JP6081706B2 - Position measurement method and equipment in small-diameter propulsion method capable of sharp curve construction - Google Patents

Position measurement method and equipment in small-diameter propulsion method capable of sharp curve construction Download PDF

Info

Publication number
JP6081706B2
JP6081706B2 JP2012033421A JP2012033421A JP6081706B2 JP 6081706 B2 JP6081706 B2 JP 6081706B2 JP 2012033421 A JP2012033421 A JP 2012033421A JP 2012033421 A JP2012033421 A JP 2012033421A JP 6081706 B2 JP6081706 B2 JP 6081706B2
Authority
JP
Japan
Prior art keywords
joint member
joint
rotation
propulsion
leading conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012033421A
Other languages
Japanese (ja)
Other versions
JP2013170356A (en
Inventor
久 三角
久 三角
秀雄 須藤
秀雄 須藤
Original Assignee
株式会社関電工
露崎工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社関電工, 露崎工業株式会社 filed Critical 株式会社関電工
Priority to JP2012033421A priority Critical patent/JP6081706B2/en
Publication of JP2013170356A publication Critical patent/JP2013170356A/en
Application granted granted Critical
Publication of JP6081706B2 publication Critical patent/JP6081706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

この発明は、電線防護管やケーブル布設管等の埋設管を非開削で布設する推進工法における位置計測方法に係り、特に小口径管を急曲線で推進するに際して、先導体やこれに続く推進管の位置を計測する方法及びその装置に関するものである。 The present invention relates to a position measuring method in a propulsion method in which a buried pipe such as a wire protection pipe or a cable laying pipe is laid without cutting, and particularly when a small-diameter pipe is propelled in a sharp curve, the leading conductor and the following propulsion pipe The present invention relates to a method and an apparatus for measuring the position of an object.

小口径管における推進工法は、開削工法と比べ、地上の交通の妨げとならず、極めて効率の良い工法である。特に街中では、交通渋滞緩和のため交差点付近での交通規制の縮小が要求されている。そのため、道路に沿って電線防護管やケーブル布設管を布設する際は、交差点等での90度の曲りに合わせての急曲線の小口径推進が望まれている。これは、小規模な非開削工法により道路に沿って電線防護管等を布設施工すれば、交通の妨げとなる道路規制を最小限に抑制できると共に、立坑の建設や推進工事の際、民間の土地を使用せずに施工できるためである。 The propulsion method for small-diameter pipes is an extremely efficient method as it does not hinder ground traffic compared to the open-cut method. Especially in towns, there is a need to reduce traffic restrictions near intersections to ease traffic congestion. For this reason, when laying electric wire protection pipes and cable laying pipes along the road, it is desired to promote a small-aperture with a sharp curve in accordance with a 90-degree bend at an intersection or the like. This can be done by laying and constructing wire protection pipes along the road by a small non-open-cut method, and it is possible to minimize road regulations that hinder traffic, and at the time of construction and propulsion of shafts, This is because construction can be done without using land.

この様な小口径管の急曲線推進そのものは可能であるが、小口径管を同じ場所に複数本推進する推進工法においては、随時、施工における基点からトンネル先端までの位置計測をしながら計画位置に方向修正等を施して推進しなければならない。 Although such a small-diameter pipe can be sharply propelled itself, the propulsion method in which multiple small-diameter pipes are propelled to the same location, the planned position while measuring the position from the base point to the tunnel tip at any time. It must be promoted by correcting the direction.

従来の小口径推進工法では、曲線部の線形計測方法としては次の方法が用いられている。一つ目は推進管内にジャイロ台車を走行させ、基点となる立坑からトンネル先端までの線形を把握し、これにより推進管の位置を計測する。また、二つ目は推進管内の見通せる範囲に、光波トランシット又は同様な装置を設置し、基点からトンネル先端までの区間を自動的に開トラバース測量して先端位置を把握する。この方法では、推進管内の複数個所に設置した計測機器(CCDカメラセンサー)を使い、掘進機や推進管内にあるターゲットを計測することによって、これらから送られる情報を地上のPCにおいて計算処理を行い、計画推進方向と施工方向との誤差を迅速に算出する。 In the conventional small-diameter propulsion method, the following method is used as a linear measurement method for a curved portion. The first is to run a gyro bogie in the propulsion pipe, grasp the alignment from the base shaft to the tunnel tip, and measure the position of the propulsion pipe. Secondly, a light wave transit or similar device is installed in a visible range in the propulsion pipe, and the section from the base point to the tunnel tip is automatically measured by open traverse to grasp the tip position. In this method, measurement equipment (CCD camera sensors) installed at multiple locations in the propulsion pipe is used to measure the targets in the excavator and the propulsion pipe, and the information sent from these is calculated on the ground PC. The error between the planned promotion direction and the construction direction is quickly calculated.

また、上記に加えて、小口径推進工法とは異なるが、HDD−systemと称される工法では、パイロット先頭管内に収納された発信器の電磁波を地上の受信機でキャッチしてトンネル先端の位置を把握する方法もある。 In addition to the above, although it is different from the small-diameter propulsion method, in the method called HDD-system, the electromagnetic wave of the transmitter housed in the pilot head pipe is caught by the ground receiver and the position of the tunnel tip There is also a way to figure out.

しかしながら、これらの従来の位置計測方法を、例えば、内径150mmの小口径推進工法における位置計測に使用するには以下の問題がある。 However, there are the following problems in using these conventional position measurement methods for position measurement in a small diameter propulsion method having an inner diameter of 150 mm, for example.

ジャイロ台車による計測の場合、既往のジャイロ台車は推進管内を自走するタイプであるため、ジャイロ台車本体のサイズと走行路を考慮すると、推進管路の内径が250mm以上必要である。つまり、これより内径の小さい、例えば、内径150mmの小口径管路では使用できない。 In the case of measurement by a gyro bogie, since the existing gyro bogie is a type that self-propels in the propulsion pipe, the inner diameter of the propulsion pipe must be 250 mm or more considering the size of the gyro bogie main body and the travel path. That is, it cannot be used in a small-diameter pipe having a smaller inner diameter, for example, an inner diameter of 150 mm.

また、光波トランシット又はこれと同様な装置による開トラバース測量の場合、当該装置は前後の各装置を視準することで立坑内の基点からトンネル先端の位置を計測するため、計測のためには装置同士が見通せる直線上の位置になくてはならない。従って、カーブが急であればあるほど計測のための装置が多数必要となる。なお、現状では外形が250mm以上の装置が最小である。それ故、現状の装置では、内径150mmの小口径管路には使用できない。 In addition, in the case of open traverse surveying using a light wave transit or similar device, the device measures the position of the tunnel tip from the base point in the shaft by collimating each of the preceding and following devices. It must be on a straight line where you can see each other. Therefore, the sharper the curve, the more measurement devices are required. In addition, at present, the apparatus having an outer shape of 250 mm or more is the smallest. Therefore, the current apparatus cannot be used for a small-diameter pipe having an inner diameter of 150 mm.

また、HDD−systemの電磁波方式の場合、先端位置の測定のためには発信器の真上の地上に受信機を持っていかなければならず、地上部の状況が河川を横断していたり、交通の激しい道路横断や交差点部の場合など、場合によっては施工不能となる。また、電磁波方式のため、地中の発信器と地上の受信機との間に、他の埋設管や地下構造物などの遮蔽物がある場合や、電磁波を発信する電力管などが付近にある場合も、影響を受け、計測が困難であったり、精度が低下する。 Also, in the case of the HDD-system electromagnetic wave system, a receiver must be brought directly above the transmitter to measure the tip position. In some cases, such as in the case of heavy traffic crossings or intersections, construction may become impossible. Also, because of the electromagnetic wave system, there are other buried pipes and underground structures such as underground structures between the underground transmitter and the ground receiver, or there are power pipes that transmit electromagnetic waves nearby. In some cases, the measurement is difficult and the accuracy is lowered.

