JP6076542B2 - Thermoplastic resin composition excellent in conductivity and impact strength - Google Patents

Thermoplastic resin composition excellent in conductivity and impact strength Download PDF

Info

Publication number
JP6076542B2
JP6076542B2 JP2016516431A JP2016516431A JP6076542B2 JP 6076542 B2 JP6076542 B2 JP 6076542B2 JP 2016516431 A JP2016516431 A JP 2016516431A JP 2016516431 A JP2016516431 A JP 2016516431A JP 6076542 B2 JP6076542 B2 JP 6076542B2
Authority
JP
Japan
Prior art keywords
aromatic vinyl
weight
monomer
thermoplastic resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016516431A
Other languages
Japanese (ja)
Other versions
JP2016526082A (en
Inventor
ヘ チョン,ウン
ヘ チョン,ウン
ギュン シン,チャン
ギュン シン,チャン
チョル リン,チョン
チョル リン,チョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of JP2016526082A publication Critical patent/JP2016526082A/en
Application granted granted Critical
Publication of JP6076542B2 publication Critical patent/JP6076542B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles

Description

本発明は、導電性熱可塑性樹脂組成物に関する。より具体的に、本発明は、導電性及び衝撃強度に優れた熱可塑性樹脂組成物に関する。   The present invention relates to a conductive thermoplastic resin composition. More specifically, the present invention relates to a thermoplastic resin composition excellent in conductivity and impact strength.

熱可塑性樹脂は、物品に塗装する場合、導電性を付与するためにプライマー処理を施した後、熱可塑性樹脂で静電塗装を行っている。静電塗装(electrostatic painting)とは、噴霧状態の塗料に電荷を付与し、塗装物に高電圧を加えることによって塗料を吸着・塗装する方法である。具体的に、塗装物は正極とし、噴霧装置は負極とすることによって、噴射される塗料粒子に(−)静電気を帯びるようにし、塗料粒子を塗装物に吸着させる。静電塗装は、一般的なスプレー方法に比べて塗料損失が少なく、塗装膜の品質や性能に優れ、自動設備が可能であり、塗装物のサイズとは関係なく塗装が可能である。   When a thermoplastic resin is applied to an article, it is subjected to a primer treatment for imparting electrical conductivity and then electrostatically applied with a thermoplastic resin. Electrostatic painting is a method in which a paint is adsorbed and applied by applying a high voltage to an object to be painted by applying an electric charge to the sprayed paint. Specifically, the coated material is a positive electrode and the spraying device is a negative electrode, so that the sprayed paint particles are charged with (−) static electricity, and the paint particles are adsorbed on the painted material. Electrostatic coating has less paint loss than general spraying methods, is superior in quality and performance of the coating film, can be automatically installed, and can be applied regardless of the size of the coating.

しかし、静電塗装を行うためには、静電塗装前に塗装物の表面を炭素溶液でコーティングして導電性を加えるプライマー処理を施さなければならない。このようなプライマー処理を施す場合、プライマー処理を施すための装置、空間及び費用がさらに必要であり、プライマーコーティング厚さに応じて塗装膜の品質が変わり、塗装物の表面にプライマー処理が均一に施されない場合、静電塗装による塗装効率が低下する。   However, in order to perform electrostatic coating, it is necessary to apply a primer treatment to add conductivity by coating the surface of the coated object with a carbon solution before electrostatic coating. When applying such a primer treatment, additional equipment, space and cost are required for the primer treatment, and the quality of the coating film changes according to the primer coating thickness, and the primer treatment is evenly applied to the surface of the paint. If it is not applied, the coating efficiency by electrostatic coating is reduced.

そこで、本発明者等は、前記のような問題を解決するために、熱可塑性樹脂にカーボンナノチューブを添加し、樹脂自体に導電性を付与することによって、プライマー処理なしでも静電塗装を可能にし、熱可塑性樹脂の組成比を特定することによって、カーボンナノチューブの添加による物性の低下を防止できる導電性熱可塑性樹脂組成物を開発するに至った。   Therefore, in order to solve the above problems, the present inventors have added carbon nanotubes to a thermoplastic resin and imparted conductivity to the resin itself, thereby enabling electrostatic coating without primer treatment. Thus, by specifying the composition ratio of the thermoplastic resin, the inventors have developed a conductive thermoplastic resin composition that can prevent deterioration of physical properties due to the addition of carbon nanotubes.

本発明の目的は、導電性に優れた熱可塑性樹脂組成物を提供することにある。   The objective of this invention is providing the thermoplastic resin composition excellent in electroconductivity.

本発明の他の目的は、衝撃強度に優れた熱可塑性樹脂組成物を提供することにある。   Another object of the present invention is to provide a thermoplastic resin composition having excellent impact strength.

本発明の更に他の目的は、プライマー処理なしで静電塗装が可能な熱可塑性樹脂組成物を提供することにある。   Still another object of the present invention is to provide a thermoplastic resin composition capable of electrostatic coating without a primer treatment.

本発明の更に他の目的は、静電塗装効率に優れた熱可塑性樹脂組成物を提供することにある。   Still another object of the present invention is to provide a thermoplastic resin composition having excellent electrostatic coating efficiency.

本発明の前記の目的及びその他の目的は、いずれも下記に説明する本発明によって達成することができる。   The above and other objects of the present invention can be achieved by the present invention described below.

本発明に係る導電性熱可塑性樹脂組成物は、(A)平均粒径が2,000Å〜5,000Åであるコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体15重量%〜35重量%、(B)平均粒径が500Å〜1,500Åであるコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体5重量%〜15重量%、及び(C)重量平均分子量が70,000g/mol〜120,000g/molである芳香族ビニル系共重合体50重量%〜80重量%を含む基礎樹脂100重量部に対して、(D)カーボンナノチューブ1重量部〜5重量部を含んでもよい。   The conductive thermoplastic resin composition according to the present invention comprises (A) 15% to 35% by weight of a rubber-modified aromatic vinyl graft copolymer having a core-shell structure with an average particle diameter of 2,000 to 5,000%. %, (B) 5 to 15% by weight of a rubber-modified aromatic vinyl graft copolymer having a core-shell structure with an average particle diameter of 500 to 1,500 and (C) a weight average molecular weight of 70,000 g. (D) 1 part by weight to 5 parts by weight of the carbon nanotube may be included with respect to 100 parts by weight of the base resin containing 50% by weight to 80% by weight of the aromatic vinyl copolymer of / mol to 120,000 g / mol. Good.

前記カーボンナノチューブ(D)は、平均粒径が5nm〜100nmで、平均長さが1μmであってもよい。   The carbon nanotube (D) may have an average particle diameter of 5 nm to 100 nm and an average length of 1 μm.

前記平均粒径が2,000Å〜5,000Åであるコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)は、平均粒径が50Å〜500Åであるゴム質重合体5重量%〜65重量%に、芳香族ビニル系単量体34重量%〜94重量%、及び前記芳香族ビニル系単量体と共重合可能な単量体1重量%〜30重量%をグラフト重合させて製造されてもよい。   The rubber-modified aromatic vinyl graft copolymer (A) having a core-shell structure having an average particle size of 2,000 to 5,000 is 5% by weight of a rubbery polymer having an average particle size of 50 to 500 Graft polymerize 34 wt% to 94 wt% of aromatic vinyl monomer and 1 wt% to 30 wt% of monomer copolymerizable with the aromatic vinyl monomer to ˜65 wt%. May be manufactured.

平均粒径が500Å〜1,500Åであるコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)は、平均粒径が20Å〜300Åであるゴム質重合体5重量%〜65重量%に、芳香族ビニル系単量体34重量%〜94重量%、及び前記芳香族ビニル系単量体と共重合可能な単量体1重量%〜30重量%をグラフト重合させて製造されてもよい。   The rubber-modified aromatic vinyl graft copolymer (B) having a core-shell structure having an average particle diameter of 500 to 1,500 is 5% to 65% by weight of a rubbery polymer having an average particle diameter of 20 to 300 mm. % By weight of 34% to 94% by weight of an aromatic vinyl monomer and 1% to 30% by weight of a monomer copolymerizable with the aromatic vinyl monomer. Also good.

コア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)及びコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)は、ゴム質重合体に不飽和カルボン酸、不飽和カルボン酸無水物、マレイミド系単量体又はこれらの混合物が0重量%〜15重量%でさらにグラフト重合されてもよい。   The rubber-modified aromatic vinyl-based graft copolymer (A) having a core-shell structure and the rubber-modified aromatic vinyl-based graft copolymer (B) having a core-shell structure have an unsaturated carboxylic acid, A saturated carboxylic acid anhydride, a maleimide monomer or a mixture thereof may be further graft-polymerized at 0 to 15% by weight.

