectively.

本発明によれば、以下に示す、ハニカム構造体およびこれを用いたハニカム触媒体、ならびにハニカム構造体の製造方法が提供される。   According to the present invention, the following honeycomb structure, honeycomb catalyst body using the honeycomb structure, and method for manufacturing the honeycomb structure are provided.

[1] 流体の流路となる複数のセルを区画形成し、複数の細孔が形成された多孔質の隔壁を備え、前記隔壁の気孔率が45〜70%であり、前記隔壁の厚さ方向に平行な断面において最大幅が10μm超である前記細孔を大細孔とし、前記隔壁を前記厚さ方向に沿って中心領域と該中心領域の両側にある表層領域とに3等分する場合に、前記厚さ方向に平行な前記隔壁の前記表層領域の断面においては、前記表層領域の前記断面に現れている前記大細孔の断面の総面積が前記表層領域の前記断面に現れている全ての前記細孔の断面の総面積の60〜100%であり、かつ、前記厚さ方向に平行な前記隔壁の前記中心領域の断面においては、前記中心領域の前記断面に現れている前記大細孔の断面の総面積が前記中心領域の前記断面に現れている全ての前記細孔の断面の総面積の0〜40%であるハニカム構造体。 [1] A plurality of cells serving as fluid flow paths are defined and provided with a porous partition wall having a plurality of pores, the partition wall has a porosity of 45 to 70%, and the thickness of the partition wall The pore having a maximum width exceeding 10 μm in a cross section parallel to the direction is made a large pore, and the partition wall is divided into three equal parts along the thickness direction into a central region and surface layer regions on both sides of the central region. In this case, in the cross section of the surface layer region of the partition wall parallel to the thickness direction, the total area of the cross section of the large pores appearing in the cross section of the surface layer region appears in the cross section of the surface layer region. In the cross section of the central region of the partition wall, which is 60 to 100% of the total area of the cross sections of all the pores, and appears in the cross section of the central region The total area of the cross section of the large pore appears in the cross section of the central region. A honeycomb structure that is 0 to 40% of the total area of the cross-sections of all the pores.

[2] 前記厚さ方向に直交する前記隔壁の断面において、前記細孔の全個数の20〜100%に相当する前記細孔の輪郭の形状が略円形および略楕円形のいずれかである前記[1]に記載のハニカム構造体。 [2] In the cross section of the partition perpendicular to the thickness direction, the shape of the outline of the pore corresponding to 20 to 100% of the total number of the pores is either a substantially circular shape or a substantially elliptical shape. The honeycomb structure according to [1].

[3] パーミアビリティが1×10−12〜10×10−12(m)である前記[1]または[2]に記載のハニカム構造体。 [3] The honeycomb structure according to [1] or [2], wherein the permeability is 1 × 10 −12 to 10 × 10 −12 (m 2 ).

[4] セル密度が7.75〜46.5個/cmであり、前記隔壁は、気孔率が50〜70%でありかつ平均細孔径が10〜50μmである前記[1]〜[3]のいずれかに記載のハニカム構造体。 [4] The cell density is 7.75 to 46.5 cells / cm 2 , and the partition wall has a porosity of 50 to 70% and an average pore diameter of 10 to 50 μm. ] The honeycomb structure according to any one of the above.

[5] 前記[1]〜[4]のいずれかに記載のハニカム構造体と、前記ハニカム構造体の前記隔壁の前記細孔の表面に担持された触媒と、を備えるハニカム触媒体。 [5] A honeycomb catalyst body comprising: the honeycomb structure according to any one of [1] to [4]; and a catalyst supported on a surface of the pore of the partition wall of the honeycomb structure.

[6] 前記触媒は金属置換ゼオライトおよびバナジウムのうちのいずれかを少なくとも含むとともに触媒担持量が100〜300g/Lであり、前記隔壁は、前記触媒を担持させる前の気孔率(A)に対して前記触媒を担持させた状態での気孔率(B)が0.1〜0.6倍である前記[5]に記載のハニカム触媒体。 [6] The catalyst contains at least one of a metal-substituted zeolite and vanadium and has a catalyst loading of 100 to 300 g / L, and the partition wall has a porosity (A) before loading the catalyst. The honeycomb catalyst body according to [5], wherein the porosity (B) in a state where the catalyst is supported is 0.1 to 0.6 times.

[7] 前記[1]〜[4]のいずれかに記載のハニカム構造体を得るためのハニカム構造体の製造方法であって、セラミックス原料と伸縮性を有する造孔材とを含有する成形原料を混合し混練して坏土を得る坏土調製工程と、前記坏土を押出成形して、複数のセルを区画形成する隔壁を有するハニカム成形体を得る成形工程と、前記ハニカム成形体を焼成してハニカム構造体を得る焼成工程と、を備え、前記造孔材が、該造孔材の表面に複数の突起部を有するものであるハニカム構造体の製造方法。 [7] A method for manufacturing a honeycomb structure for obtaining the honeycomb structure according to any one of [1] to [4], wherein the forming material includes a ceramic material and a stretchable pore former. A kneaded material preparation step for obtaining a kneaded material, a molding step for extruding the kneaded material to obtain a honeycomb molded body having partition walls for partitioning a plurality of cells, and firing the honeycomb molded body and includes a firing step to obtain a honeycomb structure, a and the pore-forming material is, der Ru method for manufacturing a honeycomb structure having a plurality of projections on the surface of the contrast porous wood.

本発明のハニカム構造体およびこれを用いたハニカム触媒体、ならびにハニカム構造体の製造方法によれば、隔壁の表面において多くの割合の細孔が開口しかつ中心領域において多くの割合の細孔が幅を狭めたものとできるので、多量の触媒を隔壁の細孔内に担持させることが可能になる。さらに、本発明のハニカム構造体およびこれを用いたハニカム触媒体、ならびにハニカム構造体の製造方法によれば、触媒によって細孔の開口部が閉塞あるいは狭窄されにくくなるので、細孔内にガスを流入させて細孔内での触媒作用を有効に発揮させることが可能になる。   According to the honeycomb structure of the present invention, the honeycomb catalyst body using the honeycomb structure, and the method for manufacturing the honeycomb structure, a large percentage of pores are opened in the surface of the partition walls, and a large percentage of pores are formed in the central region. Since the width can be reduced, a large amount of catalyst can be supported in the pores of the partition walls. Furthermore, according to the honeycomb structure of the present invention, the honeycomb catalyst body using the honeycomb structure, and the method for manufacturing the honeycomb structure, the openings of the pores are not easily blocked or constricted by the catalyst. It is possible to effectively exert the catalytic action in the pores by flowing in.

本発明のハニカム構造体の一実施形態を模式的に示す斜視図である。1 is a perspective view schematically showing an embodiment of a honeycomb structure of the present invention. 図1中のA−A’断面の模式図である。It is a schematic diagram of the A-A 'cross section in FIG. 図2中の枠α内を模式的に示す隔壁の断面図である。It is sectional drawing of the partition which shows the inside of the frame (alpha) in FIG. 従来のハニカム構造体の隔壁を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing partition walls of a conventional honeycomb structure. 図3に示されている隔壁に触媒を担持させて排ガスの浄化を実施した場合の説明図である。It is explanatory drawing at the time of implementing the purification | cleaning of exhaust gas by making the partition shown by FIG. 3 carry a catalyst. 図4に示されている隔壁に触媒を担持させて排ガスの浄化を実施した場合の説明図である。It is explanatory drawing at the time of carrying out purification | cleaning of exhaust gas by making the partition shown by FIG. 4 carry a catalyst. 本発明のハニカム構造体の製造方法において用い得る造孔材の一例の模式的な断面図である。FIG. 3 is a schematic cross-sectional view of an example of a pore former that can be used in the method for manufacturing a honeycomb structure of the present invention. 本発明のハニカム構造体の製造方法の一実施形態において行われる押出成形の説明図である。It is explanatory drawing of extrusion molding performed in one Embodiment of the manufacturing method of the honeycomb structure of this invention. 図8Aに示されている押出成形により形成される、成形体の隔壁の模式図である。It is a schematic diagram of the partition of a molded object formed by the extrusion molding shown by FIG. 8A.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the present invention.

1.ハニカム構造体:
図1は、本発明のハニカム構造体の一実施形態を模式的に示す斜視図である。図示されているように、本実施形態のハニカム構造体100は、円筒形状の外周壁7と、外周壁7の内部を複数のセル4に区画形成する多孔質の隔壁5とを備えている。本実施形態のハニカム構造体100の軸方向Xにおける両端では、複数のセル4が開口し、また、外周壁7の縁や隔壁5の縁によって端面2,3が形作られている。
1. Honeycomb structure:
FIG. 1 is a perspective view schematically showing an embodiment of a honeycomb structure of the present invention. As shown in the figure, the honeycomb structure 100 of the present embodiment includes a cylindrical outer peripheral wall 7 and a porous partition wall 5 that partitions the inside of the outer peripheral wall 7 into a plurality of cells 4. At both ends in the axial direction X of the honeycomb structure 100 of the present embodiment, a plurality of cells 4 are opened, and end faces 2 and 3 are formed by the edges of the outer peripheral wall 7 and the edges of the partition walls 5.

図2は、図1中のA−A’断面の模式図である。図示されているように、本実施形態のハニカム構造体100では、複数のセル4が軸方向Xに沿って延びており、これらのセル4の各々が流体の流路としての役割を果たすことができる。例えば、本実施形態のハニカム構造体100では、一方の端面2(第1端面)からセル4内にガスGを流入させると、ガスGを軸方向Xに沿って他方の端面3(第2端面)まで通過させ、外部に排出させることが可能である。   FIG. 2 is a schematic diagram of the A-A ′ cross section in FIG. 1. As shown in the figure, in the honeycomb structure 100 of the present embodiment, a plurality of cells 4 extend along the axial direction X, and each of the cells 4 serves as a fluid flow path. it can. For example, in the honeycomb structure 100 of the present embodiment, when the gas G is allowed to flow into the cell 4 from one end face 2 (first end face), the other end face 3 (second end face) is moved along the axial direction X. ) And can be discharged to the outside.

図3は、図2中の枠α内を模式的に示す隔壁5の断面図である。図示されているように、本実施形態のハニカム構造体100の隔壁5は、多孔質であるので、複数の細孔10が形成されている。   FIG. 3 is a cross-sectional view of the partition wall 5 schematically showing the inside of the frame α in FIG. As illustrated, since the partition walls 5 of the honeycomb structure 100 of the present embodiment are porous, a plurality of pores 10 are formed.

本明細書においては、隔壁5の厚さ方向Yに平行な隔壁5の断面(例えば、図3に示されている断面)において最大幅が10μm超である細孔10を大細孔12と定める。   In the present specification, a pore 10 having a maximum width exceeding 10 μm in a cross section of the partition wall 5 parallel to the thickness direction Y of the partition wall 5 (for example, the cross section shown in FIG. 3) is defined as a large pore 12. .

図3に示されている隔壁5の断面では、例えば、細孔10aの最大幅Wおよび細孔10bの最大幅Wが10μm以上であり、細孔10cの最大幅Wが10μm未満である。よって、細孔10a〜10cのうちでは、細孔10aおよび10bのそれぞれが大細孔12aおよび大細孔12bとして分類される。 In the cross section of the partition wall 5 shown in FIG. 3, for example, the maximum width W a of the pore 10a and the maximum width W b of the pore 10b are 10 μm or more, and the maximum width W c of the pore 10c is less than 10 μm. is there. Therefore, among the pores 10a to 10c, the pores 10a and 10b are classified as the large pore 12a and the large pore 12b, respectively.

なお、例えば、図3に示されている大細孔12aおよび大細孔12bのように、隔壁5の断面において、複数の大細孔12同士が、幅10μm未満の細孔10によって繋がっている場合がある。こうした場合には、繋がっている大細孔12a,12bのそれぞれを1個の独立した大細孔12と識別するものとする。また、大細孔12同士を繋いている幅10μm未満の細孔10については、大細孔12の一部分であるものとする。例えば、図3中の経路R(点線矢印で示す)については、隔壁5の一方の表面に面したセル4aから、大細孔12a内を通過し、続いて、大細孔12bを通過して、隔壁5の反対側の表面に面したセル4bへと至ることになる。すなわち、図3中の経路Rは、2個の大細孔12a,12bから構成されているものとする。   For example, like the large pores 12a and 12b shown in FIG. 3, in the cross section of the partition wall 5, the plurality of large pores 12 are connected by the pores 10 having a width of less than 10 μm. There is a case. In such a case, each of the connected large pores 12a and 12b is identified as one independent large pore 12. The pores 10 having a width of less than 10 μm that connect the large pores 12 are a part of the large pores 12. For example, with respect to the route R (indicated by a dotted arrow) in FIG. 3, the cell 4a facing one surface of the partition wall 5 passes through the large pore 12a, and then passes through the large pore 12b. This leads to the cell 4b facing the opposite surface of the partition wall 5. That is, the path R in FIG. 3 is composed of two large pores 12a and 12b.

図3中では、隔壁5の断面に現れた細孔10の断面のうち、隔壁5の中心領域の断面に現れた細孔10の断面を「網掛け」で示している。   In FIG. 3, among the cross sections of the pores 10 that appear in the cross section of the partition wall 5, the cross section of the pore 10 that appears in the cross section of the central region of the partition wall 5 is indicated by “shaded”.

本実施形態のハニカム構造体100では、隔壁5を厚さ方向Yに沿って中心領域と該中心領域の両側にある表層領域とに3等分した場合に、厚さ方向Yに平行な隔壁5の表層領域の断面においては、当該表層領域の断面に現れている大細孔12の断面の総面積が当該表層領域の断面に現れている全ての細孔10の断面の総面積の60〜100%であり、かつ、厚さ方向Yに平行な隔壁5の中心領域の断面においては、当該中心領域の断面に現れている大細孔12の断面の総面積が当該中心領域の断面に現れている全ての細孔10の断面の総面積の0〜40%である。   In the honeycomb structure 100 of the present embodiment, the partition walls 5 parallel to the thickness direction Y when the partition walls 5 are equally divided into a central region along the thickness direction Y and surface layer regions on both sides of the central region. In the cross section of the surface layer region, the total area of the cross section of the large pore 12 appearing in the cross section of the surface layer region is 60 to 100 of the total area of the cross section of all the pores 10 appearing in the cross section of the surface layer region. %, And in the cross section of the central region of the partition wall 5 parallel to the thickness direction Y, the total area of the cross section of the large pore 12 appearing in the cross section of the central region appears in the cross section of the central region. It is 0 to 40% of the total area of the cross section of all the pores 10 that are present.

本実施形態のハニカム構造体100のように、表層領域の断面における大細孔12の断面の総面積が当該表層領域の断面における全ての細孔10の断面の総面積の60〜100%であり、かつ、中心領域の断面における大細孔12の断面の総面積が当該中心領域の断面における全ての細孔10の断面の総面積の0〜40%である場合には、隔壁5の表面において、多くの割合の細孔10が大きく開口し、かつ、隔壁5の中心領域において、多くの割合の細孔10が幅を狭めていることになる。さらに、細孔10によって隔壁5を貫通する流路(例えば、図3中に示されている大細孔12a,12bからなる経路R)が形成されているのであれば、当該流路は隔壁5の中心領域において幅が小さくなっていることになる。   Like the honeycomb structure 100 of the present embodiment, the total area of the cross section of the large pore 12 in the cross section of the surface layer region is 60 to 100% of the total area of the cross section of all the pores 10 in the cross section of the surface layer region. When the total area of the cross section of the large pore 12 in the cross section of the central region is 0 to 40% of the total area of the cross section of all the pores 10 in the cross section of the central region, A large proportion of the pores 10 are greatly opened, and a large proportion of the pores 10 are narrowed in the central region of the partition wall 5. Furthermore, if the flow path (for example, the path | route R which consists of the large pores 12a and 12b shown in FIG. 3) which penetrates the partition 5 by the pore 10 is formed, the said flow path will be the partition 5 Thus, the width is reduced in the central region.

その結果、本実施形態のハニカム構造体100では、触媒を担持させる工程において、隔壁5の表層領域の細孔10内に触媒を浸入させることが容易になる。これに加えて、本実施形態のハニカム構造体100では、表層領域の細孔10内に浸入した触媒を、さらに隔壁5の中心領域の細孔10内にまで浸入させることも容易になる。また、本実施形態のハニカム構造体100では、隔壁5の中心領域の細孔10は幅が狭まっているので、隔壁5の中心領域まで浸入させた触媒を適度に保持させることが可能になる。したがって、本実施形態のハニカム構造体100によれば、図5に示されているように、隔壁5の表層領域の細孔10の表面および中心領域の細孔10の表面のいずれにも触媒を均一に担持させることが容易になる(図5の説明については後述)。   As a result, in the honeycomb structure 100 of the present embodiment, it becomes easy to allow the catalyst to enter the pores 10 in the surface region of the partition wall 5 in the step of supporting the catalyst. In addition to this, in the honeycomb structure 100 of the present embodiment, the catalyst that has entered the pores 10 in the surface layer region can be easily further penetrated into the pores 10 in the central region of the partition walls 5. Further, in the honeycomb structure 100 of the present embodiment, since the pores 10 in the central region of the partition walls 5 are narrowed, it is possible to appropriately hold the catalyst that has entered the central region of the partition walls 5. Therefore, according to the honeycomb structure 100 of the present embodiment, as shown in FIG. 5, the catalyst is applied to both the surface of the pore 10 in the surface layer region and the surface of the pore 10 in the central region of the partition wall 5. It becomes easy to carry uniformly (the description of FIG. 5 will be described later).

また、本実施形態のハニカム構造体100のように、表層領域の断面における大細孔12の断面の総面積が当該表層領域の断面における全ての細孔10の断面の総面積の60〜100%であり、かつ、中心領域の断面における大細孔12の断面の総面積が当該中心領域の断面における全ての細孔10の断面の総面積の0〜40%である場合には、隔壁5の中心領域において十分な強度が保たれる。すなわち、本実施形態のハニカム構造体100では、隔壁5が高気孔率である場合であっても、隔壁5の強度は維持できる。   Further, like the honeycomb structure 100 of the present embodiment, the total area of the cross section of the large pore 12 in the cross section of the surface layer region is 60 to 100% of the total area of the cross section of all the pores 10 in the cross section of the surface layer region. And the total area of the cross section of the large pore 12 in the cross section of the central region is 0 to 40% of the total area of the cross section of all the pores 10 in the cross section of the central region, Sufficient strength is maintained in the central region. That is, in the honeycomb structure 100 of the present embodiment, the strength of the partition walls 5 can be maintained even when the partition walls 5 have a high porosity.

さらに、本実施形態のハニカム構造体100では、厚さ方向Yに平行な隔壁5の表層領域の断面においては、当該表層領域の断面に現れている大細孔12の断面の総面積が当該表層領域の断面に現れている全ての細孔10の断面の総面積の60〜90%であり、かつ、厚さ方向Yに平行な隔壁5の中心領域の断面においては、当該中心領域の断面に現れている大細孔12の断面の総面積が当該中心領域の断面に現れている全ての細孔10の断面の総面積の10〜40%であることが好ましく、特に、当該表層領域の断面に現れている大細孔12の断面の総面積が当該表層領域の断面に現れている全ての細孔10の断面の総面積の70〜80%であり、かつ、当該中心領域の断面に現れている大細孔12の断面の総面積が当該中心領域の断面に現れている全ての細孔10の断面の総面積の20〜30%であることがより好ましい。   Furthermore, in the honeycomb structure 100 of the present embodiment, in the cross section of the surface layer region of the partition wall 5 parallel to the thickness direction Y, the total area of the cross section of the large pores 12 appearing in the cross section of the surface layer region is the surface layer. In the cross section of the central region of the partition wall 5 that is 60 to 90% of the total area of the cross sections of all the pores 10 appearing in the cross section of the region and parallel to the thickness direction Y, the cross section of the central region The total area of the cross-sections of the large pores 12 that appear is preferably 10 to 40% of the total area of the cross-sections of all the pores 10 that appear in the cross-section of the central region. The total area of the cross-sections of the large pores 12 appearing in is 70 to 80% of the total area of the cross-sections of all the pores 10 appearing in the cross-section of the surface layer region, and appears in the cross-section of the central region The total area of the cross section of the large pores 12 is the cross section of the central region And more preferably from 20 to 30 percent of all of the total area of the cross section of the pores 10 being.

対して、図4に、従来のハニカム構造体の隔壁の断面図を模式的に示す。図4中では、隔壁5の断面に現れた細孔10の断面のうち、隔壁5の中心領域の断面に現れた細孔10の断面を「網掛け」で示している。こうした従来のハニカム構造体の多孔質の隔壁5では、大細孔12が隔壁5の表層領域よりも中心領域に多く、あるいは表層領域と中心領域とで偏りなく存在する。よって、図示されているように、従来のハニカム構造体では、上述した本実施形態のハニカム構造体100と比べて、隔壁5の表面で大きく開口する細孔10の割合が少なくなる。そのため、従来のハニカム構造体では、触媒を担持させる工程において、隔壁5の中心領域の細孔10にまで触媒を浸入させることが容易ではない(図6を参照)。   On the other hand, FIG. 4 schematically shows a cross-sectional view of partition walls of a conventional honeycomb structure. In FIG. 4, among the cross sections of the pores 10 that appear in the cross section of the partition wall 5, the cross section of the pore 10 that appears in the cross section of the central region of the partition wall 5 is indicated by “shaded”. In such a porous partition wall 5 of the conventional honeycomb structure, there are more large pores 12 in the center region than the surface layer region of the partition wall 5 or there is no unevenness between the surface layer region and the center region. Therefore, as shown in the figure, in the conventional honeycomb structure, the ratio of the pores 10 that are largely opened on the surface of the partition walls 5 is reduced as compared with the honeycomb structure 100 of the present embodiment described above. Therefore, in the conventional honeycomb structure, it is not easy for the catalyst to enter the pores 10 in the central region of the partition wall 5 in the step of supporting the catalyst (see FIG. 6).

本実施形態のハニカム構造体100では、隔壁5の気孔率が45〜70%である。なお、本明細書にいう隔壁の気孔率とは、水銀ポロシメーターにより測定した値である。本実施形態のハニカム構造体100では、隔壁5の気孔率が45〜70%以下の場合には、隔壁の強度を所定以上に保ちつつ、担持する触媒量を多くできる点において優れる。   In the honeycomb structure 100 of the present embodiment, the porosity of the partition walls 5 is 45 to 70%. In addition, the porosity of a partition as used in this specification is the value measured with the mercury porosimeter. In the honeycomb structure 100 of this embodiment, when the porosity of the partition walls 5 is 45 to 70% or less, the honeycomb structure 100 is excellent in that the amount of supported catalyst can be increased while maintaining the strength of the partition walls at a predetermined level or more.

さらに、本実施形態のハニカム構造体100では、隔壁5の気孔率が50〜65%であることが好ましく、特に、50〜60%であることがより好ましい。   Furthermore, in the honeycomb structure 100 of the present embodiment, the partition walls 5 preferably have a porosity of 50 to 65%, and more preferably 50 to 60%.

本実施形態のハニカム構造体100では、厚さ方向Yに直交する隔壁5の断面において、細孔10の全個数の20〜100%に相当する細孔10の輪郭の形状が略円形および略楕円形のいずれかであることが好ましい。上述のような割合で略円形および略楕円形の輪郭を持つ断面形状の細孔10が存在する場合、隔壁5への触媒の担持が良好になる。なお、本明細書において「細孔10の輪郭の形状が略円形」とは、円形、または輪郭が波形であっても1個の細孔の断面の輪郭全体を見た場合に円形に近似可能な形状のことを意味する。また、本明細書において、細孔10の輪郭の形状が略楕円形とは、楕円形、または輪郭が波形であっても1個の細孔の断面の輪郭全体を見た場合に楕円形に近似可能形状のことを意味する。   In the honeycomb structure 100 of the present embodiment, in the cross section of the partition wall 5 orthogonal to the thickness direction Y, the contour shape of the pores 10 corresponding to 20 to 100% of the total number of the pores 10 is substantially circular and substantially elliptical. Preferably any of the shapes. When the cross-sectional pores 10 having substantially circular and substantially elliptical outlines exist at the above ratio, the catalyst is favorably supported on the partition walls 5. In this specification, “the shape of the outline of the pore 10 is substantially circular” means that it can be approximated to a circle when the entire outline of the cross section of one pore is viewed even if the outline is a waveform. It means a simple shape. Further, in this specification, the shape of the outline of the pore 10 is substantially elliptical. When the whole outline of the cross section of one pore is viewed even when the outline is a wavy shape, the shape is elliptical. It means an approximate shape.

また、本実施形態のハニカム構造体100では、連通性および触媒の担持を良好にする観点から、パーミアビリティが1×10−12〜10×10−12(m)であることが好ましい。このパーミアビリティは、ハニカム構造体100の内部にガスを通過させた場合の通過抵抗の指標となる。 Moreover, in the honeycomb structure 100 of this embodiment, it is preferable that permeability is 1 * 10 < -12 > -10 * 10 <-12> (m < 2 > ) from a viewpoint of making a communication property and favorable catalyst support. This permeability is an indicator of the passage resistance when a gas is passed through the honeycomb structure 100.

ダルシー則として、次式が一般的に存在する。ΔP/L=1/k×μ×u、ΔP[Pa]:空気透過時の圧力損失、L[m]:試料厚み、μ[Pa・s]:空気粘度25℃、1atmの粘度18.35−6、u[m/s]:流体速度。このときの透過係数k[m]をパーミアビリティと定義する。 As Darcy's law, the following equation generally exists. ΔP / L = 1 / k × μ × u, ΔP [Pa]: Pressure loss during air permeation, L [m]: Sample thickness, μ [Pa · s]: Air viscosity 25 ° C., 1 atm viscosity 18.35 −6 , u [m / s]: fluid velocity. The transmission coefficient k [m 2 ] at this time is defined as permeability.

本実施形態のハニカム構造体100では、隔壁5の厚さは、特に制限はないが、0.060〜0.288mmであることが好ましく、0.108〜0.240mmであることが更に好ましく、0.132〜0.192mmであることが特に好ましい。このように構成することによって、強度が高く、且つ圧力損失が低減されたハニカム構造体100とすることができる。   In the honeycomb structure 100 of the present embodiment, the thickness of the partition walls 5 is not particularly limited, but is preferably 0.060 to 0.288 mm, more preferably 0.108 to 0.240 mm, It is especially preferable that it is 0.132-0.192 mm. With this configuration, the honeycomb structure 100 having high strength and reduced pressure loss can be obtained.

本明細書にいう「隔壁の厚さ」とは、ハニカム構造体100をセル4の延びる方向(X方向)に垂直に切断した断面における、隣接する2つのセル4を区画する壁(隔壁5)の厚さのことを意味する。「隔壁の厚さ」は、例えば、画像解析装置(ニコン社製、商品名「NEXIV、VMR−1515」)によって測定することができる。   The “thickness of the partition wall” referred to in this specification means a wall (partition wall 5) that partitions two adjacent cells 4 in a cross section obtained by cutting the honeycomb structure 100 perpendicularly to the cell 4 extending direction (X direction). Means the thickness of The “thickness of the partition wall” can be measured by, for example, an image analysis apparatus (trade name “NEXIV, VMR-1515” manufactured by Nikon Corporation).

本実施形態のハニカム構造体100では、セル密度は、特に制限はないが、セル密度が15〜140個/cmであることが好ましく、31〜116個/cmであることが更に好ましく、46〜93個/cmであることが特に好ましい。このように構成することによって、ハニカム構造体100の強度を維持しつつ、圧力損失の上昇を抑制することができる。 In the honeycomb structure 100 of the present embodiment, the cell density is not particularly limited, it is preferable that the cell density of 15 to 140 pieces / cm 2, further preferably from 31 to 116 pieces / cm 2, particularly preferably 46 to 93 pieces / cm 2. With this configuration, it is possible to suppress an increase in pressure loss while maintaining the strength of the honeycomb structure 100.

本明細書にいう「セル密度」とは、セルの延びる方向に垂直に切断した断面における、単位面積当たりのセルの個数のことである。   The “cell density” referred to in this specification is the number of cells per unit area in a cross section cut perpendicularly to the cell extending direction.

本実施形態のハニカム構造体100では、セル密度が7.75〜46.5個/cmであり、かつ隔壁5は気孔率50〜70%でありかつ平均細孔径10〜50μmであることが好ましい。上述のセル密度、気孔率、および平均細孔径の条件の全てを満たす場合、金属置換ゼオライトまたはバナジウムを含む触媒を用いるときに有意な触媒作用を発揮させることができる。具体的には、量依存的な触媒作用を発現する金属置換ゼオライトまたはバナジウムを含む触媒を用いる場合に、多量の触媒を隔壁5に担持させて、量依存的な触媒作用を十分に発現させることができる。加えて、金属置換ゼオライトまたはバナジウムを含む触媒の隔壁5からの剥離が抑制可能となる。 In the honeycomb structure 100 of the present embodiment, the cell density is 7.75 to 46.5 cells / cm 2 , and the partition walls 5 have a porosity of 50 to 70% and an average pore diameter of 10 to 50 μm. preferable. When all of the above conditions for cell density, porosity, and average pore diameter are satisfied, significant catalytic action can be exhibited when using a catalyst containing metal-substituted zeolite or vanadium. Specifically, when using a metal-substituted zeolite or vanadium-containing catalyst that expresses an amount-dependent catalytic action, a large amount of catalyst is supported on the partition walls 5 so that the quantity-dependent catalytic action is sufficiently exhibited. Can do. In addition, separation of the catalyst containing metal-substituted zeolite or vanadium from the partition walls 5 can be suppressed.

従来のハニカム構造体では、セル密度が7.75〜46.5個/cmの場合、多量の触媒を隔壁に担持させると、多くの触媒が隔壁表面に堆積してしまい、その結果、触媒が剥離し易い。特に、触媒が金属置換ゼオライトを含む場合には、触媒が嵩高くなるため、触媒が隔壁表面に堆積してしまう傾向が強くなる。また、触媒は、隔壁表面に堆積している場合、隔壁からの剥離がより一層生じ易くなる。本実施形態のハニカム構造体100によれば、上述したように隔壁5の表面において多くの割合の細孔10が開口しかつ中心領域において多くの割合の細孔10が幅を狭めているので、触媒が隔壁5の中心領域まで十分に担持される。その結果として、本実施形態のハニカム構造体100によれば、セル密度7.75〜46.5個/cmの条件下で多量の触媒を担持させても、隔壁からの触媒の剥離が生じにくくなる。また、本実施形態のハニカム構造体100では、金属置換ゼオライトを含む嵩高い触媒を用いる場合であっても、隔壁からの触媒の剥離を十分に抑制可能になる。 In the conventional honeycomb structure, when the cell density is 7.75 to 46.5 cells / cm 2 , when a large amount of catalyst is supported on the partition wall, a large amount of catalyst is deposited on the partition wall surface. Is easy to peel. In particular, when the catalyst contains a metal-substituted zeolite, the catalyst becomes bulky, so that the tendency of the catalyst to be deposited on the partition wall surface becomes strong. Further, when the catalyst is deposited on the partition wall surface, the catalyst is more easily separated from the partition wall. According to the honeycomb structure 100 of the present embodiment, as described above, a large proportion of the pores 10 are open on the surface of the partition wall 5 and a large proportion of the pores 10 are narrowed in the central region. The catalyst is sufficiently supported up to the central region of the partition wall 5. As a result, according to the honeycomb structure 100 of the present embodiment, even if a large amount of catalyst is supported under a cell density of 7.75 to 46.5 cells / cm 2 , the catalyst is peeled off from the partition walls. It becomes difficult. Moreover, in the honeycomb structure 100 of the present embodiment, even when a bulky catalyst containing a metal-substituted zeolite is used, the catalyst peeling from the partition walls can be sufficiently suppressed.

本実施形態のハニカム構造体100では、隔壁5は、セラミックを主成分とするものであることが好ましい。隔壁5の材質としては、具体的には、炭化珪素、珪素−炭化珪素系複合材料、コージェライト、ムライト、アルミナ、スピネル、炭化珪素−コージェライト系複合材料、リチウムアルミニウムシリケート、およびアルミニウムチタネートからなる群から選択される少なくとも1種であることが好ましい。これらの中でも、コージェライトが好ましい。隔壁5の材質としてコージェライトを用いると、熱膨張係数が小さく、耐熱衝撃性に優れたハニカム構造体が得られる。なお、本明細書において、「セラミックを主成分とする」というときは、セラミックを全体の50質量%以上含有することをいう。   In the honeycomb structure 100 of the present embodiment, the partition walls 5 are preferably made mainly of ceramic. Specifically, the partition wall 5 is made of silicon carbide, silicon-silicon carbide based composite material, cordierite, mullite, alumina, spinel, silicon carbide-cordierite based composite material, lithium aluminum silicate, and aluminum titanate. It is preferably at least one selected from the group. Among these, cordierite is preferable. When cordierite is used as the material for the partition walls 5, a honeycomb structure having a small thermal expansion coefficient and excellent thermal shock resistance can be obtained. In the present specification, the phrase “having ceramic as a main component” means containing 50% by mass or more of the entire ceramic.

本実施形態のハニカム構造体100では、軸方向Xに直交する断面からみた場合の、セルの形状としては、特に制限はなく、図1に示された四角形や、それ以外にも、例えば、三角形、六角形などの多角形、円形、楕円形などを挙げることができる。   In the honeycomb structure 100 of the present embodiment, the shape of the cell when viewed from a cross section orthogonal to the axial direction X is not particularly limited, and other than the quadrangle shown in FIG. , Polygons such as hexagons, circles, ellipses and the like.

本実施形態のハニカム構造体100では、外周壁7の厚さは、特に限定されないが、0.2〜4.0mmが好ましい。外周壁7の厚さを上記範囲内とする場合には、ハニカム構造体100の強度を適度に維持しつつ、セル4内に流体(例えば、排ガス)を流した際における圧力損失の増大を防止することができる。   In the honeycomb structure 100 of the present embodiment, the thickness of the outer peripheral wall 7 is not particularly limited, but is preferably 0.2 to 4.0 mm. In the case where the thickness of the outer peripheral wall 7 is within the above range, an increase in pressure loss when a fluid (for example, exhaust gas) is flowed into the cell 4 while maintaining the strength of the honeycomb structure 100 moderately is prevented. can do.

本実施形態のハニカム構造体100では、外周壁7の材質は、隔壁5と同じであることが好ましいが、異なっていてもよい。   In the honeycomb structure 100 of the present embodiment, the material of the outer peripheral wall 7 is preferably the same as that of the partition walls 5 but may be different.

本実施形態のハニカム構造体100では、外周壁7の形状は、特に限定されないが、図1に示された円筒形状や、それ以外にも、底面が楕円形の筒形状、底面が四角形、五角形、六角形等の多角形の筒形状等であってもよい。   In the honeycomb structure 100 of the present embodiment, the shape of the outer peripheral wall 7 is not particularly limited, but in addition to the cylindrical shape shown in FIG. 1, other than that, a cylindrical shape with an elliptical bottom surface, a rectangular bottom surface, and a pentagonal shape Further, it may be a polygonal cylindrical shape such as a hexagon.

本実施形態のハニカム構造体100では、ハニカム構造体100の大きさは、特に限定されないが、軸方向Xにおける長さが50〜300mmであることが好ましい。また、例えば、ハニカム構造体100の外形が円筒形の場合、その底面の直径は、110〜350mmであることが好ましい。   In the honeycomb structure 100 of the present embodiment, the size of the honeycomb structure 100 is not particularly limited, but the length in the axial direction X is preferably 50 to 300 mm. Further, for example, when the honeycomb structure 100 has a cylindrical outer shape, the diameter of the bottom surface is preferably 110 to 350 mm.

2.ハニカム触媒体:
本発明のハニカム触媒体は、上述した本発明のハニカム構造体(例えば、上記「1.ハニカム構造体」の欄で述べた「本実施形態のハニカム構造体100」)と、このハニカム構造体の隔壁の細孔の表面に担持された触媒と、を備えている。
2. Honeycomb catalyst body:
The honeycomb catalyst body of the present invention includes the above-described honeycomb structure of the present invention (for example, “honeycomb structure 100 of the present embodiment” described in the above section “1. Honeycomb structure”), And a catalyst supported on the surface of the pores of the partition walls.

図5は、本発明のハニカム触媒体の一実施形態を示した説明図である。より詳しくは、図5は、図3に示されている隔壁5に触媒20を担持させ、排ガスGの浄化を実施した場合の説明図である。上述のハニカム構造体100における隔壁5に触媒20を担持させる場合には、隔壁5の表層領域および中心領域のいずれにおいても、内壁面で触媒20を均一に担持した細孔10の割合が多くなる。すなわち、本実施形態のハニカム触媒体では、隔壁5の細孔内に多量の触媒20を担持させることが可能である。   FIG. 5 is an explanatory view showing an embodiment of the honeycomb catalyst body of the present invention. More specifically, FIG. 5 is an explanatory diagram when the catalyst 20 is supported on the partition wall 5 shown in FIG. 3 and the exhaust gas G is purified. When the catalyst 20 is supported on the partition walls 5 in the honeycomb structure 100 described above, the ratio of the pores 10 that uniformly support the catalyst 20 on the inner wall surface increases in both the surface layer region and the central region of the partition walls 5. . That is, in the honeycomb catalyst body of the present embodiment, a large amount of catalyst 20 can be supported in the pores of the partition walls 5.

本実施形態のハニカム触媒体では、細孔10の内壁面に触媒20の層が形成されている。さらに、本実施形態のハニカム触媒体では、上述したハニカム構造体100を用いているので、細孔10については、触媒20が細孔10内に担持されていても、ガスGを流入可能な細孔10の割合が依然として多い傾向にある。したがって、図5に示されているように、本実施形態のハニカム触媒体では、細孔10を通じて隔壁5の内部にガスGを浸入させ、細孔10の内壁面に担持されている触媒20によって、ガスGの浄化をすることが可能である。このように、本実施形態のハニカム触媒体では、細孔内でのガスGの浄化が可能であるので、従来のハニカム触媒体と比べて浄化効率が向上している。   In the honeycomb catalyst body of the present embodiment, a layer of the catalyst 20 is formed on the inner wall surface of the pore 10. Furthermore, since the honeycomb catalyst body 100 described above is used in the honeycomb catalyst body of the present embodiment, the pores 10 are small enough to allow the gas G to flow even if the catalyst 20 is supported in the pores 10. The ratio of the holes 10 still tends to be large. Therefore, as shown in FIG. 5, in the honeycomb catalyst body of the present embodiment, the gas G enters the inside of the partition wall 5 through the pores 10, and is supported by the catalyst 20 supported on the inner wall surface of the pores 10. It is possible to purify the gas G. As described above, the honeycomb catalyst body of the present embodiment can purify the gas G in the pores, so that the purification efficiency is improved as compared with the conventional honeycomb catalyst body.

また、図示されているように、本実施形態のハニカム触媒体では、隔壁5の表面において、多くの割合の細孔10が大きく開口し、その一方で隔壁5の中心領域では多くの割合の細孔10が幅を狭めている傾向がある。こうした細孔10の形状により、ガスGを、セル4aから細孔10内に流入させることが容易であり、さらに、ガスGを隔壁5の中心領域まで到達させると、図5中に示されたガスGのように、再び同じセル4aに復帰させることも容易である。もちろん、ガスGを隔壁5の中心領域まで到達させて再びセル4aに復帰させる過程では、細孔10の内壁面に担持されている触媒20によってガスGを浄化することが可能である。 Further, as shown in the figure, in the honeycomb catalyst body of the present embodiment, a large proportion of the pores 10 are greatly opened on the surface of the partition walls 5, while a large proportion of the fine pores 10 are formed in the central region of the partition walls 5. There is a tendency that the hole 10 is narrowed. Due to the shape of the pores 10, it is easy to allow the gas G to flow into the pores 10 from the cells 4 a, and when the gas G reaches the central region of the partition wall 5, it is shown in FIG. 5. as the gas G 1, it is also easy to again return to the same cell 4a. Of course, in the process in which the gas G reaches the central region of the partition wall 5 and returns to the cell 4 a again, the gas G can be purified by the catalyst 20 supported on the inner wall surface of the pore 10.

さらに、本実施形態のハニカム触媒体では、触媒20を担持させても細孔10がなお隔壁5を貫通している場合には、ガスGを隔壁5の中心領域まで到達させると、図5中に示されているガスGのように、隣のセル4bに排出させることも容易である。 Furthermore, in the honeycomb catalyst body of the present embodiment, when the pores 10 still pass through the partition walls 5 even when the catalyst 20 is supported, the gas G reaches the center region of the partition walls 5 and is shown in FIG. as the gas G 2 shown in, it is easy to discharge the adjacent cell 4b.

よって、本実施形態のハニカム触媒体では、隔壁5の表層領域の細孔10の内壁面に担持されている触媒20はもちろんのこと、隔壁5の中心領域の細孔10の内壁面に担持されている触媒20もガスGの浄化に効率良く利用可能である。   Therefore, in the honeycomb catalyst body of the present embodiment, the catalyst 20 is supported on the inner wall surface of the pore 10 in the central region of the partition wall 5 as well as the catalyst 20 supported on the inner wall surface of the pore 10 in the surface layer region of the partition wall 5. The catalyst 20 can also be efficiently used for purifying the gas G.

対して、図6は、図4に示されている従来の隔壁5に触媒20を担持させ、排ガスGの浄化を実施した場合の説明図である。従来のハニカム構造体では、触媒を担持させる工程において、隔壁5の中心領域の細孔10にまで触媒を浸入させることが容易ではない。そのため、図6に示されているように、本発明のハニカム触媒体(例えば、その一実施形態を図5に示す)と比べて、隔壁5の中心領域おいて、触媒20を担持した細孔10の割合が少ない傾向がある。   On the other hand, FIG. 6 is an explanatory view when the catalyst 20 is supported on the conventional partition wall 5 shown in FIG. 4 and the exhaust gas G is purified. In the conventional honeycomb structure, it is not easy to allow the catalyst to enter the pores 10 in the central region of the partition wall 5 in the step of supporting the catalyst. Therefore, as shown in FIG. 6, compared with the honeycomb catalyst body of the present invention (for example, one embodiment is shown in FIG. 5), pores carrying the catalyst 20 in the central region of the partition wall 5 There is a tendency that the ratio of 10 is small.

また、従来のハニカム触媒体では、隔壁5の表面において大きく開口する細孔10の割合が少なくなっているので、図6中のガスGのように、隔壁5の中心領域にまで流入したガスGが、再びセル4に復帰しにくくなる傾向がある。よって、従来のハニカム触媒体では、上述の本発明の一実施形態のハニカム触媒体と比べて、隔壁5の中心領域に担持されている触媒20を、ガスGの浄化に効率良く利用することが困難である。 Further, in the conventional honeycomb catalyst body, since the ratio of the pores 10 that are largely open on the surface of the partition wall 5 is reduced, the gas that has flowed into the central region of the partition wall 5 as the gas G 3 in FIG. G 3 tends to be difficult to return to cell 4 again. Therefore, in the conventional honeycomb catalyst body, the catalyst 20 supported in the central region of the partition wall 5 can be efficiently used for the purification of the gas G, as compared with the honeycomb catalyst body of the embodiment of the present invention described above. Have difficulty.

本発明のハニカム触媒体では、流入側の端面(一方の端面)からセル内にガスを流入させると、隔壁に担持されている触媒によってガスを浄化し、最終的に、浄化されたガスを流出側の端面(他方の端面)から排出させることができる。具体的には、隔壁に担持されている触媒により、ガスに含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)等の有害物質を浄化することが可能である。 In the honeycomb catalyst body of the present invention, when gas flows into the cell from the inflow side end surface (one end surface), the gas is purified by the catalyst supported on the partition walls, and finally the purified gas flows out. It can be discharged from the side end surface (the other end surface). Specifically, it is possible to purify harmful substances such as carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NO x ) contained in the gas by the catalyst supported on the partition walls. .

特に、本発明のハニカム触媒体は、排ガスの浄化に用いることが好適である。本明細書にいう排ガスとは、自動車用、建設機械用、および産業用定置エンジン、ならびに燃焼機器等から排出される排ガスのことである。こうした種々のエンジンや燃焼機器からの排ガスには、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)等の有害物質が多く含まれていることがある。本発明のハニカム触媒体によれば、こうした種々のエンジンや燃焼機器の排ガスに含まれている有害物質を効率良く浄化することが可能である。 In particular, the honeycomb catalyst body of the present invention is preferably used for purification of exhaust gas. The exhaust gas referred to in the present specification is exhaust gas discharged from automobiles, construction machinery, industrial stationary engines, combustion equipment, and the like. Exhaust gases from these various engines and combustion equipment may contain a lot of harmful substances such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO x ). According to the honeycomb catalyst body of the present invention, it is possible to efficiently purify harmful substances contained in exhaust gases of various engines and combustion equipment.

本発明のハニカム触媒体では、触媒の充填率が50〜90%であることが好ましく、60〜80%であることが更に好ましく、65〜75%であることが特に好ましい。触媒の充填率が上記範囲内である場合には、触媒とガスとの接触がよくなり、浄化率の低下が抑えられるという利点がある。また、ハニカム触媒体にガスを流入させた際の圧力損失の増大を防止することができる。触媒の充填率が下限値以上である場合には、ガスを流入させた際の圧力損失の増大を防止することができる。また、触媒の充填率が上限値以下である場合には、触媒がガスと接触がよくなり、浄化率の低下が抑えられるという利点がある。なお、本明細書にいう触媒の充填率とは、「触媒の充填されている容積/細孔容積」のことを意味する。   In the honeycomb catalyst body of the present invention, the catalyst filling rate is preferably 50 to 90%, more preferably 60 to 80%, and particularly preferably 65 to 75%. When the filling rate of the catalyst is within the above range, there is an advantage that the contact between the catalyst and the gas is improved and the reduction of the purification rate is suppressed. Further, it is possible to prevent an increase in pressure loss when the gas flows into the honeycomb catalyst body. When the filling rate of the catalyst is not less than the lower limit value, it is possible to prevent an increase in pressure loss when the gas is introduced. Moreover, when the filling rate of the catalyst is not more than the upper limit value, there is an advantage that the catalyst is in good contact with the gas and the reduction of the purification rate can be suppressed. The catalyst filling rate referred to in this specification means “volume of catalyst filled / pore volume”.

本発明のハニカム触媒体では、触媒は、目的に応じて適宜決定することができる。例えば、三元触媒、酸化触媒、NO選択還元触媒、NO吸蔵還元触媒などを挙げることができる。ハニカム触媒体の単位体積当りの触媒の担持量は、100〜300g/Lであることが好ましく、150〜250g/Lであることが更に好ましい(なお、Lはリットル)。 In the honeycomb catalyst body of the present invention, the catalyst can be appropriately determined according to the purpose. Examples thereof include a three-way catalyst, an oxidation catalyst, a NO X selective reduction catalyst, and a NO X storage reduction catalyst. The amount of catalyst supported per unit volume of the honeycomb catalyst body is preferably 100 to 300 g / L, more preferably 150 to 250 g / L (where L is liter).

三元触媒とは、主に炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NO)を浄化する触媒のことをいう。例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)を含む触媒を挙げることができる。 A three-way catalyst refers to a catalyst that mainly purifies hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO x ). For example, a catalyst containing platinum (Pt), palladium (Pd), and rhodium (Rh) can be given.

酸化触媒としては、貴金属を含有するものを挙げることができる。具体的には、白金、パラジウム、およびロジウムからなる群より選択される少なくとも一種を含有するものが好ましい。   Examples of the oxidation catalyst include those containing a noble metal. Specifically, those containing at least one selected from the group consisting of platinum, palladium, and rhodium are preferable.

NO選択還元触媒としては、金属置換ゼオライト、バナジウム、チタニア、酸化タングステン、銀、およびアルミナからなる群より選択される少なくとも1種を含有するものを挙げることができる。 Examples of the NO X selective reduction catalyst include those containing at least one selected from the group consisting of metal-substituted zeolite, vanadium, titania, tungsten oxide, silver, and alumina.

本発明のハニカム触媒体では、触媒が金属置換ゼオライトおよびバナジウムのうちのいずれかを少なくとも含む場合には、触媒とガスとの接触頻度を十分に高めて浄化効率を向上させる観点から、触媒担持量が100〜300g/Lであり、かつ、隔壁は触媒を担持させる前の気孔率(A)に対して触媒を担持させた状態での気孔率(B)が0.1〜0.6倍[換言すると、気孔率(B)/気孔率(A)=0.1〜0.6]であることが好ましい。   In the honeycomb catalyst body of the present invention, when the catalyst contains at least one of metal-substituted zeolite and vanadium, the amount of catalyst supported is improved from the viewpoint of sufficiently increasing the contact frequency between the catalyst and the gas and improving the purification efficiency. Is 100 to 300 g / L, and the partition wall has a porosity (B) of 0.1 to 0.6 times in a state where the catalyst is supported relative to the porosity (A) before the catalyst is supported [ In other words, porosity (B) / porosity (A) = 0.1 to 0.6] is preferable.

さらに、本発明のハニカム触媒体では、触媒が金属置換ゼオライトおよびバナジウムのうちのいずれかを少なくとも含む場合には、触媒担持量が100〜300g/Lであり、かつ、隔壁は気孔率50〜70%かつ平均細孔径10〜50μmであるとともに触媒を担持させる前の気孔率(A)に対して触媒を担持させた状態での気孔率(B)が0.1〜0.6倍であり、さらにセル密度が7.75〜46.5個/cm(50〜300cpsi)であることが好ましい。上記の触媒担持量、気孔率(B)/気孔率(A)の値、およびセル密度の条件を全て満たす場合、触媒とガスとの接触頻度を十分に高めて浄化効率を向上させ、かつ、圧力損失の上昇の抑制および隔壁からの触媒の剥離を抑制することが可能になる。 Furthermore, in the honeycomb catalyst body of the present invention, when the catalyst contains at least one of metal-substituted zeolite and vanadium, the catalyst loading is 100 to 300 g / L, and the partition walls have a porosity of 50 to 70. % And the average pore diameter of 10 to 50 μm and the porosity (B) in a state where the catalyst is supported relative to the porosity (A) before the catalyst is supported are 0.1 to 0.6 times, Further, the cell density is preferably 7.75 to 46.5 cells / cm 2 (50 to 300 cpsi). When all of the above catalyst loading, porosity (B) / porosity (A) value, and cell density conditions are satisfied, the contact frequency between the catalyst and the gas is sufficiently increased to improve the purification efficiency, and It is possible to suppress an increase in pressure loss and to prevent the catalyst from peeling from the partition wall.

NO吸蔵還元触媒としては、アルカリ金属、および/またはアルカリ土類金属等を挙げることができる。アルカリ金属としては、カリウム、ナトリウム、リチウム等を挙げることができる。アルカリ土類金属としては、カルシウムなどを挙げることができる。 Examples of the NO X storage reduction catalyst include alkali metals and / or alkaline earth metals. Examples of the alkali metal include potassium, sodium, and lithium. Examples of the alkaline earth metal include calcium.

3.ハニカム構造体の製造方法:
本発明のハニカム構造体は、例えば、以下の製造方法(本発明のハニカム構造体の製造方法)によって得ることができる。本発明のハニカム構造体の製造方法は、坏土調製工程と、成形工程と、焼成工程と、を備えている。坏土調製工程は、セラミック原料および造孔材を含有する成形原料を混合し混練して坏土を得る工程である。成形工程は、坏土調製工程によって得られた坏土をハニカム形状に押出成形し、複数のセルが形成されたハニカム成形体を得る工程である。焼成工程は、ハニカム成形体を焼成してハニカム構造体を得る工程である。以下において実施形態を詳しく説明する、本発明のハニカム構造体の製造方法によれば、上述した本発明のハニカム構造体を良好に作製することができる。
3. Manufacturing method of honeycomb structure:
The honeycomb structure of the present invention can be obtained, for example, by the following manufacturing method (the manufacturing method of the honeycomb structure of the present invention). The method for manufacturing a honeycomb structure of the present invention includes a clay preparation step, a forming step, and a firing step. The clay preparation step is a step in which a ceramic raw material and a forming raw material containing a pore former are mixed and kneaded to obtain a clay. The forming step is a step of obtaining a honeycomb formed body in which a plurality of cells are formed by extruding the clay obtained in the clay preparation step into a honeycomb shape. The firing step is a step of firing the honeycomb formed body to obtain a honeycomb structure. According to the method for manufacturing a honeycomb structure of the present invention, which will be described in detail below, the above-described honeycomb structure of the present invention can be favorably manufactured.

本発明のハニカム構造体の製造方法の一実施形態について、以下に具体的に説明する。   One embodiment of the method for manufacturing a honeycomb structure of the present invention will be specifically described below.

3−1.坏土調製工程:
本実施形態のハニカム構造体の製造方法の坏土調製工程においては、セラミック原料および造孔材を含有する成形原料を混合し混練して坏土を得る。そして、本実施形態のハニカム構造体の製造方法における坏土調製工程では、造孔材として、伸縮性を有する材質で作られたものを用いる。本実施形態のハニカム構造体の製造方法では、伸縮性を有する造孔材を使用することにより、上述のハニカム構造体を効率的に作製することが可能になる。
3-1. Clay preparation process:
In the clay preparation step of the method for manufacturing a honeycomb structure of the present embodiment, a ceramic raw material and a forming raw material containing a pore former are mixed and kneaded to obtain a clay. And in the clay preparation process in the manufacturing method of the honeycomb structure of the present embodiment, a material made of a stretchable material is used as the pore former. In the method for manufacturing a honeycomb structure of the present embodiment, the above-described honeycomb structure can be efficiently manufactured by using a pore-forming material having stretchability.

すなわち、本実施形態のハニカム構造体の製造方法では、伸縮性を有する造孔材を用いることにより、気孔率45〜70%で、かつ、「隔壁の表層領域の断面においては、表層領域の断面に現れている大細孔の断面の総面積が表層領域の断面に現れている全ての細孔の断面の総面積の60〜100%であり、かつ、厚さ方向に平行な隔壁の中心領域の断面においては、中心領域の断面に現れている大細孔の断面の総面積が中心領域の断面に現れている全ての細孔の断面の総面積の0〜40%である」との大細孔の分布状態(以下、説明の便宜上、「大細孔の分布状態A」という)を備える隔壁を効率的に作ることが可能になる。   That is, in the method for manufacturing a honeycomb structure of the present embodiment, by using a stretchable pore former, the porosity is 45 to 70%, and “the cross section of the surface layer region of the partition wall is the cross section of the surface layer region. The total area of the cross-sections of the large pores appearing in Fig. 5 is 60 to 100% of the total area of the cross-sections of all the pores appearing in the cross-section of the surface layer region, and the central region of the partition wall parallel to the thickness , The total area of the cross-sections of the large pores appearing in the cross-section of the central region is 0 to 40% of the total area of the cross-sections of all the pores appearing in the cross-section of the central region. It is possible to efficiently form partition walls having a pore distribution state (hereinafter referred to as “large pore distribution state A” for convenience of explanation).

本実施形態のハニカム構造体の製造方法に用い得る造孔材としては、伸縮性に優れて、大細孔の分布状態Aを備える隔壁を作り易いという観点において、特に、発泡樹脂や、吸水性ポリマーが好ましい。   As a pore former that can be used in the method for manufacturing a honeycomb structure of the present embodiment, in particular, it is excellent in stretchability and easy to make partition walls having a large pore distribution state A. Polymers are preferred.

本実施形態のハニカム構造体の製造方法では、造孔材の平均粒子径は、50〜200μmであることが好ましい。造孔材の平均粒子径が50〜200μmである場合、最終的に得られるハニカム構造体の隔壁の強度を十分なものとでき、かつ、隔壁の細孔内に触媒を充填する効率を高めることが可能になる。さらに、本実施形態のハニカム構造体の製造方法では、80〜170μmであることが更に好ましく、100〜150μmであることが特に好ましい。   In the method for manufacturing a honeycomb structure of the present embodiment, the average particle diameter of the pore former is preferably 50 to 200 μm. When the average particle diameter of the pore former is 50 to 200 μm, the partition walls of the finally obtained honeycomb structure can have sufficient strength, and the efficiency of filling the catalyst into the pores of the partition walls can be increased. Is possible. Furthermore, in the manufacturing method of the honeycomb structure of the present embodiment, the thickness is more preferably 80 to 170 μm, and particularly preferably 100 to 150 μm.

さらに、本実施形態のハニカム構造体の製造方法では、造孔材は、その表面に複数の突起部を有するものである(複数の突起部を有する造孔材によって、大細孔の分布状態Aを備える隔壁を作製されるようになる仕組みの一例については後述)。 Furthermore, in the manufacturing method of the honeycomb structure of the present embodiment, the pore former, by the pore former having a Der Ru (plurality of protrusions having a plurality of projections on its surface, the distribution of large pore An example of a mechanism for producing a partition including A will be described later).

図7は、本実施形態のハニカム構造体の製造方法において用い得る、複数の突起部250を有する造孔材200の一例の断面図である。こうした複数の突起部250を有する造孔材200については、伸縮性を有する材質(例えば、発泡樹脂、吸水性ポリマー)で、複数の突起形状(突起部250)を持つものを一体的に成形して作製し、これを用いてもよい。   FIG. 7 is a cross-sectional view of an example of a pore former 200 having a plurality of protrusions 250 that can be used in the method for manufacturing a honeycomb structure of the present embodiment. The pore former 200 having a plurality of protrusions 250 is integrally formed of a stretchable material (for example, foamed resin, water-absorbing polymer) having a plurality of protrusion shapes (protrusion 250). May be used.

また、複数の突起部を有する造孔材については、略球形状の伸縮性を有する造孔材(I)の表面に、造孔材(I)より小さな平均粒子径で伸縮性を有する造孔材(II)を接着させて作られたものを用いてもよい。ここで、造孔材(II)の平均粒子径は、大細孔の分布状態Aを備える隔壁をより確実に作製可能となるという観点から、造孔材(I)の平均粒子径の1/40〜1/7であることが好ましい。   In addition, for the pore former having a plurality of protrusions, the pore former (I) having a substantially spherical shape has a stretchability with an average particle diameter smaller than that of the pore former (I). You may use what was made by adhere | attaching material (II). Here, the average particle diameter of the pore former (II) is 1 / of the average particle diameter of the pore former (I) from the viewpoint that it is possible to more reliably produce the partition wall having the large pore distribution state A. It is preferable that it is 40-1 / 7.

また、本実施形態のハニカム構造体の製造方法では、複数の突起部を有する造孔材を用い、さらに、当該造孔材が造孔材(I)と造孔材(II)から作られている場合、造孔材(II)の平均粒子径が造孔材(I)の平均粒子径の1/40〜1/7であり、かつ、造孔材(I)の粒子1個の表面に造孔材(II)の粒子を5〜20個を接着させて作られたものであることがより好ましい。上記の造孔材(II)の平均粒子径の条件および造孔材(I)の粒子1個の表面に接着させる造孔材(II)の粒子の個数の条件を満たす場合、大細孔の分布状態Aを備える隔壁をより一層確実に作製可能となる。   Further, in the method for manufacturing a honeycomb structure of the present embodiment, a pore former having a plurality of protrusions is used, and the pore former is made from the pore former (I) and the pore former (II). The average particle diameter of the pore former (II) is 1/40 to 1/7 of the average particle diameter of the pore former (I), and on the surface of one particle of the pore former (I). More preferably, the pore former (II) is made by adhering 5 to 20 particles. When the conditions for the average particle diameter of the pore former (II) and the number of the pore former (II) particles adhered to the surface of one particle of the pore former (I) are satisfied, A partition provided with the distribution state A can be more reliably manufactured.

なお、本明細書にいう造孔材の平均粒子径とは、篩いにより分級した平均粒子径(ふるい分け法によって測定した試験用ふるい目開きで表したもの)を意味する。   As used herein, the average particle diameter of the pore former means an average particle diameter classified by sieving (expressed by a test sieve opening measured by a sieving method).

本実施形態のハニカム構造体の製造方法では、造孔材の平均粒子径は、50〜200μmであることが好ましい。造孔材の平均粒子径が50〜200μmである場合、最終的に得られるハニカム構造体の隔壁の強度を十分なものとでき、かつ、隔壁の細孔内に触媒を充填する効率を高めることが可能になる。さらに、本実施形態のハニカム構造体の製造方法では、造孔材の平均粒子径は、80〜170μmであることが更に好ましく、100〜150μmであることが特に好ましい。   In the method for manufacturing a honeycomb structure of the present embodiment, the average particle diameter of the pore former is preferably 50 to 200 μm. When the average particle diameter of the pore former is 50 to 200 μm, the partition walls of the finally obtained honeycomb structure can have sufficient strength, and the efficiency of filling the catalyst into the pores of the partition walls can be increased. Is possible. Furthermore, in the method for manufacturing a honeycomb structured body of the present embodiment, the average particle diameter of the pore former is more preferably 80 to 170 μm, and particularly preferably 100 to 150 μm.

本実施形態のハニカム構造体の製造方法では、複数の突起部を有する造孔材を用い、さらに、当該造孔材が造孔材(I)と造孔材(II)から作られている場合、造孔材(I)の平均粒子径が30〜180μmであり、かつ、造孔材(II)の平均粒子径が2〜20μmであることが好ましい。造孔材(I)および造孔材(II)の平均粒子径が上記の条件を満たす場合、最終的に得られるハニカム構造体の隔壁の強度を十分なものとでき、かつ、隔壁の細孔内に触媒を充填する効率を高めることが可能になる。さらに、本実施形態のハニカム構造体の製造方法では、造孔材(I)の平均粒子径が60〜150μmであり、かつ、造孔材(II)の平均粒子径が2〜17μmであることがより好ましい。特に、本実施形態のハニカム構造体の製造方法では、造孔材(I)の平均粒子径が80〜130μmであり、かつ、造孔材(II)の平均粒子径が5〜15μmであることが最も好ましい。   In the method for manufacturing a honeycomb structure of the present embodiment, a pore former having a plurality of protrusions is used, and the pore former is made of the pore former (I) and the pore former (II). The average particle diameter of the pore former (I) is preferably 30 to 180 μm, and the average particle diameter of the pore former (II) is preferably 2 to 20 μm. When the average particle diameter of the pore former (I) and the pore former (II) satisfies the above conditions, the partition wall of the honeycomb structure finally obtained can have sufficient strength, and the pores of the partition wall It is possible to increase the efficiency of filling the catalyst inside. Furthermore, in the manufacturing method of the honeycomb structure of the present embodiment, the average particle diameter of the pore former (I) is 60 to 150 μm, and the average particle diameter of the pore former (II) is 2 to 17 μm. Is more preferable. In particular, in the method for manufacturing a honeycomb structure of the present embodiment, the average particle diameter of the pore former (I) is 80 to 130 μm, and the average particle diameter of the pore former (II) is 5 to 15 μm. Is most preferred.

本実施形態のハニカム構造体の製造方法では、成形原料中の造孔材の含有量は、セラミック原料100質量部に対して、通常、1〜10質量部であり、1〜8質量部であることが好ましく、1〜6質量部であることがより好ましい。造孔材の添加量が、1質量部未満であると、隔壁に形成される大細孔の数が減少し、得られるハニカム構造体に担持できる触媒量が少なくなってしまうことがある。一方、造孔材の添加量が、10質量部を超えると、大細孔が隔壁に過剰に形成されてしまい、その結果、得られるハニカム構造体の強度が低下してしまうことがある。   In the manufacturing method of the honeycomb structure of the present embodiment, the content of the pore former in the forming raw material is usually 1 to 10 parts by mass and 1 to 8 parts by mass with respect to 100 parts by mass of the ceramic raw material. It is preferably 1 to 6 parts by mass. If the amount of pore former added is less than 1 part by mass, the number of large pores formed in the partition walls may be reduced, and the amount of catalyst that can be supported on the resulting honeycomb structure may be reduced. On the other hand, when the added amount of the pore former exceeds 10 parts by mass, large pores are excessively formed in the partition walls, and as a result, the strength of the resulting honeycomb structure may be lowered.

本実施形態のハニカム構造体の製造方法に用い得るセラミック原料としては、炭化珪素、珪素−炭化珪素系複合材料、コージェライト化原料、ムライト、アルミナ、スピネル、炭化珪素−コージェライト系複合材料、リチウムアルミニウムシリケート、およびアルミニウムチタネートからなる群から選択される少なくとも1種であることが好ましい。ここに列挙したセラミック原料の中でも、コージェライト化原料が好ましい。コージェライト化原料を用いる場合には、熱膨張係数が小さく、耐熱衝撃性に優れたハニカム構造体が得られるためである。   Examples of the ceramic raw material that can be used in the method for manufacturing a honeycomb structure of the present embodiment include silicon carbide, silicon-silicon carbide based composite material, cordierite forming raw material, mullite, alumina, spinel, silicon carbide cordierite based composite material, lithium It is preferably at least one selected from the group consisting of aluminum silicate and aluminum titanate. Among the ceramic raw materials listed here, cordierite forming raw materials are preferable. This is because when a cordierite forming raw material is used, a honeycomb structure having a small thermal expansion coefficient and excellent thermal shock resistance can be obtained.

本実施形態のハニカム構造体の製造方法では、成形原料は、セラミック原料および造孔材以外に、分散媒、添加剤などを含むものであってもよい。   In the method for manufacturing a honeycomb structure of the present embodiment, the forming raw material may include a dispersion medium, an additive, and the like in addition to the ceramic raw material and the pore former.

本実施形態のハニカム構造体の製造方法に用い得る分散媒としては、例えば、水などを挙げることができる。添加剤としては、有機バインダ、界面活性剤等を挙げることができる。分散媒の含有量は、セラミック原料100質量部に対して、30〜150質量部であることが好ましい。   Examples of the dispersion medium that can be used in the method for manufacturing a honeycomb structure of the present embodiment include water. Examples of the additive include an organic binder and a surfactant. It is preferable that content of a dispersion medium is 30-150 mass parts with respect to 100 mass parts of ceramic raw materials.

本実施形態のハニカム構造体の製造方法に用い得る有機バインダとしては、メチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等を挙げることができる。これらの中でも、メチルセルロースとヒドロキシプロポキシルセルロースとを併用することが好ましい。有機バインダの含有量は、セラミック原料100質量部に対して、1〜10質量部であることが好ましい。   Examples of the organic binder that can be used in the method for manufacturing a honeycomb structure of the present embodiment include methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinyl alcohol. Among these, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose in combination. It is preferable that content of an organic binder is 1-10 mass parts with respect to 100 mass parts of ceramic raw materials.

本実施形態のハニカム構造体の製造方法に用い得る界面活性剤としては、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等を用いることができる。これらの界面活性剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。界面活性剤の含有量は、セラミック原料100質量部に対して、0.1〜5.0質量部であることが好ましい。   As a surfactant that can be used in the method for manufacturing a honeycomb structure of the present embodiment, ethylene glycol, dextrin, fatty acid soap, polyalcohol, or the like can be used. These surfactants may be used individually by 1 type, and may be used in combination of 2 or more type. It is preferable that content of surfactant is 0.1-5.0 mass parts with respect to 100 mass parts of ceramic raw materials.

本実施形態のハニカム構造体の製造方法では、成形原料を混練して坏土を形成する方法としては、特に制限はなく、例えば、ニーダー、真空土練機などを用いる方法を挙げることができる。   In the method for manufacturing a honeycomb structure of the present embodiment, the method for kneading the forming raw material to form the kneaded material is not particularly limited, and examples thereof include a method using a kneader, a vacuum kneader, or the like.

3−2.成形工程:
本実施形態のハニカム構造体の製造方法の成形工程では、坏土調製工程で得られた坏土をハニカム形状に押出成形してハニカム成形体を得る。このハニカム成形体では、ハニカム成形体を貫通する複数のセルが形成されている。押出成形は、所望のセル形状、隔壁厚さ、セル密度を有する口金を用いて行うことができる。口金の材質としては、摩耗し難い超硬合金が好ましい。
3-2. Molding process:
In the forming step of the manufacturing method of the honeycomb structure of the present embodiment, the clay obtained in the clay preparation step is extruded into a honeycomb shape to obtain a honeycomb formed body. In this honeycomb formed body, a plurality of cells penetrating the honeycomb formed body are formed. Extrusion can be performed using a die having a desired cell shape, partition wall thickness, and cell density. As the material of the die, a cemented carbide which does not easily wear is preferable.

次に、本実施形態のハニカム構造体の製造方法の成形工程について、図7に示された造孔材200を用いて押出成形した場合を一例として詳しく述べる。   Next, the forming process of the manufacturing method of the honeycomb structure of the present embodiment will be described in detail by taking as an example the case of extrusion molding using the pore former 200 shown in FIG.

図8Aは、本実施形態のハニカム構造体の製造方法における押出成形の説明図である。ここで述べる押出成形では、格子状に切られた薄い溝(スリット)を持つ口金を用いる。この口金のスリットを通過した坏土150がハニカム成形体の隔壁170を形作ることになる。   FIG. 8A is an explanatory diagram of extrusion molding in the method for manufacturing a honeycomb structure of the present embodiment. In the extrusion molding described here, a die having thin grooves (slits) cut in a lattice shape is used. The clay 150 that has passed through the slit of the die forms the partition wall 170 of the honeycomb formed body.

さらに、本実施形態のハニカム構造体の製造方法では、図7に示されたように、造孔材200として、伸縮性を有する材質から作られ、かつ複数の突起部250を有するものを用いる。このような造孔材200では、造孔材200を押しつぶす外力が加わると、まず始めに、突起部250から変形および収縮していく傾向がある。   Furthermore, in the method for manufacturing a honeycomb structure according to the present embodiment, as shown in FIG. 7, the pore-forming material 200 made of a stretchable material and having a plurality of protrusions 250 is used. In such a pore former 200, when an external force that crushes the pore former 200 is applied, first, there is a tendency to deform and contract from the protrusion 250.

そのため、本実施形態のハニカム構造体の製造方法では、図8Aに示されているように、坏土150に含まれる造孔材200が口金のスリットの壁面400の近くに偏在している場合には、当該造孔材200の中でも、主として突起部250がスリットの壁面400によって押しつぶされて変形していく。そのため、本実施形態のハニカム構造体の製造方法では、造孔材200の位置(造孔材200に中心の位置)はスリットの壁面400の近くに偏在させたまま保たれる。例えば、図8A中に示されている突起部250aは、スリットの壁面400に押しつぶされて変形してゆく状態にあり、また、図8A中に示されている突起部250bは、隣接した別の造孔材200によって押しつぶされて変形している状態にある。こうして、本実施形態のハニカム構造体の製造方法では、造孔材200を偏在させたまま、坏土150をスリット内に通していくことが可能である。   Therefore, in the method for manufacturing a honeycomb structure according to the present embodiment, as shown in FIG. 8A, when the pore former 200 included in the clay 150 is unevenly distributed near the wall surface 400 of the base slit. In the pore former 200, the protrusions 250 are mainly crushed and deformed by the wall surface 400 of the slit. For this reason, in the method for manufacturing a honeycomb structure of the present embodiment, the position of the pore former 200 (position at the center of the pore former 200) is kept unevenly distributed near the wall surface 400 of the slit. For example, the protrusion 250a shown in FIG. 8A is in a state of being crushed and deformed by the wall surface 400 of the slit, and the protrusion 250b shown in FIG. It is in a state of being crushed and deformed by the pore former 200. Thus, in the method for manufacturing a honeycomb structure of the present embodiment, the clay 150 can be passed through the slit while the pore former 200 is unevenly distributed.

図8Bは、図8Aに示されている押出成形により形成される、ハニカム成形体の隔壁の断面の模式図である。図8Aに示されている態様によって、ハニカム成形体の隔壁170を形成すると、図8Bに示されているように、隔壁170の表層領域に多くの造孔材200を偏在させることが可能になる。この造孔材200の偏在を反映する形で、最終的に得られるハニカム構造体の隔壁においても、例えば図3に示されているような、大細孔を隔壁の表層領域に多く偏在させたものとできる。   FIG. 8B is a schematic diagram of a cross section of a partition wall of a honeycomb formed body formed by extrusion molding shown in FIG. 8A. When the partition wall 170 of the honeycomb formed body is formed according to the embodiment shown in FIG. 8A, a large number of pore formers 200 can be unevenly distributed in the surface layer region of the partition wall 170 as shown in FIG. 8B. . Reflecting the uneven distribution of the pore former 200, the partition walls of the honeycomb structure finally obtained also have a large number of large pores unevenly distributed in the surface layer region of the partition walls as shown in FIG. I can do it.

3−3.焼成工程:
本実施形態のハニカム構造体の製造方法の焼成工程では、上述の成形工程で得られるハニカム成形体を焼成し、ハニカム構造体を得る。こうして得られるハニカム構造体は、流体の流路となる複数のセルを区画形成し、複数の細孔が形成された多孔質の隔壁を備えている。
3-3. Firing process:
In the firing step of the honeycomb structure manufacturing method of the present embodiment, the honeycomb formed body obtained in the above-described forming step is fired to obtain the honeycomb structure. The honeycomb structure obtained in this manner is provided with a porous partition wall in which a plurality of cells serving as fluid flow paths are partitioned and a plurality of pores are formed.

本実施形態のハニカム構造体の製造方法の焼成工程では、焼成温度は、ハニカム成形体の材質よって適宜決定することができる。例えば、ハニカム成形体の材質がコージェライトの場合、焼成温度は、1380〜1450℃が好ましく、1400〜1440℃が更に好ましい。また、焼成時間は、3〜10時間程度とすることが好ましい。   In the firing step of the manufacturing method of the honeycomb structure of the present embodiment, the firing temperature can be appropriately determined depending on the material of the honeycomb formed body. For example, when the material of the honeycomb formed body is cordierite, the firing temperature is preferably 1380 to 1450 ° C, and more preferably 1400 to 1440 ° C. The firing time is preferably about 3 to 10 hours.

本実施形態のハニカム構造体の製造方法では、ハニカム成形体を焼成する前に乾燥させてもよい。乾燥方法は、特に限定されるものではないが、例えば、熱風乾燥、マイクロ波乾燥、誘電乾燥、減圧乾燥、真空乾燥、凍結乾燥などを挙げることができる。これらの中でも、誘電乾燥、マイクロ波乾燥または熱風乾燥を単独でまたは組合せて行うことが好ましい。また、乾燥条件としては、乾燥温度30〜150℃、乾燥時間1分〜2時間とすることが好ましい。   In the method for manufacturing a honeycomb structured body of the present embodiment, the honeycomb formed body may be dried before firing. The drying method is not particularly limited, and examples thereof include hot air drying, microwave drying, dielectric drying, reduced pressure drying, vacuum drying, and freeze drying. Among these, it is preferable to perform dielectric drying, microwave drying, or hot air drying alone or in combination. The drying conditions are preferably a drying temperature of 30 to 150 ° C. and a drying time of 1 minute to 2 hours.

4.ハニカム触媒体の製造方法:
本発明のハニカム触媒体は、例えば、以下のように製造することができる。
4). Manufacturing method of honeycomb catalyst body:
The honeycomb catalyst body of the present invention can be manufactured, for example, as follows.

まず、触媒担体としてハニカム構造体を作製する。このハニカム構造体は、上述した本発明のハニカム構造体の製造方法に従って作製することができる。   First, a honeycomb structure is produced as a catalyst carrier. This honeycomb structure can be manufactured according to the above-described method for manufacturing a honeycomb structure of the present invention.

次に、触媒スラリーを調製する。触媒スラリーに含有される触媒の平均粒子径は、0.5〜5μmである。更に、触媒スラリーの粘度(25℃)は、1〜10mPa・sである。上記触媒の平均粒子径および粘度のいずれもが下限値以上である場合には、触媒が細孔内に過度に充填されてしまうことを抑制することが可能であり、また、得られたハニカム触媒体における圧力損失の増加を抑制することが可能である。触媒の平均粒子径および粘度のいずれもが上限値以下である場合には、触媒を確実に細孔内に充填させることが可能になる。そのため、排ガスの浄化性能の高いハニカム触媒体を得やすくなる。   Next, a catalyst slurry is prepared. The average particle diameter of the catalyst contained in the catalyst slurry is 0.5 to 5 μm. Furthermore, the viscosity (25 degreeC) of a catalyst slurry is 1-10 mPa * s. When both the average particle diameter and the viscosity of the catalyst are equal to or more than the lower limit values, it is possible to prevent the catalyst from being excessively filled in the pores, and the obtained honeycomb touch It is possible to suppress an increase in pressure loss in the medium. When both the average particle diameter and the viscosity of the catalyst are not more than the upper limit values, the catalyst can be surely filled into the pores. Therefore, it becomes easy to obtain a honeycomb catalyst body with high exhaust gas purification performance.

次に、触媒スラリーをハニカム構造体に担持させる。触媒スラリーをハニカム構造体に担持させる方法は、ディッピングや吸引などの従来公知の方法を採用することができる。なお、ディッピングや吸引などを行った後に、余剰の触媒スラリーを圧縮空気で吹き飛ばしてもよい。   Next, the catalyst slurry is supported on the honeycomb structure. As a method of supporting the catalyst slurry on the honeycomb structure, a conventionally known method such as dipping or suction can be employed. In addition, after performing dipping or suction, excess catalyst slurry may be blown off with compressed air.

次に、触媒スラリーを担持しているハニカム構造体を乾燥、焼成する。このようにして、ハニカム触媒体を作製することができる。乾燥条件は、120〜180℃、10〜30分とすることができる。焼成条件は、550〜650℃、1〜5時間とすることができる。   Next, the honeycomb structure carrying the catalyst slurry is dried and fired. In this way, a honeycomb catalyst body can be manufactured. Drying conditions can be 120 to 180 ° C. and 10 to 30 minutes. Firing conditions can be 550 to 650 ° C. and 1 to 5 hours.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例1)
[造孔材の作製]
発泡樹脂製の造孔材(I)に対して、造孔材(I)よりも平均粒径の小さな発泡樹脂製の造孔材(II)を接着させることにより、複数の突起部を有する造孔材を作製した。具体的には、造孔材(II)の表面に予め接着剤を塗布しておいた後、造孔材(I)を入れた容器中に添加することにより、造孔材(I)と造孔材(II)とを混ぜ合わせ、造孔材(I)の表面に造孔材(II)を接着させた。なお、この接着させる処理を行った後、造孔材を取り出し、光学顕微鏡を用いて観察することにより、複数の突起部を有する造孔材が作製されたことを確認した。造孔材(I)の平均粒子径、造孔材(II)の平均粒子径(μm)、および造孔材(I)に造孔材(II)を混ぜ合わせて接着させる際における造孔材(I)の個数に対する造孔材(II)の個数の比の値[造孔材(II)の個数/造孔材(I)の個数]を表1に示す。
Example 1
[Preparation of pore former]
A foamed resin pore-forming material (II) having an average particle size smaller than that of the pore-forming material (I) is bonded to the foamed resin-made pore-forming material (I), thereby forming a plurality of protrusions. A pore material was produced. Specifically, after applying an adhesive to the surface of the pore former (II) in advance, it is added to the container containing the pore former (I), thereby forming the pore former (I) and the pore former (I). The pore former (II) was mixed and the pore former (II) was adhered to the surface of the pore former (I). In addition, after performing the process to make it adhere | attach, it was confirmed that the pore making material which has a some protrusion part was produced by taking out a pore making material and observing using an optical microscope. The average particle diameter of the pore former (I), the average particle diameter (μm) of the pore former (II), and the pore former when the pore former (II) is mixed and bonded to the pore former (I) The value of the ratio of the number of pore former (II) to the number of (I) [number of pore former (II) / number of pore former (I)] is shown in Table 1.

[ハニカム構造体の作製]
コージェライト化原料として、アルミナ、水酸化アルミニウム、カオリン、タルク、およびシリカを使用した。コージェライト化原料100質量部に、上述の複数の突起部を有する造孔材5質量部、水(分散媒)85質量部、吸水性ヒドロキシプロピルメチルセルロース(有機バインダ)8質量部、および界面活性剤3質量部を添加した。その後、混合、さらに混練して、坏土を得た。
[Preparation of honeycomb structure]
As the cordierite forming raw material, alumina, aluminum hydroxide, kaolin, talc, and silica were used. 100 parts by mass of the cordierite forming material, 5 parts by mass of the pore former having the plurality of protrusions described above, 85 parts by mass of water (dispersion medium), 8 parts by mass of water-absorbing hydroxypropylmethylcellulose (organic binder), and surfactant 3 parts by weight were added. Thereafter, mixing and further kneading were performed to obtain a clay.

次に、所定の金型を用いて坏土を押出成形してハニカム成形体を得た。ハニカム成形体は、セルの延びる方向に直交する断面において四角形のセルが形成され、全体形状が円柱形状であった。そして、得られたハニカム成形体をマイクロ波乾燥機で乾燥した。その後、更に熱風乾燥機で完全に乾燥させた。続いて、乾燥させたハニカム成形体の両端面を切断し、所定の寸法に整えた。   Next, the kneaded material was extruded using a predetermined mold to obtain a honeycomb formed body. In the honeycomb formed body, square cells were formed in a cross section perpendicular to the cell extending direction, and the overall shape was a columnar shape. The obtained honeycomb formed body was dried with a microwave dryer. Thereafter, it was further completely dried with a hot air dryer. Subsequently, both end faces of the dried honeycomb formed body were cut and adjusted to predetermined dimensions.

このようにして得られたハニカム成形体を、更に、1410〜1440℃で、5時間、焼成することによってハニカム構造体を得た。   The honeycomb formed body thus obtained was further fired at 1410 to 1440 ° C. for 5 hours to obtain a honeycomb structure.

得られたハニカム構造体は、直径が266.7mmであり、中心軸方向の長さが152.4mmであった。隔壁の厚さは、165.1μmであり、セル密度は62.0個/cmであった。 The obtained honeycomb structure had a diameter of 266.7 mm and a length in the central axis direction of 152.4 mm. The partition wall thickness was 165.1 μm, and the cell density was 62.0 cells / cm 2 .

[ハニカム触媒体の作製]
平均粒子径5μmのβ−ゼオライト(銅イオン交換ゼオライト)200gに水1kg加え、ボールミルにて湿式粉砕した。得られた解砕粒子にバインダとして、アルミナゾルを20g加えて触媒スラリーを得た。この触媒スラリーは、粘度5mPa・sとなるように調製した。そしてこの触媒スラリーの中にハニカム構造体を浸漬させた。その後、120℃で20分乾燥させ、600℃で1時間焼成した。このようにしてハニカム触媒体を得た。ハニカム触媒体における触媒担持量は、250g/リットルであることが判明した。
[Preparation of honeycomb catalyst body]
1 kg of water was added to 200 g of β-zeolite (copper ion exchanged zeolite) having an average particle diameter of 5 μm, and wet pulverized by a ball mill. As a binder, 20 g of alumina sol was added to the obtained crushed particles to obtain a catalyst slurry. This catalyst slurry was prepared to have a viscosity of 5 mPa · s. The honeycomb structure was immersed in this catalyst slurry. Then, it dried at 120 degreeC for 20 minutes, and baked at 600 degreeC for 1 hour. Thus, a honeycomb catalyst body was obtained. The catalyst loading on the honeycomb catalyst body was found to be 250 g / liter.

(実施例2〜14)
実施例2〜14では、表1に示されている、造孔材(I)の平均粒子径(μm)、造孔材(II)の平均粒子径(μm)、および造孔材(I)に造孔材(II)を混ぜ合わせて接着させる際における造孔材(I)の個数に対する造孔材(II)の個数の比の値[造孔材(II)の個数/造孔材(I)の個数]にて、複数の突起部を有する造孔材を作製し、こうして得られた造孔材を用いた以外は、実施例1と同様の方法により、ハニカム構造体、およびハニカム触媒体を作製した。
(Examples 2 to 14)
In Examples 2 to 14, the average particle diameter (μm) of the pore former (I), the average particle diameter (μm) of the pore former (II), and the pore former (I) shown in Table 1 The value of the ratio of the number of pore formers (II) to the number of pore formers (I) when the pore former (II) is mixed and bonded to [the number of pore formers (II) / the pore former ( In the number of I)], a honeycomb structure and a honeycomb contact were produced in the same manner as in Example 1 except that a pore former having a plurality of protrusions was prepared and the pore former thus obtained was used. A medium was made.

(比較例1〜3)
比較例1〜3では、表2に示されている平均粒子径(μm)の、略球形状のカーボン粉末の造孔材として用いた以外は、実施例1と同様の方法により、ハニカム構造体、およびハニカム触媒体を作製した。
(Comparative Examples 1-3)
In Comparative Examples 1 to 3, the honeycomb structure was produced in the same manner as in Example 1 except that the average particle diameter (μm) shown in Table 2 was used as a substantially spherical carbon powder pore former. And honeycomb catalyst bodies were prepared.

(実施例15〜19)
実施例15〜19では、表3に示されている、造孔材(I)の平均粒子径(μm)、造孔材(II)の平均粒子径(μm)、および造孔材(I)に造孔材(II)を混ぜ合わせて接着させる際における造孔材(I)の個数に対する造孔材(II)の個数の比の値[造孔材(II)の個数/造孔材(I)の個数]にて、複数の突起部を有する造孔材を作製し、これを用いた以外は、実施例1と同様の方法により、ハニカム構造体、およびハニカム触媒体を作製した。なお、実施例15〜19のいずれも平均細孔径が23μm、表層領域における大細孔の割合が72%、中心領域における大細孔の割合が25%であった。
(Examples 15 to 19)
In Examples 15 to 19, the average particle diameter (μm) of the pore former (I), the average particle diameter (μm) of the pore former (II), and the pore former (I) shown in Table 3 The value of the ratio of the number of pore formers (II) to the number of pore formers (I) when the pore former (II) is mixed and bonded to [the number of pore formers (II) / the pore former ( A honeycomb structure and a honeycomb catalyst body were manufactured in the same manner as in Example 1 except that a pore former having a plurality of protrusions was prepared in the number of I)], and this was used. In all of Examples 15 to 19, the average pore diameter was 23 μm, the proportion of large pores in the surface layer region was 72%, and the proportion of large pores in the central region was 25%.

(実施例20〜26)
実施例20〜26では、表3に示されている、造孔材(I)の平均粒子径(μm)、造孔材(II)の平均粒子径(μm)、および造孔材(I)に造孔材(II)を混ぜ合わせて接着させる際における造孔材(I)の個数に対する造孔材(II)の個数の比の値[造孔材(II)の個数/造孔材(I)の個数]にて、複数の突起部を有する造孔材を作製し、これを用い、さらに、触媒スラリーの調製時にβ−ゼオライト(銅イオン交換ゼオライト)に代えてバナジウムを用いた以外は、実施例1と同様の方法により、ハニカム構造体、およびハニカム触媒体を作製した。なお、実施例20〜26のいずれも平均細孔径が23μm、表層領域における大細孔の割合が72%、中心領域における大細孔の割合が25%であった。
(Examples 20 to 26)
In Examples 20 to 26, as shown in Table 3, the average particle diameter (μm) of the pore former (I), the average particle diameter (μm) of the pore former (II), and the pore former (I) The value of the ratio of the number of pore formers (II) to the number of pore formers (I) when the pore former (II) is mixed and bonded to [the number of pore formers (II) / the pore former ( The number of I)] was used to prepare a pore former having a plurality of protrusions, and this was used except that vanadium was used instead of β-zeolite (copper ion exchanged zeolite) when preparing the catalyst slurry. A honeycomb structure and a honeycomb catalyst body were produced by the same method as in Example 1. In all of Examples 20 to 26, the average pore diameter was 23 μm, the proportion of large pores in the surface layer region was 72%, and the proportion of large pores in the central region was 25%.

(比較例4〜6)
表3に示されている平均粒子径(μm)の、略球形状のカーボン粉末の造孔材として用い、さらに、表5に示されているセル密度以外は比較例1と同様の方法により、ハニカム構造体およびハニカム触媒体を作製した。比較例4〜6では、表層領域における大細孔の割合が50%〜71%、中心領域における大細孔の割合が26%〜42%であった。また、比較例4〜6では、気孔率(A)が35%以下(45〜70%の範囲外)であった。
(Comparative Examples 4-6)
The average particle size (μm) shown in Table 3 is used as a pore-forming material of a substantially spherical carbon powder, and in addition to the cell density shown in Table 5, by the same method as in Comparative Example 1, A honeycomb structure and a honeycomb catalyst body were produced. In Comparative Examples 4 to 6, the proportion of large pores in the surface layer region was 50% to 71%, and the proportion of large pores in the central region was 26% to 42%. In Comparative Examples 4 to 6, the porosity (A) was 35% or less (out of the range of 45 to 70%).

Figure 0006081831
Figure 0006081831

Figure 0006081831
Figure 0006081831

Figure 0006081831
Figure 0006081831

Figure 0006081831
Figure 0006081831

Figure 0006081831
Figure 0006081831

実施例1〜26および比較例1〜6のハニカム構造体について、[気孔率(A)]、[平均細孔径]、[大細孔の割合の測定]、および[パーミアビリティの測定]の各評価を行った(結果を表4または表5に示す)。各評価の評価方法を以下に示す。各評価では、「A」、「B」、「C」の3段階で評価する。「A」および「B」は合格である。「A」は、「B」よりも優れていることを意味する。「C」は不合格である。   For the honeycomb structures of Examples 1 to 26 and Comparative Examples 1 to 6, [Porosity (A)], [Average pore diameter], [Measurement of ratio of large pores], and [Measurement of permeability] Evaluation was performed (results are shown in Table 4 or Table 5). The evaluation method for each evaluation is shown below. In each evaluation, evaluation is performed in three stages of “A”, “B”, and “C”. “A” and “B” are acceptable. “A” means superior to “B”. “C” is rejected.

[気孔率(A)(%)]:
ハニカム構造体における気孔率(A)(%)は、水銀ポロシメータ(水銀圧入法)によって測定した。水銀ポロシメータとしては、Micromeritics社製、商品名:Auto Pore III 型式9405を用いた。
[Porosity (A) (%)]:
The porosity (A) (%) in the honeycomb structure was measured by a mercury porosimeter (mercury intrusion method). As the mercury porosimeter, the product name: Auto Pore III Model 9405 manufactured by Micromeritics was used.

[平均細孔径(μm)]:
隔壁の平均細孔径は、水銀ポロシメータ(水銀圧入法)によって測定した。
[Average pore diameter (μm)]:
The average pore diameter of the partition walls was measured by a mercury porosimeter (mercury intrusion method).

[大細孔の割合の測定]:
走査型電子顕微鏡(SEM)によって、ハニカムの隔壁の、セルの延びる方向に直交する断面を任意に4視野撮影した。撮影倍率は、100倍とする。1視野は、縦640×横480ピクセル、1ピクセル=1μmとした。撮影された画像を画像解析(三谷商事社製の「WINROOF」)によって二値化を行った。二値化を行った後、細孔の面積割合を算出した。
[Measurement of proportion of large pores]:
Using a scanning electron microscope (SEM), the cross section perpendicular to the cell extending direction of the honeycomb partition walls was arbitrarily photographed in four fields of view. The shooting magnification is 100 times. One field of view was 640 vertical by 480 horizontal pixels and 1 pixel = 1 μm. The photographed image was binarized by image analysis (“WINROOF” manufactured by Mitani Corporation). After binarization, the area ratio of the pores was calculated.

[パーミアビリティの測定]
ダルシー則として、次式が一般的に存在する。ΔP/L=1/k×μ×u、ΔP[Pa]:空気透過時の圧力損失、L[m]:試料厚み、μ[Pa・s]:空気粘度25℃、1atmの粘度18.35−6、u[m/s]:流体速度。このときの透過係数k[m]をパーミアビリティと定義し、算出した。
[Measurement of permeability]
As Darcy's law, the following equation generally exists. ΔP / L = 1 / k × μ × u, ΔP [Pa]: Pressure loss during air permeation, L [m]: Sample thickness, μ [Pa · s]: Air viscosity 25 ° C., 1 atm viscosity 18.35 −6 , u [m / s]: fluid velocity. The transmission coefficient k [m 2 ] at this time was defined as permeability and calculated.

実施例1〜26および比較例1〜6のハニカム触媒体について、[気孔率(B)]、[浄化効率]、[圧力損失]、[耐熱衝撃性]、および[触媒剥がれ]の各評価を行った(結果を表4または表5に示す)。各評価の評価方法を以下に示す。各評価では、「A」、「B」、「C」の3段階で評価する。「A」および「B」は合格である。「A」は、「B」よりも優れていることを意味する。「C」は不合格である。   The honeycomb catalyst bodies of Examples 1 to 26 and Comparative Examples 1 to 6 were evaluated for [porosity (B)], [purification efficiency], [pressure loss], [thermal shock resistance], and [catalyst peeling]. (The results are shown in Table 4 or Table 5). The evaluation method for each evaluation is shown below. In each evaluation, evaluation is performed in three stages of “A”, “B”, and “C”. “A” and “B” are acceptable. “A” means superior to “B”. “C” is rejected.

[気孔率(B)(%)]:
ハニカム触媒体における気孔率(B)(%)は、上述の気孔率(A)と同様の方法によって測定した。さらに、気孔率(A)に対する気孔率(B)の比[気孔率(B)/気孔率(A)]を算出した。
[Porosity (B) (%)]:
The porosity (B) (%) in the honeycomb catalyst body was measured by the same method as the above-described porosity (A). Furthermore, the ratio of the porosity (B) to the porosity (A) [porosity (B) / porosity (A)] was calculated.

[浄化効率(NO浄化効率)]
まず、ハニカム触媒体に、NOを含む試験用ガスを流した。その後、このハニカム触媒体から排出された排出ガスのNO量をガス分析計で分析した。
[Purification efficiency (NO x purification efficiency)]
First, the honeycomb catalyst body and flushed with test gas containing NO X. Thereafter, the NO x amount of the exhaust gas discharged from the honeycomb catalyst body was analyzed with a gas analyzer.

ここで、ハニカム触媒体に流入させる試験用ガスの温度200℃とした。なお、ハニカム触媒体および試験用ガスは、ヒーターにより温度調整した。ヒーターは、赤外線イメージ炉を用いた。試験用ガスは、窒素に、二酸化炭素5体積%、酸素14体積%、一酸化窒素350ppm(体積基準)、アンモニア350ppm(体積基準)および水10体積%が混合されたガスを用いた。この試験用ガスは、水と、その他のガス(窒素、二酸化炭素、酸素、一酸化窒素、アンモニア)を混合した混合ガスとを別々に準備しておいた。そして、試験を行う際に、配管中においてこれらを混合させて試験用ガスを得た。ガス分析計は、「HORIBA社製、MEXA9100EGR」を用いた。また、試験用ガスがハニカム触媒体に流入するときの空間速度は、50000(時間−1)とした。 Here, the temperature of the test gas flowing into the honeycomb catalyst body was set to 200 ° C. The temperature of the honeycomb catalyst body and the test gas was adjusted with a heater. An infrared image furnace was used as the heater. As the test gas, a gas in which 5% by volume of carbon dioxide, 14% by volume of oxygen, 350 ppm of nitrogen monoxide (volume basis), 350 ppm of ammonia (volume basis) and 10% by volume of water were mixed with nitrogen. As the test gas, water and a mixed gas obtained by mixing other gases (nitrogen, carbon dioxide, oxygen, nitric oxide, ammonia) were prepared separately. And when performing a test, these were mixed in piping and the gas for a test was obtained. As the gas analyzer, “MEXA9100EGR manufactured by HORIBA” was used. The space velocity when the test gas flows into the honeycomb catalyst body was set to 50000 (time- 1 ).

表4中の「NO浄化率」は、試験用ガスのNO量から、ハニカム触媒体からの排出ガスのNO量を差し引いた値を、試験用ガスのNO量で除算し、100倍した値である。ここで、NO浄化率が50%以上である場合には「A」、30%超かつ50%未満である場合には「B」、30%以下である場合には「C」とした。 Table 4 "NO X purification rate" in from the amount of NO X in the test gas, the value obtained by subtracting the amount of NO X in the exhaust gas from the honeycomb catalyst body, divided by the amount of NO X in the test gas, 100 It is a doubled value. Here, "A" when NO X purification rate is 50% or more, when less than 30% ultra and 50% was evaluated as "B", "C" when 30% or less.

[圧力損失]
室温条件下において0.5m/分の流速でエアーをハニカム触媒体に流通させた。この状態で、エアー流入側の圧力とエアー流出側の圧力との差を測定した。この圧力の差を圧力損失として算出した。圧力損失比が1.15未満である場合には「A」、1.15以上かつ1.20未満である場合には「B」、1.20以上である場合には「C」とした。
[Pressure loss]
Air was circulated through the honeycomb catalyst body at a flow rate of 0.5 m 3 / min at room temperature. In this state, the difference between the pressure on the air inflow side and the pressure on the air outflow side was measured. This pressure difference was calculated as a pressure loss. When the pressure loss ratio is less than 1.15, it is “A”, when it is 1.15 or more and less than 1.20, it is “B”, and when it is 1.20 or more, it is “C”.

[強度]
ハニカム触媒体の強度を測定した。強度の測定は、社団法人自動車技術会発行の自動車規格(JASO規格)M505−87で規定されているアイソスタティック破壊強度試験に基づいて行った。アイソスタティック破壊強度試験は、ゴムの筒状容器にハニカム触媒体を入れてアルミ製板で蓋をし、水中で等方加圧圧縮を行う試験である。即ち、アイソスタティック破壊強度試験は、コンバータの缶体にハニカム触媒体が外周面把持される場合の圧縮負荷加重を模擬した試験である。アイソスタティック破壊強度は、ハニカム触媒体が破壊したときの加圧圧力値(MPa)で示される。加圧圧力値(MPa)が2.00MPa以上である場合には「A」、0.9MPa以上かつ2.0MPa未満である場合には「B」、0.9MPa未満である場合には「C」とした。
[Strength]
The strength of the honeycomb catalyst body was measured. The measurement of strength was performed based on an isostatic fracture strength test defined in an automobile standard (JASO standard) M505-87 issued by the Japan Society for Automotive Engineers. The isostatic fracture strength test is a test in which a honeycomb catalyst body is placed in a rubber cylindrical container, covered with an aluminum plate, and isotropically compressed in water. That is, the isostatic fracture strength test is a test that simulates the load of compression load when the honeycomb catalyst body is gripped on the outer peripheral surface of the converter can body. The isostatic fracture strength is indicated by a pressurized pressure value (MPa) when the honeycomb catalyst body is destroyed. “A” when the pressure value (MPa) is 2.00 MPa or more, “B” when it is 0.9 MPa or more and less than 2.0 MPa, “C” when it is less than 0.9 MPa. "

[耐熱衝撃性]
まず、ハニカム触媒体をある所定の温度の炉の中へ搬入し、60分間同温度のままハニカム触媒体を置いておいた。60分後に炉内からハニカム触媒体を取り出して常温の場所へと移し、ハニカム触媒体の端面にクラックが入っているのか否かを確認した。クラックが発生し始めた時点での炉内の温度が550℃以上である場合には「A」、500℃以上かつ550℃未満である場合には「B」、500℃未満である場合には「C」とした。
[Thermal shock resistance]
First, the honeycomb catalyst body was carried into a furnace having a predetermined temperature, and the honeycomb catalyst body was left at the same temperature for 60 minutes. After 60 minutes, the honeycomb catalyst body was taken out from the furnace and moved to a room temperature, and it was confirmed whether or not the end face of the honeycomb catalyst body had cracks. “A” when the temperature in the furnace at the start of cracking is 550 ° C. or more, “B” when 500 ° C. or more and less than 550 ° C., and when it is less than 500 ° C. “C”.

[触媒剥離試験]
ハニカム触媒体を板金容器にパッケージして、入口排温650℃、30Gの加振力を与え、100時間の耐久試験を行った。耐久試験前および耐久試験後のハニカム触媒体の重量を測定し、ハニカム触媒体の重量減少分を触媒剥離量として測定した。ハニカム触媒体の重量減少が3%未満である場合には「A」、3%以上かつ5%未満である場合には「B」、5%以上である場合には「C」とした。
[Catalyst peeling test]
The honeycomb catalyst body was packaged in a sheet metal container, an inlet exhaust temperature of 650 ° C. and a 30 G excitation force were applied, and a durability test for 100 hours was performed. The weight of the honeycomb catalyst body before and after the durability test was measured, and the decrease in the weight of the honeycomb catalyst body was measured as the catalyst peeling amount. When the weight reduction of the honeycomb catalyst body is less than 3%, “A” is set, and when it is 3% or more and less than 5%, “B” is set, and when it is 5% or more, “C” is set.

実施例1〜14のハニカム触媒体では、「NO浄化率」、「圧力損失」、「強度」、「耐熱衝撃性」の評価がいずれも「A」または「B」、すなわち「合格」であった。対して、比較例1〜3のハニカム触媒体では、上記の4項目の評価のうち、少なくとも1項目は「C」(不合格)であった。 In the honeycomb catalyst bodies of Examples 1 to 14, the evaluations of “NO X purification rate”, “pressure loss”, “strength”, and “thermal shock resistance” are all “A” or “B”, that is, “pass”. there were. On the other hand, in the honeycomb catalyst bodies of Comparative Examples 1 to 3, at least one of the above four evaluations was “C” (failed).

実施例15〜26のハニカム触媒体では、「NO浄化率」、「圧力損失」、「触媒剥がれ」の評価がいずれも「A」または「B」、すなわち「合格」であった。対して、比較例4〜6のハニカム触媒体では、「触媒剥がれ」の評価が「C」(不合格)であった。 In the honeycomb catalyst bodies of Examples 15 to 26, the evaluations of “NO X purification rate”, “pressure loss”, and “catalyst peeling” were all “A” or “B”, that is, “pass”. On the other hand, in the honeycomb catalyst bodies of Comparative Examples 4 to 6, the evaluation of “catalyst peeling” was “C” (failed).

本発明は、排ガス浄化用の触媒を担持させるハニカム構造体およびこれを用いたハニカム触媒体、ならびにハニカム構造体の製造方法として利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used as a honeycomb structure that supports a catalyst for exhaust gas purification, a honeycomb catalyst body using the honeycomb structure, and a method for manufacturing the honeycomb structure.

2:(一方の)端面、3:(他方の)端面、4,4a,4b:セル、5:隔壁、7:外周壁、10,10a〜10c:細孔、12,12a,12b:大細孔、20:触媒、30:(触媒によって塞がった)細孔の開口部、100:ハニカム構造体、150:坏土、170:坏土から作られた隔壁、200:造孔材、250,250a,250b:突起部、270:(造孔材の)表面、400:(口金のスリットの)壁面、450:(スリットの)入口、G,G〜G:ガス。 2: (one) end face, 3: (other) end face, 4, 4a, 4b: cell, 5: partition wall, 7: outer peripheral wall, 10, 10a to 10c: pore, 12, 12a, 12b: fine Pores, 20: catalyst, 30: pore openings (closed by catalyst), 100: honeycomb structure, 150: clay, 170: partition walls made from clay, 200: pore former, 250, 250a , 250b: protrusion, 270: surface (of the pore former), 400: wall surface (of the slit of the nozzle), 450: inlet of (the slit), G, G 1 to G 3 : gas.

Claims (7)

流体の流路となる複数のセルを区画形成し、複数の細孔が形成された多孔質の隔壁を備え、
前記隔壁の気孔率が45〜70%であり、
前記隔壁の厚さ方向に平行な断面において最大幅が10μm超である前記細孔を大細孔とし、前記隔壁を前記厚さ方向に沿って中心領域と該中心領域の両側にある表層領域とに3等分する場合に、前記厚さ方向に平行な前記隔壁の前記表層領域の断面においては、前記表層領域の前記断面に現れている前記大細孔の断面の総面積が前記表層領域の前記断面に現れている全ての前記細孔の断面の総面積の60〜100%であり、かつ、前記厚さ方向に平行な前記隔壁の前記中心領域の断面においては、前記中心領域の前記断面に現れている前記大細孔の断面の総面積が前記中心領域の前記断面に現れている全ての前記細孔の断面の総面積の0〜40%であるハニカム構造体。
A plurality of cells serving as fluid flow paths are defined, and a porous partition wall having a plurality of pores is provided.
The partition wall has a porosity of 45 to 70%;
In the cross section parallel to the thickness direction of the partition wall, the pore having a maximum width exceeding 10 μm is a large pore, and the partition wall has a central region along the thickness direction and surface layer regions on both sides of the central region. In the cross section of the surface layer region of the partition wall parallel to the thickness direction, the total area of the cross section of the large pores appearing in the cross section of the surface layer region is equal to the surface layer region. In the cross section of the central region of the partition wall that is 60 to 100% of the total area of the cross sections of all the pores appearing in the cross section and is parallel to the thickness direction, the cross section of the central region A honeycomb structure in which the total area of the cross-sections of the large pores appearing in 1 is 0 to 40% of the total area of the cross-sections of all the pores appearing in the cross-section of the central region.
前記厚さ方向に直交する前記隔壁の断面において、前記細孔の全個数の20〜100%に相当する前記細孔の輪郭の形状が略円形および略楕円形のいずれかである請求項1に記載のハニカム構造体。   The cross-section of the partition perpendicular to the thickness direction has a shape of the outline of the pore corresponding to 20 to 100% of the total number of the pores, which is either a substantially circular shape or a substantially elliptical shape. The honeycomb structure described. パーミアビリティが1×10−12〜10×10−12(m)である請求項1または2に記載のハニカム構造体。 Permeability is 1 × 10 -12 ~10 × 10 -12 (m 2) a honeycomb structure according to claim 1 or 2. セル密度が7.75〜46.5個/cmであり、
前記隔壁は、気孔率が50〜70%でありかつ平均細孔径が10〜50μmである請求項1〜3のいずれか1項に記載のハニカム構造体。
The cell density is 7.75-46.5 cells / cm 2 ,
The honeycomb structure according to any one of claims 1 to 3, wherein the partition walls have a porosity of 50 to 70% and an average pore diameter of 10 to 50 µm.
請求項1〜4のいずれか1項に記載のハニカム構造体と、
前記ハニカム構造体の前記隔壁の前記細孔の表面に担持された触媒と、を備えるハニカム触媒体。
A honeycomb structure according to any one of claims 1 to 4,
And a catalyst supported on the surface of the pores of the partition walls of the honeycomb structure.
前記触媒は金属置換ゼオライトおよびバナジウムのうちのいずれかを少なくとも含むとともに触媒担持量が100〜300g/Lであり、
前記隔壁は、前記触媒を担持させる前の気孔率(A)に対して前記触媒を担持させた状態での気孔率(B)が0.1〜0.6倍である請求項5に記載のハニカム触媒体。
The catalyst contains at least one of a metal-substituted zeolite and vanadium and has a catalyst loading of 100 to 300 g / L,
6. The partition wall according to claim 5, wherein the porosity (B) in a state where the catalyst is supported is 0.1 to 0.6 times the porosity (A) before the catalyst is supported. Honeycomb catalyst body.
請求項1〜4のいずれか1項に記載のハニカム構造体を得るためのハニカム構造体の製造方法であって、
セラミックス原料と伸縮性を有する造孔材とを含有する成形原料を混合し混練して坏土を得る坏土調製工程と、
前記坏土を押出成形して、複数のセルを区画形成する隔壁を有するハニカム成形体を得る成形工程と、
前記ハニカム成形体を焼成してハニカム構造体を得る焼成工程と、を備え
前記造孔材が、該造孔材の表面に複数の突起部を有するものであるハニカム構造体の製造方法。
A method for manufacturing a honeycomb structure for obtaining the honeycomb structure according to any one of claims 1 to 4,
A clay preparation step in which a molding raw material containing a ceramic raw material and a stretchable pore former is mixed and kneaded to obtain a clay;
A molding step of extruding the kneaded material to obtain a honeycomb molded body having partition walls for partitioning a plurality of cells;
A firing step of firing the honeycomb formed body to obtain a honeycomb structure ,
The pore-forming material is, der Ru method for manufacturing a honeycomb structure having a plurality of projections on the surface of the contrast porous wood.
JP2013049662A 2012-03-19 2013-03-12 Honeycomb structure, honeycomb catalyst body using the same, and method for manufacturing honeycomb structure Active JP6081831B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013049662A JP6081831B2 (en) 2012-03-19 2013-03-12 Honeycomb structure, honeycomb catalyst body using the same, and method for manufacturing honeycomb structure
US13/803,874 US9248440B2 (en) 2012-03-19 2013-03-14 Honeycomb structure, honeycomb catalyst body using the same, and manufacturing method of honeycomb structure
EP13159684.3A EP2641888B1 (en) 2012-03-19 2013-03-18 Honeycomb structure, honeycomb catalyst body using the same, and manufacturing method of honeycomb structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012061673 2012-03-19
JP2012061673 2012-03-19
JP2013049662A JP6081831B2 (en) 2012-03-19 2013-03-12 Honeycomb structure, honeycomb catalyst body using the same, and method for manufacturing honeycomb structure

Publications (2)

Publication Number Publication Date
JP2013223857A JP2013223857A (en) 2013-10-31
JP6081831B2 true JP6081831B2 (en) 2017-02-15

Family

ID=48463685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013049662A Active JP6081831B2 (en) 2012-03-19 2013-03-12 Honeycomb structure, honeycomb catalyst body using the same, and method for manufacturing honeycomb structure

Country Status (3)

Country Link
US (1) US9248440B2 (en)
EP (1) EP2641888B1 (en)
JP (1) JP6081831B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5990092B2 (en) * 2012-11-27 2016-09-07 日本碍子株式会社 Honeycomb catalyst body
US11305270B2 (en) * 2016-08-26 2022-04-19 N.E. Chemcat Corporation Honeycomb structure, honeycomb structure type catalyst and production methods therefor
JP2018143905A (en) * 2017-03-01 2018-09-20 日本碍子株式会社 Honeycomb catalyzer
JP6803275B2 (en) 2017-03-17 2020-12-23 日本碍子株式会社 Honeycomb structure
JP2018159334A (en) * 2017-03-23 2018-10-11 日本碍子株式会社 Exhaust emission control device
JP2020163336A (en) * 2019-03-29 2020-10-08 株式会社Soken Exhaust gas clarifying filter
JP6947200B2 (en) 2019-05-15 2021-10-13 株式会社デンソー Exhaust gas purification filter
JP2022123542A (en) * 2021-02-12 2022-08-24 日本碍子株式会社 Plugged honeycomb structure
JP2022153941A (en) * 2021-03-30 2022-10-13 日本碍子株式会社 honeycomb structure

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7867598B2 (en) 2005-08-31 2011-01-11 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalytic body
EP1946840B1 (en) 2005-11-04 2019-08-21 NGK Insulators, Ltd. Honeycomb structure and honeycomb catalyst
JP2007296512A (en) 2006-04-05 2007-11-15 Ngk Insulators Ltd Honeycomb filter
JP5368776B2 (en) 2007-12-03 2013-12-18 日本碍子株式会社 Honeycomb structure
US8361592B2 (en) 2007-12-03 2013-01-29 Ngk Insulators, Ltd. Honeycomb structure, honeycomb catalytic body and manufacturing method of the same
JP5419505B2 (en) 2009-03-24 2014-02-19 日本碍子株式会社 Method for manufacturing honeycomb structure and method for manufacturing honeycomb catalyst body
JP5524178B2 (en) * 2009-03-26 2014-06-18 日本碍子株式会社 Honeycomb filter and method for manufacturing honeycomb filter
JP2011194342A (en) * 2010-03-19 2011-10-06 Ngk Insulators Ltd Honeycomb structure and honeycomb catalytic substance
JP5478308B2 (en) * 2010-03-23 2014-04-23 日本碍子株式会社 Filter and manufacturing method thereof
JP5649836B2 (en) * 2010-03-23 2015-01-07 日本碍子株式会社 Honeycomb catalyst body
JP5405538B2 (en) * 2010-09-01 2014-02-05 日本碍子株式会社 Honeycomb structure
JP5508453B2 (en) 2011-03-30 2014-05-28 日本碍子株式会社 Honeycomb structure and honeycomb catalyst body
JP5859752B2 (en) 2011-06-17 2016-02-16 日本碍子株式会社 Exhaust gas purification filter

Also Published As

Publication number Publication date
US9248440B2 (en) 2016-02-02
US20130243999A1 (en) 2013-09-19
EP2641888B1 (en) 2017-01-04
EP2641888A1 (en) 2013-09-25
JP2013223857A (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP6081831B2 (en) Honeycomb structure, honeycomb catalyst body using the same, and method for manufacturing honeycomb structure
JP6126416B2 (en) Honeycomb structure and honeycomb catalyst body
JP6622128B2 (en) Honeycomb structure
EP1977818A1 (en) Catalyst carrier
EP1808228A1 (en) Honeycomb structure, method for production thereof and exhaust gas purification device
EP2735368B1 (en) Honeycomb catalyst body
WO2019176868A1 (en) Honeycomb filter and method for manufacturing honeycomb filters
JP5508453B2 (en) Honeycomb structure and honeycomb catalyst body
JP5937381B2 (en) Honeycomb structure
US9346003B2 (en) Honeycomb structure
US20200386134A1 (en) Filter and method for manufacturing same
JP6026342B2 (en) Fluid purification device and fluid purification method
JP6291307B2 (en) Honeycomb structure
JP5843802B2 (en) Honeycomb catalyst carrier
JP2012197186A (en) Method for manufacturing honeycomb structure
WO2021044874A1 (en) Honeycomb filter and method for manufacturing honeycomb filter
WO2021044875A1 (en) Method for producing honeycomb filter
JP2021037489A (en) Honeycomb structure and manufacturing method of honeycomb structure
JP2021037484A (en) Honeycomb structure body
JP2021038122A (en) Method for producing honeycomb structure body
JP2021037488A (en) Method of producing honeycomb filter
JP2019155277A (en) Honeycomb filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170119

R150 Certificate of patent or registration of utility model

Ref document number: 6081831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150