そこで、特許文献1に示すように、先導体で曲線状の埋設孔を形成しながら埋設管を前記曲線に沿って埋設する曲線推進工法において、推進される埋設管列の屈曲箇所毎に、その箇所における前方部と後方部との相対的な屈曲角度を検知できる屈曲角度検知手段を備えておき、この屈曲角度検知手段で検出された個々の屈曲箇所における屈曲角度を集計演算することにより、先導体及び各埋設管の位置を知る位置測定方法が開発され、前記屈曲角度検知手段として、ロータリーエンコーダー等の通常の角度検出用センサ装置が用いられている。
特開平5−52093号公報
Therefore, as shown in Patent Document 1, in the curve propulsion method of burying the buried pipe along the curve while forming the curved buried hole with the leading conductor, for each bent portion of the buried pipe row to be pushed, Bending angle detection means capable of detecting the relative bending angle between the front part and the rear part at the location, and calculating the bending angle at each bending location detected by the bending angle detection means to calculate the leading angle. A position measuring method for knowing the position of the body and each buried pipe has been developed, and a normal angle detecting sensor device such as a rotary encoder is used as the bending angle detecting means.
JP-A-5-52093

しかしながら、前記屈曲角度検知手段で用いられているロータリーエンコーダーは、通常、距離測定用に使用されており、微小な屈曲角度の変化を捉えるには不向きであり、これを曲線推進の回転角度の測定に使用しても測定精度に問題がある。従って、例えば、内径150mm以下の小口径の急曲線推進工法においては立坑等の基点からトンネル先端まで精度のよい位置測定が不可能であるのが現状であった。 However, the rotary encoder used in the bending angle detection means is usually used for distance measurement and is not suitable for capturing a minute change in bending angle, which is used to measure the rotation angle of curve propulsion. However, there is a problem in measurement accuracy even if it is used. Therefore, for example, in a sharp curve propulsion method with a small diameter having an inner diameter of 150 mm or less, it is currently impossible to accurately measure the position from the base point of a shaft or the like to the tunnel tip.

そこで、この発明は、これらの従来技術を踏まえ、例えば、内径150mmの小口径の急曲線推進工法においても、先導体及びその後方の推進管等の各位置の検出が容易で、かつ、計測精度の高い測定が可能な位置測定方法及びその装置を提供することを目的としたものである。 Therefore, the present invention is based on these conventional techniques, and for example, even in a sharp curve propulsion method with a small diameter of 150 mm, it is easy to detect each position of the leading conductor and the propelling pipe behind the leading conductor, and the measurement accuracy. It is an object of the present invention to provide a position measuring method and apparatus capable of high measurement.

請求項1の発明は、先導体の後方に、継手を介して複数の推進管を順次接続し、当該先導体及び複数の推進管を土中に推進させる小口径推進工法において、前記各継手は、一方の継手部材と他方の継手部材が鉛直ピンで水平回転自在に接続され、前記一方の継手部材と一体な鉛直ピンの、他方の継手部材に対する回転を、回転増幅して他方の継手部材に設けたロータリーエンコーダーで検出し、これらの複数の各継手の水平回転角度を検出して、これらと前後の継手間の距離を集計演算し、さらに、先導体付近の鉛直方向の位置計測を既存の水盛り式で行い、各推進管の基点から前記先導体までの位置を三次元座標で計測する、位置測定方法とした。 The invention of claim 1 is a small-diameter propulsion method in which a plurality of propulsion pipes are sequentially connected to the rear side of a leading conductor via a joint, and the leading conductor and the plurality of propulsion pipes are propelled into the soil. The one joint member and the other joint member are connected by a vertical pin so as to be horizontally rotatable, and the rotation of the vertical pin integral with the one joint member relative to the other joint member is rotationally amplified to the other joint member. It is detected by the rotary encoder provided, the horizontal rotation angle of each of these multiple joints is detected, the distance between these and the front and rear joints is calculated, and the vertical position measurement near the tip conductor is further calculated . A position measurement method was performed in which the position from the base point of each propulsion pipe to the leading conductor was measured in three-dimensional coordinates .

また、請求項2の発明は、請求項1の発明において、前記回転増幅する手段は、前記一方の継手部材と一体な鉛直ピンと、前記他方の継手部材に設けたロータリーエンコーダーとに、相互に径の異なるプーリー又は歯車を夫々設け、これらのプーリー又は歯車を回転接続したことにより行う位置測定方法とした。According to a second aspect of the present invention, in the first aspect of the present invention, the rotationally amplifying means includes a vertical pin integral with the one joint member and a rotary encoder provided on the other joint member. The pulleys or gears having different positions were provided, and the position measurement method was performed by rotationally connecting these pulleys or gears.

また、請求項3の発明は、先導体の後方に、水平方向に回転自在な継手を介して複数の推進管を順次接続し、当該先導体及び複数の推進管を土中に推進させる小口径推進装置において、前記各継手は、一方の継手部材と他方の継手部材が鉛直ピンで水平回転自在に接続され、前記一方の継手部材と一体な鉛直ピンの、他方の継手部材に対する回転を増幅する回転増幅手段を設け、当該回転増幅手段を介して前記鉛直ピンの回転を検出するロータリーエンコーダーを他方の継手部材に設け、先導体付近の鉛直方向の位置計測をする既存の水盛り式の鉛直方向位置計測手段を設け、前記各継手のロータリーエンコーダーによる回転角度と前後の継手間の距離を集計し、前記鉛直方向位置計測手段で前記先導体付近の鉛直方向の位置を求め、これらを基に、前記推進管の基点から前記先導体までの位置を三次元座標で演算測定する手段を有する、位置測定装置とした Further, the invention of claim 3 has a small diameter in which a plurality of propulsion pipes are sequentially connected to the rear side of the leading conductor via a joint that is rotatable in the horizontal direction, and the leading conductor and the plural propulsion pipes are propelled into the soil. In the propulsion device, each of the joints is such that one joint member and the other joint member are connected by a vertical pin so as to be horizontally rotatable, and the rotation of the vertical pin integral with the one joint member with respect to the other joint member is amplified. An existing water-filled vertical direction in which a rotation encoder is provided, and a rotary encoder that detects the rotation of the vertical pin through the rotation amplification unit is provided in the other joint member to measure the position in the vertical direction near the leading conductor. Position measuring means is provided, the rotation angle of each joint by the rotary encoder and the distance between the front and rear joints are totaled, and the vertical position measuring means obtains the vertical position near the leading conductor, Based comprises means for calculating measured position until the leading body in three-dimensional coordinates from the origin of the propulsion tube, and a position measuring device.

また、請求項4の発明は、前記回転増幅手段は、前記一方の継手部材と一体な鉛直ピンと、前記他方の継手部材に設けたロータリーエンコーダーとに、相互に径の異なるプーリー又は歯車を夫々設け、これらのプーリー又は歯車を回転接続した、請求項3に記載の位置測定装置とした According to a fourth aspect of the present invention, the rotation amplifying means includes a pulley or a gear having different diameters on a vertical pin integrated with the one joint member and a rotary encoder provided on the other joint member. The position measuring device according to claim 3, wherein these pulleys or gears are rotationally connected .

また、請求項5の発明は、前記一方の継手部材の鉛直ピンの回転が、一定幅しか回転できないストッパー構造を前記継手部材に設けた、請求項3又は4のいずれかに記載の位置測定装置とした The invention according to claim 5 provides the position measuring device according to claim 3 or 4, wherein the joint member is provided with a stopper structure that can rotate the vertical pin of the one joint member only by a certain width. It was .

また、請求項6の発明は、前記各継手の一方の継手部材と他方の継手部材の外周に、伸縮自在な部材から成るリングを渡して被せ、当該リングの内周に補強スプリングを設けた、請求項3、4又は5のいずれかに記載の位置測定装置とした Further, the invention of claim 6 covers the outer periphery of one joint member and the other joint member of each of the joints by covering a ring made of a stretchable member, and provided a reinforcing spring on the inner periphery of the ring. The position measuring device according to any one of claims 3, 4 and 5 .