重量平均分子量が70,000g/mol〜120,000g/molである芳香族ビニル系共重合体(C)は、芳香族ビニル系単量体60重量%〜90重量%、及び前記芳香族ビニル系単量体と共重合可能な単量体10重量%〜40重量%を重合させたものである。   The aromatic vinyl copolymer (C) having a weight average molecular weight of 70,000 g / mol to 120,000 g / mol includes aromatic vinyl monomer 60 wt% to 90 wt%, and the aromatic vinyl copolymer. 10% by weight to 40% by weight of a monomer copolymerizable with the monomer is polymerized.

芳香族ビニル系共重合体(C)は、不飽和カルボン酸、不飽和カルボン酸無水物、マレイミド系単量体、又はこれらの混合物が0重量%〜30重量%でさらに重合されてもよい。   The aromatic vinyl copolymer (C) may be further polymerized with an unsaturated carboxylic acid, an unsaturated carboxylic acid anhydride, a maleimide monomer, or a mixture thereof at 0 wt% to 30 wt%.

ゴム質重合体は、ジエン系ゴム、ジエン系ゴムに水素を添加した飽和ゴム、アクリレート系ゴム、エチレン−プロピレン−ジエン単量体三元共重合体、シリコン系ゴム、又はこれらの混合物であってもよい。   The rubbery polymer is a diene rubber, a saturated rubber obtained by adding hydrogen to a diene rubber, an acrylate rubber, an ethylene-propylene-diene monomer terpolymer, a silicon rubber, or a mixture thereof. Also good.

芳香族ビニル系単量体は、スチレン、α−メチルスチレン、β−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン、エチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、ジブロモスチレン、ビニルナフタリン、又はこれらの混合物であってもよい。   Aromatic vinyl monomers are styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, dibromostyrene, vinylnaphthalene. Or a mixture thereof.

芳香族ビニル系単量体と共重合可能な単量体は、不飽和ニトリル系単量体、アクリル系単量体、又はこれらの混合物であってもよい。   The monomer copolymerizable with the aromatic vinyl monomer may be an unsaturated nitrile monomer, an acrylic monomer, or a mixture thereof.

本発明の導電性熱可塑性樹脂組成物は、カーボンブラックをさらに含んでもよい。   The conductive thermoplastic resin composition of the present invention may further contain carbon black.

本発明の導電性熱可塑性樹脂組成物は、衝撃補強材、滴下防止剤、酸化防止剤、可塑剤、熱安定剤、光安定剤、相溶化剤、耐候安定剤、顔料、染料、着色剤、無機物添加剤、又はこれらの混合物を添加剤としてさらに含んでもよい。   The conductive thermoplastic resin composition of the present invention comprises an impact reinforcement, an anti-dripping agent, an antioxidant, a plasticizer, a heat stabilizer, a light stabilizer, a compatibilizer, a weathering stabilizer, a pigment, a dye, a colorant, An inorganic additive or a mixture thereof may be further included as an additive.

本発明に係る成形品は、本発明に係る導電性熱可塑性樹脂組成物から成形される。   The molded product according to the present invention is molded from the conductive thermoplastic resin composition according to the present invention.

以下、本発明の具体的な内容を詳細に説明する。   Hereinafter, specific contents of the present invention will be described in detail.

本発明に係る導電性熱可塑性樹脂組成物は、導電性及び衝撃強度に優れ、プライマー処理なしで静電塗装が可能であり、静電塗装の効率に優れる。   The conductive thermoplastic resin composition according to the present invention is excellent in conductivity and impact strength, can be electrostatically coated without a primer treatment, and is excellent in the efficiency of electrostatic coating.

(発明を実施するための最良の形態)
本発明は、導電性熱可塑性樹脂組成物に関し、導電性及び衝撃強度に優れた熱可塑性樹脂組成物に関する。
(Best Mode for Carrying Out the Invention)
The present invention relates to a conductive thermoplastic resin composition, and relates to a thermoplastic resin composition excellent in conductivity and impact strength.

本発明に係る導電性熱可塑性樹脂組成物は、(A)平均粒径が2,000Å〜5,000Åであるコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体15重量%〜35重量%、(B)平均粒径が500Å〜1,500Åであるコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体5重量%〜15重量%、及び(C)重量平均分子量が70,000g/mol〜120,000g/molである芳香族ビニル系共重合体50重量%〜80重量%を含む基礎樹脂100重量部に対して、(D)カーボンナノチューブ1重量部〜5重量部を含んでもよい。   The conductive thermoplastic resin composition according to the present invention comprises (A) 15% to 35% by weight of a rubber-modified aromatic vinyl graft copolymer having a core-shell structure with an average particle diameter of 2,000 to 5,000%. %, (B) 5 to 15% by weight of a rubber-modified aromatic vinyl graft copolymer having a core-shell structure with an average particle diameter of 500 to 1,500 and (C) a weight average molecular weight of 70,000 g. (D) 1 part by weight to 5 parts by weight of the carbon nanotube may be included with respect to 100 parts by weight of the base resin containing 50% by weight to 80% by weight of the aromatic vinyl copolymer of / mol to 120,000 g / mol. Good.

(A)大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体
本発明に係る熱可塑性樹脂組成物には、本発明の属する技術分野で通常の知識を有する者に知られている方法によって製造されたものや、商業的に購入可能な大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)が制限なく使用可能である。
(A) Rubber-modified aromatic vinyl graft copolymer having a core-shell structure with a large particle size The thermoplastic resin composition according to the present invention is known to those having ordinary knowledge in the technical field to which the present invention belongs. The rubber-modified aromatic vinyl-based graft copolymer (A) having a core-shell structure having a large particle size which is commercially available and commercially available can be used without limitation.

大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)の平均粒径は、2,000Å〜5,000Åであり、2,000Å〜3,000Åであることが好ましい。平均粒径が2,000Å未満である場合は、熱可塑性樹脂組成物の衝撃強度が低下し得る。   The average particle size of the rubber-modified aromatic vinyl-based graft copolymer (A) having a large particle size core-shell structure is 2,000 to 5,000, preferably 2,000 to 3,000. . When the average particle size is less than 2,000 mm, the impact strength of the thermoplastic resin composition can be lowered.

大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)は、平均粒径が50Å〜500Åであるゴム質重合体に、芳香族ビニル系単量体及び前記芳香族ビニル系単量体と共重合可能な単量体をグラフト重合させて製造してもよく、選択的に、加工性及び耐熱性を付与する単量体をグラフト共重合させて製造してもよい。   The rubber-modified aromatic vinyl graft copolymer (A) having a large particle size core-shell structure is obtained by adding an aromatic vinyl monomer and the aromatic compound to a rubbery polymer having an average particle diameter of 50 to 500 mm. A monomer that can be copolymerized with a vinyl monomer may be produced by graft polymerization, or alternatively, a monomer that imparts processability and heat resistance may be produced by graft copolymerization. .

大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)は、平均粒径が50Å〜500Åであるゴム質重合体5重量%〜65重量%に、芳香族ビニル系単量体34重量%〜94重量%、及び前記芳香族ビニル系単量体と共重合可能な単量体1重量%〜30重量%をグラフト重合させたものであり、選択的に、耐熱性及び加工性を付与するために、前記ゴム質重合体に不飽和カルボン酸、不飽和カルボン酸無水物、マレイミド系単量体及びこれらの混合物を0重量%〜15重量%でさらにグラフト重合させてもよい。   The rubber-modified aromatic vinyl graft copolymer (A) having a core-shell structure with a large particle size has an aromatic vinyl-based content of 5 to 65% by weight of a rubbery polymer having an average particle size of 50 to 500%. It is obtained by graft polymerization of 34% to 94% by weight of monomer and 1% to 30% by weight of monomer copolymerizable with the aromatic vinyl monomer. In order to impart processability, the rubbery polymer is further graft-polymerized with 0% to 15% by weight of unsaturated carboxylic acid, unsaturated carboxylic acid anhydride, maleimide monomer and a mixture thereof. Also good.

ゴム質重合体は、ジエン系ゴム、ジエン系ゴムに水素を添加した飽和ゴム、アクリレート系ゴム、エチレン−プロピレン−ジエン単量体三元共重合体、シリコン系ゴム、又はこれらの混合物であってもよい。   The rubbery polymer is a diene rubber, a saturated rubber obtained by adding hydrogen to a diene rubber, an acrylate rubber, an ethylene-propylene-diene monomer terpolymer, a silicon rubber, or a mixture thereof. Also good.

