JP6076984B2 - 静止型プラズマ推進機を有する電気推進システム - Google Patents

静止型プラズマ推進機を有する電気推進システム Download PDF

Info

Publication number
JP6076984B2
JP6076984B2 JP2014529046A JP2014529046A JP6076984B2 JP 6076984 B2 JP6076984 B2 JP 6076984B2 JP 2014529046 A JP2014529046 A JP 2014529046A JP 2014529046 A JP2014529046 A JP 2014529046A JP 6076984 B2 JP6076984 B2 JP 6076984B2
Authority
JP
Japan
Prior art keywords
control
branch
cathode
valve
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014529046A
Other languages
English (en)
Other versions
JP2014529036A (ja
Inventor
クロード ベルナール ローラン、アントニー
クロード ベルナール ローラン、アントニー
Original Assignee
サフラン・エアクラフト・エンジンズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サフラン・エアクラフト・エンジンズ filed Critical サフラン・エアクラフト・エンジンズ
Publication of JP2014529036A publication Critical patent/JP2014529036A/ja
Application granted granted Critical
Publication of JP6076984B2 publication Critical patent/JP6076984B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0018Arrangements or adaptations of power supply systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/405Ion or plasma engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/411Electric propulsion
    • B64G1/413Ion or plasma engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/428Power distribution and management
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0012Means for supplying the propellant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • F03H1/0075Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • B64G1/2427Transfer orbits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、ホール効果推進機としても知られる静止型プラズマ推進機を有する電気推進システムに関する。
電気推進システムは、衛星、特に静止衛星へ装着するために一般的に使用され、電気推進システムは、特に軌道を制御するために使用される。軌道移行操縦を遂行するため、さらに電気推進機が使用される。
信頼性の問題のため、電気推進システムは、余剰機器を有する。しかしながら、静止型プラズマ推進機の高コストは、衛星用機器としての静止型プラズマ推進機を開発する上で妨げとなっている。
それゆえに、そのような電気推進システムのアーキテクチャを単純化し、それらの質量を低減し、同時に余剰性および信頼性の満足レベルを維持しながら、そのような推進装置を装着される衛星の既存のインタフェースに互換性を残す必要性が存在する。
図10は、ホール効果推進機11の基本的構造を示し、該ホール効果推進機11は、本質的に、陽極25に関連づけられたイオン化および放電チャネル24と、イオン化および放電チャネル24の出口の近くに配置された陰極40とを備える。イオン化および放電チャネル24は、絶縁材料、たとえばセラミックから作られた壁22を有する。磁気回路34および電磁石コイル31は、イオン化および放電チャネル24を取り巻く。不活性ガス、たとえば、タンク(図示されず)へ接続されたパイプ10から来るキセノンは、パイプ21を介して、陽極25と結合したガスマニホールド27を用いて放電チャネル24の背後へ注入され、またパイプ41を介して、陰極40の中へ注入される。不活性ガスは、陰極40によって放出された電子と衝突することによって、イオン化および放電チャネル24の中でイオン化される。産出されたイオンは、陽極25と陰極40との間に創出された軸方向の電界によって加速および排出される。磁気回路34および電磁石コイル31は、チャネル24の中で磁界を創出し、該磁界は、本質的に径方向である。
図10は、閉鎖電子ドリフトタイプの例示的ホール効果推進機の略軸方向断面図である。
図10では、絶縁材料、たとえば誘電性セラミックから作られた部品22によって画定される環状チャネル24と、外側および内側環状部品34および35を有する磁気回路と、推進機の上流側に配置された磁気ヨークと、環状部品34,35と磁気ヨークとを一緒に接続する中央コアとが、理解できる。外側および内側コイル31および33は、環状チャネル24の中に磁界を創出するように働く。中空陰極40は、キセノン供給装置へ結合され、チャネル24の下流側出口の前面でプラズマ雲を形成する。陽極25は、環状チャネル24の中に配置され、イオン化可能ガス(キセノン)を分散する環状マニホールド27に関連づけられる。推進機アセンブリは、ハウジングによって保護される。陰極40は、ヒータ要素42と、放出器要素43と、イニシエータ要素44とを有する。ガス供給パイプ10,21,および41は、電気絶縁体要素12,13を装着される。それぞれの電気ケーブル51,52は、陰極40の要素、陽極25およびコイル31,33を、図10に示されていない電気パワーサプライおよび制御回路へ接続する。
ホール効果推進機の例は、特に、次の文献、すなわち、FR2693770A1、FR2743191A1、FR2782884A1、およびFR2788084A1で説明されている。
ホール効果推進機、たとえば、図10を参照して説明されたような推進機は、中央陽極に関連づけられた単一の陰極と、陰極がキセノンを送られるレートを制御する単一の制御回路とを有する。ゆえに、実施形態は、単純化され、質量は、低減されている。しかしながら、余剰性は存在せず、陽極、陰極、または制御回路の中で故障が起こった場合、信頼性は確保されない。
これが、推進機の対を使用する余剰電気推進システムを提供する提案が行われた理由であって、図11および図12で示されるように、各々の推進機は、2つの陰極および2つの制御回路を備える。
図11は、2つの同じホール効果推進機11A,11Bの正面図であって、該推進機は、図10の推進機11に類似するが、推進機の各々は、2つのそれぞれの陰極40A1,40A2、または40B1,40B2と、キセノンが陰極へ送られるレートを制御する2つの回路(図11には図示されず)とを有する。図11において、各々の推進機11A,11Bのコンポーネント要素は、図10と同じ参照番号を与えられるが、推進機11Aについては文字Aが続き、推進機11Bについては文字Bが続く。それゆえに、これらのコンポーネント要素は、再度は説明されない。
図12は、図11の推進機11A,11Bの対を制御する制御回路のブロック図であって、該制御回路は、例として、北−南軌道制御のために2つの推進機の対の集合で北制御チャネルを構成するように構成される。
図12は、第1に北制御チャネルと一緒に使用され、外部推進機スイッチユニット(ETSU)70Aに関連づけられた電力プロセッサユニット(PPU)60Nを示す。ETSU 70Aの北制御チャネルは、第1に、第1および第2の推進機11A,11Bの正規陰極40A1,40B1に関連づけられたキセノン供給レートを制御する回路80A1,80B1の各々へ接続され、第2に、電気的フィルタユニット90Aのために接続され、該電気的フィルタユニット90Aは、第1に陽極25Aへ、第2に北制御チャネルに対する第1の推進機11Aの第1および第2の陰極40A1,40B1へ、電気を送るように働く。第2のPPU 60Sは、第1に南制御チャネルと一緒に使用され、第2のETSU 70Bに関連づけられる。ETSU 70Bの北制御チャネルは、第1に、第1および第2の推進機11A,11Bの余剰陰極40A2,40B2に関連づけられたキセノン供給レートを制御する制御回路80A2,80B2の各々へ接続され、第2に、電気的フィルタユニット90Bへ接続され、該電気的フィルタユニット90Bは、第1に陽極25Aへ、第2に北制御チャネルの第2の推進機11Bの第1および第2の陰極40A2,40B2へ、電気を送るように働く。第1および第2のPPU 60N,60S、第1および第2のETSU70A,70Bの北制御チャネル、および上記で説明された要素の集合10Nは、要素の全てが重複しているため、北制御チャネルの推進機11A,11Bにとって、完全に余剰である。同様に、第1および第2のPPU 60N,60S、第1および第2のETSU 70A,70Bの南制御チャネル、および上記で説明され再度は説明されない要素に類似した要素の集合10Sは、要素の全てが重複しているため、南制御チャネルの推進機11A,11Bにとって、完全に余剰である。
図11および図12を参照して説明されたシステムは、完全な余剰性を提供し、したがって大きな信頼性を提供するが、このシステムは、高価、重厚であり、装置のアーキテクチャの単純化を可能にしない。さらに、観察すべきことは、静止型プラズマ推進機を使用しているとき、陽極として言及された放電回路は、陰極として言及されたイオン抽出および中和回路へ接続され、先験的に、たとえば図11および図12の先行技術システムのようなアーキテクチャの単純化は困難であるように見えることである。
本発明の目的は、ホール効果推進機、または閉鎖電子ドリフトプラズマ推進機を使用する従来の電気推進システムの上記の欠点を改善し、そのようなシステムのアーキテクチャを単純化し、それらのコストを低減し、同時に、システムのコンポーネントのいずれかが故障した場合に信頼性を保持することである。
これらの目的は、静止型プラズマ推進機を有する電気推進システムによって達成され、該システムは、高圧下でガスの調整された供給のための少なくとも1つの装置と、第1および第2の電力プロセッサユニット(PPU)と、第1および第2の外部推進機スイッチユニット(ETSU)と、第1および第2の電気的フィルタと、第1および第2の並置された静止型プラズマ推進機と、を備え、前記第1の静止型プラズマ推進機は、第1のイオン化チャネルと、前記第1のイオン化チャネルの出口の近くに配置される単一の第1の陰極と、前記第1のイオン化チャネルに関連づけられる第1の陽極と、第1のガスマニホールドと、前記第1のイオン化チャネルの周りに磁界を創出する第1の装置と、を備え、前記第2の静止型プラズマ推進機は、第2のイオン化チャネルと、前記第2のイオン化チャネルの出口の近くに配置される第2の単一の陰極と、前記第2のイオン化チャネルに関連づけられる第2の陽極と、第2のガスマニホールドと、前記第2のイオン化チャネルの周りに磁界を創出する第2の装置と、を備え、該電気推進システムは、前記第1および第2の陰極に共通の電気接続装置と、前記第1および第2の静止型プラズマ推進機の各々にそれぞれ関連づけられ、高圧下のガスの調整された供給のための前記装置から前記第1および第2の陽極および前記第1および第2の陰極へガスを送るための共通の流体フロー装置を有する第1および第2のガス流量制御装置と、前記第1および第2の陽極の1つと協働する前記第1および第2の陰極の1つのみを所定の瞬間に活性化することを選択的に制御する装置と、をさらに備えることを特徴とする。
そのようなシステムは、各々の静止型プラズマ推進機(SPT)のために2つの陰極を含む完全余剰性システムと比較して単純化されるが、2つの陽極が存在すること、および、1つのSPTの故障した陰極を他のSPTの陰極で置換することができ、このような協力の提供が、構成によって可能にされることにより、信頼性は、非常に高いままに残る。
2つの異なる並置SPTの2つの陰極について電気および流体フロー接続を共通に有する本発明のシステムは、こうして2陰極SPTを有するシステムと比較して構成の単純化を可能にすると共に、第1のSPTが第1の陽極A1および第1の陰極K1を有して第2のSPTが第2の陽極A2および第2の陰極K2を有する限り、完全余剰に近いやり方で陰極の交差動作を可能にし、したがって陽極A1およびA2の一方または他方の動作で故障が起こり、同時に陰極K1およびK2の一方または他方の動作で故障が起こった場合でも、次のように4つの動作構成のいずれかを使用して動作を保証することを可能にする。
陽極A1+陰極K1
陽極A2+陰極K2
陽極A1+陰極K2
陽極A2+陰極K1
第1の特定の実施形態においては、前記共通の流体フロー装置は、第1の分岐および第2の分岐を備え、前記第1の分岐は、少なくとも、第1の制御入口弁と、第1の熱収縮(thermostriction)要素と、各々がそれぞれの制御弁を有して前記第1の陰極、前記第1の陽極、および前記第2の陰極へそれぞれ接続される3つの2次分岐の第1の集合と、を備え、前記第2の分岐は、少なくとも、第2の制御入口弁と、第2の熱収縮(thermostriction)要素と、各々がそれぞれの制御弁を有して前記第1の陰極、前記第2の陰極、および前記第2の陽極へそれぞれ接続される3つの2次分岐の第2の集合と、を備える。
そのような状況下で、有利には、前記第1のガス流量制御装置は、前記第1の制御入口弁を制御するためのコイルと、3つの2次分岐の前記第1の集合のそれぞれの制御弁を制御するための選択的制御と、を備え、前記第2のガス流量制御装置は、前記第2の制御入口弁を制御するためのコイルと、3つの2次分岐の前記第2の集合のそれぞれの制御弁を制御するための選択的制御と、を備える。
第2の特定の実施形態においては、前記共通の流体フロー装置は、第1の分岐および第2の分岐を備え、前記第1の分岐は、少なくとも、第1の制御入口弁と、第1の熱収縮(thermostriction)要素と、各々がそれぞれの制御弁を有する第1および第2の2次分岐の第1の集合と、を備え、前記第1の2次分岐は、前記第1の陽極へ接続され、前記第2の2次分岐は、第1に、第1の追加の制御弁を介して前記第1の陰極へ接続され、第2に、第2の追加の制御弁を介して前記第2の陰極へ接続され、前記第2の分岐は、少なくとも、第2の制御入口弁と、第2の熱収縮(thermostriction)要素と、各々がそれぞれの制御弁を有する第1および第2の2次分岐の第2の集合と、を備え、前記第1の2次分岐は、前記第2の陽極へ接続され、前記第2の2次分岐は、第1に、前記第1の追加の制御弁を介して前記第1の陰極へ接続され、第2に、前記第2の追加の制御弁を介して前記第2の陰極へ接続される。
そのような状況下で、有利には、前記第1のガス流量制御装置は、前記第1の制御入口弁と、前記第1の分岐の前記第1の2次分岐の前記制御弁と、前記第1の分岐の前記第2の2次分岐の前記弁と、を同時に制御するために並列に接続されるコイルを備え、前記第2のガス流量制御装置は、前記第2の制御入口弁と、前記第2の分岐の前記第1の2次分岐の前記制御弁と、前記第2の分岐の前記第2の2次分岐の前記制御弁と、を同時に制御するために並列に接続されるコイルを備え、前記第1および第2のガス流量制御装置は、さらに、前記第1および第2の追加の制御弁を制御するための共通の制御コイルを備え、前記第1および第2の追加の制御弁の一方または他方は、所定の瞬間に開いている。
第3の可能な実施形態においては、前記共通の流体フロー装置は、第1の分岐および第2の分岐を備え、前記第1の分岐は、少なくとも、第1の制御入口弁と、第1の熱収縮(thermostriction)要素と、各々がそれぞれの制御弁を有して前記第1の陰極および前記第1の陽極へそれぞれ接続される2つの2次分岐の第1の集合と、を備え、前記第2の分岐は、少なくとも、第2の制御入口弁と、第2の熱収縮(thermostriction)要素と、各々がそれぞれの制御弁を有して前記第2の陰極および前記第2の陽極へそれぞれ接続される2つの2次分岐の第2の集合と、を備える。
そのような状況下で、有利には、前記第1のガス流量制御装置は、前記第1の制御入口弁および2つの2次分岐の前記第1の集合のそれぞれの制御弁をそれぞれ制御するためのコイルを備え、前記第2のガス流量制御装置は、前記第2の制御入口弁および2つの2次分岐の前記第2の集合のそれぞれの制御弁をそれぞれ制御するためのコイルを備え、前記第1および第2のガス流量制御装置は、前記コイルへの電源供給を選択的に制御するスイッチモジュールに関連づけられる。
少なくとも1つのフィルタは、各々の制御弁に関連づけられてもよい。
本発明のシステムは、前記第1および第2の並置された静止型プラズマ推進機に類似し、高圧下でガスの調整された供給のための前記少なくとも1つの装置と、前記第1および第2のPPUと、前記第1および第2のスイッチユニットと、前記第1および第2の電気的フィルタと協働する第3および第4の並置される静止型プラズマ推進機をさらに備えてもよい。
例として、このように、各々が2つの陰極を有する4つの静止型プラズマ推進機の集合のアーキテクチャよりも単純で安価なアーキテクチャを使用しながら、顕著に高い信頼性レベルで衛星の北−南制御を提供することが可能である。
本発明の他の特徴および利点は、添付の図面を参照し非限定的な例として与えられる具体的実施形態の次の説明から明らかである。
図1は、本発明の電気推進システムの中へ組み込まれるのに適した単一陰極静止型プラズマ推進機の集合の正面図である。 図2は、本発明に従って静止型プラズマ推進機の集合に関連づけられた制御および供給回路の集合のブロック図である。 図3は、図2の制御および供給回路の一部分のブロック図であって、単一陰極静止型プラズマ推進機の集合の陰極の交差電気接続を示す図である。 図4は、本発明の電気推進システムの単一陰極静止型プラズマ推進機へのイオン化可能ガス供給の流量を制御する回路の第1の実施形態の電気回路図である。 図5は、本発明の電気推進システムの単一陰極静止型プラズマ推進機へのイオン化可能ガス供給の流量を制御する回路の第1の実施形態の流体回路図である。 図6は、本発明の電気推進システムの単一陰極静止型プラズマ推進機へのイオン化可能ガス供給の流量を制御する回路の第2の実施形態の電気回路図である。 図7は、本発明の電気推進システムの単一陰極静止型プラズマ推進機へのイオン化可能ガス供給の流量を制御する回路の第2の実施形態の流体回路図である。 図8は、本発明の電気推進システムの単一陰極静止型プラズマ推進機へのイオン化可能ガス供給の流量を制御する回路の第3の実施形態の電気回路図である。 図9は、本発明の電気推進システムの単一陰極静止型プラズマ推進機へのイオン化可能ガス供給の流量を制御する回路の第3の実施形態の流体回路図である。 図10は、先行技術の静止型プラズマ推進機の1つの例の略断面図である。 図11は、電気推進システムの中に組み込まれるのに適した先行技術の2陰極静止型プラズマ推進機の集合の正面図である。 図12は、図11の先行技術の2陰極静止型プラズマ推進機に関連づけられた制御および供給回路の完全に余剰な集合のブロック図である。
本発明は、図10および図11を参照して上記で説明された同じ基本構造を有するホール効果推進機または静止型プラズマ推進機(SPT)を使用するが、これらの推進機は、完全に余剰な先行技術推進機とは異なり、各々の推進機は、1つだけの陰極を有する。
本発明は、さらに、同じタイプの電気推進機、たとえば同軸タイプの多段プラズマ推進機へ応用可能である。
図1は、2つの並置された単一陰極静止型プラズマ推進機111A,111Bの集合の正面図であって、該推進機は、本発明の電気推進システムの中へ組み込まれるのに適している。
図1では、各々のSPT 111A,111Bについて、絶縁材料、たとえば誘電性セラミックから作られる部品122A,122Bによって画定された環状チャネル124A,124Bと、外側および内側環状部品134A,134Bおよび135A,135Bを有する磁気回路と、推進機の上流側に配置された磁気ヨークと、場合に応じて、磁気ヨークを環状部品134A,135Aまたは134B,135Bへ接続する中央コアとが、理解できる。外側および内側コイル131A,131Bおよび133A,133Bは、環状チャネル124A,124Bの中に磁界を創出するように働く。しかし変形では、永久磁石の助けを借りて環状チャネルの中に磁界を創出することが可能である。中空陰極140A,140Bは、キセノン供給装置へ結合され、チャネル124A,124Bの下流側出口の前面にプラズマ雲を形成する。陽極125A,125Bは、環状チャネル124A,124Bの中に配置され、イオン化可能ガス(キセノン)を分散する環状マニホールドに関連づけられる。推進機アセンブリは、ハウジングによって保護される。
陰極140A,140Bは、ヒータと、放出器と、イニシエータ要素とを含む。ガス供給パイプは、電気絶縁要素を装着される。それぞれの電気ケーブルは、陰極140A,140Bと、陽極125A,125Bと、さらに、コイル131A,131Bおよび133A,133Bの要素とを、図1では示されていない電気パワーサプライおよび制御回路へ接続する。
図2は、制御モジュールを有する本発明の電気推進システムの一般的アーキテクチャのブロック図である。
第1の主電力プロセッサユニット(PPU)160Nは、たとえば図1で示されるような1対の並置された静止型プラズマ推進機111A,111Bに関連づけられ、たとえば、衛星の北−南方位を制御するように働く。PPU 160Nは、外部推進機スイッチユニット(ETSU)170Nに関連づけられ、該ETSU 170Nは、北制御チャネルを構成する集合110Nと南制御チャネルを構成する同様な集合110Sとを切り替えるために、北制御チャネルスイッチユニット170Aおよび南制御チャネルスイッチユニット170’Aを備える。
同じように、第2のPPU 160Sは、図1で示される推進機と類似した他の1対の並置された静止型プラズマ推進機に関連づけられ、たとえば、衛星の北−南方位を制御するため同じように働く。PPU 160Sは、ETSU 170Sに関連づけられる。ETSU 170Sは、北制御チャネルを構成する集合110Nと、南制御チャネルを構成する同様な集合110Sとを切り替えるため、北制御チャネルスイッチユニット170Bおよび南制御チャネルスイッチユニット170’Bを備える。
2つのPPU 160Nおよび160Sの存在は、制御回路の中で余剰性を提供する。
下記の説明では、第1のチャネル、たとえば北制御チャネル110Nのコンポーネント要素へ、本質的に注意が払われ、第2のチャネルである南制御チャネル110Sのコンポーネント要素は、同じである。
図2は、ETSUスイッチ170Nの北スイッチユニット170Aが、第1のPPU 160Nを電気的フィルタ190Aへ接続し、第1のSPT 111Aのイオン化および放電チャネル124Aの周りに磁界を創出するためにコイル131A,133Aに電力を供給し、第1のSPT 111Aの陰極140Aの陽極125Aに電力を供給することを示す。さらに、PPU 160Nと、第1のSPT 111Aのガス流量を制御する装置180Aとの間の、ETSU 170Nの北制御チャネルスイッチユニット170Aを介する接続は、装置180Aを制御するように働く。
PPU 160Nは、外部電源、たとえば太陽電池パネルによって産出された電気を受け取り、典型的には50Vまたは100Vの電圧で供給されるこの電気を、数百ボルト程度の一層高い電圧の電気へ変換する。
PPU 160Nは、特に、ガス流量制御装置180Aへ印加されるアナログ制御信号を生成する回路を備える。
PPU 160Nは、制御回路によって供給されるデータを受け取り、該制御回路は、ガスタンク(図示されず)からガス流量制御装置180Aへ供給されるガス圧を調整するモジュール(図示されず)に関連づけられる。
イオン化可能ガス、たとえばキセノンのタンクは、こうして圧力調整器モジュールへ接続され、該圧力調整器モジュールは、それ自身、ガス流量制御装置180Aへ接続され、該ガス流量制御装置180Aは、陰極140Aおよび放電チャネルの中で陽極125Aに結合されたガスマニホールドへ、それぞれホースを介してガスを供給するように働く。
PPU 160Nに関連づけられた制御回路は、ガス圧調整器モジュールの中のセンサおよび弁の状態に関する情報を受け取り、また外部データを受け取る。制御回路によってPPU 160Nへ伝送されたデータは、ガス流量制御装置180Aへ印加されるアナログ制御信号を生成することを可能にする。
一般的に、PPU 160Nは、電気回路によって構成され、該電気回路は、第1に、ガス流量制御装置180Aへ低電力供給を提供するように働き、第2に、電磁石コイル131A,133A、陰極140A、陽極125A、および本発明の重要な特性に従った交差接続を介する選択的なやり方で、余剰SPT 111Bの陰極140Bへ高電力供給を提供するように働く。
PPU 160Sは、PPU 160Nと同じである。ETSU 170Sの北制御チャネルスイッチユニット170Bは、余剰SPT 111Bの要素、すなわちガス流量制御装置180Bおよび供給コイル131B,133Bへ、および電気的フィルタ190Bを介して陽極125Bおよび陰極140Bへ、および選択的なやり方で、交差接続を介して名目上のSPT 111の陰極140Aへ電力を供給するように働き、こうして同じように本発明の重要な特性を構成する。
図3は、スイッチユニット170N,170Sおよび電気的フィルタ190A,190B、および一時には2つの陰極の1つのみを活性化させる2つの陰極140A,140Bの交差電気接続線を有するPPU 160N,160Sの例示的実施形態を一層詳細に示す。
図3で示されるPPU 160Nは、入力電圧をコンバータ回路210へ印加する入力キャパシタ201を備え、該コンバータ回路210は、変圧器213A,213Bの1次側にそれぞれ給電するインバータを備える。変圧器213Aの2次側は、陽極125Aの電源供給モジュール221および電磁石コイル133Aの電源供給モジュール222へ接続される。変圧器213Bの2次側は、陽極125Aの電源供給モジュール、陰極140Aのイニシエータモジュール223、および陰極140Aのヒータモジュール224へ接続される。
入力電圧は、さらに、DC−DC変圧器212の1次側に給電する直流−直流(DC−DC)コンバータへ印加され、該DC−DC変圧器212は、その2次側を、熱収縮要素を制御する制御モジュール225および電磁弁を制御する制御モジュール226へ接続される。
コンバータ210は、さらに、モジュール221〜226の動作を選択的に制御するシーケンサデバイスを備える。
コンバータ210は、さらに、遠隔測定用および遠隔制御用の様々なインタフェースを備える。
一般的に、PPU 160N(および、同様にPPU 160S)は、放電に電力を供給し(SPTの陽極−陰極電圧)、SPTの中に存在する電磁石コイルに電力を供給し、陰極をイニシエートし、さらに適用可能な場合には陰極を加熱する機能を遂行し、さらにガス供給電磁弁および熱収縮部材のために補助電源供給機能を遂行する。
PPU 160N(または160S)は、さらに、特に電流制限、過電圧検出、タイミング、放電電流閾値検出、およびイオン化可能ガスの流量を変動することによる放電電流の調整(熱収縮)の機能を組み込んでいる。本発明は、特に、これらの機能の全てを保存することを可能にし、同時にSPT 111Aおよび111Bの陰極140Aおよび140Bの一方または他方との切り替え動作の可能性を維持する。
図3で理解できるように、SPT 111Aの陰極140Aは、線191によってSPT 111Bの陰極140Bへ永久的に接続される。陰極140Bのヒータ要素142Bおよび陰極140Bのイニシエータ電極144Bは、同じように、それぞれの線193,192およびスイッチユニット170Nを介して選択的なやり方で、それぞれヒータおよびイニシエータモジュール224および223へ接続される。こうして、図3で示される正規の状況において、ヒータモジュール224は、陰極140Aのヒータ要素へ接続され、イニシエータモジュール223は、陰極140Aのイニシエータ電極へ接続されるが、陰極140Aの故障が起こった場合、スイッチユニット170Nは、モジュール224および223を、線193を介して陰極140Bのヒータ要素142Bへ、および線192を介して陰極140Bのイニシエータ電極144Bへ、それぞれ切り替えさせて、陰極140Aへ接続された陰極140Bを動作させる。イニシエータ電極144A,144Bは、必須であるが、ヒータ要素142A,142Bは、有用であっても任意選択的である。
図3において、スイッチユニット170Sは、南制御チャネル(図示されず)のSPTに電力を供給する正規動作位置にあるように示される、すなわち、北制御チャネルの正規SPT 111Aは、スイッチユニット170Nの北制御チャネルを介して電力を供給され、北制御チャネルの余剰SPT 111Bは、働いていないが、モジュール223および224の出力に置かれた第1のスイッチ227,228を単に切り替えることによって、SPT 111Aの故障が起こった場合にはスイッチユニット170Nの北制御チャネルを介して働くように準備されている。しかしながら、PPU 160Nの回路が故障した場合、PPU 160Sの北制御チャネルの回路、スイッチユニット170S、および電気的フィルタ190Bは、SPT 111Bへ電力を供給するために使用される。
図4〜図9を参照して、ガス流量制御装置180Aおよび180Bの流体フローおよび電気アーキテクチャの3つの可能な実施形態の説明が続く。
図4、図6、および図8は、ガス流量制御装置180Aおよび180Bの電気部分を示し、図5、図7、および図9は、これらの装置の共通の流体フロー装置300,300’,300”を示し、該共通の流体フロー装置300,300’,300”は、タンクへ接続されたガス調整器装置の出口310と、イオン化可能ガスを受け取るSPT 111Aおよび111Bの中の要素との間、すなわち、放電チャネル124A,124Bの中の電極125A,125Bに関連づけられたガスマニホールドと、陰極140A,140Bとの間、で使用される様々な要素を有する。
図4および図5で示される実施形態において、図5で示される共通の流体フロー装置300は、第1の分岐311および第2の分岐334を備え、第1の分岐311は、第1の制御入口弁313と、第1の熱収縮要素314と、各々がそれぞれの制御弁318,325,および331を有して線141A,121A,および141Bを介し第1の陰極140A、第1の陽極125A、および第2の陰極140Bへそれぞれ接続された3つの2次分岐320,327,および333の第1の集合と、を備え、第2の分岐334は、第2の制御入口弁336と、第2の熱収縮要素337と、各々がそれぞれの制御弁342,348,および355を有して線141A,141B,および121Bを介し第1の陰極140A、第2の陰極140B、および第2の陽極125Bへそれぞれ接続された3つの2次分岐344,350,および357の第2の集合と、を備える。
フィルタ312,315,317,319,322,324,326,328,330,332,335,339,341,343,345,347,349,352,354,および356は、様々な電磁弁313,316,325,331,336,342,348,および355に関連づけられる。流量低減器316,323,329,340,346,および353は、好ましくは、電磁弁318,325,331,342,348,および355に関連づけられる。可撓性ホースは、分岐327と357との間、および線121Aと121Bとの間、に介在する。可撓性ホースは、さらに、線141Aと、点359で結合された線320および344との間、に介在する。可撓性ホースは、さらに、線141Bと、点358で結合された線333および350との間、に介在する。
図4で示された第1のガス流量制御装置180Aは、コイル413,425を有し、該コイルは、第1の制御入口弁313と、第1の陽極1252Aへ接続された2次分岐327の制御弁325とを、同時に制御するため並列に接続される。2次分岐320,333のそれぞれの制御弁318,331を制御するコイル418,431は、コイル413および425の並列接続と直列に接続され、弁318,331の一方または他方は、所定の瞬間に開いている。
図4では示されないが、装置180Aと同じであってPPU 160Nと協働する第2のガス流量制御装置180Bは、並列に接続されたコイルを有し、該コイルは、第2の制御入口弁336と、第2の陽極125Bへ接続された2次分岐357の制御弁355とを、同時に制御するため接続される。2次分岐344,350のそれぞれの制御弁342,348を制御するコイルは、上記の並列接続と直列に接続され、弁342,348の一方または他方は、所定の瞬間に開いている。
図4および図5の実施形態において、4つの電磁弁を備えるガス流量制御装置180A,180Bは、単純化されたケーブル布線を用いて提供することが特に容易である。
図6および図7の実施形態において、共通の流体フロー装置300’は、第1の分岐311を備え、第1の分岐311は、第1の制御入口弁313と、第1の熱収縮要素314と、各々がそれぞれの制御弁325,331を有する第1および第2の2次分岐327,333の第1の集合と、を備える。第1の2次分岐327は、線121Aによって第1の陽極125Aへ接続され、第2の2次分岐333は、ノード360へ接続され、該ノード360は、それ自身、第1に、第1の追加の制御弁362を介して第1の陰極140Aの電源供給線141Aへ接続され、第2に、第2の追加の制御弁366を介して第2の陰極140Bの電源供給線141Bへ接続される。
共通の流体フロー装置300’は、第2の分岐334を備え、該第2の分岐334は、第2の制御入口弁336と、第2の熱収縮要素337と、各々がそれぞれの制御弁355,348を有する第1および第2の2次分岐357,350の第2の集合と、を備える。第1の2次分岐357は、第2の陽極125Bの電源供給線121Bへ接続され、第2の2次分岐350は、分岐333と同じように共通ノード360へ接続され、該共通ノード360は、それ自身、第1に、第1の追加の制御弁362を介して第1の陰極140Aの電源供給線141Aへ接続され、第2に、第2の追加の制御弁366を介して第2の陰極140Bの電源供給線141Bへ接続される。
図4および図5の実施形態と同じように、流量低減器323,329,346,および353は、有利には、それぞれの弁325,331,348,および355に関連づけられ、フィルタ313,322,324,328,330,332,335,345,347,349,352,354,356,361,363,365,および367は、様々な電磁弁に関連づけられる。
スイッチユニット170Nを介してPPU 160Nへ接続される第1のガス流量制御装置180Aは、コイル513,525,および531を備え、該コイルは、第1の制御入口弁313、第1の分岐311の第1の2次分岐327の制御弁325、および第1の分岐311の第2の2次分岐333の弁331を同時に制御するため並列に接続される。
スイッチユニット170Sを介してPPU 160Sへ接続される第2のガス流量制御装置180Bは、コイル536,555,および548を備え、該コイルは、第2の制御入口弁336、第2の分岐334の第1の2次分岐357の制御弁355、および第2の分岐334の第2の2次分岐350の制御弁348を同時に制御するため並列に接続される。
第1および第2のガス流量制御装置180A,180Bは、さらに、第1および第2の追加の制御弁363,366を制御するコイル562,566を共通に有する。少数のコンポーネント、たとえば電気スイッチまたは継電器571,572は、これらをPPU 160Nへ接続するため、コイル562,566に関連づけられる。図6および図7の実施形態は、さらに、完全余剰と比較して単純化されたアーキテクチャを構成し、コイル562,566およびコンポーネント571,572を含む並列接続ユニットの提供は、構成において単純であることができる。
図8および図9の実施形態において、共通の流体フロー装置300”は、第1の分岐311を備え、該第1の分岐311は、第1の制御入口弁313と、第1の熱収縮要素314と、各々がそれぞれの制御弁318,325を有して第1の陰極140Aの電源供給線141Aおよび第1の陽極125Aのガスマニホールドの電源供給線121Aへそれぞれ接続された2つの2次分岐320,327の第1の集合と、を備える。共通の流体フロー装置300”は、さらに、第2の分岐334を備え、該第2の分岐334は、第2の制御入口弁336と、第2の熱収縮要素337と、各々がそれぞれの制御弁348,355を有して第2の陰極140Bの電源供給線141Bおよび第2の陽極125Bの電源供給線121Bへそれぞれ接続された2つの2次分岐350,357の第2の集合と、を備える。
第1のガス流量制御装置180Aは、第1の制御入口弁313と、2つの2次分岐320,327の第1の集合のそれぞれの弁318および325をそれぞれ制御するコイル613,625,および618と、を有する。
第2のガス流量制御装置180Bは、第2の制御入口弁336と、2つの2次分岐350,357の第2の集合のそれぞれの制御弁348,355をそれぞれ制御するコイル636,648,および655と、を有する。
第1および第2のガス流量制御装置180A,180Bは、それぞれスイッチユニット170N,170Sを介してPPU 160N,160Sへ接続される。しかしながら、少数のコンポーネント、たとえば電気スイッチまたは継電器661〜667を有するスイッチモジュール660は、スイッチユニット170N,170Sと第1および第2のガス流量制御装置180A,180Bとの間に介在し、交差モードの動作、すなわち、1つのSPTの陽極および並置された他のSPTの陰極を用いる動作を可能にする。
スイッチモジュール660によって、熱収縮要素314,337と、それらの関連づけられた弁313,318,325、および336,348,355とを、それぞれ分離したやり方で制御することが可能であり、次の制御モードの取得を可能にする。
a)コイル613,625,および618に電力を供給して弁313,318,および325を開き、熱収縮314を適用する、すなわち、第1の陽極125Aおよび第1の陰極140Aを使用する(スイッチ661,662,および663を介する接続)。
b)コイル613,625,636,および648に電力を供給して弁313,325,336,および348を開き、並列に電力を供給される熱収縮314および337を適用する、すなわち、第1の陽極125Aおよび第2の陰極140Bを使用する(スイッチ664,665,および667を介する接続)。
c)コイル636,648,および655に電力を供給して弁336,348,および355を開き、熱収縮337を適用する、すなわち、第2の陽極125Bおよび第2の陰極140Bを使用する(スイッチ665,666,および667を介する接続)。
d)コイル636,655,613,および618に電力を供給して弁336,355,313,および318を開き、並列に電力を供給される熱収縮314および337を適用する、すなわち、第2の陽極125Bおよび第1の陰極140Aを使用する(スイッチ664,661,663,および665を介する接続)。
図8および図9の実施形態の構造は、提供するのに同じく容易であり、最少数のコンポーネントを包含する。そのような事情のもとで、交差モードの動作を使用するとき、各々の熱収縮要素314,337が、それぞれ、1つだけの2次分岐320または327,または350または357と一緒に働くため、小さいガス過剰量を消費しながら陰極の動作が起こるだけである。

Claims (9)

  1. 静止型プラズマ推進機を有する電気推進システムであって、
    高圧下でガスの調整された供給のための少なくとも1つの装置(310)と、第1および第2の電力プロセッサユニット(PPU)(160N,160S)と、第1および第2の外部推進機スイッチユニット(ETSU)(170A,170B)と、第1および第2の電気的フィルタ(190A,190B)と、第1および第2の並置された静止型プラズマ推進機(111A,111B)と、を備え、
    前記第1の静止型プラズマ推進機は、第1のイオン化チャネル(124A)と、前記第1のイオン化チャネル(124A)の出口の近くに配置される単一の第1の陰極(140A)と、前記第1のイオン化チャネル(124A)に関連づけられる第1の陽極(125A)と、第1のガスマニホールド(121A,141A)と、前記第1のイオン化チャネル(124A)の周りに磁界を創出する第1の装置(131A,133A)と、を備え、
    前記第2の静止型プラズマ推進機は、第2のイオン化チャネル(124B)と、前記第2のイオン化チャネル(124B)の出口の近くに配置される第2の単一の陰極(140B)と、前記第2のイオン化チャネル(124B)に関連づけられる第2の陽極(125B)と、第2のガスマニホールド(121B,141B)と、前記第2のイオン化チャネル(124B)の周りに磁界を創出する第2の装置(131B,133B)と、を備えるシステムであって、
    前記第1および第2の陰極(140A,140B)に共通の電気接続装置(191〜193)と、
    前記第1および第2の静止型プラズマ推進機(111A,111B)の各々にそれぞれ関連づけられ、高圧下のガスの調整された供給のための前記装置(310)から前記第1および第2の陽極(125A,125B)および前記第1および第2の陰極(140A,140B)へガスを送るための共通の流体フロー装置(300,300’,300”)を有する第1および第2のガス流量制御装置(180A,180B)と、
    前記第1および第2の陽極(125A,125B)の1つと協働する前記第1および第2の陰極(140A,140B)の1つのみを所定の瞬間に活性化することを選択的に制御する装置と、をさらに備えることを特徴とする電気推進システム。
  2. 前記共通の流体フロー装置(300)は、第1の分岐(311)および第2の分岐(334)を備え、
    前記第1の分岐(311)は、少なくとも、第1の制御入口弁(313)と、第1の熱収縮要素(314)と、各々がそれぞれの制御弁(318,325,331)を有して前記第1の陰極(140A)、前記第1の陽極(125A)、および前記第2の陰極(140B)へそれぞれ接続される3つの2次分岐(320,327,333)の第1の集合と、を備え、
    前記第2の分岐(334)は、少なくとも、第2の制御入口弁(336)と、第2の熱収縮要素(337)と、各々がそれぞれの制御弁(342,348,355)を有して前記第1の陰極(140A)、前記第2の陰極(140B)、および前記第2の陽極(125B)へそれぞれ接続される3つの2次分岐(344,350,357)の第2の集合と、を備えることを特徴とする請求項1に記載のシステム。
  3. 前記第1のガス流量制御装置(180A)は、前記第1の制御入口弁(313)を制御するためのコイル(413,425,418,431)と、3つの2次分岐(320,327,333)の前記第1の集合のそれぞれの制御弁(318,325,331)を制御するための選択的制御と、を備え、
    前記第2のガス流量制御装置(180B)は、前記第2の制御入口弁(336)を制御するためのコイルと、3つの2次分岐(344,350,357)の前記第2の集合のそれぞれの制御弁(342,348,355)を制御するための選択的制御と、を備えることを特徴とする請求項2に記載のシステム。
  4. 前記共通の流体フロー装置(300’)は、第1の分岐(311)および第2の分岐(334)を備え、
    前記第1の分岐(311)は、少なくとも、第1の制御入口弁(313)と、第1の熱収縮要素(314)と、各々がそれぞれの制御弁(325,331)を有する第1および第2の2次分岐(327,333)の第1の集合と、を備え、
    前記第1の2次分岐(327)は、前記第1の陽極(125A)へ接続され、
    前記第2の2次分岐(333)は、第1に、第1の追加の制御弁(362)を介して前記第1の陰極(140A)へ接続され、第2に、第2の追加の制御弁(366)を介して前記第2の陰極(140B)へ接続され、
    前記第2の分岐(334)は、少なくとも、第2の制御入口弁(336)と、第2の熱収縮要素(337)と、各々がそれぞれの制御弁(355,348)を有する第1および第2の2次分岐(357,350)の第2の集合と、を備え、
    前記第1の2次分岐(357)は、前記第2の陽極(125B)へ接続され、
    前記第2の2次分岐(350)は、第1に、前記第1の追加の制御弁(362)を介して前記第1の陰極(140A)へ接続され、第2に、前記第2の追加の制御弁(366)を介して前記第2の陰極(140B)へ接続されることを特徴とする請求項1に記載のシステム。
  5. 前記第1のガス流量制御装置(180A)は、前記第1の制御入口弁(313)と、前記第1の分岐(311)の前記第1の2次分岐(327)の前記制御弁(325)と、前記第1の分岐(311)の前記第2の2次分岐(333)の前記弁(331)と、を同時に制御するために並列に接続されるコイル(513,525,531)を備え、
    前記第2のガス流量制御装置(180B)は、前記第2の制御入口弁(336)と、前記第2の分岐(334)の前記第1の2次分岐(357)の前記制御弁(355)と、前記第2の分岐(334)の前記第2の2次分岐(350)の前記制御弁(348)と、を同時に制御するために並列に接続されるコイル(536,555,548)を備え、
    前記第1および第2のガス流量制御装置(180A,180B)は、さらに、前記第1および第2の追加の制御弁(362,366)を制御するための共通の制御コイル(562,566)を備え、
    前記第1および第2の追加の制御弁(362,366)の一方または他方は、所定の瞬間に開いていることを特徴とする請求項4に記載のシステム。
  6. 前記共通の流体フロー装置(300”)は、第1の分岐(311)および第2の分岐(334)を備え、
    前記第1の分岐(311)は、少なくとも、第1の制御入口弁(313)と、第1の熱収縮要素(314)と、各々がそれぞれの制御弁(318,325)を有して前記第1の陰極(140A)および前記第1の陽極(125A)へそれぞれ接続される2つの2次分岐(320,327)の第1の集合と、を備え、
    前記第2の分岐(334)は、少なくとも、第2の制御入口弁(336)と、第2の熱収縮要素(337)と、各々がそれぞれの制御弁(348,355)を有して前記第2の陰極(140B)および前記第2の陽極(125B)へそれぞれ接続される2つの2次分岐(350,357)の第2の集合と、を備えることを特徴とする請求項1に記載のシステム。
  7. 前記第1のガス流量制御装置(180A)は、前記第1の制御入口弁(313)および2つの2次分岐(320,327)の前記第1の集合のそれぞれの制御弁(318,325)をそれぞれ制御するためのコイル(613,625,618)を備え、
    前記第2のガス流量制御装置(180B)は、前記第2の制御入口弁(336)および2つの2次分岐(350,357)の前記第2の集合のそれぞれの制御弁(348,355)をそれぞれ制御するためのコイルを備え、
    前記第1および第2のガス流量制御装置(180A,180B)は、前記コイルへの電源供給を選択的に制御するスイッチモジュール(660)に関連づけられることを特徴とする請求項6に記載のシステム。
  8. 少なくとも1つのフィルタが各々の制御弁に関連づけられることを特徴とする請求項1から7のいずれか一項に記載のシステム。
  9. 前記第1および第2の並置された静止型プラズマ推進機に類似し、高圧下でガスの調整された供給のための前記少なくとも1つの装置(310)と、前記第1および第2のPPU(160N,160S)と、前記第1および第2のスイッチユニット(170A,170B)と、前記第1および第2の電気的フィルタ(190A,190B)と協働する第3および第4の並置される静止型プラズマ推進機をさらに備えることを特徴とする請求項1から8のいずれか一項に記載のシステム。
JP2014529046A 2011-09-09 2012-08-03 静止型プラズマ推進機を有する電気推進システム Active JP6076984B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1158047 2011-09-09
FR1158047A FR2979956B1 (fr) 2011-09-09 2011-09-09 Systeme de propulsion electrique a propulseurs a plasma stationnaire
PCT/FR2012/051845 WO2013034825A1 (fr) 2011-09-09 2012-08-03 Systeme de propulsion electrique a propulseurs a plasma stationnaire

Publications (2)

Publication Number Publication Date
JP2014529036A JP2014529036A (ja) 2014-10-30
JP6076984B2 true JP6076984B2 (ja) 2017-02-08

Family

ID=46724541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014529046A Active JP6076984B2 (ja) 2011-09-09 2012-08-03 静止型プラズマ推進機を有する電気推進システム

Country Status (9)

Country Link
US (1) US9476413B2 (ja)
EP (1) EP2753831B1 (ja)
JP (1) JP6076984B2 (ja)
CN (1) CN103917779B (ja)
FR (1) FR2979956B1 (ja)
IL (1) IL231405A (ja)
IN (1) IN2014CN01892A (ja)
RU (1) RU2604972C2 (ja)
WO (1) WO2013034825A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181934B2 (en) * 2012-11-21 2015-11-10 The Boeing Company Rotary switch assembly for ion propulsion system
FR3024436B1 (fr) * 2014-07-30 2018-01-05 Safran Aircraft Engines Systeme et procede de propulsion spatiale
US9834324B2 (en) * 2014-11-05 2017-12-05 The Boeing Company Thrust apparatuses, systems, and methods
FR3034214B1 (fr) 2015-03-25 2017-04-07 Snecma Dispositif et procede de regulation de debit
ES2637654T3 (es) * 2015-04-08 2017-10-16 Thales Unidad de alimentación de propulsión eléctrica de satélite y sistema de gestión de propulsión eléctrica de un satélite
FR3039861B1 (fr) * 2015-08-07 2017-09-01 Snecma Systeme de propulsion electrique a propulseurs a plasma stationnaire avec unique unite d'alimentation electrique
JP2018078515A (ja) * 2016-11-11 2018-05-17 東京エレクトロン株式会社 フィルタ装置及びプラズマ処理装置
CN110234573A (zh) * 2016-12-13 2019-09-13 八河流资产有限责任公司 运载工具发射系统和方法
CN109185090B (zh) * 2018-10-26 2019-12-24 北京理工大学 一种多段式高效率脉冲等离子体推力器
CN109459255B (zh) * 2018-11-02 2021-10-26 北京航空航天大学 可更换阴极气源与流量计的多用途管路供给系统
CN111516907B (zh) * 2020-04-27 2021-08-10 哈尔滨工业大学 一种微阴极电弧推力阵列系统
EP4178859A1 (en) * 2020-07-10 2023-05-17 Aerojet Rocketdyne, Inc. Satellite including crossover power processing units for electric thrusters
GB2599933B (en) * 2020-10-15 2023-02-22 Iceye Oy Spacecraft propulsion system and method of operation
RU2764819C1 (ru) * 2021-03-04 2022-01-21 Акционерное общество «Информационные спутниковые системы» имени академика М.Ф.Решетнёва» Многофункциональная электрореактивная двигательная подсистема космического аппарата
CN115684777B (zh) * 2022-10-18 2023-10-20 兰州空间技术物理研究所 一种中高功率离子推力器联试试验方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9127433D0 (en) * 1991-12-27 1992-02-19 Matra Marconi Space Uk Propulsion system for spacecraft
FR2693770B1 (fr) 1992-07-15 1994-10-14 Europ Propulsion Moteur à plasma à dérive fermée d'électrons.
RU2044926C1 (ru) * 1993-07-13 1995-09-27 Государственное научно-производственное предприятие "Полюс" Способ стабилизации тяги электроракетного плазменного двигателя и устройство для его осуществления
FR2743191B1 (fr) 1995-12-29 1998-03-27 Europ Propulsion Source d'ions a derive fermee d'electrons
US6158209A (en) * 1997-05-23 2000-12-12 Societe Nationale D'etude Et De Construction De Moteurs D'aviation-S.N.E.C.M.A. Device for concentrating ion beams for hydromagnetic propulsion means and hydromagnetic propulsion means equipped with same
US5947421A (en) * 1997-07-09 1999-09-07 Beattie; John R. Electrostatic propulsion systems and methods
FR2782884B1 (fr) 1998-08-25 2000-11-24 Snecma Propulseur a plasma a derive fermee d'electrons adapte a de fortes charges thermiques
FR2788084B1 (fr) * 1998-12-30 2001-04-06 Snecma Propulseur a plasma a derive fermee d'electrons a vecteur poussee orientable
RU2220322C2 (ru) * 2001-10-08 2003-12-27 Федеральное государственное унитарное предприятие "Научно-производственный центр "Полюс" Способ электропитания электроракетного плазменного двигателя и устройство для его осуществления
US8550405B2 (en) * 2009-09-29 2013-10-08 Busek Company, Inc. Solar powered spacecraft power system for a hall effect thruster
CN102146902A (zh) * 2010-02-09 2011-08-10 中国科学院微电子研究所 一种高频高压单电极等离子体推进器

Also Published As

Publication number Publication date
IL231405A (en) 2017-02-28
FR2979956B1 (fr) 2013-09-27
US20140208713A1 (en) 2014-07-31
CN103917779B (zh) 2017-06-20
EP2753831B1 (fr) 2018-05-02
US9476413B2 (en) 2016-10-25
IL231405A0 (en) 2014-04-30
IN2014CN01892A (ja) 2015-05-29
RU2604972C2 (ru) 2016-12-20
JP2014529036A (ja) 2014-10-30
FR2979956A1 (fr) 2013-03-15
WO2013034825A1 (fr) 2013-03-14
CN103917779A (zh) 2014-07-09
RU2014109548A (ru) 2015-10-20
EP2753831A1 (fr) 2014-07-16

Similar Documents

Publication Publication Date Title
JP6076984B2 (ja) 静止型プラズマ推進機を有する電気推進システム
CN106574607B (zh) 航天器推进系统和方法
JP5478633B2 (ja) 宇宙船のためのイオン駆動装置
CN106828982B (zh) 一种冷气和离子复合推进系统
US10829247B2 (en) Thrust apparatuses, systems, and methods
JP2010539374A (ja) スペースクラフトにおける駆動装置
US6031334A (en) Method and apparatus for selectively distributing power in a thruster system
CN103835904A (zh) 用于离子推进系统的旋转开关
US9086060B1 (en) Telemetry for testing switch configuration in ion propulsion system
CN105114275B (zh) 一种离子推力器供配电系统
JP2011024413A (ja) 電力配電システム用バッテリおよびこれを用いて直流電圧を供給する方法
JP2017537831A (ja) 太陽電気推進用途のための電力アーキテクチャ
CN113939986A (zh) 用于包括无加热器储备式阴极的电推进系统的点火和维持电路
RU2549318C2 (ru) Способ питания и управления системой коррекции космического аппарата
Savvas et al. Power Processing Unit For Micro Satellite Electric Propulsion System
Savvas et al. PPU for a small, low power and low cost EPS
CN116096638A (zh) 包括用于电推进器的跨接电力处理单元的卫星
Boeuf et al. ION ACCELERATION THROUGH A MAGNETIC BARRIER SINGLE STAGE AND DOUBLE STAGE HALL THRUSTER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170111

R150 Certificate of patent or registration of utility model

Ref document number: 6076984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113