また、請求項7の発明は、前記継手箇所を通る配線・配管類を、当該継手の外周で1周又は複数周螺旋状に巻いた、請求項6に記載の位置測定装置とした The invention according to claim 7 is the position measuring device according to claim 6 in which the wiring and piping passing through the joint portion are wound in a spiral shape around the circumference of the joint .

請求項1及びの発明によれば、急曲線推進工法において、各継手の鉛直ピンの水平回転を回転増幅させ、その後に当該回転増幅した回転をロータリーエンコーダーで検出するため、水平方向の回転角度の検出が確実かつ精度よく行える。従って、従来法では不可能であった、例えば、内径150mmの小口径推進においても、先導体及びこれに続く推進管の位置の測定が掘削と同時に容易かつ精度よく測定できる。 According to the first and third aspects of the invention, in the sharp curve propulsion method, the horizontal rotation of the vertical pin of each joint is rotationally amplified, and then the rotationally amplified rotation is detected by the rotary encoder. Can be reliably and accurately detected. Accordingly, for example, even in small-diameter propulsion having an inner diameter of 150 mm, which is impossible with the conventional method, the position of the leading conductor and the subsequent propulsion pipe can be measured easily and accurately simultaneously with excavation.

また、上記効果を有するとともに、さらに、水平方向の曲線の角度検出に加えて従来使用されている水盛り式の計測を採用することにより鉛直方向の位置検出が行える。これにより先導体の位置を三次元で計測可能であり、さらに、前記先導体に続く推進管の位置も、各継手が水平方向にしか曲がらないため先導体の軌跡をたどる。その結果、三次元計測が可能となり、より測定精度が高いものが得られる。 In addition to the above effects, the vertical position detection can be performed by adopting a conventionally used water-filled measurement in addition to the horizontal curve angle detection. As a result, the position of the leading conductor can be measured in three dimensions, and the position of the propulsion pipe following the leading conductor also follows the locus of the leading conductor because each joint bends only in the horizontal direction. As a result, three-dimensional measurement is possible, and a higher measurement accuracy can be obtained.

また、請求項2及び4の発明によれば、回転増幅手段を、一方の継手部材と一体な鉛直ピンと、前記他方の継手部材に設けたロータリーエンコーダーとに、相互に径の異なるプーリー又は歯車を夫々設け、これらのプーリー又は歯車を回転接続しているため、確実に回転増幅が行える。 According to the second and fourth aspects of the present invention, the rotation amplifying means includes a pulley or a gear having different diameters in a vertical pin integrated with one joint member and a rotary encoder provided on the other joint member. Since each is provided and these pulleys or gears are rotationally connected, rotation amplification can be reliably performed.

また、請求項の発明によれば、各継手の回転角度を一定角度に制限できるため、推進管を接続する継手が必要以上に曲がらない。このため、直線推進中の過度な蛇行防止や、軟弱地盤曲線推進における継手部の過度な折れ曲りに起因するトンネル孔壁の損傷を防止し、推進が容易となる。 According to the invention of claim 5 , since the rotation angle of each joint can be limited to a certain angle, the joint connecting the propulsion pipe does not bend more than necessary. For this reason, the tunnel hole wall is prevented from being damaged due to excessive meandering prevention during straight line propulsion and excessive bending of the joint portion during soft ground curve propulsion, and propulsion is facilitated.

また、請求項の発明によれば、各継手の外周が伸縮自在な部材から成るリングで被われているため、外部から土砂が流入せず、また、前記リングの内周には補強スプリングを有するため、外部の圧力にも耐えられ各継手の回転スペースを確実に確保でき、推進管の折曲動作や位置測定を妨げることがなく、測定精度を確保することができる。 According to the invention of claim 6 , since the outer periphery of each joint is covered with a ring made of a stretchable member, earth and sand do not flow from the outside, and a reinforcing spring is provided on the inner periphery of the ring. Therefore, it is possible to withstand external pressure and reliably secure the rotation space of each joint, and it is possible to ensure measurement accuracy without interfering with the bending operation and position measurement of the propulsion pipe.

また、請求項の発明によれば、継手箇所を通る配線・配管類を、継手箇所で螺旋状に巻いているため遊びを有し、当該継手箇所が折曲してもこれを吸収して継手の折れ曲りに対処できる。しかも各継手の回転スペースを確実に確保でき、推進管の折曲動作や位置測定を妨げることがなく、測定精度を確保することができる。
Further, according to the invention of claim 7, since the wiring and piping passing through the joint location are wound spirally at the joint location, there is play, and even if the joint location is bent, this is absorbed. Can cope with bent joints. Moreover, the rotation space of each joint can be ensured reliably, and the measurement accuracy can be ensured without interfering with the bending operation and position measurement of the propulsion pipe.

この発明は、先導体の後方に、継手を介して複数の推進管を順次接続し、当該先導体及び複数の推進管を土中に推進させる小口径推進工法において、前記継手は水平方向に回転自在、又は/及び鉛直方向に回転自在とし、前記継手の水平方向に回転自在な構成は、一方の継手部材と他方の継手部材が鉛直ピンで回転自在に接続され、前記一方の継手部材と一体な鉛直ピンの、他方の継手部材に対する回転を、回転増幅して他方の継手部材に設けたロータリーエンコーダーで検出し、また、前記継手の鉛直方向に回転自在な構成は、一方の継手部材と他方の継手部材が水平ピンで回転自在に接続され、前記一方の継手部材と一体な水平ピンの、他方の継手部材に対する回転を、回転増幅して他方の継手部材に設けたロータリーエンコーダーで検出し、これらの複数の継手の水平方向及び鉛直方向の検出した各回転角度と前後の継手間の距離を集計演算し、前記推進管の基点から先導体先端までの位置を掘削と同時に三次元座標で求める、位置測定方法とした。 The present invention relates to a small-diameter propulsion method in which a plurality of propulsion pipes are sequentially connected to a rear side of a leading conductor via a joint, and the leading conductor and the plurality of propelling pipes are propelled into the soil. The joint can be rotated freely and / or vertically, and the joint can be rotated in the horizontal direction. One joint member and the other joint member are rotatably connected by a vertical pin, and are integrated with the one joint member. The rotation of the vertical pin with respect to the other joint member is detected by a rotary encoder that is rotationally amplified and provided on the other joint member, and is configured to be rotatable in the vertical direction of the joint. These joint members are connected rotatably by a horizontal pin, and the rotation of the horizontal pin integral with the one joint member relative to the other joint member is amplified by a rotary encoder provided on the other joint member. Then, the horizontal and vertical detected rotation angles of these joints and the distance between the front and rear joints are calculated and calculated, and the position from the base point of the propulsion pipe to the tip of the leading conductor is simultaneously three-dimensionally coordinated. The position measurement method obtained by

これにより、従来法では不可能であった、例えば、内径150mmの小口径推進においても、先導体及びこれに続く推進管の三次元座標による位置測定が掘削と同時に容易かつ精度よく測定できる。 As a result, even in small-diameter propulsion having an inner diameter of 150 mm, which is impossible with the conventional method, for example, the position measurement by the three-dimensional coordinates of the leading conductor and the subsequent propulsion pipe can be easily and accurately performed simultaneously with excavation.

以下、この発明の実施例1を図に基づいて説明する。図1はこの発明の継手の側面断面図、図2はこの発明の継手の平面図、図3はこの発明の継手の回転増幅手段の説明平面図、図4はこの発明の継手の回転増幅手段の説明側面図、図5はこの発明の継手の回転幅規制の構造を示す説明図で、(a)図は継手が直線上に接続されている状態を示す図、(b)図は継手が回転規制幅まで曲がった状態を示す図、図6はこの発明の継手と推進管とを1ユニットとして接続した状態を示す説明図、図7はこの発明の小口径推進装置の使用状態を示す平面図である。 Embodiment 1 of the present invention will be described below with reference to the drawings. 1 is a side sectional view of the joint of the present invention, FIG. 2 is a plan view of the joint of the present invention, FIG. 3 is an explanatory plan view of the rotation amplification means of the joint of the present invention, and FIG. 4 is a rotation amplification means of the joint of the present invention. FIG. 5 is an explanatory view showing the structure for restricting the rotation width of the joint according to the present invention. FIG. 5 (a) shows a state in which the joint is connected on a straight line, and FIG. 5 (b) shows the joint. FIG. 6 is a view showing a state bent to the rotation regulation width, FIG. 6 is an explanatory view showing a state in which the joint of the present invention and the propulsion pipe are connected as one unit, and FIG. 7 is a plan view showing a use state of the small-diameter propulsion device of the present invention. FIG.

まず、この発明の小口径推進工法及びその装置を図7に基づいて説明する。図7に示すように、立坑1から、先導体2及びこれに続き多数の推進管3を接続しながら土中に順次推進させる。その際、前記先導体2とそれに続く推進管3及び各推進管3相互は、継手4により接続する。 First, the small-diameter propulsion method and the apparatus according to the present invention will be described with reference to FIG. As shown in FIG. 7, the shaft 1 is sequentially propelled into the soil while connecting a leading conductor 2 and a number of propulsion pipes 3 following the leading conductor 2. At that time, the leading conductor 2 and the subsequent propulsion pipes 3 and the respective propulsion pipes 3 are connected by a joint 4.

当該推進は、前記先導体2の後部に設けたジャッキ(図示省略)により先導体2を土中に押し出すとともに、立坑1に設けた元押し装置5により、先導体2の後方の推進管3を押し出す。 The propulsion is performed by pushing the leading conductor 2 into the soil by a jack (not shown) provided at the rear portion of the leading conductor 2, and by pushing a propelling pipe 3 behind the leading conductor 2 by a pushing device 5 provided on the shaft 1. Extrude.

曲線部の方向修正は、前記先導体2の先端閉塞の斜め切りヘッド2aを修正したい方向に向け、先導体2内の油圧ジャッキ(図示省略)で圧入することで行う。斜め切りヘッド2aの向きは回転位置をセンサで計測することで把握する。また、曲率半径15mRを含む曲線施工は、斜め切りヘッド2aの回転を止めて圧入による曲線施工と、斜め切りヘッド2aを回転させて圧入する直線施工を組み合わせることで行う。 The direction of the curved portion is corrected by press-fitting with a hydraulic jack (not shown) in the leading conductor 2 in the direction in which the oblique cutting head 2a whose end is closed is to be corrected. The direction of the oblique cutting head 2a is grasped by measuring the rotational position with a sensor. Further, the curve construction including the curvature radius of 15 mR is performed by combining the curve construction by press-fitting by stopping the rotation of the oblique cutting head 2a and the linear construction by press-fitting by rotating the oblique cutting head 2a.

次に、前記継手4について説明する。継手4は、図1〜図4に示すように、一方の継手部材4aの先端中央部から板状の舌片6を、長手方向に水平に突出させ、当該舌片6の先端箇所に、当該舌片6の中央部を貫通させて、鉛直ピン7が舌片6と一体に固定されている。 Next, the joint 4 will be described. As shown in FIGS. 1 to 4, the joint 4 projects a plate-like tongue piece 6 horizontally from the center of the tip of one joint member 4 a in the longitudinal direction. The vertical pin 7 is fixed integrally with the tongue piece 6 through the central portion of the tongue piece 6.

また、前記継手部材4aに対向して他方の継手部材4bが設けられている。この他方の継手部材4bには、その先端部の中ほどを水平に切り欠いた、前記舌片6が挿入される開口溝8が設けられ、また、この開口溝8の上下に、前記鉛直ピン7の上下部が回転自在に嵌合される孔9、9が設けられている。 The other joint member 4b is provided opposite to the joint member 4a. The other joint member 4b is provided with an opening groove 8 into which the tongue piece 6 is inserted, the center of which is horizontally cut out, and above and below the opening groove 8, the vertical pin. Holes 9 and 9 are provided in which upper and lower portions of 7 are rotatably fitted.

そして、前記一方の継手部材4aの舌片6が他方の継手部材4bの開口溝8に挿入され、さらに、前記舌片6の鉛直ピン7の上下部が開口溝8の上下の孔9,9に嵌合されている。これにより、前記鉛直ピン7と一体な一方の継手部材4aと、開口溝8を有する他方の継手部材4bとは、前記鉛直ピン7により水平方向に回転自在に接続されている。 The tongue piece 6 of the one joint member 4a is inserted into the opening groove 8 of the other joint member 4b, and the upper and lower portions of the vertical pin 7 of the tongue piece 6 are the upper and lower holes 9, 9 of the opening groove 8. Is fitted. Thereby, one joint member 4a integral with the vertical pin 7 and the other joint member 4b having the opening groove 8 are connected by the vertical pin 7 so as to be rotatable in the horizontal direction.

また、前記鉛直ピン7の下端には、当該鉛直ピン7と一体に回転する第1の大径プーリー10が設けられ、また、他方の継手部材4bの下端面には第1の小径プーリー11が設けられている。そして、前記第1の大径プーリー10と第1の小径プーリー11とは歯付きベルト12でつながっている。 Further, a first large-diameter pulley 10 that rotates integrally with the vertical pin 7 is provided at the lower end of the vertical pin 7, and a first small-diameter pulley 11 is provided at the lower end surface of the other joint member 4b. Is provided. The first large-diameter pulley 10 and the first small-diameter pulley 11 are connected by a toothed belt 12.

また、前記第1の小径プーリー11の回転軸13は、前記他方の継手部材4bの上下を貫通し、その上端面に突出した回転軸13の上端に第2の大径プーリー14が設けられている。この回転軸13と第1の小径プーリー11及び第2の大径プーリー14とは一体となっている。 The rotary shaft 13 of the first small-diameter pulley 11 passes through the top and bottom of the other joint member 4b, and a second large-diameter pulley 14 is provided at the upper end of the rotary shaft 13 protruding from the upper end surface thereof. Yes. The rotating shaft 13 and the first small diameter pulley 11 and the second large diameter pulley 14 are integrated.

また、前記他方の継手部材4bには、ロータリーエンコーダー15が設けられ、当該ロータリーエンコーダー15の回転軸15aに第2の小径プーリー16が設けられ、当該第2の小径プーリー16と前記第2の大径プーリー15とは歯付きベルト17でつながっている。 The other joint member 4b is provided with a rotary encoder 15, a rotary shaft 15a of the rotary encoder 15 is provided with a second small-diameter pulley 16, and the second small-diameter pulley 16 and the second large-diameter pulley 16 are provided. The diameter pulley 15 is connected by a toothed belt 17.

これにより、一方の継手部材4aが他方の継手部材4bに対して角度をつけて曲がると、鉛直ピン7が他方の継手部材4bに対して回転し、この回転が第1の大径プーリー10、歯付きベルト12、第1の小径プーリー11、回転軸13、第2の大径プーリー14、歯付きベルト17、第2の小径プーリー16へと伝達され、これと一体なロータリーエンコーダー15の回転軸15aが回転する。 Thereby, when one joint member 4a bends at an angle with respect to the other joint member 4b, the vertical pin 7 rotates with respect to the other joint member 4b, and this rotation is the first large-diameter pulley 10, The toothed belt 12, the first small-diameter pulley 11, the rotating shaft 13, the second large-diameter pulley 14, the toothed belt 17, and the second small-diameter pulley 16 are transmitted to and integrated with the rotating shaft of the rotary encoder 15. 15a rotates.

その際、前記第1の大径プーリー10から第1の小径プーリー11及び第2の大径プーリー14から第2の小径プーリー16に二段階で回転増幅され、回転数が増す。従って、前記鉛直ピン7の回転がわずかであっても、ロータリーエンコーダー15の回転軸15aは大きく回転し、当該回転角度を検知しやすい。 At that time, the first large-diameter pulley 10 is rotated and amplified in two stages from the first small-diameter pulley 11 and the second large-diameter pulley 14 to the second small-diameter pulley 16 to increase the number of rotations. Therefore, even if the rotation of the vertical pin 7 is slight, the rotation shaft 15a of the rotary encoder 15 rotates greatly, and the rotation angle can be easily detected.

また、前記他方の継手部材4bの開口溝8内の、前記一方の継手部材4aの前記舌片6の先端両側縁6aが、鉛直ピン7の外周径に沿って湾曲しておらず、図5(a)に示すように中央部がほぼ直線状でその両側縁が僅かに湾曲しており、他方の継手部材4bの開口溝8の奥部端面8aが直線状となっているため、一方の継手部材4aが回転すると、図5(b)に示すように、舌片6の先端一側縁6aが開口溝8の奥部端面8aに当たり、それ以上回転できない構成となっている。つまり、継手4の回転を規制するストッパー構造を有している。 Further, the both side edges 6a of the tip end of the tongue piece 6 of the one joint member 4a in the opening groove 8 of the other joint member 4b are not curved along the outer peripheral diameter of the vertical pin 7, FIG. As shown to (a), since the center part is substantially linear and the both-sides edge is curving slightly, and the back end face 8a of the opening groove 8 of the other joint member 4b is linear, When the joint member 4a rotates, as shown in FIG. 5 (b), the tip one side edge 6a of the tongue piece 6 hits the back end face 8a of the opening groove 8 and cannot be rotated any more. That is, it has a stopper structure that restricts the rotation of the joint 4.

また、前記継手4の外周には、一方の継手部材4aと他方の継手部材4bとの外周を結ぶようにリング18が設けられ、継手4を被っている。このリング18は、伸縮自在なゴム製のリングであり、当該リング18の内周に補強スプリング19が設けられている。これにより外部土砂の継手部材4a又は4b内への侵入を防止し、かつ外部からの圧力にも耐えられ、継手部材4a又は4bのスムーズな動きを確保している。そして、リング18が伸縮自在のため、一方の継手部材4aと他方の継手部材4bの折曲に対しても対応できる。 A ring 18 is provided on the outer periphery of the joint 4 so as to connect the outer periphery of one joint member 4a and the other joint member 4b. The ring 18 is an elastic rubber ring, and a reinforcement spring 19 is provided on the inner periphery of the ring 18. This prevents the external earth and sand from entering the joint member 4a or 4b, can withstand pressure from the outside, and ensures smooth movement of the joint member 4a or 4b. And since the ring 18 is telescopic, it can respond also to the bending of one joint member 4a and the other joint member 4b.

また、前記継手4の各継手部材4a及び4bには、図6に示すように、夫々前記推進管3、3が接続される。これは工場等で各継手4の両端に推進管3、3を接続して置き、これらを1ユニットとして多数用意して、推進施工現場に搬入し、現場の立坑1内で、前記先導体2の後方に推進管3を順次接続する際、各推進管3相互をボルト等により直線接続する。この様に継手4の両端に推進管3、3を予め接続したものを1ユニットとしておけば、現場での推進管3相互の直線接続が容易に行える。 Further, as shown in FIG. 6, the propulsion pipes 3 and 3 are connected to the joint members 4a and 4b of the joint 4, respectively. In a factory or the like, propulsion pipes 3 and 3 are connected to both ends of each joint 4, and a large number of these are prepared as one unit, which are carried into a propulsion construction site. When the propulsion pipes 3 are sequentially connected to the rear of the two, the propulsion pipes 3 are connected in a straight line by bolts or the like. In this way, when the joints of the propulsion pipes 3 and 3 connected in advance to both ends of the joint 4 are set as one unit, the straight line connection between the propulsion pipes 3 on the site can be easily performed.

以上のようにして、図7に示すように、立坑1から先導体1及びこれに続く推進管の継手4を介して接続しながら土中を推進する。その際随時、各継手4の折り曲げ角度を各ロータリーエンコーダー15で検出し、これを集計し、先導体2、推進管3及び継手4の長さは予め分かっているので、これらを基に土中の先導体2及びこれに続く推進管3の位置を演算、計測する。 As described above, as shown in FIG. 7, the earth is propelled while being connected from the shaft 1 through the leading conductor 1 and the joint 4 of the propulsion pipe that follows this. At that time, the bending angles of the joints 4 are detected by the rotary encoders 15 and summed up, and the lengths of the leading conductor 2, the propelling pipe 3 and the joint 4 are known in advance. The position of the leading conductor 2 and the subsequent propulsion pipe 3 is calculated and measured.

実際には、前記各継手4のロータリーエンコーダー15の角度検出データを、多重電送によって立坑1内に設けた集中制御装置に集積し、立坑1の最後尾の推進管3の計測基点から先導体2の先端までの位置又は軌跡を求めることができる。 Actually, the angle detection data of the rotary encoder 15 of each joint 4 is accumulated in a central control device provided in the shaft 1 by multiplex transmission, and the leading conductor 2 is measured from the measurement base point of the rearmost propulsion pipe 3 of the shaft 1. The position or trajectory up to the tip of can be obtained.

その際、図8に示すように、鉛直方向の位置検出には、従来から行われている水盛り方式を採用する。この位置検出は、先導体2の付近に液差圧式センサである水盛り計測計21を設け、立坑1に設けた水盛り基準装置22との間を導水管23で接続し、水盛り基準装置22の基準点に対する先導体2の位置を前記水盛り計測計21により計測し、前記水平方向の回転角度と前後の継手間の距離の集積データに加えて、鉛直方向の位置検出値を合わせ、前記位置又は軌跡を三次元座標で求めることができる。また、同じ場所に複数条施工する場合、2本目以降の施工が事前検討も含め容易となる。 At that time, as shown in FIG. 8, a conventional water filling method is adopted for the vertical position detection. In this position detection, a puddle measuring instrument 21 which is a liquid differential pressure sensor is provided in the vicinity of the leading conductor 2, and a puddle reference device 22 provided in the shaft 1 is connected by a water conduit 23, and a puddle reference device is provided. The position of the leading conductor 2 with respect to the reference point of 22 is measured by the puddle measuring instrument 21, and in addition to the accumulated data of the horizontal rotation angle and the distance between the front and rear joints, the position detection value in the vertical direction is matched, The position or trajectory can be obtained with three-dimensional coordinates. In addition, when multiple lines are constructed at the same location, the second and subsequent constructions can be facilitated, including prior studies.

この様にして、土中を推進させ、到達立坑(図示省略)に先導体2が到達することによりトンネルが完成し、その後各推進管3を当該トンネルから撤去すると同時にケーブル布設管と入れ替える。 In this way, the tunnel is completed by propelling in the soil and the leading conductor 2 reaches a reaching shaft (not shown), and then each propulsion pipe 3 is removed from the tunnel and simultaneously replaced with a cable laying pipe.

図9はこの発明の実施例2の継手24を示す。この実施例2は継手24のみが実施例1と異なり、他の構成は同一である。 FIG. 9 shows a joint 24 according to Embodiment 2 of the present invention. In the second embodiment, only the joint 24 is different from the first embodiment, and other configurations are the same.

この継手24は水平方向の回転と鉛直方向の回転が自在であり、また、これらの回転角度を検出する構成となっている。継手24は、一方の継手部材24aと他方の継手部材24bとの間に中間継手部材24cが設けられている。 The joint 24 can freely rotate in the horizontal direction and in the vertical direction, and is configured to detect these rotation angles. In the joint 24, an intermediate joint member 24c is provided between one joint member 24a and the other joint member 24b.

中間継手部材24cの一端には前記実施例1の継手部材4aの舌片6及び鉛直ピン7と同様な舌片25及び鉛直ピン26が設けられ、一方の継手部材24aには、これを回転自在に受ける開口溝(図示省略)及び孔27が、実施例1の開口溝8及び孔9と同様に設けられている。そして、前記舌片25が開口溝に、鉛直ピン26が前記孔27に夫々嵌合し、一方の継手部材24aと中間継手部材24cとは鉛直ピン26を中心に水平方向に回転自在に接続されている。 One end of the intermediate joint member 24c is provided with a tongue piece 25 and a vertical pin 26 similar to the tongue piece 6 and the vertical pin 7 of the joint member 4a of the first embodiment, and the one joint member 24a can be freely rotated. An opening groove (not shown) and a hole 27 are provided in the same manner as the opening groove 8 and the hole 9 in the first embodiment. The tongue piece 25 is fitted into the opening groove and the vertical pin 26 is fitted into the hole 27, respectively, and the one joint member 24a and the intermediate joint member 24c are connected to be rotatable in the horizontal direction around the vertical pin 26. ing.