ジエン系ゴムは、ポリブタジエン、ポリ(スチレン−ブタジエン)、ポリ(アクリロニトリル−ブタジエン)、ポリイソプレン、又はこれらの混合物であってもよい。   The diene rubber may be polybutadiene, poly (styrene-butadiene), poly (acrylonitrile-butadiene), polyisoprene, or a mixture thereof.

アクリレート系ゴムは、ポリメチルアクリレート、ポリエチルアクリレート、ポリn−プロピルアクリレート、ポリn−ブチルアクリレート、ポリ2−エチルヘキシルアクリレート、ポリヘキシルメタクリレート、ポリ2−エチルヘキシルメタクリレート、又はこれらの混合物であってもよい。   The acrylate rubber may be polymethyl acrylate, polyethyl acrylate, poly n-propyl acrylate, poly n-butyl acrylate, poly 2-ethylhexyl acrylate, polyhexyl methacrylate, poly 2-ethylhexyl methacrylate, or a mixture thereof. .

シリコン系ゴムは、ポリヘキサメチルシクロトリシロキサン、ポリオクタメチルシクロシロキサン、ポリデカメチルシクロシロキサン、ポリドデカメチルシクロシロキサン、ポリトリメチルトリフェニルシクロシロキサン、ポリテトラメチルテトラフェニルシクロテトラシロキサン、ポリオクタフェニルシクロテトラシロキサン、又はこれらの混合物であってもよい。   Silicon rubbers are polyhexamethylcyclotrisiloxane, polyoctamethylcyclosiloxane, polydecamethylcyclosiloxane, polydodecamethylcyclosiloxane, polytrimethyltriphenylcyclosiloxane, polytetramethyltetraphenylcyclotetrasiloxane, polyoctaphenylcyclosiloxane. It may be tetrasiloxane or a mixture thereof.

ゴム質重合体としては、ジエン系ゴムを選択することが好ましく、ブタジエン系ゴムを選択することがさらに好ましい。   As the rubbery polymer, a diene rubber is preferably selected, and a butadiene rubber is more preferably selected.

ゴム質重合体は、平均粒径が50Å〜500Åであってもよい。ゴム質重合体の平均粒径が前記範囲内に含まれる場合、衝撃強度及び外観に優れる。   The rubbery polymer may have an average particle size of 50 to 500 mm. When the average particle diameter of the rubbery polymer is within the above range, the impact strength and the appearance are excellent.

芳香族ビニル系単量体は、スチレン、α−メチルスチレン、β−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン、エチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、ジブロモスチレン、ビニルナフタリン、又はこれらの混合物であってもよい。   Aromatic vinyl monomers are styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, dibromostyrene, vinylnaphthalene. Or a mixture thereof.

芳香族ビニル系単量体と共重合可能な単量体は、不飽和ニトリル系単量体、アクリル系単量体、又はこれらの混合物であってもよい。   The monomer copolymerizable with the aromatic vinyl monomer may be an unsaturated nitrile monomer, an acrylic monomer, or a mixture thereof.

ニトリル系単量体は、アクリロニトリル、メタクリロニトリル、エタクリロニトリル又はこれらの混合物であってもよい。アクリル系単量体は、メチルアクリレート、メチルメタクリレート、又はこれらの混合物であってもよい。   The nitrile monomer may be acrylonitrile, methacrylonitrile, ethacrylonitrile or a mixture thereof. The acrylic monomer may be methyl acrylate, methyl methacrylate, or a mixture thereof.

大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)は、耐熱性及び加工性を付与するために、ゴム質重合体に不飽和カルボン酸、不飽和カルボン酸無水物、マレイミド系単量体、又はこれらの混合物を0重量%〜15重量%でさらにグラフト重合させてもよい。   The rubber-modified aromatic vinyl graft copolymer (A) having a large particle size core-shell structure is provided with an unsaturated carboxylic acid, an unsaturated carboxylic acid anhydride to the rubbery polymer in order to impart heat resistance and processability. Further, the polymer, the maleimide monomer, or a mixture thereof may be further graft-polymerized at 0 to 15% by weight.

不飽和カルボン酸は、アクリル酸又はメタクリル酸であってもよい。不飽和カルボン酸無水物は、無水マレイン酸である。マレイミド系単量体は、アルキル、又は核置換マレイミドであってもよい。   The unsaturated carboxylic acid may be acrylic acid or methacrylic acid. The unsaturated carboxylic acid anhydride is maleic anhydride. The maleimide monomer may be alkyl or a nucleus-substituted maleimide.

本発明において、大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)は、大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)、小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)及び芳香族ビニル系共重合体(C)100重量%に対して、15重量%〜35重量%含んでもよい。   In the present invention, the rubber-modified aromatic vinyl-based graft copolymer (A) having a large particle size of the core-shell structure is a rubber-modified aromatic vinyl-based graft copolymer (A) having a large particle size of the core-shell structure. The rubber-modified aromatic vinyl-based graft copolymer (B) and the aromatic vinyl-based copolymer (C) having a small particle diameter core-shell structure may be contained in an amount of 15 to 35% by weight based on 100% by weight. Good.

大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)は、その含量が15重量%未満である場合は、熱可塑性樹脂組成物の衝撃強度が低下し、その含量が35重量%超過の場合は、熱可塑性樹脂組成物内のカーボンナノチューブの分散性が低下し得る。   When the content of the rubber-modified aromatic vinyl-based graft copolymer (A) having a large particle size of the core-shell structure is less than 15% by weight, the impact strength of the thermoplastic resin composition decreases, and the content thereof When the amount exceeds 35% by weight, the dispersibility of the carbon nanotubes in the thermoplastic resin composition may be lowered.

(B)小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体
大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)のみを使用する場合、カーボンナノチューブの分散性が低下するので、カーボンナノチューブの分散性を向上させるために小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)を共に使用する。小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)を使用する場合、大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)間に小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)が位置し得るので、カーボンナノチューブの分散性が向上し得る。
(B) Rubber-modified aromatic vinyl graft copolymer having a small particle size core-shell structure When using only a rubber-modified aromatic vinyl graft copolymer (A) having a large particle size core-shell structure, Since the dispersibility of the carbon nanotube is lowered, a rubber-modified aromatic vinyl-based graft copolymer (B) having a small particle diameter core-shell structure is used together in order to improve the dispersibility of the carbon nanotube. When using a rubber-modified aromatic vinyl-based graft copolymer (B) having a small particle size core-shell structure, between the rubber-modified aromatic vinyl-based graft copolymer (A) having a large particle size core-shell structure Since the rubber-modified aromatic vinyl-based graft copolymer (B) having a core-shell structure with a small particle size can be positioned on the surface, the dispersibility of the carbon nanotubes can be improved.

小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)の平均粒径は、500Å〜1,500Åであり、1,000Å〜1,500Åであることが好ましい。   The average particle size of the rubber-modified aromatic vinyl-based graft copolymer (B) having a core-shell structure with a small particle size is 500 to 1,500 and preferably 1,000 to 1,500.

小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)は、平均粒径が20Å〜300Åであるゴム質重合体に、芳香族ビニル系単量体及び芳香族ビニル系単量体と共重合可能な単量体をグラフト重合させて製造してもよく、選択的に、加工性及び耐熱性を付与する単量体をグラフト共重合させて製造してもよい。   The rubber-modified aromatic vinyl graft copolymer (B) having a small particle size core-shell structure is obtained by adding an aromatic vinyl monomer and an aromatic vinyl to a rubbery polymer having an average particle diameter of 20 to 300 mm. A monomer copolymerizable with a system monomer may be produced by graft polymerization, or alternatively, a monomer imparting processability and heat resistance may be selectively produced by graft copolymerization.

小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)は、平均粒径が20Å〜300Åであるゴム質重合体5重量%〜65重量%に、芳香族ビニル系単量体34重量%〜94重量%、及び前記芳香族ビニル系単量体と共重合可能な単量体1重量%〜30重量%をグラフト重合させたものであり、選択的に、耐熱性及び加工性を付与するために、前記ゴム質重合体に不飽和カルボン酸、不飽和カルボン酸無水物、マレイミド系単量体及びこれらの混合物を0重量%〜15重量%でさらにグラフト重合させてもよい。   The rubber-modified aromatic vinyl graft copolymer (B) having a core-shell structure with a small particle size is obtained by adding 5% to 65% by weight of a rubbery polymer having an average particle size of 20 to 300% by weight. It is obtained by graft polymerization of 34% to 94% by weight of monomer and 1% to 30% by weight of monomer copolymerizable with the aromatic vinyl monomer. In order to impart processability, the rubbery polymer is further graft-polymerized with 0% to 15% by weight of unsaturated carboxylic acid, unsaturated carboxylic acid anhydride, maleimide monomer and a mixture thereof. Also good.

ゴム質重合体、芳香族ビニル系単量体及び芳香族ビニル系単量体と共重合可能な単量体は、前記大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)で記載したゴム質重合体、芳香族ビニル系単量体及び芳香族ビニル系単量体と共重合可能な単量体と同一であり、重複を避けるためにそれについての記載は省略する。   The rubbery polymer, the aromatic vinyl monomer, and the monomer copolymerizable with the aromatic vinyl monomer are a rubber-modified aromatic vinyl graft copolymer having a core-shell structure with a large particle size. It is the same as the rubbery polymer, aromatic vinyl monomer, and monomer copolymerizable with the aromatic vinyl monomer described in (A), and description thereof is omitted to avoid duplication. To do.

本発明において、小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)は、大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)、小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)及び芳香族ビニル系共重合体(C)100重量%に対して、5重量%〜15重量%含まれてもよい。小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)の含量が5重量%未満である場合は、カーボンナノチューブの分散性が低下し、熱可塑性樹脂組成物の導電性が低下し得る。   In the present invention, the rubber-modified aromatic vinyl graft copolymer (B) having a small particle size core-shell structure is a rubber-modified aromatic vinyl graft copolymer (A) having a large particle diameter core-shell structure. The rubber-modified aromatic vinyl-based graft copolymer (B) and the aromatic vinyl-based copolymer (C) having a small particle diameter core-shell structure are contained in an amount of 5 to 15% by weight. May be. When the content of the rubber-modified aromatic vinyl graft copolymer (B) having a small particle size core-shell structure is less than 5% by weight, the dispersibility of the carbon nanotube is lowered, and the conductivity of the thermoplastic resin composition is reduced. May be reduced.

(C)芳香族ビニル系共重合体
本発明に係る熱可塑性樹脂組成物には、本発明の属する技術分野で通常の知識を有する者に知られている方法によって製造されたり、商業的に購入可能な芳香族ビニル系共重合体(C)が制限なく使用可能である。芳香族ビニル系共重合体(C)の例としては、交互共重合体、ランダム共重合体、ブロック共重合体などがあり、前記共重合体はグラフト共重合体を含まない。
(C) Aromatic vinyl copolymer The thermoplastic resin composition according to the present invention is manufactured by a method known to those having ordinary knowledge in the technical field to which the present invention belongs, or is commercially purchased. A possible aromatic vinyl copolymer (C) can be used without limitation. Examples of the aromatic vinyl copolymer (C) include an alternating copolymer, a random copolymer, a block copolymer, and the like, and the copolymer does not include a graft copolymer.

芳香族ビニル系共重合体(C)は、重量平均分子量が70,000g/mol〜120,000g/molであり、90,000g/mol〜110,000g/molであることが好ましい。芳香族ビニル系共重合体(C)の重量平均分子量が120,000g/mol超過の場合、カーボンナノチューブの分散性が低下し得る。   The aromatic vinyl copolymer (C) has a weight average molecular weight of 70,000 g / mol to 120,000 g / mol, preferably 90,000 g / mol to 110,000 g / mol. When the weight average molecular weight of the aromatic vinyl copolymer (C) is more than 120,000 g / mol, the dispersibility of the carbon nanotube can be lowered.

芳香族ビニル系共重合体(C)は、芳香族ビニル系単量体及び芳香族ビニル系単量体と共重合可能な単量体を共重合させて製造してもよく、選択的に、加工性及び耐熱性を付与する単量体をさらに共重合させて製造してもよい。   The aromatic vinyl copolymer (C) may be produced by copolymerizing an aromatic vinyl monomer and a monomer copolymerizable with the aromatic vinyl monomer. Monomers that impart processability and heat resistance may be further copolymerized for production.

芳香族ビニル系共重合体(C)は、芳香族ビニル系単量体60重量%〜90重量%及び芳香族ビニル系単量体と共重合可能な単量体10重量%〜40重量%を重合させて製造してもよい。   The aromatic vinyl copolymer (C) comprises 60% to 90% by weight of an aromatic vinyl monomer and 10% to 40% by weight of a monomer copolymerizable with the aromatic vinyl monomer. It may be produced by polymerization.

芳香族ビニル系単量体は、スチレン、α−メチルスチレン、β−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン、エチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、ジブロモスチレン、又はこれらの混合物であってもよく、スチレンであることが好ましい。   Aromatic vinyl monomers are styrene, α-methyl styrene, β-methyl styrene, p-methyl styrene, pt-butyl styrene, ethyl styrene, vinyl xylene, monochlorostyrene, dichlorostyrene, dibromostyrene, or these It is preferable that it is styrene.

芳香族ビニル系単量体と共重合可能な単量体は、不飽和ニトリル単量体、アクリル系単量体、又はこれらの混合物であってもよい。   The monomer copolymerizable with the aromatic vinyl monomer may be an unsaturated nitrile monomer, an acrylic monomer, or a mixture thereof.

不飽和ニトリル系単量体は、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、又はこれらの混合物であってもよい。アクリル系単量体は、メチルアクリレート、メチルメタクリレート、又はこれらの混合物であってもよい。   The unsaturated nitrile monomer may be acrylonitrile, methacrylonitrile, ethacrylonitrile, or a mixture thereof. The acrylic monomer may be methyl acrylate, methyl methacrylate, or a mixture thereof.

芳香族ビニル系共重合体(C)は、耐熱性及び加工性を付与するために、不飽和カルボン酸、不飽和カルボン酸無水物、マレイミド系単量体、又はこれらの混合物を0重量%〜30重量%でさらに重合させてもよい。   The aromatic vinyl copolymer (C) contains 0% by weight to unsaturated carboxylic acid, unsaturated carboxylic acid anhydride, maleimide monomer, or a mixture thereof in order to impart heat resistance and processability. Further polymerization may be carried out at 30% by weight.

不飽和カルボン酸はアクリル酸又はメタクリル酸であってもよく、不飽和カルボン酸無水物は無水マレイン酸であってもよく、マレイミド系単量体は、アルキル、又は核置換マレイミドであってもよい。   The unsaturated carboxylic acid may be acrylic acid or methacrylic acid, the unsaturated carboxylic acid anhydride may be maleic anhydride, and the maleimide monomer may be alkyl or a nucleus-substituted maleimide .

本発明において、芳香族ビニル系共重合体(C)は、大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)、小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)及び芳香族ビニル系共重合体(C)100重量%に対して、50重量%〜80重量%含まれてもよい。芳香族ビニル系共重合体(C)の含量が80重量%超過の場合、熱可塑性樹脂組成物の衝撃強度が低下し得る。   In the present invention, the aromatic vinyl copolymer (C) is a rubber-modified aromatic vinyl graft copolymer (A) having a large particle diameter core-shell structure, and a rubber-modified rubber composition having a small particle diameter core-shell structure. It may be contained in an amount of 50 to 80% by weight based on 100% by weight of the aromatic vinyl-based graft copolymer (B) and the aromatic vinyl-based copolymer (C). When the content of the aromatic vinyl copolymer (C) is more than 80% by weight, the impact strength of the thermoplastic resin composition can be lowered.

(D)カーボンナノチューブ
本発明に係る熱可塑性樹脂組成物は、本発明の属する技術分野で通常の知識を有する者に知られている方法によって製造されたり、商業的に購入可能なカーボンナノチューブ(D)が制限なく使用可能である。カーボンナノチューブ(D)は、熱可塑性樹脂組成物の表面抵抗を低下させ、熱可塑性樹脂組成物の導電性を高めるので、プライマー処理なしでも静電塗装を可能にする。
(D) Carbon Nanotube The thermoplastic resin composition according to the present invention is produced by a method known to those having ordinary knowledge in the technical field to which the present invention belongs, or is a commercially available carbon nanotube (D ) Can be used without limitation. Since the carbon nanotube (D) reduces the surface resistance of the thermoplastic resin composition and increases the conductivity of the thermoplastic resin composition, it enables electrostatic coating without a primer treatment.

カーボンナノチューブを合成する方法としては、電気放電法(Arc−discharge)、熱分解法(pyrolysis)、レーザー蒸着法(Laser vaporization)、プラズマ化学気相蒸着法(plasma chemical vapor deposition)、熱化学気相蒸着法(Thermal chemical vapor deposition)、電気分解法、フレーム(flame)合成法などがあるが、本発明で使用されたカーボンナノチューブ(D)としては、合成方法とは関係なく、得られたカーボンナノチューブを全て使用可能である。   Examples of the method for synthesizing carbon nanotubes include an electric discharge method (Arc-discharge), a thermal decomposition method (pyrolysis), a laser vapor deposition method (Laser vaporization), a plasma chemical vapor deposition method (plasma chemical vapor deposition), and a thermochemical vapor phase. Although there are a vapor deposition method (Thermal chemical vapor deposition), an electrolysis method, a frame synthesis method, etc., as the carbon nanotube (D) used in the present invention, the obtained carbon nanotube is used irrespective of the synthesis method. Can all be used.

カーボンナノチューブは、その壁の個数によって、単一壁カーボンナノチューブ(single wall carbon nanotube)、二重壁カーボンナノチューブ(double wall carbon nanotube)、多重壁カーボンナノチューブ(multi wall carbon nanotube)、切頭円錐状のグラフェン(truncated graphene)が多数積層された中空管の形態を有するカーボンナノファイバー(cup−stacked carbon nanofiber)に分けることができる。本発明で使用されるカーボンナノチューブ(D)は、その種類に制限はないが、多重壁カーボンナノチューブであることが経済的に好ましい。   Depending on the number of the walls, the carbon nanotube may be a single wall carbon nanotube, a double wall carbon nanotube, a multi-wall carbon nanotube, a truncated cone, or a truncated cone. It can be divided into carbon nanofibers (cup-stacked carbon nanofibers) having a hollow tube shape in which a large number of graphene (truncated graphene) is laminated. The type of the carbon nanotube (D) used in the present invention is not limited, but it is economically preferable that the carbon nanotube (D) is a multi-wall carbon nanotube.

カーボンナノチューブ(D)は、平均粒径が5nm〜100nmで、平均長さが1μm〜50μmであり、平均粒径が5nm〜30nmで、平均長さが1μm〜50μmであることが好ましい。   The carbon nanotube (D) preferably has an average particle size of 5 nm to 100 nm, an average length of 1 μm to 50 μm, an average particle size of 5 nm to 30 nm, and an average length of 1 μm to 50 μm.

本発明において、カーボンナノチューブ(D)は、大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)、小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)及び芳香族ビニル系共重合体(C)100重量部に対して、1重量部〜5重量部で含まれてもよい。カーボンナノチューブ(D)は、その含量が1重量部未満である場合は、熱可塑性樹脂組成物の導電性が低下し、その含量が5重量部超過の場合は、熱可塑性樹脂組成物の衝撃強度が低下し得る。   In the present invention, the carbon nanotube (D) comprises a rubber-modified aromatic vinyl graft copolymer (A) having a large particle diameter core-shell structure, and a rubber-modified aromatic vinyl graft having a small particle diameter core-shell structure. The copolymer (B) and the aromatic vinyl copolymer (C) may be contained in an amount of 1 to 5 parts by weight with respect to 100 parts by weight. When the content of the carbon nanotube (D) is less than 1 part by weight, the electrical conductivity of the thermoplastic resin composition is lowered, and when the content exceeds 5 parts by weight, the impact strength of the thermoplastic resin composition is reduced. Can be reduced.

(E)導電剤
熱可塑性樹脂組成物の導電性を向上させるために、導電剤としてカーボンブラックをさらに使用してもよい。前記カーボンブラックは、優れた電気導電性を具現するために、比表面積が50m/g〜1,500m/gで、平均粒子サイズが10nm〜100nmであることが好ましい。
(E) Conductive agent In order to improve the electrical conductivity of the thermoplastic resin composition, carbon black may be further used as a conductive agent. The carbon black, in order to realize excellent electrical conductivity, a specific surface area of 50m 2 / g~1,500m 2 / g, and an average particle size of 10 nm to 100 nm.

カーボンブラックは、ケッチェンブラック(ketjen black)、アセチレンブラック(acetylene balck)、ファーネスブラック(furnace black)、チャンネルブラック(channel balck)、ティムカルカーボンブラック(timcal carbon black)、又はこれらの混合物であってもよく、このうち、電気導電性に優れたケッチェンブラックであることが好ましい。   The carbon black is ketjen black, acetylene black, furnace black, channel black, timcal carbon black, or a mixture thereof. Of these, ketjen black having excellent electrical conductivity is preferable.

カーボンブラックは、優れた電気導電性を有するが、スクラッチ又は摩擦によってカーボン粒子が脱落しやすい特性を有しており、摩耗量が多く発生するという問題を有する。また、カーボンブラックを過量使用する場合、成形品の押出性が低下するという問題がある。しかし、カーボンナノチューブと共に適用する場合、カーボンブラックの含量を著しく減少させながらも一定水準以上の導電性を確保することができる。また、カーボンナノチューブのカーボンフィブリルの間に微細な導電性の3次元ネットワーク構造を形成することができ、表面抵抗値の安定化とカーボン粒子脱落の安定化を達成することができる。   Carbon black has excellent electrical conductivity, but has a characteristic that carbon particles are likely to fall off due to scratching or friction, and has a problem that a large amount of wear occurs. Further, when an excessive amount of carbon black is used, there is a problem that the extrudability of the molded product is lowered. However, when applied together with carbon nanotubes, it is possible to ensure a certain level of conductivity while significantly reducing the carbon black content. In addition, a fine conductive three-dimensional network structure can be formed between the carbon fibrils of the carbon nanotubes, and stabilization of the surface resistance value and stabilization of falling off of the carbon particles can be achieved.

本発明において、導電剤(E)は、大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)、小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)及び芳香族ビニル系共重合体(C)100重量部に対して、0.5重量部〜10重量部含まれてもよい。導電剤(E)は、その含量が0.5重量部未満である場合は、電気導電性が低下する可能性があり、その含量が10重量部超過の場合は、機械的物性及び押出性が低下する可能性がある。   In the present invention, the conductive agent (E) comprises a large particle size core-shell structure rubber-modified aromatic vinyl graft copolymer (A), a small particle size core-shell structure rubber-modified aromatic vinyl graft. 0.5 part by weight to 10 parts by weight may be included with respect to 100 parts by weight of the copolymer (B) and the aromatic vinyl copolymer (C). When the content of the conductive agent (E) is less than 0.5 parts by weight, the electrical conductivity may be lowered. When the content is more than 10 parts by weight, the mechanical properties and the extrudability are reduced. May be reduced.

(F)添加剤
本発明の熱可塑性樹脂組成物は、樹脂組成物のそれぞれの用途に応じて添加剤(F)をさらに含んでもよい。
(F) Additive The thermoplastic resin composition of the present invention may further contain an additive (F) according to each use of the resin composition.

熱可塑性樹脂組成物は、衝撃補強材、滴下防止剤、酸化防止剤、可塑剤、熱安定剤、光安定剤、相溶化剤、耐候安定剤、顔料、染料、着色剤、無機物添加剤、又はこれらの混合物をさらに含んでもよい。   The thermoplastic resin composition is an impact reinforcement, anti-dripping agent, antioxidant, plasticizer, heat stabilizer, light stabilizer, compatibilizer, weathering stabilizer, pigment, dye, colorant, inorganic additive, or A mixture of these may also be included.

本発明において、添加剤(F)は、大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)、小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)及び芳香族ビニル系共重合体(C)100重量部に対して、10重量部以下で含まれ、0.0001重量部〜10重量部以下で含まれることが好ましい。   In the present invention, the additive (F) is a rubber-modified aromatic vinyl graft copolymer (A) having a large particle diameter core-shell structure, and a rubber-modified aromatic vinyl graft having a small particle diameter core-shell structure. It is contained at 10 parts by weight or less and preferably at 0.0001 parts by weight to 10 parts by weight or less with respect to 100 parts by weight of the copolymer (B) and the aromatic vinyl copolymer (C).

本発明に係る熱可塑性樹脂組成物は、樹脂組成物を製造する公知の方法によって製造されてもよい。例えば、本発明に係る熱可塑性樹脂組成物は、本発明の構成成分とその他添加剤を同時に混合した後、押出機内で溶融・押出する方法によってペレットの形態に製造されてもよい。   The thermoplastic resin composition according to the present invention may be produced by a known method for producing a resin composition. For example, the thermoplastic resin composition according to the present invention may be produced in the form of pellets by a method in which the constituents of the present invention and other additives are simultaneously mixed and then melted and extruded in an extruder.

本発明に係る熱可塑性樹脂組成物を成形して成形品を製造する方法には、特に制限はなく、例えば、押出、射出或いはキャスティング成形方法などが適用されてもよい。成形方法は、本発明の属する分野で通常の知識を有する者によって容易に実施することができる。   There is no restriction | limiting in particular in the method of shape | molding the thermoplastic resin composition which concerns on this invention, and a molded article is manufactured, For example, extrusion, injection, or the casting shaping | molding method etc. may be applied. The molding method can be easily carried out by a person having ordinary knowledge in the field to which the present invention belongs.

本発明の成形品は、ASTM D256に準じて23℃で測定した1/8”厚の成形品のアイゾット(Izod)衝撃強度が15kgf・cm/cm〜40kgf・cm/cmである。   The molded article of the present invention has an Izod impact strength of 15 kgf · cm / cm to 40 kgf · cm / cm of a molded article having a thickness of 1/8 ”measured at 23 ° C. according to ASTM D256.

本発明の成形品は、ASTM D257に準じてWolfgang Warmbler社のSRM−100を使用して測定した表面抵抗が10−1Ω/□〜1011Ω/□である。 The molded article of the present invention has a surface resistance of 10 −1 Ω / □ to 10 11 Ω / □ measured using Wolfgang Warmbrer SRM-100 according to ASTM D257.

本発明の成形品は、ASTM D257に準じてYOKOGAWA社のMY40を使用して測定した体積抵抗(Ω・cm)が10−1Ω・cm〜10Ω・cmである。 The molded product of the present invention has a volume resistance (Ω · cm) of 10 −1 Ω · cm to 10 8 Ω · cm measured using MY40 manufactured by YOKOGAWA in accordance with ASTM D257.

本発明は、下記の実施例によってより具体化されるが、下記の実施例は、本発明を例示するために使用されるものに過ぎなく、本発明の保護範囲を限定するためのものではない。   The present invention is more concretely described by the following examples, which are only used to illustrate the present invention and are not intended to limit the protection scope of the present invention. .

(発明を実施するための形態)
実施例
実施例及び比較例で使用された各構成成分は、次の通りである。
(Mode for carrying out the invention)
Examples The components used in Examples and Comparative Examples are as follows.

(A)大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体
平均粒径が2,570Åであるg−ABSとして第一毛織社のAB03−CHAを使用した。
(A) Rubber-modified aromatic vinyl graft copolymer having a core-shell structure with a large particle size AB03-CHA manufactured by Daiichi Kori Co., Ltd. was used as g-ABS having an average particle size of 2,570 mm.

(B)小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体
平均粒径が1,300Åであるg−ABSとして第一毛織社のAB03−CHTを使用した。
(B) AB03-CHT manufactured by Daiichi Koryo Co., Ltd. was used as g-ABS having a small particle size core-shell structure rubber-modified aromatic vinyl graft copolymer having an average particle size of 1,300 mm.

(C)芳香族ビニル系共重合体
(C1)重量平均分子量が95,000g/molであるSANとして第一毛織社のCA03−AP−70を使用した。
(C) Aromatic vinyl copolymer (C1) CA03-AP-70 manufactured by Daiichi Koryo Co., Ltd. was used as a SAN having a weight average molecular weight of 95,000 g / mol.

(C2)重量平均分子量が125,000g/molであるSANとして第一毛織社のCA03−AP−30を使用した。   (C2) CA03-AP-30 manufactured by Daiichi Kori Co., Ltd. was used as a SAN having a weight average molecular weight of 125,000 g / mol.

(D)カーボンナノチューブ
平均粒径が5nm〜30nmで、平均長さが1μm〜50μmであるカーボンナノチューブとしてShowaDenko社の多重壁カーボンナノチューブであるVGCF−Xを使用した。
(D) Carbon nanotube As a carbon nanotube having an average particle diameter of 5 nm to 30 nm and an average length of 1 μm to 50 μm, VGCF-X, which is a multi-wall carbon nanotube manufactured by Showa Denko, was used.

実施例1及び比較例1〜5
前記各構成成分を下記の表1及び表2に記載した含量通りに乾式混合した後、この混合物をL/D=35、Φ=45mmである二軸押出機を使用して230℃〜260℃で押し出し、この押出物をペレットの形態に製造した。ペレット形態の押出物を80℃で4時間乾燥させた後、10oz射出機で230℃〜260℃の射出温度下で射出し、各種物性を測定するための試片を製造した。
Example 1 and Comparative Examples 1-5
After each component was dry-mixed according to the contents listed in Tables 1 and 2 below, this mixture was 230 ° C to 260 ° C using a twin screw extruder with L / D = 35 and Φ = 45 mm. The extrudate was produced in the form of pellets. The extrudate in the form of pellets was dried at 80 ° C. for 4 hours, and then injected with a 10 oz injection machine at an injection temperature of 230 ° C. to 260 ° C. to produce specimens for measuring various physical properties.

下記の表において、(A)、(B)及び(C)の混合比は、(A)、(B)及び(C)全体の100重量%に対して重量%で示したものであって、(D)は、(A)、(B)及び(C)全体の100重量部に対して重量部で示したものである。   In the following table, the mixing ratio of (A), (B) and (C) is expressed in weight% with respect to 100% by weight of the whole (A), (B) and (C), (D) is shown in parts by weight with respect to 100 parts by weight of the whole of (A), (B) and (C).

製造された試片に対して下記のような方法で物性を測定し、その結果を表2及び表3に示した。   The physical properties of the manufactured specimens were measured by the following methods, and the results are shown in Tables 2 and 3.

(1)アイゾット衝撃強度(kgf・cm/cm):ASTM D256に準じて23℃で1/8”厚で測定した。   (1) Izod impact strength (kgf · cm / cm): Measured according to ASTM D256 at 23 ° C. and 1/8 ”thickness.

(2)表面抵抗(Ω/□):ASTM D257に準じてWolfgang Warmbler社のSRM−100を使用して測定した。   (2) Surface resistance (Ω / □): Measured according to ASTM D257 using Wolfgang Warmbler SRM-100.

(3)体積抵抗(Ω・cm):ASTM D257に準じてYOKOGAWA社のMY40を使用して測定した。   (3) Volume resistance (Ω · cm): Measured using MY40 of YOKOGAWA according to ASTM D257.

(4)塗装効率(%):厚さ2mmのA4サイズの試片を射出し、試片に対して40kVの電圧をかけて塗装を行い、乾燥を行った後、塗装前後の重さを比較した。   (4) Coating efficiency (%): A4 size specimen with a thickness of 2 mm was injected, applied with a voltage of 40 kV on the specimen, dried and then compared before and after coating. did.

前記表2に示したように、本願発明の範囲に含まれる大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)、小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)、芳香族ビニル系共重合体(C)及びカーボンナノチューブ(D)を使用した実施例1の場合は、カーボンナノチューブ(D)の使用によって表面抵抗が低下し、導電性が向上した。また、大粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)と小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)を共に使用し、特定範囲の重量平均分子量を有する芳香族ビニル系共重合体(C)を使用することによって、カーボンナノチューブ(D)の使用による衝撃強度の低下を防止した。   As shown in Table 2, the rubber-modified aromatic vinyl-based graft copolymer (A) having a large particle diameter core-shell structure and the rubber modification having a small particle diameter core-shell structure included in the scope of the present invention. In the case of Example 1 using the aromatic vinyl graft copolymer (B), aromatic vinyl copolymer (C), and carbon nanotube (D), the surface resistance is reduced by using the carbon nanotube (D). And the conductivity was improved. Also, the rubber-modified aromatic vinyl graft copolymer (A) having a large particle diameter core-shell structure and the rubber-modified aromatic vinyl graft copolymer (B) having a small particle diameter core-shell structure are used together. And the fall of the impact strength by use of a carbon nanotube (D) was prevented by using the aromatic vinyl-type copolymer (C) which has a weight average molecular weight of a specific range.

その一方、カーボンナノチューブ(D)を使用しない比較例1の場合は、表面抵抗が過度に高く測定不可能であった。また、重量平均分子量が大きい芳香族ビニル系共重合体(C)を使用した比較例2の場合は、導電性及び衝撃強度が全て低下した。また、小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)を本願発明の含量範囲から逸脱して使用した比較例3及び小粒径のコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)を使用しない比較例4の場合は、衝撃強度が低下した。芳香族ビニル系共重合体(C)の重量平均分子量の範囲から逸脱して使用した比較例5の場合は、導電性及び衝撃強度が全て低下した。   On the other hand, in the case of Comparative Example 1 in which the carbon nanotube (D) was not used, the surface resistance was excessively high and could not be measured. Moreover, in the case of the comparative example 2 using the aromatic vinyl-type copolymer (C) with a large weight average molecular weight, all electroconductivity and impact strength fell. Further, Comparative Example 3 in which a rubber-modified aromatic vinyl-based graft copolymer (B) having a small particle size and a core-shell structure deviates from the content range of the present invention and a rubber having a small particle size and a core-shell structure are used. In the case of Comparative Example 4 in which the modified aromatic vinyl-based graft copolymer (B) was not used, the impact strength was lowered. In the case of Comparative Example 5 which was used deviating from the range of the weight average molecular weight of the aromatic vinyl copolymer (C), conductivity and impact strength were all lowered.

前記表3から分かるように、本願発明の範囲に含まれる実施例1の場合は、本願発明の範囲に含まれていない比較例1及び2に比べて体積抵抗及び塗装効率に優れた。   As can be seen from Table 3, in the case of Example 1 included in the scope of the present invention, the volume resistance and the coating efficiency were excellent as compared with Comparative Examples 1 and 2 not included in the scope of the present invention.

本発明の単純な変形及び変更は、この分野で通常の知識を有する者によって容易に実施することができ、このような変形や変更は、いずれも本発明の領域に含まれるものと見なすことができる。   Simple variations and modifications of the invention can be easily carried out by those having ordinary skill in the art, and any such variations and modifications are considered to be within the scope of the invention. it can.

Claims (17)

(A)平均粒径が2,000Å〜5,000Åであるコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体15重量%〜35重量%;
(B)平均粒径が500Å〜1,500Åであるコア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体5重量%〜15重量%;及び
(C)重量平均分子量が70,000g/mol〜120,000g/molである芳香族ビニル系共重合体50重量%〜80重量%;
を含む基礎樹脂100重量部に対して、
(D)カーボンナノチューブ1重量部〜5重量部;
を含む導電性熱可塑性樹脂組成物。
(A) 15% to 35% by weight of a rubber-modified aromatic vinyl graft copolymer having a core-shell structure with an average particle diameter of 2,000 to 5,000;
(B) 5 to 15% by weight of a rubber-modified aromatic vinyl graft copolymer having a core-shell structure with an average particle size of 500 to 1,500; and (C) a weight average molecular weight of 70,000 g / mol. Aromatic vinyl copolymer that is ˜120,000 g / mol, 50 wt% to 80 wt%;
For 100 parts by weight of the base resin containing
(D) 1 to 5 parts by weight of carbon nanotubes;
A conductive thermoplastic resin composition comprising:
前記カーボンナノチューブ(D)は、平均粒径が5nm〜100nmで、平均長さが1μm〜50μmであることを特徴とする、請求項1に記載の導電性熱可塑性樹脂組成物。   2. The conductive thermoplastic resin composition according to claim 1, wherein the carbon nanotubes (D) have an average particle diameter of 5 nm to 100 nm and an average length of 1 μm to 50 μm. 前記コア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(A)は、平均粒径が50Å〜500Åであるゴム質重合体5重量%〜65重量%に、芳香族ビニル系単量体34重量%〜94重量%及び前記芳香族ビニル系単量体と共重合可能な単量体1重量%〜30重量%をグラフト重合させたものであり、前記コア−シェル構造のゴム変性芳香族ビニル系グラフト共重合体(B)は、平均粒径が20Å〜300Åであるゴム質重合体5重量%〜65重量%に、芳香族ビニル系単量体34重量%〜94重量%及び前記芳香族ビニル系単量体と共重合可能な単量体1重量%〜30重量%をグラフト重合させたものであることを特徴とする、請求項1に記載の導電性熱可塑性樹脂組成物。   The rubber-modified aromatic vinyl graft copolymer (A) having a core-shell structure is composed of an aromatic vinyl monomer in an amount of 5% to 65% by weight of a rubbery polymer having an average particle size of 50 to 500%. 34% to 94% by weight and 1% to 30% by weight of a monomer copolymerizable with the aromatic vinyl-based monomer are graft-polymerized, and the core-shell structure rubber-modified aromatic The vinyl-based graft copolymer (B) comprises 5% to 65% by weight of a rubbery polymer having an average particle size of 20 to 300%, 34% to 94% by weight of an aromatic vinyl monomer, and the aromatic 2. The conductive thermoplastic resin composition according to claim 1, wherein 1% to 30% by weight of a monomer copolymerizable with an aromatic vinyl monomer is graft-polymerized. 前記ゴム質重合体は、ジエン系ゴム、ジエン系ゴムに水素を添加した飽和ゴム、アクリレート系ゴム、エチレン−プロピレン−ジエン単量体三元共重合体、シリコン系ゴム及びこれらの混合物からなる群より選ばれることを特徴とする、請求項3に記載の導電性熱可塑性樹脂組成物。   The rubbery polymer includes a diene rubber, a saturated rubber obtained by adding hydrogen to a diene rubber, an acrylate rubber, an ethylene-propylene-diene monomer terpolymer, a silicone rubber, and a mixture thereof. The conductive thermoplastic resin composition according to claim 3, wherein the conductive thermoplastic resin composition is selected. 前記芳香族ビニル系単量体は、スチレン、α−メチルスチレン、β−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン、エチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、ジブロモスチレン、ビニルナフタリン及びこれらの混合物からなる群より選ばれることを特徴とする、請求項3に記載の導電性熱可塑性樹脂組成物。   The aromatic vinyl monomers are styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, dibromostyrene, vinyl. The conductive thermoplastic resin composition according to claim 3, wherein the conductive thermoplastic resin composition is selected from the group consisting of naphthalene and a mixture thereof. 前記芳香族ビニル系単量体と共重合可能な単量体は、不飽和ニトリル系単量体、アクリル系単量体及びこれらの混合物からなる群より選ばれることを特徴とする、請求項3に記載の導電性熱可塑性樹脂組成物。   The monomer copolymerizable with the aromatic vinyl monomer is selected from the group consisting of an unsaturated nitrile monomer, an acrylic monomer, and a mixture thereof. The conductive thermoplastic resin composition described in 1. 前記ゴム質重合体に不飽和カルボン酸、不飽和カルボン酸無水物、マレイミド系単量体及びこれらの混合物からなる群より選ばれる単量体が0重量%〜15重量%でさらにグラフト重合されていることを特徴とする、請求項3に記載の導電性熱可塑性樹脂組成物。   A monomer selected from the group consisting of an unsaturated carboxylic acid, an unsaturated carboxylic acid anhydride, a maleimide monomer and a mixture thereof is further graft-polymerized at 0 to 15% by weight with the rubbery polymer. The conductive thermoplastic resin composition according to claim 3, wherein: 前記芳香族ビニル系共重合体(C)は、芳香族ビニル系単量体60重量%〜90重量%及び前記芳香族ビニル系単量体と共重合可能な単量体10重量%〜40重量%を重合させたものであることを特徴とする、請求項1に記載の導電性熱可塑性樹脂組成物。   The aromatic vinyl copolymer (C) comprises 60% to 90% by weight of an aromatic vinyl monomer and 10% to 40% of a monomer copolymerizable with the aromatic vinyl monomer. %. The conductive thermoplastic resin composition according to claim 1, wherein% is polymerized. 前記芳香族ビニル系単量体は、スチレン、α−メチルスチレン、β−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン、エチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、ジブロモスチレン及びこれらの混合物からなる群より選ばれることを特徴とする、請求項8に記載の導電性熱可塑性樹脂組成物。   The aromatic vinyl monomers include styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, dibromostyrene, and the like. The conductive thermoplastic resin composition according to claim 8, wherein the conductive thermoplastic resin composition is selected from the group consisting of: 前記芳香族ビニル系単量体と共重合可能な単量体は、不飽和ニトリル系単量体、アクリル系単量体及びこれらの混合物からなる群より選ばれることを特徴とする、請求項8に記載の導電性熱可塑性樹脂組成物。   9. The monomer copolymerizable with the aromatic vinyl monomer is selected from the group consisting of an unsaturated nitrile monomer, an acrylic monomer, and a mixture thereof. The conductive thermoplastic resin composition described in 1. 前記芳香族ビニル系共重合体(C)に不飽和カルボン酸、不飽和カルボン酸無水物、マレイミド系単量体及びこれらの混合物からなる群より選ばれる単量体が0重量%〜30重量%でさらに重合されていることを特徴とする、請求項8に記載の導電性熱可塑性樹脂組成物。   A monomer selected from the group consisting of an unsaturated carboxylic acid, an unsaturated carboxylic acid anhydride, a maleimide monomer, and a mixture thereof in the aromatic vinyl copolymer (C) is 0% by weight to 30% by weight. The conductive thermoplastic resin composition according to claim 8, which is further polymerized. カーボンブラックをさらに含むことを特徴とする、請求項1に記載の導電性熱可塑性樹脂組成物。   The conductive thermoplastic resin composition according to claim 1, further comprising carbon black. 衝撃補強材、滴下防止剤、酸化防止剤、可塑剤、熱安定剤、光安定剤、相溶化剤、耐候安定剤、顔料、染料、着色剤、無機物添加剤及びこれらの混合物からなる群より選ばれる添加剤をさらに含むことを特徴とする、請求項1に記載の導電性熱可塑性樹脂組成物。   Selected from the group consisting of impact reinforcements, anti-dripping agents, antioxidants, plasticizers, heat stabilizers, light stabilizers, compatibilizers, weathering stabilizers, pigments, dyes, colorants, inorganic additives and mixtures thereof. The conductive thermoplastic resin composition according to claim 1, further comprising an additive to be added. 請求項1〜13のいずれか1項に記載の導電性熱可塑性樹脂組成物で成形された成形品。   A molded article molded from the conductive thermoplastic resin composition according to any one of claims 1 to 13. ASTM D256に準じて23℃で測定した1/8”厚の成形品のアイゾット衝撃強度が20kgf・cm/cm〜30kgf・cm/cmであることを特徴とする、請求項14に記載の成形品。   The molded article according to claim 14, wherein the Izod impact strength of the molded article having a thickness of 1/8 "measured at 23 ° C according to ASTM D256 is 20 kgf · cm / cm to 30 kgf · cm / cm. . ASTM D257に準じてWolfgang Warmbler社のSRM−100を使用して測定した表面抵抗が10−1Ω/□〜1011Ω/□であることを特徴とする、請求項14に記載の成形品。 The molded article according to claim 14, wherein the surface resistance measured by using SRM-100 of Wolfgang Warmbler according to ASTM D257 is 10 −1 Ω / □ to 10 11 Ω / □. ASTM D257に準じてYOKOGAWA社のMY40を使用して測定した体積抵抗が10−1Ω・cm〜10Ω・cmであることを特徴とする、請求項14に記載の成形品。 The molded article according to claim 14, wherein the volume resistance measured using MY40 of YOKOGAWA in accordance with ASTM D257 is 10 -1 Ω · cm to 10 8 Ω · cm.
JP2016516431A 2013-05-31 2013-08-30 Thermoplastic resin composition excellent in conductivity and impact strength Expired - Fee Related JP6076542B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2013-0062536 2013-05-31
KR1020130062536A KR20140141145A (en) 2013-05-31 2013-05-31 Thermoplastic Resin Composition Having Excellent Conductivity and Impact Strength
PCT/KR2013/007805 WO2014193039A1 (en) 2013-05-31 2013-08-30 Thermoplastic resin composition having excellent conductivity and impact strength

Publications (2)

Publication Number Publication Date
JP2016526082A JP2016526082A (en) 2016-09-01
JP6076542B2 true JP6076542B2 (en) 2017-02-08

Family

ID=51989035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016516431A Expired - Fee Related JP6076542B2 (en) 2013-05-31 2013-08-30 Thermoplastic resin composition excellent in conductivity and impact strength

Country Status (3)

Country Link
JP (1) JP6076542B2 (en)
KR (1) KR20140141145A (en)
WO (1) WO2014193039A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181828A1 (en) 2018-03-20 2019-09-26 大日精化工業株式会社 Electrically conductive resin composition and method for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748437B1 (en) * 2015-10-14 2017-06-16 금호석유화학 주식회사 Method for manufacturing plastic substrate for electrostatic painting
KR101800845B1 (en) 2016-03-30 2017-11-23 금호석유화학 주식회사 Electroconductive resin composition and molded product thereof
KR102153594B1 (en) * 2018-10-19 2020-09-11 주식회사 폴리원 Carbon nanotube dispersion solution
KR20230032699A (en) * 2021-08-31 2023-03-07 롯데케미칼 주식회사 Thermoplastic resin composition and article manufactured using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3630182B2 (en) * 1994-11-15 2005-03-16 株式会社カネカ Resin composition with excellent impact resistance
JP3286550B2 (en) * 1997-03-10 2002-05-27 奇美実業股▲分▼有限公司 Rubber modified styrenic resin composition
EP1777262A1 (en) * 2005-10-24 2007-04-25 Basf Aktiengesellschaft Carbon nanotubes reinforced thermoplastic molding compositions and production process therefor
KR100992537B1 (en) * 2007-12-31 2010-11-05 제일모직주식회사 Low Gloss Thermoplastic Resin Composition with Soft Touch Surface and Moulding Product Thereof
TW201100492A (en) * 2009-06-24 2011-01-01 Cheil Ind Inc Polyphenyleneether thermoplastic resin composition, method of preparing the same, and molded product using the same
US20100327234A1 (en) * 2009-06-24 2010-12-30 Cheil Industries Inc. Polyphenylene Ether Thermoplastic Resin Composition, Method of Preparing the Same, and Molded Product Using the Same
KR101228347B1 (en) * 2009-12-07 2013-02-01 금호석유화학 주식회사 Thermoplastic resin composition with high gloss and anti-scrach propertis
JP2011208123A (en) * 2010-01-29 2011-10-20 Kaneka Corp Electrically conductive resin composition and molded product of the same
KR101293789B1 (en) * 2010-12-28 2013-08-06 제일모직주식회사 Flameproof Thermoplastic Resin Composition
KR101400694B1 (en) * 2010-12-31 2014-05-29 제일모직주식회사 Thermally conductive thermoplastic resin composition having good electro-conductivity and molded articles thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181828A1 (en) 2018-03-20 2019-09-26 大日精化工業株式会社 Electrically conductive resin composition and method for producing same
US11749421B2 (en) 2018-03-20 2023-09-05 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Electrically conductive resin composition and method for producing same

Also Published As

Publication number Publication date
WO2014193039A1 (en) 2014-12-04
JP2016526082A (en) 2016-09-01
KR20140141145A (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP6076542B2 (en) Thermoplastic resin composition excellent in conductivity and impact strength
JP6263234B2 (en) Thermoplastic resin composition and molded article using the same
US20190378634A1 (en) Masterbatches for Preparing Composite Materials with Enhanced Conductivity Properties, Process and Composite Materials Produced
KR100992537B1 (en) Low Gloss Thermoplastic Resin Composition with Soft Touch Surface and Moulding Product Thereof
Ma et al. Electrically conductive and super-tough polypropylene/carbon nanotube nanocomposites prepared by melt compounding
JP6070857B2 (en) Latex composition and method for producing the same, method for producing composite material, and method for producing conductive molded body
JP2020536984A (en) Thermoplastic resin composition and molded article formed thereby
KR20130076616A (en) Thermoplastic resin composition and article fabricated using the same
JP2007327010A (en) Thermoplastic resin composition of high thermal conductivity
JP2017536423A (en) Thermoplastic resin composition and molded product using the same
US10486334B2 (en) Method for manufacturing plastic substrate for electrostatic painting
CN102971370A (en) Polyolefin resin composition and process for producing same
KR20140099609A (en) Thermoplastic Resin Composition Having Excellent Appearance Quality and Antistaticity
KR101228347B1 (en) Thermoplastic resin composition with high gloss and anti-scrach propertis
KR20200049675A (en) Conductive thermoplastic resin composition, method of preparing the same, and molded articles using electrstatic painting
JP2008156478A (en) Carbon nanotube-containing composition, production method thereof, and coating film, cured film, composite, resin molding and master batch obtained therefrom,
CN106750918A (en) Dust-proof anti-soil plastics and its preparation method and application and dustproof electric fan flabellum and dustproof electric fan
KR20140119429A (en) Thermoplastic Resin Composition having Excellent Anti-static Property and Molded Articles Thereof
JP6547352B2 (en) Thermoplastic resin composition
KR20150066261A (en) Conductive thermoplastic resin composition for electrostatic painting, thermoplastic resin and molded articles comprising same
WO2017104508A1 (en) Thermoplastic resin composition
US10444413B2 (en) Black molded body and light reflective molded body and method for producing black molded body
JP3549718B2 (en) Method for producing styrenic resin composition
JP2005162961A (en) Conductive thermoplastic resin composition and molded product using the same
JP2005105031A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170110

R150 Certificate of patent or registration of utility model

Ref document number: 6076542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees