JP6081605B2 - Offshore wind power generator and oil-filled transformer used therefor - Google Patents

Offshore wind power generator and oil-filled transformer used therefor Download PDF

Info

Publication number
JP6081605B2
JP6081605B2 JP2015537515A JP2015537515A JP6081605B2 JP 6081605 B2 JP6081605 B2 JP 6081605B2 JP 2015537515 A JP2015537515 A JP 2015537515A JP 2015537515 A JP2015537515 A JP 2015537515A JP 6081605 B2 JP6081605 B2 JP 6081605B2
Authority
JP
Japan
Prior art keywords
wind power
offshore wind
power generator
transformer
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015537515A
Other languages
Japanese (ja)
Other versions
JPWO2015040730A1 (en
Inventor
康 真島
康 真島
年樹 白畑
年樹 白畑
淳治 小野
淳治 小野
洋悦 椎名
洋悦 椎名
圭亮 久保田
圭亮 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Application granted granted Critical
Publication of JP6081605B2 publication Critical patent/JP6081605B2/en
Publication of JPWO2015040730A1 publication Critical patent/JPWO2015040730A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/82Arrangement of components within nacelles or towers of electrical components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

本発明は、洋上風力発電装置に用いる油入変圧器の冷却性向上に関する。   The present invention relates to an improvement in cooling performance of an oil-filled transformer used in an offshore wind power generator.

自然エネルギーである風力を利用した発電が、地球環境に優しい活用方法として実用化されている。この風力発電は、山林等の陸上に立地するものや、洋上に設置するものがある。特に、風車設置用の適地に制限がなく、陸上に比べて風速が早く、また風の乱れも少ない洋上での風力発電が期待されている。   Power generation using wind power, which is a natural energy, has been put into practical use as a utilization method friendly to the global environment. This wind power generation includes those that are located on land such as forests and those that are installed offshore. In particular, there is no restriction on the appropriate location for wind turbine installation, and wind power generation on the ocean is expected to be faster than wind speed and less disturbed.

また、洋上風力発電装置で発電された電力の送電に際して、安全性や送電時のロスを抑える目的で、発電された電圧を昇圧して送電するニーズがあり、そのために、変圧器を洋上風力発電装置内に設置する要求がある。一方、洋上風力発電装置のタワー内に変圧器を設置すると、熱源が増えタワー内の温度が上昇してしまう。密閉されたタワー内に設置されることにより、冷却条件が屋外設置時より悪化する為、冷却性の向上が必須条件となっている。よって、変圧器の冷却を十分に行なう為にファン等を用いた強制冷却を行なう必要がある。   In addition, when transmitting power generated by offshore wind power generation equipment, there is a need to boost the generated voltage for the purpose of suppressing safety and loss during power transmission. There is a requirement to install in the device. On the other hand, when a transformer is installed in the tower of an offshore wind power generator, the heat source increases and the temperature in the tower rises. By installing in a sealed tower, the cooling conditions are worse than when installed outdoors, so improving the cooling performance is an essential condition. Therefore, it is necessary to perform forced cooling using a fan or the like in order to sufficiently cool the transformer.

一方、洋上風力発電装置の熱源の冷却方法に関して特開2011−89468号公報(特許文献1)に開示されている技術が挙げられる。特許文献1では、二次電池を喫水線よりも下方に配置することで、充放電に伴う二次電池の熱を水中に逃がすことが記載されている。   On the other hand, the technique currently disclosed by Unexamined-Japanese-Patent No. 2011-89468 (patent document 1) is mentioned regarding the cooling method of the heat source of an offshore wind power generator. Patent Document 1 describes that by disposing a secondary battery below the water line, the heat of the secondary battery accompanying charge / discharge is released into water.

特開2011−89468号公報JP 2011-89468 A

特許文献1では、熱源を喫水線よりも下方に配置することで、その熱を水中に逃がすことが記載されているが、油入変圧器特有の冷却性向上についての記載がなく、洋上風力発電装置に用いる油入変圧器の冷却性向上が求められる。   Patent Document 1 describes disposing the heat source below the water line so that the heat is released into the water, but there is no description about the cooling performance specific to the oil-filled transformer, and the offshore wind power generator Improvement of cooling performance of oil-filled transformer used for

鉄心と、コイルと、該鉄心及びコイルを絶縁及び冷却する絶縁油をタンク内に収納した油入変圧器を、洋上風力発電装置内の海面下に設置し、且つタンクを液体に浸す構造とする。   An oil-filled transformer in which an iron core, a coil, and insulating oil that insulates and cools the iron core and the coil are stored in a tank is installed under the sea surface in an offshore wind power generator, and the tank is immersed in a liquid. .

洋上風力発電装置に用いる油入変圧器の冷却性が向上することにより、油入変圧器および洋上風力発電装置の小型化が可能となる。   By improving the cooling performance of the oil-filled transformer used in the offshore wind power generator, the oil-filled transformer and the offshore wind power generator can be downsized.

洋上風力発電装置の構成概略図Schematic configuration of offshore wind power generator 実施例1の洋上風力発電装置の全体概略図Overall schematic diagram of offshore wind power generator of Example 1 実施例1の洋上風力発電装置の詳細模式図Detailed schematic diagram of offshore wind turbine generator of Example 1 実施例1の洋上風力発電装置の断面図及び側面図Sectional drawing and side view of the offshore wind power generator of Example 1 実施例2の洋上風力発電装置の模式図Schematic diagram of offshore wind power generator of Example 2 実施例3の洋上風力発電装置の模式図Schematic diagram of offshore wind power generator of Example 3 実施例4の洋上風力発電装置の模式図Schematic diagram of offshore wind power generator of Example 4

以下、実施例を図面を用いて説明する。   Hereinafter, examples will be described with reference to the drawings.

図1は、洋上風力発電装置の構成概略図である。図1において、1は洋上風力発電装置全体、2はブレード、3はナセル、4は発電機、5はタワー、6は海面、7は変圧器、8は送電ケーブルである。
タワー5は中空の構造体であって、タワー5の上部にナセル3が取り付けられている。ブレード2はナセル3に連結されており、ブレード2が風力により回転すると、ナセル3内に配置した発電機4により交流電力が生成され、その電力をタワー5内に配置した変圧器7で昇圧して、送電ケーブル8で送電する。変圧器で昇圧する理由は、電圧を高くすることで電流が低く抑えられるため、低い電流にして安全に送電するためと、低い電流値により送電時のロスを抑えるためである。
FIG. 1 is a schematic configuration diagram of an offshore wind power generator. In FIG. 1, 1 is the whole offshore wind power generator, 2 is a blade, 3 is a nacelle, 4 is a generator, 5 is a tower, 6 is a sea surface, 7 is a transformer, and 8 is a power transmission cable.
The tower 5 is a hollow structure, and the nacelle 3 is attached to the top of the tower 5. The blade 2 is connected to the nacelle 3, and when the blade 2 is rotated by wind power, AC power is generated by the generator 4 arranged in the nacelle 3, and the electric power is boosted by the transformer 7 arranged in the tower 5. Then, power is transmitted by the power transmission cable 8. The reason for boosting with a transformer is that the current can be kept low by increasing the voltage, so that the current can be safely transmitted at a low current, and the loss during power transmission is suppressed by a low current value.

図2に、本実施例の洋上風力発電装置の全体概略図を示す。また、図3に本実施例の洋上風力発電装置の詳細模式図を示す。図2において、9は海水であり、変圧器7は、洋上風力発電装置のタワー5内の海面下に設置している。また、図3において、7−2はコイル、7−3は鉄心であり、該鉄心及びコイルを、図示しない、絶縁及び冷却する絶縁油で満たしたタンク7−1内に収納した変圧器7を液体10に浸した構造となっている。すなわち、タワー5内に、タワーの壁面を利用して構成される、液体を蓄える液体貯蔵部を設け、その液体貯蔵部にタンクを有する変圧器を設置し、タンクを液体で浸す構造とする。   FIG. 2 shows an overall schematic diagram of the offshore wind power generator of the present embodiment. Moreover, the detailed schematic diagram of the offshore wind power generator of a present Example is shown in FIG. In FIG. 2, 9 is seawater, and the transformer 7 is installed below the sea level in the tower 5 of the offshore wind power generator. Further, in FIG. 3, 7-2 is a coil, and 7-3 is an iron core. The iron core and the coil are accommodated in a tank 7-1 filled with insulating oil for insulation and cooling (not shown). The structure is immersed in the liquid 10. That is, the liquid storage part which stores the liquid comprised using the wall surface of a tower is provided in the tower 5, the transformer which has a tank is installed in the liquid storage part, and it is set as the structure which immerses a tank with a liquid.

図4に、図3の変圧器部分を側面上部から見た断面図4(A)と、その側面図4(B)を示す。図4において、7−4は絶縁油、7−5はラジエータ、7−6は油面線、他の番号は、既に説明した図に示された同一の符号を付された構成と同一の機能を有するので、説明は省略する。   FIG. 4 shows a cross-sectional view (A) of the transformer portion of FIG. 3 as viewed from the upper side, and a side view (B) thereof. In FIG. 4, 7-4 is an insulating oil, 7-5 is a radiator, 7-6 is an oil level line, and the other numbers are the same functions as the components having the same reference numerals shown in the already explained figures. Description is omitted.

図4(A)において、タンク7−1を液体10で浸すことでタワーの外周にある海水9との間の熱伝達率を上げ、冷却効果を上げるように構成されている。なお、液体10は、熱を伝達するものであれば良く、例えば純水でよい。   In FIG. 4 (A), the tank 7-1 is immersed in the liquid 10 to increase the heat transfer coefficient with the seawater 9 on the outer periphery of the tower, thereby increasing the cooling effect. The liquid 10 only needs to transmit heat, and may be pure water, for example.

また、図4(B)において、ラジエータ7−5は、タンク7−1の上部開口及び下部開口を介してタンク内と連通可能に接続されており、タンク内の絶縁油7−4がラジエータ内を循環し、タンク内のコイル7−2で熱せられた絶縁油がラジエータで冷されタンクに戻ることで更なる冷却性の向上が可能となる。   In FIG. 4B, the radiator 7-5 is connected to the inside of the tank through the upper opening and the lower opening of the tank 7-1 so that the insulating oil 7-4 in the tank is in the radiator. , And the insulating oil heated by the coil 7-2 in the tank is cooled by the radiator and returned to the tank, thereby further improving the cooling performance.

このように、変圧器の冷却性能が向上することにより変圧器自体の冷却設備を小型化することが可能となる。また、洋上風力発電装置としての冷却のための設備が不要となり、洋上風力発電装置自体の小型化が可能となる。   As described above, the cooling performance of the transformer is improved, so that the cooling equipment for the transformer itself can be downsized. Moreover, the facility for cooling as an offshore wind power generator becomes unnecessary, and the offshore wind power generator itself can be downsized.

また、変圧器7の一番の熱源であるコイル7−2の高さまで液体10を浸すことでコイルの熱を吸収しやすくなるので、タンクを全て液体10で満たす必要はなく、例えば、絶縁油の油面線7−6以下で、かつコイル7−2の高さ以上までを液体10に浸すことで冷却効果が得られる。例えば、図4(B)に示す、ハッチングで示した部分を液体10で浸せば良い。このように、もともと油入変圧器として設けられているタンクを利用して、タンクの周りを液体で浸すことで、冷却効果を上げるように構成されているので、液体に浸すために新たに防水加工を施す必要がないという効果がある。なお、さらにメッキなどの錆対策を施すことで、長期使用が可能になる。   Moreover, since it becomes easy to absorb the heat of a coil by immersing the liquid 10 to the height of the coil 7-2 which is the first heat source of the transformer 7, it is not necessary to fill the tank with the liquid 10 completely. A cooling effect can be obtained by immersing the oil surface wire 7-6 or less up to the height of the coil 7-2 in the liquid 10. For example, a hatched portion illustrated in FIG. 4B may be immersed in the liquid 10. In this way, using the tank originally provided as an oil-filled transformer, it is configured to increase the cooling effect by immersing the periphery of the tank with liquid, so it is newly waterproof to immerse in liquid There is an effect that processing is not necessary. Furthermore, long-term use becomes possible by taking rust countermeasures such as plating.

このように、本実施例は、油入変圧器として設けられているタンクを液体に浸すという、油入変圧器特有の冷却性向上を図ったものである。   As described above, the present embodiment is intended to improve the cooling performance peculiar to an oil-filled transformer, in which a tank provided as an oil-filled transformer is immersed in a liquid.

以上説明したように、本実施例によれば、洋上風力発電装置に用いる油入変圧器の冷却性が向上することにより油入変圧器自体の冷却設備の小型化が可能となる。また、洋上風力発電装置としての冷却のための設備が不要となり、洋上風力発電装置自体の小型化が可能となる。また、冷却のためにファンを用いた場合、海上設置という環境から湿気、塩気の含んだ風を冷却ファンから取り込んでくる為、変圧器が錆びやすくなってしまうという問題も解消できる。   As described above, according to the present embodiment, the cooling capability of the oil-filled transformer used in the offshore wind power generator is improved, so that the cooling equipment for the oil-filled transformer itself can be downsized. Moreover, the facility for cooling as an offshore wind power generator becomes unnecessary, and the offshore wind power generator itself can be downsized. In addition, when a fan is used for cooling, since the wind containing moisture and salt is taken from the cooling fan from the environment where it is installed on the sea, the problem that the transformer becomes easily rusted can be solved.

図5に、本実施例の洋上風力発電装置の模式図を示す。本実施例は、油入変圧器のタンクを失くし、洋上風力発電装置のタワー5の壁面をタンクの代わりに使用するタンクレス構造となっている。
図5において、コイル7−2、鉄心7−3からなる変圧器を、絶縁油11で満たした構造であり、絶縁油を満たしたタワー内部に、変圧器を配置することでタンクを不要としている。すなわち、絶縁油を保持するタンクとして、洋上風力発電装置のタワー5の壁面を利用している。
In FIG. 5, the schematic diagram of the offshore wind power generator of a present Example is shown. This embodiment has a tankless structure in which the tank of the oil-filled transformer is lost and the wall surface of the tower 5 of the offshore wind power generator is used instead of the tank.
In FIG. 5, a transformer composed of a coil 7-2 and an iron core 7-3 is filled with insulating oil 11, and a tank is unnecessary by arranging the transformer inside the tower filled with insulating oil. . That is, the wall surface of the tower 5 of the offshore wind power generator is used as a tank for holding insulating oil.

これにより、タンクが不要となり、スペースが生まれ大型の変圧器にも対応でき、コストも減らすことが可能となる。また、タワー5の壁面から直接絶縁油11を冷却することができ、より冷却効果が向上する。また、タワー内の限られたスペースを有効利用できる。   This eliminates the need for a tank, creates a space, can accommodate a large transformer, and can reduce costs. Moreover, the insulating oil 11 can be cooled directly from the wall surface of the tower 5, and the cooling effect is further improved. In addition, the limited space in the tower can be used effectively.

図6に、本実施例の洋上風力発電装置の模式図を示す。本実施例は、変圧器の配置を洋上風力発電装置のタワーの最下層部に配置することを特徴とする。   In FIG. 6, the schematic diagram of the offshore wind power generator of a present Example is shown. This embodiment is characterized in that the transformer is arranged in the lowermost layer portion of the tower of the offshore wind power generator.

図6に示すように、洋上風力発電装置のタワー最下層部に設置することで洋上風力発電装置の重心が下がり、洋上風力発電装置の安定度が増すという効果がある。   As shown in FIG. 6, the installation of the offshore wind power generator in the lowermost layer of the tower has the effect of lowering the center of gravity of the offshore wind power generator and increasing the stability of the offshore wind power generator.

なお、本実施例は、実施例2のタンクレス構造に加え、最下層部に設置する例を示しているが、これに限定されるものではなく、例えば、実施例1のタンクの周囲を液体に浸す場合にも適用可能であることは言うまでもない。   In addition, although the present Example has shown the example installed in the lowest layer part in addition to the tank-less structure of Example 2, it is not limited to this, For example, the periphery of the tank of Example 1 is liquid. Needless to say, the present invention can also be applied to the case of soaking.

図7に、本実施例の洋上風力発電装置の模式図を示す。本実施例は、実施例2の内容に加え、コイルの厚さをより増やした構造である。   In FIG. 7, the schematic diagram of the offshore wind power generator of a present Example is shown. In this embodiment, in addition to the contents of Embodiment 2, the thickness of the coil is further increased.

図7において、7−21はコイル、7−31は鉄心であり、タンクが不要となったスペースを有効活用する為、コイル7−21の横寸法である厚さを増やした構造にすることが可能となる。これにより、同一の洋上風力発電装置内に大容量の変圧器を設置できるという効果がある。   In FIG. 7, 7-21 is a coil, and 7-31 is an iron core. In order to effectively use a space where a tank is not required, the thickness of the coil 7-21, which is the lateral dimension, can be increased. It becomes possible. Thereby, there exists an effect that a large capacity | capacitance transformer can be installed in the same offshore wind power generator.

以上実施例について説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、本実施例では、浮体式の洋上風力発電装置について説明したが、着床式の洋上風力発電装置であっても適用できる。また、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、置換をすることも可能である。   Although the embodiments have been described above, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, in this embodiment, the floating offshore wind power generator has been described. However, a landing type offshore wind power generator can also be applied. Moreover, it is not necessarily limited to what has all the structures demonstrated. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 洋上風力発電装置
5 タワー
7 変圧器
7−1 タンク
7−2 コイル
7−3 鉄心
7−4、11 絶縁油
10 液体
DESCRIPTION OF SYMBOLS 1 Offshore wind power generator 5 Tower 7 Transformer 7-1 Tank 7-2 Coil 7-3 Iron core 7-4, 11 Insulating oil 10 Liquid

Claims (4)

中空の構造体であるタワーと、該タワーに取り付けられた風力を受けて回転するブレードと、該ブレードの回転を電力に変換する発電機を備える洋上風力発電装置であって、
前記発電機から得られる電力の電圧を昇圧する変圧器と、
該昇圧した電力を送電する送電ケーブルを有し、
前記変圧器は、鉄心及びコイルを備え、該鉄心及びコイル絶縁及び冷却する絶縁油で満たしたタンク内に収納されており、
前記洋上風力発電装置の洋上設置時の海面下に前記変圧器を設置するとともに、
前記変圧器設置個所は、前記タワー内に設けられた該タワーの壁面を利用して構成される液体貯蔵部であって、前記タンクを該液体貯蔵部に蓄えられている液体に浸す構造であることを特徴とする洋上風力発電装置。
An offshore wind power generator comprising a tower that is a hollow structure, a blade that rotates by receiving wind force attached to the tower, and a generator that converts the rotation of the blade into electric power,
A transformer that boosts the voltage of the electric power obtained from the generator;
Having a transmission cable for transmitting the boosted power;
The transformer includes an iron core and a coil , and is housed in a tank filled with insulating oil that insulates and cools the iron core and the coil.
While installing the transformer under the sea surface when the offshore wind power generator is installed on the ocean,
Installation location of the transformer is a constructed liquid storage unit by utilizing the walls of the tower, which is provided in said tower, a structure immersing the tank to the liquid that is stored in the liquid reservoir An offshore wind power generator characterized by being.
請求項1に記載の洋上風力発電装置であって、
前記変圧器は、前記タンクと連通可能に接続され前記絶縁油を冷却するラジエータを有することを特徴とする洋上風力発電装置。
The offshore wind turbine generator according to claim 1,
The off-shore wind power generator , wherein the transformer includes a radiator that is connected to the tank so as to communicate with the tank and cools the insulating oil .
中空の構造体であるタワーと、該タワーに取り付けられた風力を受けて回転するブレードと、該ブレードの回転を電力に変換する発電機を備える洋上風力発電装置であって、
前記発電機から得られる電力の電圧を昇圧する変圧器と、
該昇圧した電力を送電する送電ケーブルを有し、
前記洋上風力発電装置の洋上設置時の海面下に前記変圧器を設置するとともに、
前記変圧器は鉄心とコイルを有し、該鉄心及びコイルを絶縁及び冷却する絶縁油を保持するタンクを前記タワーの壁面を利用して構成したことを特徴とする洋上風力発電装置。
An offshore wind power generator comprising a tower that is a hollow structure, a blade that rotates by receiving wind force attached to the tower, and a generator that converts the rotation of the blade into electric power,
A transformer that boosts the voltage of the electric power obtained from the generator;
Having a transmission cable for transmitting the boosted power;
While installing the transformer under the sea surface when the offshore wind power generator is installed on the ocean,
The offshore wind power generator characterized in that the transformer has an iron core and a coil, and a tank holding insulating oil for insulating and cooling the iron core and the coil is configured by using a wall surface of the tower .
請求項1〜3のいずれか1項に記載の洋上風力発電装置であって、
前記変圧器を前記タワー内の最下層部に設置することを特徴とする洋上風力発電装置。
The offshore wind power generator according to any one of claims 1 to 3,
An offshore wind power generator, wherein the transformer is installed in a lowermost layer in the tower .
JP2015537515A 2013-09-20 2013-09-20 Offshore wind power generator and oil-filled transformer used therefor Active JP6081605B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075427 WO2015040730A1 (en) 2013-09-20 2013-09-20 Offshore wind power generator device and oil-immersed transformer used in same

Publications (2)

Publication Number Publication Date
JP6081605B2 true JP6081605B2 (en) 2017-02-15
JPWO2015040730A1 JPWO2015040730A1 (en) 2017-03-02

Family

ID=52688412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015537515A Active JP6081605B2 (en) 2013-09-20 2013-09-20 Offshore wind power generator and oil-filled transformer used therefor

Country Status (4)

Country Link
JP (1) JP6081605B2 (en)
CN (1) CN105899806B (en)
TW (1) TWI598898B (en)
WO (1) WO2015040730A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114961395A (en) * 2021-02-20 2022-08-30 南京南瑞继保工程技术有限公司 Offshore wind turbine integration device with overhead line iron tower

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089468A (en) * 2009-10-22 2011-05-06 Mitsubishi Heavy Ind Ltd Wind power generating set
JP2011530185A (en) * 2008-08-07 2011-12-15 スタークストロム−ジェラテバウ ゲーエムベーハー Transformer system
JP4995357B1 (en) * 2011-04-05 2012-08-08 三菱重工業株式会社 Renewable energy generator
JP2012172564A (en) * 2011-02-21 2012-09-10 Hitachi Industrial Equipment Systems Co Ltd Wind turbine power generating facility
JP2013024177A (en) * 2011-07-25 2013-02-04 Hitachi Industrial Equipment Systems Co Ltd Transformer and wind power generation system
JP2013509522A (en) * 2009-10-29 2013-03-14 リ−テック・バッテリー・ゲーエムベーハー Wind generator with battery unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI108087B (en) * 1998-06-02 2001-11-15 Abb Transmit Oy Transformer
DE10127276B4 (en) * 2001-05-28 2004-06-03 Siemens Ag Underwater transformer and method for adjusting the pressure in the outer vessel of an underwater transformer
DE10308499A1 (en) * 2003-02-26 2004-09-16 Aloys Wobben Offshore wind power plant
US7443273B2 (en) * 2004-06-18 2008-10-28 Siemens Aktiengesellschaft Arrangement for cooling of components of wind energy installations
DE102004063508B4 (en) * 2004-12-27 2008-10-16 Siemens Ag Electrical component with cooling circuit for underwater operation
CN201061095Y (en) * 2007-07-27 2008-05-14 沈阳昊诚电气有限公司 Integration type transforming plant dedicated for wind power generation
CN102269128B (en) * 2010-06-07 2013-09-11 上海电气风能有限公司 Configuration and layout scheme of tower bottom in-built transformation system device of offshore wind generating set

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530185A (en) * 2008-08-07 2011-12-15 スタークストロム−ジェラテバウ ゲーエムベーハー Transformer system
JP2011089468A (en) * 2009-10-22 2011-05-06 Mitsubishi Heavy Ind Ltd Wind power generating set
JP2013509522A (en) * 2009-10-29 2013-03-14 リ−テック・バッテリー・ゲーエムベーハー Wind generator with battery unit
JP2012172564A (en) * 2011-02-21 2012-09-10 Hitachi Industrial Equipment Systems Co Ltd Wind turbine power generating facility
JP4995357B1 (en) * 2011-04-05 2012-08-08 三菱重工業株式会社 Renewable energy generator
JP2013024177A (en) * 2011-07-25 2013-02-04 Hitachi Industrial Equipment Systems Co Ltd Transformer and wind power generation system

Also Published As

Publication number Publication date
CN105899806B (en) 2018-11-27
TWI598898B (en) 2017-09-11
CN105899806A (en) 2016-08-24
WO2015040730A1 (en) 2015-03-26
JPWO2015040730A1 (en) 2017-03-02
TW201517080A (en) 2015-05-01

Similar Documents

Publication Publication Date Title
US9839160B2 (en) Water-based computing system
RU2696256C2 (en) Submersible data processing centre
BRPI0519480B1 (en) ELECTRICAL COMPONENT WITH REFRIGERATION CIRCUIT FOR UNDERWATER OPERATION
US20180153059A1 (en) Data vessel integrated with cooling and docking station with ancillary service
JP2013509522A (en) Wind generator with battery unit
JP2017520832A (en) Data center immersed in coolant
KR101721372B1 (en) A floating solar power generating system using a floating power converting apparatus
CN104021828A (en) Fixed platform type floating nuclear power station and material changing method
JP6081605B2 (en) Offshore wind power generator and oil-filled transformer used therefor
CN204117770U (en) The external oil-filled transformer of a kind of cooling
WO2015019664A1 (en) Wind power generator system and method for carrying transformer into/out of same
JP2009247049A (en) Thermoelectric power generation system and method
JP2011234511A (en) Power generating/transforming equipment
KR101720800B1 (en) Solar Heat Protection Apparatus of J-Tube
JP2020092171A (en) Static induction
JP5992176B2 (en) Wind power generator
CN107246745A (en) One kind group string data photovoltaic DC-to-AC converter
CN102745427A (en) Large molten salt storage tank device used in heat storage system of tower type photo-thermal power station
EP2975613A1 (en) Cooling system for stored nuclear fuel
KR101314812B1 (en) Cooling system for tower of wind turbine generator on the sea
RU193703U1 (en) Device for preventing formation of ice on water surface
CN207895950U (en) The external hollow liquid immersed reactor of cooled
TH154145A (en) Offshore wind generating equipment and oil-filling transformers are used for that.
CN111818760B (en) Heat dissipation system and underwater unmanned operation equipment
JP2013133989A (en) Heat transport device of fuel pool

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170118

R150 Certificate of patent or registration of utility model

Ref document number: 6081605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150