また、中間継手部材24cの他端には、前記舌片25を90度ずらした板状の舌片28が設けられ、当該舌片28の先端を水平ピン29が貫通して固定されている。また、他方の継手部材24bの先端には、前記舌片28を挿入自在な開口溝30が設けられ、当該開口溝30の前後に孔31、31が設けられている。そして、当該開口溝30に前記舌片28が、また、前記孔31、31に水平ピン29前後部が夫々挿入され、中間継手部材24cと他方の継手部材24bとは水平ピン29を中心に鉛直方向に回転自在に接続されている。 The other end of the intermediate joint member 24c is provided with a plate-like tongue piece 28 obtained by shifting the tongue piece 25 by 90 degrees, and a horizontal pin 29 is fixed through the tip of the tongue piece 28. In addition, an opening groove 30 into which the tongue piece 28 can be inserted is provided at the tip of the other joint member 24 b, and holes 31, 31 are provided before and after the opening groove 30. The tongue 28 is inserted into the opening groove 30 and the front and rear portions of the horizontal pin 29 are inserted into the holes 31 and 31, respectively. The intermediate joint member 24c and the other joint member 24b are vertically centered on the horizontal pin 29. It is connected so that it can rotate freely in the direction.

前記一方の継手部材24aと中間継手部材24cの一端、当該中間継手部材24cの他端と他方の継手部材24bとは、90度ずれた構成で、水平方向及び鉛直方向に回転自在となっており、これらの回転角度を夫々、実施例1と同様回転増幅し、各ロータリーエンコーダー32で、増幅された回転を検出する構成となっている。これらの回転増幅手段及びロータリーエンコーダー32の構成は実施例1の水平方向に回転自在な継手4のものと同じ構成である。 The one joint member 24a and one end of the intermediate joint member 24c, the other end of the intermediate joint member 24c and the other joint member 24b are configured to be shifted by 90 degrees, and are rotatable in the horizontal and vertical directions. Each of these rotation angles is rotationally amplified in the same manner as in the first embodiment, and each rotary encoder 32 detects the amplified rotation. The configurations of the rotation amplification means and the rotary encoder 32 are the same as those of the joint 4 that is rotatable in the horizontal direction in the first embodiment.

これにより、各継手24箇所の水平方向の回転角度及び垂直方向の回転角度を各ロータリーエンコーダー32で検出し、当該角度検出データは、多重電送によって立坑1内に設けた集中制御装置に集積され、立坑1の最後尾の推進管3の計測基点から先導体2の先端までの位置又は軌跡を三次元座標で求めることができる。 Thus, the horizontal rotation angle and the vertical rotation angle of each joint 24 locations are detected by each rotary encoder 32, and the angle detection data is accumulated in a centralized control device provided in the shaft 1 by multiplex transmission, The position or locus from the measurement base point of the last propelling pipe 3 of the shaft 1 to the tip of the leading conductor 2 can be obtained in three-dimensional coordinates.

また、施工する急曲線に合わせて推進管3を長くすることで、全体の継手箇所を少なくすることができ、計測精度も上げることができる。 Moreover, by making the propulsion pipe 3 longer in accordance with the sharp curve to be constructed, the total joint locations can be reduced, and the measurement accuracy can be increased.

図10の継手4´は、前記継手4及び継手24に比べ、回転増幅装置が、省スペースタイプのものである。 Compared to the joint 4 and the joint 24, the joint 4 ′ in FIG.

図10において、継手4´自体の構造は、前記継手4と同じ構成であり、水平方向に回転自在である。そして、鉛直ピン7の下端に第1の大径プーリー34を鉛直ピン7と一体に設け、また、他方の継手部材4bの下端面には第1の小径プーリー35が設けられている。そして、前記第1の大径プーリー34と第1の小径プーリー35とは歯付きベルト36でつながっている。 In FIG. 10, the structure of the joint 4 ′ itself is the same as that of the joint 4 and is rotatable in the horizontal direction. A first large-diameter pulley 34 is provided integrally with the vertical pin 7 at the lower end of the vertical pin 7, and a first small-diameter pulley 35 is provided at the lower end surface of the other joint member 4b. The first large-diameter pulley 34 and the first small-diameter pulley 35 are connected by a toothed belt 36.

また、この第1の小径プーリー35の回転軸37を共通にした第2の大径プーリー38が前記第1の小径プーリー35の下に設けられ、これらの第1の小径プーリー35と第2の大径プーリー38とは、回転軸37を中心に一体に回転自在である。 A second large-diameter pulley 38 having a common rotating shaft 37 for the first small-diameter pulley 35 is provided under the first small-diameter pulley 35. The first small-diameter pulley 35 and the second small-diameter pulley 35 The large-diameter pulley 38 is rotatable integrally with the rotation shaft 37 as a center.

また、前記鉛直ピン7の中心位置に、当該鉛直ピン7の上下及び前記第1の大径プーリー34を貫通する回転軸39が設けられ、当該回転軸39は、鉛直ピン7及び第1の大径プーリー34とは独立して回転自在となっている。この回転軸39の下端に第2の小径プーリー40が固定され、前記第2の大径プーリー38と歯付きベルト41でつながっている。 In addition, a rotary shaft 39 that passes through the top and bottom of the vertical pin 7 and the first large-diameter pulley 34 is provided at the center position of the vertical pin 7, and the rotary shaft 39 includes the vertical pin 7 and the first large pin 34. It is rotatable independently of the diameter pulley 34. A second small-diameter pulley 40 is fixed to the lower end of the rotating shaft 39 and is connected to the second large-diameter pulley 38 by a toothed belt 41.

また、前記回転軸39の上端に第3の大径プーリー42が固定され、他方の継手部材4bの前記回転軸37の上部に設けられたロータリーエンコーダー15の回転軸15aに一体に設けた第3の小径プーリー43と前記第3の大径プーリー42とが歯付きベルト44でつながっている。 A third large-diameter pulley 42 is fixed to the upper end of the rotary shaft 39, and a third shaft provided integrally with the rotary shaft 15a of the rotary encoder 15 provided on the upper side of the rotary shaft 37 of the other joint member 4b. The small-diameter pulley 43 and the third large-diameter pulley 42 are connected by a toothed belt 44.

この場合、鉛直ピン7の回転が、三段階で増幅され、ロータリーエンコーダー15に伝達される。また、他の継手部材4bの回転軸37が短くて済み、その上部にロータリーエンコーダー15を設けることが出来、その分省スペースとなっている。また、図10では水平方向に回転自在な継手4を示したが、この様な構成は、前記継手24、その他、鉛直方向に回転自在な継手にも適用できる。この様にして前後の継手間隔を狭めることでどのような急曲線にも対応できるようになる。 In this case, the rotation of the vertical pin 7 is amplified in three stages and transmitted to the rotary encoder 15. Further, the rotary shaft 37 of the other joint member 4b can be shortened, and the rotary encoder 15 can be provided on the upper portion, thereby saving space. Further, FIG. 10 shows the joint 4 that is rotatable in the horizontal direction, but such a configuration can also be applied to the joint 24 and other joints that are rotatable in the vertical direction. In this way, any sharp curve can be handled by narrowing the distance between the front and rear joints.

また、図11及び図12は、前記継手4の箇所の送水ホース、油圧ホース、電源ケーブル等の配線・配管類45を折り曲げ自在に配管した構成を示す。 11 and 12 show a configuration in which wiring / pipings 45 such as a water supply hose, a hydraulic hose, a power cable, etc. at the joint 4 are bent.

図示する様に、配線・配管類45を継手4の外周で1周螺旋状に配管、配線している。これにより、継手4が折れ曲がっても、継手4の折れ曲がりの外側の伸張による長さL1と内側の収縮による長さL2の相違に配線・配管類45が対応できる。この様に配線・配管類45を螺旋配管することで、曲線外側の配管長に余裕があるため、継手4の内側へのズレは最小限に抑えられ、継手部材4a、4b等の各部材の設置及び可動スペースを確保することが出来る。 As shown in the drawing, the wiring and piping 45 are piped and wired around the joint 4 in a spiral manner. As a result, even if the joint 4 is bent, the wiring / piping 45 can cope with the difference between the length L1 due to the outward expansion of the bending of the joint 4 and the length L2 due to the inner contraction. Since the wiring / piping 45 is spirally piped in this way, there is a margin in the piping length outside the curve, so that the inward displacement of the joint 4 can be minimized, and each member such as the joint members 4a and 4b Installation and movable space can be secured.

この様な配線・配管類45を螺旋状に巻くのは、1周でも、数周でも良い。さらに、図示のものは継手4に適用しているが、前記継手24、その他、鉛直方向に回転自在な継手にも適用できる。 Such wiring / piping 45 may be wound once or several times. Further, although the illustrated one is applied to the joint 4, it can also be applied to the joint 24 and other joints that are rotatable in the vertical direction.

なお、上記実施例では、回転増幅手段として、プーリーと歯付きベルトを適用したが、歯車を噛み合わせる等、他の適宜の手段が可能である。 In the above embodiment, the pulley and the toothed belt are applied as the rotation amplifying means. However, other appropriate means such as meshing of the gears are possible.

この施工方法は電気用の小口径配管のような複数条施工する場合に位置が正確に判ることから容易に施工が可能である。また、電気用の配管以外に小口径のガス管、水道管、通信線管等にも対応することが可能である。 This construction method can be easily constructed because the position is accurately known when a plurality of strips such as a small-diameter pipe for electricity are constructed. In addition to electrical pipes, it is also possible to deal with small-diameter gas pipes, water pipes, communication line pipes, and the like.

この発明の実施例1の継手の側面断面図ある。It is side surface sectional drawing of the coupling of Example 1 of this invention. この発明の実施例1の継手の平面図である。It is a top view of the coupling of Example 1 of this invention. この発明の実施例1の継手の回転増幅手段の説明平面図である。It is a description top view of the rotation amplification means of the coupling of Example 1 of this invention. この発明の実施例1の継手の回転増幅手段の説明側面図である。It is a description side view of the rotation amplification means of the joint of Example 1 of this invention. この発明の実施例1の継手の回転幅規制の構造を示す説明平面図で、(a)図は継手が直線上に接続されている状態を示す図、(b)図は継手が回転規制幅まで曲がった状態を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory plan view showing a structure for restricting the rotation width of a joint according to Embodiment 1 of the present invention, in which (a) shows a state in which the joint is connected on a straight line, and (b) shows the rotation restriction width of the joint. It is a figure which shows the state bent to. この発明の実施例1の継手と推進管とを1ユニットとして接続した状態を示す説明図である。It is explanatory drawing which shows the state which connected the coupling and propulsion pipe of Example 1 of this invention as 1 unit. この発明の実施例1の小口径推進装置の使用状態を示す平面図である。It is a top view which shows the use condition of the small diameter propulsion apparatus of Example 1 of this invention. この発明の実施例1の小口径推進装置に従来の水盛り式の鉛直方向位置検出装置を設けた側面図である。It is the side view which provided the conventional water-fill type | formula vertical direction position detection apparatus in the small aperture propulsion apparatus of Example 1 of this invention. この発明の実施例2の水平方向及び鉛直方向に回転自在な継手の平面図である。It is a top view of the joint which can rotate in the horizontal direction and the vertical direction of Example 2 of this invention. この発明の他の実施例における水平方向に回転自在な継手の側面図である。It is a side view of the joint rotatable in the horizontal direction in the other Example of this invention. この発明のさらに他の実施例の継手箇所の側面図である。It is a side view of the joint location of the further another Example of this invention. この発明のさらに他の実施例の継手箇所の断面図で、図11のA−A線断面図である。It is sectional drawing of the joint location of other Example of this invention, and is AA sectional view taken on the line of FIG.

1 立坑 2 先導体
2a 斜め切りヘッド 3 推進管
4 継手 4a 継手部材
4b 継手部材 4´ 継手
5 元押し装置 6 舌片
6a 先端両側縁 7 鉛直ピン
8 開口溝 8a 開口奥端面
9 孔 10 第1の大径プーリー
11 第1の小径プーリー 12 歯付きベルト
13 回転軸 14 第2の大径プーリー
15 ロータリーエンコーダー 15a 回転軸
16 第2の小径プーリー 17 歯付きベルト
18 リング 19 補強スプリング
21 水盛り計測計 22 水盛り基準装置
23 導水管 24 継手
24a 継手部材 24b 継手部材
24c 中間継手部材 25 舌片
26 鉛直ピン 27 孔
28 舌片 29 水平ピン
30 開口溝 31 孔
32 ロータリーエンコーダー 34 第1の大径プーリー
35 第1の小径プーリー 36 歯付きベルト
37 回転軸 38 第2の大径プーリー
39 回転軸 40 第2の小径プーリー
41 歯付きベルト 42 第3の大径プーリー
43 第3の小径プーリー 44 歯付きベルト
45 配線・配管類
DESCRIPTION OF SYMBOLS 1 Vertical shaft 2 Leading conductor 2a Diagonal cutting head 3 Propulsion pipe 4 Joint 4a Joint member
4b Joint member 4 'Joint 5 Main pushing device 6 Tongue piece 6a Front side edge 7 Vertical pin 8 Open groove 8a Open back end face 9 Hole 10 First large diameter pulley 11 First small diameter pulley 12 Toothed belt 13 Rotating shaft 14 Second large-diameter pulley 15 Rotary encoder 15a Rotating shaft 16 Second small-diameter pulley 17 Toothed belt 18 Ring 19 Reinforcement spring 21 Filling meter 22 Filling reference device 23 Conduit pipe 24 Joint 24a Joint member 24b Joint member 24c Intermediate Joint member 25 Tongue piece 26 Vertical pin 27 Hole
28 tongue piece 29 horizontal pin 30 opening groove 31 hole 32 rotary encoder 34 first large-diameter pulley 35 first small-diameter pulley 36 toothed belt 37 rotating shaft 38 second large-diameter pulley 39 rotating shaft 40 second small-diameter pulley 41 Toothed belt 42 Third large-diameter pulley 43 Third small-diameter pulley 44 Toothed belt 45 Wiring and piping

Claims (7)

先導体の後方に、継手を介して複数の推進管を順次接続し、当該先導体及び複数の推進管を土中に推進させる小口径推進工法において、
前記各継手は、一方の継手部材と他方の継手部材が鉛直ピンで水平回転自在に接続され、
前記一方の継手部材と一体な鉛直ピンの、他方の継手部材に対する回転を、回転増幅して他方の継手部材に設けたロータリーエンコーダーで検出し、
これらの複数の各継手の水平回転角度を検出して、これらと前後の継手間の距離を集計演算し、さらに、先導体付近の鉛直方向の位置計測を既存の水盛り式で行い、
各推進管の基点から前記先導体までの位置を三次元座標で測定することを特徴とする、位置測定方法。
In the small-diameter propulsion method in which a plurality of propulsion pipes are sequentially connected to the rear of the leading conductor via a joint, and the leading conductor and the plural propelling pipes are propelled into the soil.
Each of the joints is connected such that one joint member and the other joint member are horizontally rotatable with a vertical pin,
The rotation of the vertical pin integral with the one joint member relative to the other joint member is detected by a rotary encoder that is rotationally amplified and provided on the other joint member;
The horizontal rotation angle of each of these multiple joints is detected, the distance between these and the front and rear joints is calculated, and the vertical position measurement near the leading conductor is performed with the existing water filling formula,
A position measuring method, wherein a position from a base point of each propulsion pipe to the leading conductor is measured in three-dimensional coordinates.
前記回転増幅する手段は、前記一方の継手部材と一体な鉛直ピンと、前記他方の継手部材に設けたロータリーエンコーダーとに、相互に径の異なるプーリー又は歯車を夫々設け、これらのプーリー又は歯車を回転接続したことにより行うことを特徴とする、請求項1に記載の位置測定方法 The means for amplifying the rotation includes a vertical pin integral with the one joint member and a rotary encoder provided on the other joint member, and pulleys or gears having different diameters from each other, and rotates these pulleys or gears. The position measuring method according to claim 1, wherein the position measuring method is performed by being connected . 先導体の後方に、水平方向に回転自在な継手を介して複数の推進管を順次接続し、当該先導体及び複数の推進管を土中に推進させる小口径推進装置において、
前記各継手は、一方の継手部材と他方の継手部材が鉛直ピンで水平回転自在に接続され、前記一方の継手部材と一体な鉛直ピンの、他方の継手部材に対する回転を増幅する回転増幅手段を設け、
当該回転増幅手段を介して前記鉛直ピンの回転を検出するロータリーエンコーダーを他方の継手部材に設け、
先導体付近の鉛直方向の位置計測をする既存の水盛り式の鉛直方向位置計測手段を設け、
前記各継手のロータリーエンコーダーによる回転角度と前後の継手間の距離を集計し、前記鉛直方向位置計測手段で前記先導体付近の鉛直方向の位置を求め、これらを基に、前記推進管の基点から前記先導体までの位置を三次元座標で演算測定する手段を有することを特徴とする、位置測定装置
In a small-diameter propulsion device that sequentially connects a plurality of propulsion pipes via a joint that is rotatable in the horizontal direction behind the leading conductor, and propels the leading conductor and the plurality of propelling pipes into the ground.
Each of the joints includes a rotation amplifying means for amplifying the rotation of the vertical pin integral with the one joint member with respect to the other joint member, wherein one joint member and the other joint member are connected to each other by a vertical pin. Provided,
A rotary encoder that detects the rotation of the vertical pin through the rotation amplification means is provided on the other joint member,
An existing water-filled vertical position measuring means for measuring the vertical position near the leading conductor is provided,
The rotation angle of each joint by the rotary encoder and the distance between the front and rear joints are totaled, the vertical position measurement means obtains the vertical position near the leading conductor, and based on these, from the base point of the propulsion pipe A position measuring apparatus comprising means for calculating and measuring the position up to the leading conductor in three-dimensional coordinates .
前記回転増幅手段は、前記一方の継手部材と一体な鉛直ピンと、前記他方の継手部材に設けたロータリーエンコーダーとに、相互に径の異なるプーリー又は歯車を夫々設け、これらのプーリー又は歯車を回転接続したことを特徴とする、請求項3に記載の位置測定装置 The rotation amplifying means is provided with pulleys or gears having different diameters on a vertical pin integral with the one joint member and a rotary encoder provided on the other joint member, and these pulleys or gears are rotationally connected. The position measuring device according to claim 3, wherein 前記一方の継手部材の鉛直ピンの回転が、一定幅しか回転できないストッパー構造を前記継手部材に設けたことを特徴とする、請求項3又は4のいずれかに記載の位置測定装置 5. The position measuring device according to claim 3, wherein the joint member is provided with a stopper structure that can rotate only a fixed width of the vertical pin of the one joint member . 前記各継手の一方の継手部材と他方の継手部材の外周に、伸縮自在な部材から成るリングを渡して被せ、当該リングの内周に補強スプリングを設けたことを特徴とする、請求項3、4又は5のいずれかに記載の位置測定装置 The outer periphery of one joint member and the other joint member of each joint is covered with a ring made of a stretchable member, and a reinforcing spring is provided on the inner periphery of the ring. The position measuring device according to any one of 4 and 5 . 前記継手箇所を通る配線・配管類を、当該継手の外周で1周又は複数周螺旋状に巻いたことを特徴とする、請求項6に記載の位置測定装置 The position measuring device according to claim 6, wherein wiring / pipings passing through the joint portion are wound in a spiral shape around the outer periphery of the joint .
JP2012033421A 2012-02-17 2012-02-17 Position measurement method and equipment in small-diameter propulsion method capable of sharp curve construction Expired - Fee Related JP6081706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012033421A JP6081706B2 (en) 2012-02-17 2012-02-17 Position measurement method and equipment in small-diameter propulsion method capable of sharp curve construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012033421A JP6081706B2 (en) 2012-02-17 2012-02-17 Position measurement method and equipment in small-diameter propulsion method capable of sharp curve construction

Publications (2)

Publication Number Publication Date
JP2013170356A JP2013170356A (en) 2013-09-02
JP6081706B2 true JP6081706B2 (en) 2017-02-15

Family

ID=49264487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012033421A Expired - Fee Related JP6081706B2 (en) 2012-02-17 2012-02-17 Position measurement method and equipment in small-diameter propulsion method capable of sharp curve construction

Country Status (1)

Country Link
JP (1) JP6081706B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743558B (en) * 2014-01-06 2016-08-24 北京工业大学 A kind of component for simulating immersed tube tunnel flexible joint
JP6392429B1 (en) * 2017-09-13 2018-09-19 株式会社大阪防水建設社 Drilling rig

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082582A (en) * 1983-10-11 1985-05-10 三菱電機株式会社 Controller for elevator
JPS6175850A (en) * 1984-09-19 1986-04-18 合資会社 橋詰研究所 Erroneous operation preventing and detecting mechanism of shuttle passing machine
JPH0552093A (en) * 1991-08-26 1993-03-02 Kido Kensetsu Kogyo Kk Curve jacking method
JP3759281B2 (en) * 1997-04-17 2006-03-22 日立建機株式会社 Underground excavator position measurement device
JP3723661B2 (en) * 1997-06-12 2005-12-07 日立建機株式会社 Underground excavator position measurement device
JP3708839B2 (en) * 2001-05-17 2005-10-19 株式会社協和エクシオ Propulsion body for small-diameter propulsion method
JP2009198329A (en) * 2008-02-21 2009-09-03 Kajima Corp Position measurement system and position measurement method

Also Published As

Publication number Publication date
JP2013170356A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
CN103322989A (en) Measuring device and method of dynamic real-time measurement of position and posture of pipe pushing jack
JP6639423B2 (en) Behavior exploration apparatus and behavior exploration method for telescopic flexible pipe joint
CN203422091U (en) Device for dynamically measuring positions and attitudes of push bench in real time
JP6081706B2 (en) Position measurement method and equipment in small-diameter propulsion method capable of sharp curve construction
JP4642576B2 (en) Baseline measurement system and baseline measurement method
JP2001091242A (en) Measuring device for propulsion locus and propulsion attitude in propulsion shield tunneling method, measuring method, propulsion locus control device and propulsion locus control method
CN108150101A (en) A kind of pipeline three-dimensional construction method for crossing
JP4647520B2 (en) Position measuring method and apparatus for propulsion method
JP5060382B2 (en) Pipe burial position measurement system, pipe burial position measurement method
KR20220039304A (en) Underground transmission line progress measurement system and measurement method
JP6594832B2 (en) Behavior exploration apparatus and behavior exploration method for telescopic flexible pipe joint
JPH09287905A (en) Pipeline measuring method and apparatus
KR100436878B1 (en) The method and apparatus to maintain the level of propelling steelpipes used in trenchless Ramming propulsion method of construction
JP4164429B2 (en) Propulsion excavator and excavator position calculation method
KR20200039968A (en) Protection apparatus for subterranean cable
CN216955862U (en) Flaw detection device for steel pipe anticorrosion construction detection
CN218524891U (en) Underground blind well and curved pipeline position detection system
JP3976195B2 (en) Small-diameter pipe propulsion method with one muddy water method
JP4388882B2 (en) Curved survey cylinder
JP2003042707A (en) Excavation method
JPH0531727B2 (en)
JP4611241B2 (en) Small diameter pipe drilling equipment and drilling system
KR200471757Y1 (en) Detection tape for detecting of damaged position of underground pipe
JP2831248B2 (en) In-pipe flow meter jig
JP2018100729A (en) Existing pipe renovation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170119

R150 Certificate of patent or registration of utility model

Ref document number: 6081706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees