JP6074246B2 - Endoscope - Google Patents

Endoscope Download PDF

Info

Publication number
JP6074246B2
JP6074246B2 JP2012269986A JP2012269986A JP6074246B2 JP 6074246 B2 JP6074246 B2 JP 6074246B2 JP 2012269986 A JP2012269986 A JP 2012269986A JP 2012269986 A JP2012269986 A JP 2012269986A JP 6074246 B2 JP6074246 B2 JP 6074246B2
Authority
JP
Japan
Prior art keywords
lens
group
optical system
light source
point light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012269986A
Other languages
Japanese (ja)
Other versions
JP2014115495A (en
Inventor
幸子 那須
幸子 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2012269986A priority Critical patent/JP6074246B2/en
Publication of JP2014115495A publication Critical patent/JP2014115495A/en
Application granted granted Critical
Publication of JP6074246B2 publication Critical patent/JP6074246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Lenses (AREA)
  • Endoscopes (AREA)

Description

本発明は、所定の面上を移動する点光源より射出される光を集光させる集光光学系、及び該集光光学系を備える観察器具に関する。   The present invention relates to a condensing optical system that condenses light emitted from a point light source moving on a predetermined surface, and an observation instrument including the condensing optical system.

生体組織等の被写体を観察するための観察器具として、所定の走査光により被写体(被検面)を走査してその像を得ることが可能なものが知られている。この種の観察器具の具体的構成が、例えば特許文献1に記載されている。   2. Description of the Related Art As an observation instrument for observing a subject such as a living tissue, one that can scan a subject (surface to be examined) with predetermined scanning light and obtain an image thereof is known. A specific configuration of this type of observation instrument is described in Patent Document 1, for example.

特許文献1に記載の観察器具は、共焦点顕微鏡の原理を応用して設計された共焦点プローブであり、内視鏡の先端部内に組み込まれている。共焦点プローブは、プローブ内に配置された光ファイバを振ることにより光ファイバの射出端(点光源)を光軸と実質直交する所定の面上で周期的に移動させながら、点光源より射出された光(励起光)の点像を集光光学系を介して被検面上で走査する。以下、所定の面上を移動する点光源より射出される光を被検面上で走査する集光光学系を「走査用集光光学系」と記す。共焦点プローブは、励起光により励起された被検面から発せられる蛍光を取り込み、所定の画像生成装置に伝送する。   The observation instrument described in Patent Document 1 is a confocal probe designed by applying the principle of a confocal microscope, and is incorporated in the distal end portion of an endoscope. The confocal probe is emitted from the point light source while periodically moving the emission end (point light source) of the optical fiber on a predetermined plane substantially orthogonal to the optical axis by shaking the optical fiber disposed in the probe. The point image of the reflected light (excitation light) is scanned on the surface to be examined via the condensing optical system. Hereinafter, a condensing optical system that scans the surface to be inspected with light emitted from a point light source moving on a predetermined surface is referred to as a “scanning condensing optical system”. The confocal probe captures fluorescence emitted from the test surface excited by the excitation light and transmits the fluorescence to a predetermined image generation apparatus.

特開2005−80769号公報JP 2005-80769 A

特許文献1に例示される、この種の走査用集光光学系には、観察器具を体腔内へ挿入している間の患者の負担を軽減するため、より一層の小型化が求められている。また、体腔内の被写体を広い視野で観察するため、より一層の広画角化も求められている。しかし、走査用集光光学系において、より一層の小型化及び広画角化の両立を試みると、像面湾曲をはじめ、諸収差の発生を抑えるのが難しかった。そこで、本発明者は、鋭意検討を重ね、小型化及び広画角化を両立させつつも像面湾曲を含む諸収差の発生を抑えるのに好適な集光光学系を見出すことができ、本発明を完成させるに至った。   This type of condensing optical system for scanning exemplified in Patent Document 1 is required to be further miniaturized in order to reduce the burden on the patient while the observation instrument is inserted into the body cavity. . Further, in order to observe a subject in a body cavity with a wide field of view, a wider angle of view is also required. However, in the condensing optical system for scanning, when trying to achieve both a further reduction in size and a wide angle of view, it is difficult to suppress the occurrence of various aberrations including field curvature. Therefore, the present inventor has made extensive studies and has found a condensing optical system suitable for suppressing the occurrence of various aberrations including field curvature while achieving both a reduction in size and a wide angle of view. The invention has been completed.

本発明の一形態に係る集光光学系は、所定の面上を移動する点光源より射出される光を集光させる走査用集光光学系であり、点光源側から順に、正のパワーを持つ第1群、正のパワーを持つ第2群を有する。第1群と第2群との間の軸上光は略平行光である。第1群は、点光源側から順に、点光源側に凹面を向けた第1のメニスカスレンズ、被検面側に凸面を向けた第1の正レンズ、点光源側に凸面を向けた第2の正レンズ、被検面側に凹面を向けた、負レンズと正レンズからなる第1の接合レンズを有する。第2群は、点光源側から順に、点光源側に凹面を向けた、負レンズと正レンズからなる第1の接合レンズ、第1の正レンズ、被検面側に凹面を向けた第1のメニスカスレンズを有する。当該集光光学系は、第1のメニスカスレンズの点光源側の面の曲率半径をr11と定義し、第1のメニスカスレンズの被検面側の面の曲率半径をr21と定義し、第1のメニスカスレンズの点光源側の面の曲率半径をr12と定義し、第1のメニスカスレンズの被検面側の面の曲率半径をr22と定義した場合に、次の条件式
−0.4<SF<0.0
−0.6<SF<−0.1
但し、
SF:(r11−r21)/(r11+r21
SF:(r12−r22)/(r12+r22
を満たす。
A condensing optical system according to an aspect of the present invention is a condensing optical system for scanning that condenses light emitted from a point light source moving on a predetermined surface, and has positive power sequentially from the point light source side. A first group having a second group having a positive power. The axial light between the first group and the second group is substantially parallel light. In the first group, in order from the point light source side, a first meniscus lens having a concave surface facing the point light source side, a first positive lens having a convex surface facing the test surface side, and a convex surface facing the point light source side second first positive lens, a concave surface on the object surface side, and a first 1 of the cemented lens consisting of a negative lens and a positive lens. The second group, in order from the point light source side, a concave surface facing the point light source side, the first and second cemented lens consisting of a negative lens and a positive lens, the first and second positive lens, a concave surface on the object surface side having first and second meniscus lens. The condensing optical system, the curvature radius of the light source side surface points of the first 1 of the meniscus lens is defined as r 11, defines a radius of curvature of the surface of the test surface side of the first one meniscus lens with r 21 and, if the radius of curvature of the light source side surface points of the first and second meniscus lens is defined as r 12, where the radius of curvature of the surface of the test surface side of the first and second meniscus lens is defined as r 22, the following Conditional expression of −0.4 <SF 1 <0.0
−0.6 <SF 2 <−0.1
However,
SF 1 : (r 11 −r 21 ) / (r 11 + r 21 )
SF 2: (r 12 -r 22 ) / (r 12 + r 22)
Meet.

本発明の一形態に係る集光光学系は、所定の面上を移動する点光源より射出される光を集光させる走査用集光光学系であり、点光源側から順に、正のパワーを持つ第1群、正のパワーを持つ第2群を有する。第1群と第2群との間の軸上光は略平行光である。第1群は、点光源側から順に、点光源側に凹面を向けた第1のメニスカスレンズ、被検面側に凸面を向けた第1の正レンズ、負レンズと正レンズからなる第1の接合レンズ、被検面側に凹面を向けた第2のメニスカスレンズを有する。第2群は、点光源側から順に、点光源側に凹面を向けた、負レンズと正レンズからなる第1の接合レンズ、第1の正レンズ、被検面側に凹面を向けた第1のメニスカスレンズを有する。当該集光光学系は、次の条件式
−0.4<SF<0.0
−0.6<SF<−0.1
但し、
SF:(r11−r21)/(r11+r21
SF:(r12−r22)/(r12+r22
を満たす。
A condensing optical system according to an aspect of the present invention is a condensing optical system for scanning that condenses light emitted from a point light source moving on a predetermined surface, and has positive power sequentially from the point light source side. A first group having a second group having a positive power. The axial light between the first group and the second group is substantially parallel light. The first group includes, in order from the point light source side, a first meniscus lens having a concave surface facing the point light source side, a first positive lens having a convex surface facing the test surface side, a negative lens, and a positive lens. 1 1 of the cemented lens, having a second one meniscus lens having a concave surface on the object surface side. The second group, in order from the point light source side, a concave surface facing the point light source side, the first and second cemented lens consisting of a negative lens and a positive lens, the first and second positive lens, a concave surface on the object surface side having first and second meniscus lens. The condensing optical system has the following conditional expression −0.4 <SF 1 <0.0.
−0.6 <SF 2 <−0.1
However,
SF 1 : (r 11 −r 21 ) / (r 11 + r 21 )
SF 2: (r 12 -r 22 ) / (r 12 + r 22)
Meet.

本発明の一形態及び別の形態によれば、集光光学系の小型化及び広画角化を両立させた場合も像面湾曲(及びコマ収差、非点収差、球面収差、色収差等の諸収差)の発生を抑えることができると共に、点光源より射出された射出光を効率的に取り込むことができ、かつ励起光を被検面に効率的に照射し、照射された被検面からの蛍光を効率的に取り込むことができる。   According to one aspect and another aspect of the present invention, the field curvature (and coma aberration, astigmatism, spherical aberration, chromatic aberration, etc.) can be achieved even when the condensing optical system is downsized and widened. Aberration) can be suppressed, the emitted light emitted from the point light source can be taken in efficiently, and the excitation light can be efficiently irradiated onto the test surface. Fluorescence can be taken up efficiently.

また、上記集光光学系は、第1群を構成するレンズのうち最も負のパワーの強いレンズの焦点距離をf1nと定義し、第1群の焦点距離をfと定義した場合に、次の条件式
−4.5≦f1n/f≦−0.5
を満たす構成としてもよい。
Further, the condensing optical system defines a focal length of a lens having the strongest negative power among lenses constituting the first group as f 1n and defines a focal length of the first group as f 1 . The following conditional expression −4.5 ≦ f 1n / f 1 ≦ −0.5
It is good also as composition which satisfies.

また、上記集光光学系は、第2群を構成するレンズのうち最も負のパワーの強いレンズの焦点距離をf2nと定義し、第2群の焦点距離をfと定義した場合に、次の条件式
−0.9≦f2n/f≦−0.5
を満たす構成としてもよい。
Further, the condensing optical system, the focal length of the strong lens the most negative power among the lenses constituting the second group is defined as f 2n, the focal length of the second lens group when defined as f 2, The following conditional expression −0.9 ≦ f 2n / f 2 ≦ −0.5
It is good also as composition which satisfies.

また、上記集光光学系は、第1群を構成するレンズのうち最も正のパワーの強いレンズの焦点距離をf1pと定義した場合に、次の条件式
1.0≦f1p/f≦4.0
を満たす構成としてもよい。
Further, the condensing optical system, the focal length of the strong lens the most positive power of the lenses constituting the first group when defined as f 1p, the following conditional expression 1.0 ≦ f 1p / f 1 ≦ 4.0
It is good also as composition which satisfies.

また、上記集光光学系は、第2群を構成するレンズのうち最も正のパワーの強いレンズの焦点距離をf2pと定義した場合に、次の条件式
0.5≦f2p/f≦3.0
を満たす構成としてもよい。
Further, the condensing optical system, the focal length of the strong lens the most positive power of the lenses constituting the second group when defined as f 2p, the following conditional expression 0.5 ≦ f 2p / f 2 ≦ 3.0
It is good also as composition which satisfies.

また、上記集光光学系は、第1のメニスカスレンズの焦点距離をf1mと定義した場合に、次の条件式
5.0≦|f1m/f|≦20.0
を満たす構成としてもよい。
Further, the condensing optical system, when the focal length of the first 1 of the meniscus lens is defined as f 1 m, the following conditional expression 5.0 ≦ | f 1m / f 1 | ≦ 20.0
It is good also as composition which satisfies.

また、上記集光光学系は、第1のメニスカスレンズの焦点距離をf2mと定義した場合に、次の条件式
1.5≦|f2m/f|≦4.5
を満たす構成としてもよい。
Further, the condensing optical system, when the focal length of the first and second meniscus lens is defined as f 2m, the following conditional expression 1.5 ≦ | f 2m / f 2 | ≦ 4.5
It is good also as composition which satisfies.

また、上記集光光学系は、第1群を構成するレンズのレンズ面のうち最も被検面側に配置される面と、第2群を構成するレンズのレンズ面のうち最も点光源側に配置される面とが互いに向き合う一対の凹面であり、この凹面を持つ少なくとも一方が負レンズであり、一対の凹面のうち、被検面側に向く凹面の曲率半径をr31と定義し、曲率半径r31を持つ凹面と向き合う凹面の曲率半径をr32と定義した場合に、次の条件式
―0.2<SF<0.0
但し、
SF:(r31+r32)/(r31−r32
を満たす構成としてもよい。
The condensing optical system includes a surface arranged closest to the test surface among lens surfaces of the lenses constituting the first group and a point light source side closest to the lens surfaces of the lenses constituting the second group. A pair of concave surfaces facing each other is a pair of concave surfaces, and at least one of the concave surfaces is a negative lens. Of the pair of concave surfaces, the radius of curvature of the concave surface facing the test surface side is defined as r 31 , When the curvature radius of the concave surface facing the concave surface having the radius r 31 is defined as r 32 , the following conditional expression −0.2 <SF 3 <0.0
However,
SF 3: (r 31 + r 32) / (r 31 -r 32)
It is good also as composition which satisfies.

また、曲率半径r31の凹面を持つレンズ、曲率半径r32の凹面を持つレンズは、夫々が符号の異なるパワーを持つレンズと接合されることにより、一対の正負の接合レンズを構成するものとしてもよい。 A lens having a concave surface with a radius of curvature r 31 and a lens having a concave surface with a radius of curvature r 32 are combined with lenses having different powers to form a pair of positive and negative cemented lenses. Also good.

また、本発明の一形態に係る観察器具は、上記集光光学系が先端部内に組み込まれたことを特徴とする。   An observation instrument according to one embodiment of the present invention is characterized in that the light collecting optical system is incorporated in a distal end portion.

本発明の一形態及び別の形態によれば、小型化及び広画角化を両立させつつ像面湾曲を含む諸収差の発生を抑えるのに好適な集光光学系、及び該集光光学系を備えた観察器具が提供される。   According to one aspect and another aspect of the present invention, a condensing optical system suitable for suppressing the occurrence of various aberrations including field curvature while achieving both a reduction in size and a wide angle of view, and the condensing optical system An observation instrument is provided.

本発明の実施形態の一体型内視鏡の先端部の内部構成を示す側断面図である。It is a sectional side view which shows the internal structure of the front-end | tip part of the integrated endoscope of embodiment of this invention. 本発明の実施形態の一体型内視鏡が備える共焦点光学システムにおける走査用集光光学系近傍の拡大図である。It is an enlarged view near the condensing optical system for scanning in the confocal optical system with which the integrated endoscope of the embodiment of the present invention is provided. 本発明の実施形態(実施例1)の走査用集光光学系及びその後段の光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the condensing optical system for a scanning of embodiment (Example 1) of this invention, and a subsequent stage optical component. 本発明の実施例1の走査用集光光学系の各種収差図である。FIG. 4 is various aberration diagrams of the scanning condensing optical system according to Example 1 of the present invention. 本発明の実施例2の走査用集光光学系及びその後段の光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the condensing optical system for a scanning of Example 2 of this invention, and the optical component of the back | latter stage. 本発明の実施例2の走査用集光光学系の各種収差図である。It is various aberrational figures of the condensing optical system for scanning of Example 2 of this invention. 本発明の実施例3の走査用集光光学系及びその後段の光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the condensing optical system for a scanning of Example 3 of this invention, and the optical component of the back | latter stage. 本発明の実施例3の走査用集光光学系の各種収差図である。It is various aberrational figures of the condensing optical system for scanning of Example 3 of this invention. 本発明の実施例4の走査用集光光学系及びその後段の光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the condensing optical system for a scanning of Example 4 of this invention, and the optical component of the back | latter stage. 本発明の実施例4の走査用集光光学系の各種収差図である。It is various aberrational figures of the condensing optical system for scanning of Example 4 of this invention. 本発明の実施例5の走査用集光光学系及びその後段の光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the condensing optical system for a scanning of Example 5 of this invention, and the optical component of the back | latter stage. 本発明の実施例5の走査用集光光学系の各種収差図である。It is various aberrational figures of the condensing optical system for scanning of Example 5 of this invention. 本発明の実施例6の走査用集光光学系及びその後段の光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the condensing optical system for a scanning of Example 6 of this invention, and the optical component of the back | latter stage. 本発明の実施例6の走査用集光光学系の各種収差図である。It is various aberrational figures of the condensing optical system for scanning of Example 6 of this invention. 本発明の実施例7の走査用集光光学系及びその後段の光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the condensing optical system for a scanning of Example 7 of this invention, and the optical component of the back | latter stage. 本発明の実施例7の走査用集光光学系の各種収差図である。It is various aberrational figures of the condensing optical system for scanning of Example 7 of this invention. 本発明の実施例8の走査用集光光学系及びその後段の光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the condensing optical system for a scanning of Example 8 of this invention, and its subsequent stage optical components. 本発明の実施例8の走査用集光光学系の各種収差図である。It is various aberrational figures of the condensing optical system for scanning of Example 8 of this invention. 比較例1の走査用集光光学系及びその後段の光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the condensing optical system for a scan of the comparative example 1, and the optical component of the latter stage. 比較例1の走査用集光光学系の各種収差図である。FIG. 6 is various aberration diagrams of the scanning condensing optical system of Comparative Example 1.

以下、図面を参照して、本発明の実施形態に係る走査用集光光学系を備える一体型内視鏡について説明する。   Hereinafter, an integrated endoscope including a condensing optical system for scanning according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態の一体型内視鏡300の先端部の内部構成を示す側断面図である。図1に示されるように、一体型内視鏡300の先端部内には、被写体(体腔内の生体組織400)を高倍率で観察(共焦点観察)するための共焦点光学システム100、及び生体組織400を通常観察するための通常観察用光学システム200が組み込まれている。なお、一体型内視鏡300は、図示省略されたプロセッサに接続されている。プロセッサは、各光学システムに対応する光源ユニット、及び各光学システムにより撮像された生体組織400の撮像信号を処理する画像処理ユニットを備えている。これらのユニットは周知であるため、その具体的構成の説明は省略する。また、各図においては、共焦点光学システム100の走査用集光光学系10の光軸方向をZ方向と定義し、Z方向と直交し、かつ互いに直交する方向をそれぞれX方向、Y方向と定義する。つまり、X方向とY方向はZ方向と直交する面(XY平面)を規定する。   FIG. 1 is a side sectional view showing the internal configuration of the distal end portion of the integrated endoscope 300 of the present embodiment. As shown in FIG. 1, a confocal optical system 100 for observing a subject (biological tissue 400 in a body cavity) at a high magnification (confocal observation) and a living body are provided in the distal end portion of the integrated endoscope 300. A normal observation optical system 200 for normal observation of the tissue 400 is incorporated. The integrated endoscope 300 is connected to a processor (not shown). The processor includes a light source unit corresponding to each optical system and an image processing unit that processes an imaging signal of the living tissue 400 imaged by each optical system. Since these units are well-known, description of the concrete structure is abbreviate | omitted. Moreover, in each figure, the optical axis direction of the condensing optical system 10 for scanning of the confocal optical system 100 is defined as the Z direction, and the directions perpendicular to the Z direction and perpendicular to each other are defined as the X direction and the Y direction, respectively. Define. That is, the X direction and the Y direction define a plane (XY plane) orthogonal to the Z direction.

通常観察用光学システム200は、光源ユニットが持つ光源(例えばキセノンランプ)からの光を生体組織400へ照射する照明光学系や、照射された生体組織400を撮像する固体撮像素子等を備えている。   The normal observation optical system 200 includes an illumination optical system that irradiates the living tissue 400 with light from a light source (for example, a xenon lamp) included in the light source unit, a solid-state imaging device that images the irradiated living tissue 400, and the like. .

共焦点光学システム100は、走査用集光光学系10、シングルモード光ファイバ(以下、単に「光ファイバ」と記す。)20、圧電素子30A及び30B(二軸アクチュエータ)、形状記憶合金40、カバーガラス80を備えている。走査用集光光学系10及び光ファイバ20は、円筒状の枠体50内に保持されている。枠体50は、該枠体50の径よりも若干大きめの径を持つ円筒状の金属パイプ60内にスライド可能に保持されている。   The confocal optical system 100 includes a scanning condensing optical system 10, a single mode optical fiber (hereinafter simply referred to as "optical fiber") 20, piezoelectric elements 30A and 30B (biaxial actuator), a shape memory alloy 40, a cover. Glass 80 is provided. The scanning condensing optical system 10 and the optical fiber 20 are held in a cylindrical frame 50. The frame 50 is slidably held in a cylindrical metal pipe 60 having a diameter slightly larger than the diameter of the frame 50.

光ファイバ20は、光源ユニットより入射したレーザ光(励起光)を伝送し、伝送された励起光を一体型内視鏡300の先端部内(共焦点光学システム100内)に配された射出端21より射出する。光ファイバ20の射出端21は、共焦点光学システム100の二次的な点光源として機能する。点光源である射出端21の二次元方向(XYの各方向)における位置は、圧電素子30A及び30Bの動作に応じて周期的に変化する。具体的には、プロセッサがドライブ信号を生成し、射出端21付近の光ファイバ20の外周面に接着固定された圧電素子30A及び30Bを駆動制御する。圧電素子30A及び30Bは、ドライブ信号に応じた逆圧電効果によりXYの各方向に変形して、射出端21付近を、XY平面に近似する面(以下、「XY近似面」と記し、詳しくは後述する。)上で変位させる。射出端21は、XY近似面上において所定の走査軌跡を描くようにフレームレートに従って周期的に移動する。この種の二次元走査には、例えば、中心軸AXを中心としたスパイラル走査、走査範囲の水平方向を往復走査するラスタスキャン方式、走査範囲を正弦波的に走査するリサージュスキャン方式など、種々の方式を適用することができる。   The optical fiber 20 transmits laser light (excitation light) incident from the light source unit, and the transmitted excitation light is disposed in the distal end portion of the integrated endoscope 300 (in the confocal optical system 100). Eject more. The exit end 21 of the optical fiber 20 functions as a secondary point light source of the confocal optical system 100. The position in the two-dimensional direction (XY directions) of the emission end 21 that is a point light source periodically changes according to the operation of the piezoelectric elements 30A and 30B. Specifically, the processor generates a drive signal to drive and control the piezoelectric elements 30A and 30B that are bonded and fixed to the outer peripheral surface of the optical fiber 20 near the emission end 21. The piezoelectric elements 30A and 30B are deformed in the XY directions by the inverse piezoelectric effect according to the drive signal, and the vicinity of the emission end 21 is referred to as a surface approximating the XY plane (hereinafter referred to as “XY approximate surface”). (It will be described later.) The exit end 21 moves periodically according to the frame rate so as to draw a predetermined scanning locus on the XY approximate plane. For this type of two-dimensional scanning, there are various types such as spiral scanning around the central axis AX, raster scanning method for reciprocating scanning in the horizontal direction of the scanning range, and Lissajous scanning method for scanning the scanning range sinusoidally. A scheme can be applied.

枠体50の外壁面51と金属パイプ60の内壁面61との間には、形状記憶合金40及び圧縮コイルバネ70が取り付けられている。外壁面51、内壁面61は共に、Z方向に対して略直交する(つまり、XY平面上にある)。形状記憶合金40は、常温下で外力が加えられると変形することができ、変形された状態で一定温度以上に加熱されると、記憶している状態に復元する。より具体的には、形状記憶合金40は、加熱されることによりZ方向に収縮する。一方、圧縮コイルバネ70は、自然長から圧縮された状態で外壁面51と内壁面61との間に取り付けられている。つまり、圧縮コイルバネ70は、金属パイプ60内にて枠体50をカバーガラス80側へ付勢している。   A shape memory alloy 40 and a compression coil spring 70 are attached between the outer wall surface 51 of the frame 50 and the inner wall surface 61 of the metal pipe 60. Both the outer wall surface 51 and the inner wall surface 61 are substantially orthogonal to the Z direction (that is, on the XY plane). The shape memory alloy 40 can be deformed when an external force is applied at room temperature, and when it is heated to a certain temperature or more in a deformed state, the shape memory alloy 40 is restored to a memorized state. More specifically, the shape memory alloy 40 contracts in the Z direction when heated. On the other hand, the compression coil spring 70 is attached between the outer wall surface 51 and the inner wall surface 61 in a compressed state from the natural length. That is, the compression coil spring 70 urges the frame 50 toward the cover glass 80 in the metal pipe 60.

形状記憶合金40は、通電により加熱されると、圧縮コイルバネ70の張力に抗して収縮する。枠体50は、形状記憶合金40の収縮に伴い、金属パイプ60内にて内視鏡先端部後方に(カバーガラス80から離れる方向に)スライドする。これにより、点光源である射出端21より射出されて走査用集光光学系10を介した光束の集光位置がZ方向にシフトする。つまり、Z方向に走査される。二軸アクチュエータ(圧電素子30A及び30B)による点光源のXY近似面上の周期的な運動と、形状記憶合金40及び圧縮コイルバネ70の作用による点光源のZ方向の進退とを併せることにより、被写体に対する三次元走査が可能となる。   The shape memory alloy 40 contracts against the tension of the compression coil spring 70 when heated by energization. As the shape memory alloy 40 contracts, the frame 50 slides in the metal pipe 60 to the rear of the distal end of the endoscope (in a direction away from the cover glass 80). Thereby, the condensing position of the light beam emitted from the exit end 21 which is a point light source and passing through the condensing optical system for scanning 10 is shifted in the Z direction. That is, scanning is performed in the Z direction. By combining the periodic movement of the point light source on the XY approximate plane by the biaxial actuator (piezoelectric elements 30A and 30B) and the advance and retreat of the point light source in the Z direction by the action of the shape memory alloy 40 and the compression coil spring 70, Can be three-dimensionally scanned.

光ファイバ20の射出端21は、走査用集光光学系10の物体側焦点位置(言い換えると、走査用集光光学系10の像側焦点位置と光学的に共役な位置)に配置されているため、共焦点ピンホールとして機能する。射出端21には、励起光により励起された被写体の散乱成分(蛍光)のうち射出端21と光学的に共役な集光点からの蛍光のみが入射される。蛍光は、光ファイバ20により伝送されて、プロセッサに備えられた共焦点画像生成用の画像ユニット(不図示)に入光する。当該ユニットによる処理により、生体組織400の3次元画像が得られる。   The exit end 21 of the optical fiber 20 is disposed at the object side focal position of the scanning condensing optical system 10 (in other words, a position optically conjugate with the image side focal position of the scanning condensing optical system 10). Therefore, it functions as a confocal pinhole. Of the scattered component (fluorescence) of the subject excited by the excitation light, only the fluorescence from the condensing point optically conjugate with the emission end 21 is incident on the emission end 21. The fluorescence is transmitted through the optical fiber 20 and enters an image unit (not shown) for generating a confocal image provided in the processor. By the processing by the unit, a three-dimensional image of the living tissue 400 is obtained.

図2は、共焦点光学システム100における走査用集光光学系10近傍の拡大図である。図2に示されるように、点光源である射出端21が移動するXY近似面は、射出端21より射出される光束の主光線の延長線(破線)と光軸(一点鎖線)AXとの交点Pを曲率中心とする曲面(矢印点線)となる。XY近似面は、XY平面に対して光ファイバ20の基端側に湾曲している。XY平面に対するXY近似面の湾曲量は、光軸AXから離れるほど増加する。なお、図2に示されるように、交点Pは、光ファイバ20の湾曲中心Cよりも走査用集光光学系10側に位置する。走査用集光光学系10は、交点Pに入射瞳が位置するように配置される。   FIG. 2 is an enlarged view of the vicinity of the condensing optical system 10 for scanning in the confocal optical system 100. As shown in FIG. 2, the XY approximate plane on which the exit end 21, which is a point light source, moves is an extension line (dashed line) of the principal ray of the light beam emitted from the exit end 21 and the optical axis (dashed line) AX. It becomes a curved surface (arrow dotted line) with the intersection point P as the center of curvature. The approximate XY plane is curved toward the base end side of the optical fiber 20 with respect to the XY plane. The amount of curvature of the XY approximate plane with respect to the XY plane increases as the distance from the optical axis AX increases. As shown in FIG. 2, the intersection point P is located closer to the scanning condensing optical system 10 than the bending center C of the optical fiber 20. The scanning condensing optical system 10 is disposed so that the entrance pupil is located at the intersection P.

走査用集光光学系において広画角化を達成するためには、点光源である光ファイバの射出端の移動範囲を大きく設定すると共に、広範囲に移動する点光源からの射出光を取り込むために有効光束径を大きく設計する必要がある。しかし、点光源の移動範囲を広げるほどXY平面に対するXY近似面(物体面)の湾曲量が大きくなるため、集光光学系が潜在的に持つアンダー方向の像面湾曲に、アンダー方向の像面湾曲が更に付加されてしまう。また、走査用集光光学系は、被写体を高倍率で観察するため、例えば像側NAと物体側NAとが等しい等倍光学系(若しくはそれ以上の倍率の光学系)であることが好ましい。しかし、等倍光学系の場合、XY平面に対するXY近似面の湾曲量がそのまま像側での湾曲量として現れる。このように、走査用集光光学系には、XY平面に対するXY近似面の湾曲量に起因して像面湾曲が大きく発生する虞があり、周辺解像度の低下を避けることが難しかった。そこで、本発明者は、鋭意検討を重ね、小型化及び広画角化を両立させつつも、上記のように大きく発生し得る像面湾曲(及びその他の諸収差)を抑えるのに好適な走査用集光光学系10を見出した。   In order to achieve a wide angle of view in the condensing optical system for scanning, in order to capture the emission light from the point light source that moves in a wide range while setting the movement range of the emission end of the optical fiber that is a point light source large It is necessary to design a large effective beam diameter. However, since the amount of curvature of the XY approximate plane (object plane) with respect to the XY plane increases as the movement range of the point light source increases, the under-direction image plane may be reduced due to the potential under-surface curvature of the condensing optical system. Further curvature is added. Further, the scanning condensing optical system is preferably an equal-magnification optical system (or an optical system with a higher magnification) in which, for example, the image-side NA and the object-side NA are equal in order to observe the subject at a high magnification. However, in the case of an equal magnification optical system, the amount of curvature of the XY approximate surface with respect to the XY plane appears as it is on the image side. As described above, in the scanning condensing optical system, there is a possibility that a large curvature of field occurs due to the amount of curvature of the XY approximate surface with respect to the XY plane, and it is difficult to avoid a decrease in peripheral resolution. Accordingly, the present inventor has conducted extensive studies and has achieved a scan suitable for suppressing the field curvature (and other various aberrations) that can occur as described above, while achieving both a reduction in size and a wide angle of view. The condensing optical system 10 was found.

図3は、本発明の実施例1(詳しくは後述)の走査用集光光学系10及びその後段の光学部品(カバーガラス80)の配置を示す断面図である。ここでは、図3を利用して、本発明の実施形態の走査用集光光学系10について詳説する。なお、図3をはじめとする走査用集光光学系10の各構成図は、図中左側が物体側(点光源である射出端21側)であり、図中右側が像側(被検面側)である。   FIG. 3 is a cross-sectional view showing the arrangement of the condensing optical system 10 for scanning and the optical component (cover glass 80) in the subsequent stage according to Embodiment 1 (details will be described later) of the present invention. Here, the scanning condensing optical system 10 according to the embodiment of the present invention will be described in detail with reference to FIG. Note that in each configuration diagram of the condensing optical system 10 for scanning including FIG. 3, the left side in the drawing is the object side (the exit end 21 side which is a point light source), and the right side in the drawing is the image side (surface to be tested). Side).

図3に示されるように、走査用集光光学系10は、点光源側から順に、第1群G1、第2群G2を少なくとも有している。各群G1、G2を構成する各光学レンズは、走査用集光光学系10の光軸AXを中心とした回転対称形状を有している。第2群G2より被検面側には、カバーガラス80が配置されている。カバーガラス80は球面収差を補正するため、適切な厚みに設計されている。なお、上記において「少なくとも有している」としたのは、本発明の技術的思想の範囲において、別の光学素子を追加する構成例もあり得るからである。例えば、本発明に係る走査用集光光学系に対して光学性能に実質的に寄与しない平行平板を追加する構成例や、本発明に係る走査用集光光学系の構成及び効果を維持しつつ別の光学素子を付加する構成例が想定される。第1群G1、第2群G2の説明においても、同様の理由で「少なくとも有している」と表現している。   As shown in FIG. 3, the scanning condensing optical system 10 includes at least a first group G1 and a second group G2 in order from the point light source side. Each optical lens constituting each group G1 and G2 has a rotationally symmetric shape with the optical axis AX of the condensing optical system 10 for scanning as the center. A cover glass 80 is disposed on the test surface side from the second group G2. The cover glass 80 is designed to have an appropriate thickness in order to correct spherical aberration. In the above description, “has at least” is because there may be a configuration example in which another optical element is added within the scope of the technical idea of the present invention. For example, a configuration example in which a parallel plate that does not substantially contribute to optical performance is added to the condensing optical system for scanning according to the present invention, and the configuration and effect of the condensing optical system for scanning according to the present invention are maintained. A configuration example in which another optical element is added is assumed. In the description of the first group G1 and the second group G2, it is expressed as “at least” for the same reason.

第1群G1と第2群G2との間の軸上光は、光軸AXに対して略平行な光(略平行光)となっている。第1群G1と第2群G2との間を略平行光とすることにより、群毎の光学性能を、第1群G1と第2群G2とを組み立てる前段階で例えば干渉計による干渉縞観測を通じて独立に評価することができる。また、各群の評価結果に基づいて適切な群同士を組み合わせた上で、例えば本出願人による特許第4320184号公報に記載されているように、1つのレンズを調芯レンズとし、これを調芯治具で調芯することにより、両群を組み立てた状態での誤差を効率的に低減することができる。   The axial light between the first group G1 and the second group G2 is light substantially parallel to the optical axis AX (substantially parallel light). By making substantially parallel light between the first group G1 and the second group G2, the optical performance of each group can be measured by, for example, interference fringe observation using an interferometer before the first group G1 and the second group G2 are assembled. Can be evaluated independently. Further, after combining appropriate groups based on the evaluation result of each group, as described in, for example, Japanese Patent No. 4320184 by the present applicant, one lens is used as an alignment lens, and this is adjusted. By aligning with the core jig, errors in the assembled state of both groups can be efficiently reduced.

また、第1群G1と第2群G2との間を略平行光とすることにより、群間隔の変化に伴う倍率の変化が実質的に無い(被検面側のNAが実質変化しない)。そのため、例えば第2群G2だけを光軸方向に移動させることにより、走査用集光光学系10による観察深さ(生体組織400の深さ方向の観察位置)を変えることができる。   In addition, by making the light between the first group G1 and the second group G2 substantially parallel light, there is substantially no change in magnification due to a change in group spacing (the NA on the surface to be examined does not change substantially). Therefore, for example, by moving only the second group G2 in the optical axis direction, the observation depth (observation position in the depth direction of the living tissue 400) by the scanning condensing optical system 10 can be changed.

図3に示されるように、第1群G1は、正のパワーを持つレンズ群であり、点光源側から順に、点光源側に凹面を向けたメニスカスレンズL1、被検面側に凸面を向けた正レンズL2、点光源側に凸面を向けた正レンズL3、被検面側に凹面を向けた負レンズL4と正レンズL5からなる接合レンズCL1を少なくとも有している。   As shown in FIG. 3, the first group G1 is a lens group having positive power, and in order from the point light source side, the meniscus lens L1 having a concave surface directed to the point light source side and the convex surface directed to the test surface side. A positive lens L2, a positive lens L3 having a convex surface facing the point light source side, a negative lens L4 having a concave surface facing the test surface side, and a cemented lens CL1 including at least a positive lens L5.

また、第1群G1は、正のパワーを持つレンズ群であり、点光源側から順に、点光源側に凹面を向けたメニスカスレンズ、被検面側に凸面を向けた正レンズ、負レンズと正レンズからなる接合レンズ、被検面側に凹面を向けたメニスカスレンズを少なくとも有する構成としてもよい(後述の実施例2参照)。   The first group G1 is a lens group having positive power, and in order from the point light source side, a meniscus lens having a concave surface facing the point light source side, a positive lens having a convex surface facing the test surface side, and a negative lens, It is good also as a structure which has at least the cemented lens which consists of a positive lens, and the meniscus lens which orient | assigned the concave surface to the to-be-tested surface side (refer Example 2 mentioned later).

第1群G1において、正レンズは球面収差の補正に寄与し、接合レンズは色収差の補正に寄与する。   In the first group G1, the positive lens contributes to correction of spherical aberration, and the cemented lens contributes to correction of chromatic aberration.

図3に示されるように、第2群G2は、正のパワーを持つレンズ群であり、点光源側から順に、点光源側に凹面を向けた負レンズL6と正レンズL7からなる接合レンズCL2、正レンズL8、被検面側に凹面を向けたメニスカスレンズL9を少なくとも有している。   As shown in FIG. 3, the second group G2 is a lens group having a positive power, and in order from the point light source side, a cemented lens CL2 including a negative lens L6 and a positive lens L7 with a concave surface facing the point light source side. And a positive lens L8 and at least a meniscus lens L9 having a concave surface facing the test surface.

第2群G2においても、正レンズは球面収差の補正に寄与し、接合レンズは色収差の補正に寄与する。   Also in the second group G2, the positive lens contributes to correction of spherical aberration, and the cemented lens contributes to correction of chromatic aberration.

走査用集光光学系10は、最も点光源側に配置される面(メニスカスレンズL1の点光源側の面)、最も被検面側に配置される面(メニスカスレンズL9の被検面側の面)を共に凹面とすることで、走査用集光光学系10における入射出時のコマ収差及び非点収差の発生を抑えている。   The condensing optical system for scanning 10 has a surface disposed closest to the point light source (a surface on the point light source side of the meniscus lens L1) and a surface disposed closest to the test surface (the surface on the test surface side of the meniscus lens L9). By making both surfaces concave, the occurrence of coma and astigmatism at the time of entering and exiting the condensing optical system 10 for scanning is suppressed.

ここで、メニスカスレンズL1の点光源側の面の曲率半径をr11と定義し、メニスカスレンズL1の被検面側の面の曲率半径をr21と定義し、メニスカスレンズL9の点光源側の面の曲率半径をr12と定義し、メニスカスレンズL9の被検面側の面の曲率半径をr22と定義した場合、走査用集光光学系10は、次の条件式(1)及び(2)
−0.4<SF<0.0・・・(1)
−0.6<SF<−0.1・・・(2)
但し、
SF:(r11−r21)/(r11+r21
SF:(r12−r22)/(r12+r22
を満たす。
Here, the curvature radius of the light source side surface points of the meniscus lens L1 is defined as r 11, the radius of curvature of the surface of the test surface side of the meniscus lens L1 is defined as r 21, the point light sources side of the meniscus lens L9 When the curvature radius of the surface is defined as r 12 and the curvature radius of the surface of the meniscus lens L9 on the test surface side is defined as r 22 , the condensing optical system for scanning 10 has the following conditional expressions (1) and ( 2)
−0.4 <SF 1 <0.0 (1)
−0.6 <SF 2 <−0.1 (2)
However,
SF 1 : (r 11 −r 21 ) / (r 11 + r 21 )
SF 2: (r 12 -r 22 ) / (r 12 + r 22)
Meet.

条件式(1)に規定されるSFの上限を上回ると、メニスカスレンズL1のパワーが強くなりすぎることにより、コマ収差及び非点収差が大きく発生し、補正が困難となる。また、第1群G1の正のパワーが強くなりすぎることにより、像面湾曲の補正に必要な負のパワーを確保することが難しい(補正不足になりやすい)。一方、条件式(1)に規定されるSFの下限を下回る場合もメニスカスレンズL1のパワーが強くなりすぎることにより、コマ収差及び非点収差が大きく発生し、補正が困難となる。また、第1群G1の負のパワーが強くなりすぎることにより、軸外色収差が大きく発生し、補正が困難となる。更に、軸外光の入射高が大きくなり、走査用集光光学系10の細径化設計に不利である。換言すると、径の細い一体型内視鏡300の先端部内への走査用集光光学系10の組み込みが難しくなる。 If the upper limit of SF 1 defined in the conditional expression (1) is exceeded, the power of the meniscus lens L1 becomes too strong, so that coma and astigmatism are greatly generated and correction becomes difficult. In addition, since the positive power of the first lens group G1 becomes too strong, it is difficult to secure the negative power necessary for correcting the curvature of field (prone to insufficient correction). On the other hand, even when the value falls below the lower limit of SF 1 defined in the conditional expression (1), the power of the meniscus lens L1 becomes too strong, resulting in large coma and astigmatism, which makes correction difficult. Further, since the negative power of the first lens group G1 becomes too strong, a large off-axis chromatic aberration occurs and correction becomes difficult. Furthermore, the incident height of off-axis light becomes large, which is disadvantageous for the design for reducing the diameter of the condensing optical system 10 for scanning. In other words, it becomes difficult to incorporate the condensing optical system 10 for scanning into the distal end portion of the integrated endoscope 300 having a small diameter.

条件式(2)に規定されるSFの上限を上回ると、メニスカスレンズL9のパワーが弱くなりすぎることにより、被検面に対する励起光の入射角度、及びメニスカスレンズL9への戻り光(被検面にて発生する自家蛍光)の入射角度が大きくなり、励起光による被検面への照射効率及び蛍光の取込効率が低下し得る。一方、条件式(2)に規定されるSFの下限を下回ると、第2群G2内の正レンズのパワーが強くなりすぎることにより、コマ収差及び非点収差が大きく発生し、補正が困難となる。また、軸外光の射出高が大きくなり、走査用集光光学系10の細径化設計に不利である。換言すると、径の細い一体型内視鏡300の先端部内への走査用集光光学系10の組み込みが難しくなる。 If the upper limit of SF 2 defined in the conditional expression (2) is exceeded, the power of the meniscus lens L9 becomes too weak, and therefore the incident angle of the excitation light with respect to the test surface and the return light to the meniscus lens L9 (test The incident angle of the autofluorescence generated on the surface increases, and the irradiation efficiency of the test surface by the excitation light and the fluorescence capture efficiency can be reduced. On the other hand, if the lower limit of SF 2 defined by the conditional expression (2) is not reached, the power of the positive lens in the second group G2 becomes too strong, resulting in large coma and astigmatism, making correction difficult. It becomes. In addition, the height of off-axis light emission is increased, which is disadvantageous for the design for reducing the diameter of the condensing optical system 10 for scanning. In other words, it becomes difficult to incorporate the condensing optical system 10 for scanning into the distal end portion of the integrated endoscope 300 having a small diameter.

条件式(1)、(2)が同時に満たされることにより、走査用集光光学系10の小型化及び広画角化を両立させた場合も像面湾曲(及びコマ収差、非点収差、球面収差、色収差等の諸収差)の発生を抑えることができると共に、点光源より射出された射出光を効率的に取り込むことができ、かつ励起光を被検面に効率的に照射し、照射された被検面からの蛍光を効率的に取り込むことができる。附言するに、条件式(1)、(2)が同時に満たされることにより、共焦点光学システム100のように、物体面(XY近似面)が湾曲する場合であっても像面湾曲を抑えることができる。また、走査用集光光学系10を、径の細い一体型内視鏡300の先端部内への組み込みに適した寸法に抑えて設計することができる。   When the conditional expressions (1) and (2) are satisfied at the same time, the field curvature (and coma, astigmatism, spherical surface) can be achieved even when both the downsizing and the wide angle of view of the condensing optical system 10 for scanning are achieved. Occurrence of various aberrations such as aberration and chromatic aberration), can efficiently capture the light emitted from the point light source, and can efficiently irradiate and irradiate the test surface with the excitation light. It is possible to efficiently capture fluorescence from the test surface. In addition, when the conditional expressions (1) and (2) are simultaneously satisfied, even when the object plane (XY approximate plane) is curved as in the confocal optical system 100, the curvature of field is suppressed. be able to. Further, the scanning condensing optical system 10 can be designed with a size suitable for incorporation into the distal end portion of the integrated endoscope 300 having a small diameter.

また、走査用集光光学系10は、例えば、第1群G1を構成するレンズのうち最も負のパワーの強いレンズの焦点距離をf1nと定義し、第1群G1の焦点距離をfと定義した場合に、次の条件式(3)
−4.5≦f1n/f≦−0.5・・・(3)
を更に満たす。
The scanning condensing optical system 10 defines, for example, the focal length of the lens having the strongest negative power among the lenses constituting the first group G1 as f 1n, and the focal length of the first group G1 as f 1. The following conditional expression (3)
−4.5 ≦ f 1n / f 1 ≦ −0.5 (3)
Is further satisfied.

条件式(3)に規定されるf1n/f限を回ると、像面湾曲の補正に必要な負のパワーを確保することが難しい(補正不足になりやすい)。一方、条件式(3)に規定されるf1n/f限を回ると、負のパワーの増加に伴い、レンズ面の曲率を大きくすることとなり、加工が難しくなる。また、負のパワーが強すぎることにより、感度(組立誤差等に応じた収差の変化)が高くなるため、例えば歩留まりが低下する等の問題が生じる。 When falls below conditional expression lower limit of f 1n / f 1 as defined in (3), it is difficult to secure a negative power required for correction of the field curvature (likely under-corrected). On the other hand, if exceed the upper limit of f 1n / f 1 as defined in conditional expression (3), with an increase in negative power, it becomes possible to increase the curvature of the lens surface, processing becomes difficult. Further, since the negative power is too strong, the sensitivity (change in aberration according to the assembly error) is increased, which causes a problem such as a decrease in yield.

条件式(3)が満たされることにより、共焦点光学システム100のように、物体面(XY近似面)が湾曲する場合であっても像面湾曲が抑えられる。また、レンズ面の曲率を過度に大きく設定する必要がないため、加工に配慮してレンズ面を設計することができる。また、感度を抑え、組立誤差等に対する許容度を高くすることができるため、例えば歩留まりの低下が抑えられる。   By satisfying conditional expression (3), field curvature can be suppressed even when the object plane (XY approximate plane) is curved as in the confocal optical system 100. In addition, since it is not necessary to set the curvature of the lens surface to be excessively large, the lens surface can be designed in consideration of processing. Moreover, since sensitivity can be suppressed and tolerance for assembly errors and the like can be increased, for example, a decrease in yield can be suppressed.

また、走査用集光光学系10は、例えば、第2群G2を構成するレンズのうち最も負のパワーの強いレンズの焦点距離をf2nと定義し、第2群G2の焦点距離をfと定義した場合に、次の条件式(4)
−0.9≦f2n/f≦−0.5・・・(4)
を更に満たす。
Further, the scanning light focusing optical system 10, e.g., a strong lens focal length of the most the negative power among the lenses constituting the second lens group G2 is defined as f 2n, the focal length of the second lens group G2 f 2 The following conditional expression (4)
−0.9 ≦ f 2n / f 2 ≦ −0.5 (4)
Is further satisfied.

条件式(4)に規定されるf2n/f限を回ると、像面湾曲の補正に必要な負のパワーを確保することが難しい(補正不足になりやすい)。一方、条件式(4)に規定されるf2n/f限を回ると、負のパワーの増加に伴い、レンズ面の曲率を大きくすることとなり、加工が難しくなる。また、負のパワーが強すぎることにより、感度が高くなるため、例えば歩留まりが低下する等の問題が生じる。 When falls below conditional expression lower limit of f 2n / f 2 as defined in (4), (likely under-corrected) it is difficult to ensure the negative power required for correction of the field curvature. On the other hand, if exceed the upper limit of f 2n / f 2 as defined in conditional expression (4), with an increase in negative power, it becomes possible to increase the curvature of the lens surface, processing becomes difficult. Further, since the negative power is too strong, the sensitivity is increased, and thus a problem such as a decrease in yield occurs.

条件式(4)が満たされることにより、共焦点光学システム100のように、物体面(XY近似面)が湾曲する場合であっても像面湾曲が抑えられる。また、レンズ面の曲率を過度に大きく設定する必要がないため、加工に配慮してレンズ面を設計することができる。また、感度を抑え、組立誤差等に対する許容度を高くすることができるため、例えば歩留まりの低下が抑えられる。   By satisfying conditional expression (4), field curvature can be suppressed even when the object plane (XY approximate plane) is curved as in the confocal optical system 100. In addition, since it is not necessary to set the curvature of the lens surface to be excessively large, the lens surface can be designed in consideration of processing. Moreover, since sensitivity can be suppressed and tolerance for assembly errors and the like can be increased, for example, a decrease in yield can be suppressed.

また、走査用集光光学系10は、例えば、第1群G1を構成するレンズのうち最も正のパワーの強いレンズの焦点距離をf1pと定義した場合に、次の条件式(5)
1.0≦f1p/f≦4.0・・・(5)
を更に満たす。
For example, when the focal length of the lens having the strongest positive power among the lenses constituting the first group G1 is defined as f1p , the scanning condensing optical system 10 satisfies the following conditional expression (5).
1.0 ≦ f 1p / f 1 ≦ 4.0 (5)
Is further satisfied.

条件式(5)に規定されるf1p/fの上限を上回ると、正のパワーが弱くなることにより第1群G1の各面における収差の変化が緩やかになる(すなわち感度が低くなる)が、その代償として、走査用集光光学系10の全長が長くなると共に像面湾曲も補正不足となる。一方、条件式(5)に規定されるf1p/fの下限を下回ると、走査用集光光学系10の全長を短くすることができるが、その代償として、球面収差及びコマ収差が大きくなり、補正が困難となる。また、第1群G1の各面における収差の変化が大きくなる(すなわち感度が高くなる)ため、組立誤差等により収差が発生しやすくなる。 When the upper limit of f 1p / f 1 defined in the conditional expression (5) is exceeded, the positive power becomes weak and the change in aberration on each surface of the first group G1 becomes gradual (that is, the sensitivity becomes low). However, as a compensation, the total length of the scanning condensing optical system 10 becomes long and the curvature of field is also insufficiently corrected. On the other hand, if it falls below the lower limit of f 1p / f 1 defined in the conditional expression (5), the total length of the condensing optical system 10 for scanning can be shortened, but at the expense of large spherical aberration and coma aberration. This makes correction difficult. In addition, since the change in aberration on each surface of the first group G1 becomes large (that is, the sensitivity becomes high), aberration is likely to occur due to an assembly error or the like.

条件式(5)が満たされることにより、走査用集光光学系10全系における像面湾曲を補正しつつ、第1群G1内の球面収差及びコマ収差が抑えられる。また、走査用集光光学系10の全長を抑えることができると共に感度も抑えられる。   By satisfying conditional expression (5), spherical aberration and coma aberration in the first group G1 can be suppressed while correcting curvature of field in the entire scanning condensing optical system 10. In addition, the overall length of the scanning condensing optical system 10 can be suppressed, and the sensitivity can also be suppressed.

また、走査用集光光学系10は、例えば、第2群G2を構成するレンズのうち最も正のパワーの強いレンズの焦点距離をf2pと定義した場合に、次の条件式(6)
0.5≦f2p/f≦3.0・・・(6)
を更に満たす。
For example, when the focal length of the lens having the strongest positive power among the lenses constituting the second group G2 is defined as f2p , the scanning condensing optical system 10 satisfies the following conditional expression (6).
0.5 ≦ f 2p / f 2 ≦ 3.0 (6)
Is further satisfied.

条件式(6)に規定されるf2p/fの上限を上回ると、正のパワーが弱くなることにより第2群G2の各面における収差の変化が緩やかになる(すなわち感度が低くなる)が、その代償として、走査用集光光学系10の全長が長くなると共に像面湾曲も補正不足となる。一方、条件式(6)に規定されるf2p/fの下限を下回ると、走査用集光光学系10の全長を短くすることができるが、その代償として、球面収差及びコマ収差が大きくなり、補正が困難となる。また、第2群G2の各面における収差の変化が大きくなる(すなわち感度が高くなる)ため、組立誤差等により収差が発生しやすくなる。 If the upper limit of f 2p / f 2 defined in the conditional expression (6) is exceeded, the positive power becomes weak and the change in aberration on each surface of the second group G2 becomes gradual (that is, the sensitivity becomes low). However, as a compensation, the total length of the scanning condensing optical system 10 becomes long and the curvature of field is also insufficiently corrected. On the other hand, if the lower limit of f 2p / f 2 stipulated in the conditional expression (6) is not reached, the total length of the condensing optical system 10 for scanning can be shortened, but at the cost of large spherical aberration and coma aberration. This makes correction difficult. Further, since the change in aberration on each surface of the second group G2 becomes large (that is, the sensitivity becomes high), aberrations are likely to occur due to assembly errors and the like.

条件式(6)が満たされることにより、走査用集光光学系10全系における像面湾曲を補正しつつ、第2群G2内の球面収差及びコマ収差が抑えられる。また、走査用集光光学系10の全長を抑えることができると共に感度も抑えられる。   By satisfying conditional expression (6), spherical aberration and coma aberration in the second lens group G2 can be suppressed while correcting curvature of field in the entire scanning condensing optical system 10. In addition, the overall length of the scanning condensing optical system 10 can be suppressed, and the sensitivity can also be suppressed.

また、走査用集光光学系10は、例えば、メニスカスレンズL1の焦点距離をf1mと定義した場合に、次の条件式(7)
5.0≦|f1m/f|≦20.0・・・(7)
を更に満たす。
For example, when the focal length of the meniscus lens L1 is defined as f 1m , the scanning condensing optical system 10 has the following conditional expression (7):
5.0 ≦ | f 1m / f 1 | ≦ 20.0 (7)
Is further satisfied.

条件式(7)に規定される|f1m/f|の上限を上回ると、メニスカスレンズL1のパワーが弱くなることにより第1群G1の各面における収差の変化が緩やかになる(すなわち感度が低くなる)が、その代償として、走査用集光光学系10の全長が長くなる。一方、条件式(7)に規定される|f1m/f|の下限を下回ると、メニスカスレンズL1のパワーが強くなることにより走査用集光光学系10の全長を短くすることができるが、その代償として、球面収差及び非点収差が大きくなり、補正が困難となる。また、第1群G1の各面における収差の変化が大きくなる(すなわち感度が高くなる)ため、組立誤差等により収差が発生しやすくなる。 If the upper limit of | f 1m / f 1 | defined in the conditional expression (7) is exceeded, the power of the meniscus lens L1 becomes weak, and the change in aberration on each surface of the first group G1 becomes gentle (that is, sensitivity). However, the total length of the condensing optical system for scanning 10 is increased as a price. On the other hand, when the value falls below the lower limit of | f 1m / f 1 | defined in the conditional expression (7), the power of the meniscus lens L1 becomes strong, so that the total length of the condensing optical system 10 for scanning can be shortened. As a compensation, spherical aberration and astigmatism become large and correction becomes difficult. In addition, since the change in aberration on each surface of the first group G1 becomes large (that is, the sensitivity becomes high), aberration is likely to occur due to an assembly error or the like.

条件式(7)が満たされることにより、走査用集光光学系10全系における像面湾曲を補正しつつ、第1群G1内の球面収差及び非点収差が抑えられる。また、走査用集光光学系10の全長を抑えることができると共に感度も抑えられる。   By satisfying conditional expression (7), spherical aberration and astigmatism in the first lens group G1 can be suppressed while correcting curvature of field in the entire scanning condensing optical system 10. In addition, the overall length of the scanning condensing optical system 10 can be suppressed, and the sensitivity can also be suppressed.

また、走査用集光光学系10は、例えば、メニスカスレンズL9の焦点距離をf2mと定義した場合に、次の条件式(8)
1.5≦|f2m/f|≦4.5・・・(8)
を更に満たす。
For example, when the focal length of the meniscus lens L9 is defined as f 2 m , the condensing optical system 10 for scanning has the following conditional expression (8)
1.5 ≦ | f 2m / f 2 | ≦ 4.5 (8)
Is further satisfied.

条件式(8)に規定される|f2m/f|の上限を上回ると、メニスカスレンズL9のパワーが弱くなることにより、被検面に対する励起光の入射角度が緩やかとなって、カバーガラス80と被検面との距離(図2に示される作動距離WD)を確保することができるが、その代償として、走査用集光光学系10の全長が長くなる。一方、条件式(8)に規定される|f2m/f|の下限を下回ると、メニスカスレンズL9のパワーが強くなりすぎて、作動距離を確保することが困難となったり、径方向に大きくなる。 If the upper limit of | f 2m / f 2 | defined in the conditional expression (8) is exceeded, the power of the meniscus lens L9 becomes weak, so that the incident angle of the excitation light with respect to the test surface becomes gentle, and the cover glass A distance between the surface 80 and the test surface (the working distance WD shown in FIG. 2) can be ensured, but the total length of the scanning condensing optical system 10 is increased as a price. On the other hand, if the value falls below the lower limit of | f 2m / f 2 | defined in the conditional expression (8), the power of the meniscus lens L9 becomes too strong, making it difficult to secure the working distance or in the radial direction. growing.

条件式(8)が満たされることにより、作動距離を確保しつつ走査用集光光学系10の全長が抑えられる。   By satisfying conditional expression (8), the total length of the scanning condensing optical system 10 can be suppressed while ensuring a working distance.

また、走査用集光光学系10は、強い負のパワーを全系内に分割して配置せず、負のパワーを局所的に強めて光束を一旦絞る配置とすることで、湾曲する物体面(XY近似面)上で点光源を移動させることによって発生する像面湾曲の補正に有利になる。一例として、強い負のパワーを持つレンズを第1群G1と第2群G2との境付近に並べて配置することにより、上記堺付近で負のパワーが局所的に強まって光束が一旦絞られて、上記像面湾曲が補正される。ここでいう強い負のパワーを持つレンズは、例えば、e線に対する屈折率をnneと定義した場合に、次の条件式(9)
ne≧1.85・・・(9)
を満たすレンズである。高屈折率材を用いると、負レンズの曲率を抑えつつ強い負のパワーを得ることができるため、曲率に依存して発生する諸収差が抑えられる。
In addition, the scanning condensing optical system 10 does not divide and arrange strong negative power in the entire system, but instead arranges the object power to be curved by temporarily strengthening the negative power and narrowing the light beam once. This is advantageous for correction of curvature of field caused by moving the point light source on (XY approximate surface). As an example, by arranging lenses having strong negative power side by side near the boundary between the first group G1 and the second group G2, the negative power is locally increased near the eyelid and the luminous flux is once narrowed. The curvature of field is corrected. The lens having a strong negative power here is, for example, the following conditional expression (9) when the refractive index with respect to the e-line is defined as nne.
n ne ≧ 1.85 (9)
It is a lens that satisfies When a high refractive index material is used, since strong negative power can be obtained while suppressing the curvature of the negative lens, various aberrations that occur depending on the curvature can be suppressed.

また、走査用集光光学系10は、第1群G1のうち最も被検面側に配置される面(図3においては正レンズL5の被検面側の面)と、第2群G2のうち最も点光源側に配置される面(図3においては負レンズL6の点光源側の面)とが互いに向き合う一対の凹面となっており、一対の凹面のうち、被検面側に向く凹面の曲率半径をr31と定義し、曲率半径r31を持つ凹面と向き合う(点光源側に向く)凹面の曲率半径をr32と定義した場合に、次の条件式(10)
―0.2<SF<0.0・・・(10)
但し、
SF:(r31+r32)/(r31−r32
を更に満たす。このようなレンズ配置において条件式(10)が満たされることにより、凹面を向かい合わせて配置したことによるコマ収差の補正作用に加えて、ペッツバール和を小さく又は負に維持することができ、物体面(XY近似面)が湾曲する場合であっても像面湾曲を抑えることができる。
The scanning condensing optical system 10 includes a surface arranged closest to the test surface in the first group G1 (a surface on the test surface side of the positive lens L5 in FIG. 3), and a second group G2. Among them, a pair of concave surfaces facing each other (a surface on the side of the point light source of the negative lens L6 in FIG. 3) that is arranged closest to the point light source side are concave surfaces facing the test surface side among the pair of concave surfaces. Is defined as r 31, and the curvature radius of the concave surface facing the concave surface having the curvature radius r 31 (facing the point light source side) is defined as r 32 , the following conditional expression (10)
−0.2 <SF 3 <0.0 (10)
However,
SF 3: (r 31 + r 32) / (r 31 -r 32)
Is further satisfied. When the conditional expression (10) is satisfied in such a lens arrangement, the Petzval sum can be kept small or negative in addition to the coma aberration correcting action by arranging the concave surfaces facing each other. Even when the (XY approximate surface) is curved, the curvature of field can be suppressed.

条件式(10)に規定されるSFの上限を上回ると、点光源側に向く凹面の曲率半径r32が小さくなることにより、コマ収差の補正が困難になると共に被検面側に凹面を向けたレンズの負のパワーが大きくなりすぎて、像面湾曲の補正が困難になる。一方、条件式(10)に規定されるSFの下限を下回ると、被検面側に向く凹面の曲率半径r31が小さくなることにより、像面湾曲の補正には有利となるが、その代償として、コマ収差の補正が困難になる。 If the upper limit of the SF 3 as defined in the conditional expression (10), by the radius of curvature of the concave surface r 32 facing the point light source side is reduced, a concave surface on the object surface side with the correction of the coma aberration becomes difficult The negative power of the directed lens becomes too large, making it difficult to correct field curvature. On the other hand, if the lower limit of SF 3 defined in the conditional expression (10) is not reached, the curvature radius r 31 of the concave surface facing the test surface side is reduced, which is advantageous for correction of field curvature. As a price, it becomes difficult to correct coma.

また、例えば、凹面が向き合う一対のレンズの夫々を符号の異なるパワーを持つレンズとの接合レンズとすることにより、色収差の補正に有利となる。図3に示されるように、本実施形態では、色収差を補正するため、凹面が向き合う一対の正レンズL5、負レンズL6を夫々、負レンズL4、正レンズL7と接合し、接合レンズCL1、CL2としている。   Further, for example, it is advantageous for correction of chromatic aberration by using each of the pair of lenses facing the concave surfaces as a cemented lens with a lens having a different power. As shown in FIG. 3, in this embodiment, in order to correct chromatic aberration, a pair of positive lens L5 and negative lens L6 with concave surfaces facing each other are cemented with a negative lens L4 and a positive lens L7, respectively, and cemented lenses CL1 and CL2 are used. It is said.

次に、これまで説明した走査用集光光学系10の具体的数値実施例を8例説明し、各数値実施例1〜8と比較する比較例を1例説明する。各数値実施例1〜8の走査用集光光学系10及び比較例1の走査用集光光学系は、図1に示されるように、一体型内視鏡300の先端部内に配置されている。   Next, eight specific numerical examples of the condensing optical system 10 for scanning described so far will be described, and one comparative example to be compared with each numerical example 1 to 8 will be described. As shown in FIG. 1, the scanning condensing optical system 10 of each of Numerical Examples 1 to 8 and the scanning condensing optical system of Comparative Example 1 are arranged in the distal end portion of the integrated endoscope 300. .

上述したように、本発明の実施例1の走査用集光光学系10の構成は、図3に示される通りである。   As described above, the configuration of the condensing optical system 10 for scanning according to the first embodiment of the present invention is as shown in FIG.

本実施例1の走査用集光光学系10(及びその後段に配置されたカバーガラス80)の具体的数値構成(設計値)は、表1に示される。表1に示される面番号NOは、絞りに対応する面番号1を除き、図3中の面符号rn(nは自然数)に対応する。表1において、R(単位:mm)は光学部材の各面の曲率半径を、D(単位:mm)は光軸AX上の光学部材厚又は光学部材間隔を、N(E)はe線(波長546nm)の屈折率を、NDはd線(波長588nm)の屈折率を、νdはd線のアッベ数を、それぞれ示す。また、本実施例1の走査用集光光学系10は、NA(被検面側開口数)が0.30、像高が0.05mm、バックフォーカスBFが0.17mmである。なお、各実施例では等倍光学系を想定するため、被検面側開口数は、物体面側開口数と等しい。   Table 1 shows specific numerical configurations (design values) of the scanning condensing optical system 10 (and the cover glass 80 disposed in the subsequent stage) according to the first embodiment. The surface number NO shown in Table 1 corresponds to the surface code rn (n is a natural number) in FIG. 3 except for the surface number 1 corresponding to the stop. In Table 1, R (unit: mm) is a radius of curvature of each surface of the optical member, D (unit: mm) is an optical member thickness or optical member interval on the optical axis AX, and N (E) is an e-line ( ND represents the refractive index of the d-line (wavelength 588 nm), and νd represents the Abbe number of the d-line. Moreover, the condensing optical system 10 for scanning of Example 1 has NA (numerical aperture on the test surface side) of 0.30, an image height of 0.05 mm, and a back focus BF of 0.17 mm. In each example, since an equal-magnification optical system is assumed, the numerical aperture on the test surface side is equal to the numerical aperture on the object plane side.

Figure 0006074246
Figure 0006074246

図4(a)〜(d)は、本実施例1の走査用集光光学系10の各種収差図である。具体的には、図4(a)は、e線(546nm)、d線(588nm)、F線(486nm)での球面収差及び軸上色収差を示す。図4(b)は、e線、d線、F線での倍率色収差を示す。図4(a)、(b)中、実線はe線での収差を、点線はd線での収差を、一点鎖線はF線での収差を、それぞれ示す。図4(c)は、非点収差を示す。図4(c)中、実線はサジタル成分を、点線はメリディオナル成分を、それぞれ示す。図4(d)は、歪曲収差を示す。図4(a)〜(c)の各図の縦軸は像高を、横軸は収差量を、それぞれ示す。図4(d)の縦軸は像高を、横軸は歪曲率を、それぞれ示す。なお、本実施例1の各表又は各図面についての説明は、以降の各数値実施例又は比較例で提示される各表又は各図面においても適用する。   4A to 4D are graphs showing various aberrations of the condensing optical system 10 for scanning according to the first embodiment. Specifically, FIG. 4A shows spherical aberration and axial chromatic aberration at e-line (546 nm), d-line (588 nm), and F-line (486 nm). FIG. 4B shows lateral chromatic aberration at e-line, d-line, and F-line. 4A and 4B, the solid line indicates the aberration at the e-line, the dotted line indicates the aberration at the d-line, and the alternate long and short dash line indicates the aberration at the F-line. FIG. 4C shows astigmatism. In FIG.4 (c), a continuous line shows a sagittal component and a dotted line shows a meridional component, respectively. FIG. 4 (d) shows distortion. 4A to 4C, the vertical axis represents the image height, and the horizontal axis represents the aberration amount. In FIG. 4D, the vertical axis represents the image height, and the horizontal axis represents the distortion. In addition, the description about each table | surface or each drawing of the present Example 1 is applied also to each table | surface or each drawing shown by each subsequent numerical example or comparative example.

図5は、本発明の実施例2の走査用集光光学系10及びその後段の光学部品(カバーガラス80)の配置を示す断面図である。図5に示されるように、本実施例2の走査用集光光学系10は、第1群G1の構成が本実施例1と異なる。具体的には、本実施例2の第1群G1は、点光源側から順に、点光源側に凹面を向けたメニスカスレンズL1、被検面側に凸面を向けた正レンズL2、正レンズL11と負レンズL12からなる接合レンズCL3、被検面側に凹面を向けたメニスカスレンズL13を少なくとも有する。図6(a)〜(d)は、本実施例2の走査用集光光学系10の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表2は、本実施例2の走査用集光光学系10を含む各光学部品の具体的数値構成を示す。また、本実施例2の走査用集光光学系10は、NA(被検面側開口数)が0.30、像高が0.12mm、バックフォーカスBFが0.17mmである。   FIG. 5 is a sectional view showing the arrangement of the condensing optical system 10 for scanning and the optical component (cover glass 80) at the subsequent stage according to the second embodiment of the present invention. As shown in FIG. 5, the condensing optical system 10 for scanning according to the second embodiment is different from the first embodiment in the configuration of the first group G1. Specifically, the first group G1 of Example 2 includes, in order from the point light source side, a meniscus lens L1 having a concave surface facing the point light source side, a positive lens L2 having a convex surface facing the test surface side, and a positive lens L11. A negative lens L12 and a meniscus lens L13 having a concave surface facing the test surface. 6A to 6D are diagrams showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion) of the condensing optical system 10 for scanning according to the second embodiment. Table 2 shows specific numerical configurations of optical components including the condensing optical system 10 for scanning according to the second embodiment. Moreover, the condensing optical system for scanning 10 of Example 2 has an NA (numerical aperture on the test surface side) of 0.30, an image height of 0.12 mm, and a back focus BF of 0.17 mm.

Figure 0006074246
Figure 0006074246

図7は、本発明の実施例3の走査用集光光学系10及びその後段の光学部品(カバーガラス80)の配置を示す断面図である。図7に示されるように、本実施例3の走査用集光光学系10は、本実施例1と同様のレンズ配置となっている。図8(a)〜(d)は、本実施例3の走査用集光光学系10の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表3は、本実施例3の走査用集光光学系10を含む各光学部品の具体的数値構成を示す。また、本実施例3の走査用集光光学系10は、NA(被検面側開口数)が0.30、像高が0.13mm、バックフォーカスBFが0.14mmである。   FIG. 7 is a cross-sectional view showing the arrangement of the condensing optical system 10 for scanning and the optical component (cover glass 80) at the subsequent stage according to the third embodiment of the present invention. As shown in FIG. 7, the condensing optical system for scanning 10 of the third embodiment has the same lens arrangement as that of the first embodiment. 8A to 8D are graphs showing various aberrations (spherical aberration, longitudinal chromatic aberration, lateral chromatic aberration, astigmatism, distortion) of the condensing optical system 10 for scanning according to the third embodiment. Table 3 shows a specific numerical configuration of each optical component including the condensing optical system 10 for scanning according to the third embodiment. In the scanning condensing optical system 10 of the third embodiment, the NA (numerical aperture on the test surface side) is 0.30, the image height is 0.13 mm, and the back focus BF is 0.14 mm.

Figure 0006074246
Figure 0006074246

図9は、本発明の実施例4の走査用集光光学系10及びその後段の光学部品(カバーガラス80)の配置を示す断面図である。図9に示されるように、本実施例4の走査用集光光学系10は、本実施例1と同様のレンズ配置となっている。図10(a)〜(d)は、本実施例4の走査用集光光学系10の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表4は、本実施例4の走査用集光光学系10を含む各光学部品の具体的数値構成を示す。また、本実施例4の走査用集光光学系10は、NA(被検面側開口数)が0.40、像高が0.12mm、バックフォーカスBFが0.12mmである。   FIG. 9 is a cross-sectional view showing the arrangement of the condensing optical system 10 for scanning and the optical component (cover glass 80) at the subsequent stage according to the fourth embodiment of the present invention. As shown in FIG. 9, the condensing optical system 10 for scanning of the fourth embodiment has the same lens arrangement as that of the first embodiment. 10A to 10D are graphs showing various aberrations (spherical aberration, longitudinal chromatic aberration, lateral chromatic aberration, astigmatism, distortion) of the condensing optical system 10 for scanning according to the fourth embodiment. Table 4 shows specific numerical configurations of optical components including the condensing optical system 10 for scanning according to the fourth embodiment. Further, the condensing optical system for scanning 10 of Example 4 has an NA (numerical aperture on the test surface side) of 0.40, an image height of 0.12 mm, and a back focus BF of 0.12 mm.

Figure 0006074246
Figure 0006074246

図11は、本発明の実施例5の走査用集光光学系10及びその後段の光学部品(カバーガラス80)の配置を示す断面図である。図11に示されるように、本実施例5の走査用集光光学系10は、本実施例1と同様のレンズ配置となっている。但し、本実施例5においては、本実施例1の正レンズL2及びL3が3つのレンズL31〜L33に分けられている。また、本実施例1の正レンズL8が2つのレンズL41、42に分けられている。図12(a)〜(d)は、本実施例5の走査用集光光学系10の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表5は、本実施例5の走査用集光光学系10を含む各光学部品の具体的数値構成を示す。また、本実施例5の走査用集光光学系10は、NA(被検面側開口数)が0.30、像高が0.14mm、バックフォーカスBFが0.14mmである。   FIG. 11 is a cross-sectional view showing the arrangement of the condensing optical system 10 for scanning and the optical component (cover glass 80) at the subsequent stage according to the fifth embodiment of the present invention. As shown in FIG. 11, the condensing optical system 10 for scanning of the fifth embodiment has the same lens arrangement as that of the first embodiment. However, in the fifth embodiment, the positive lenses L2 and L3 of the first embodiment are divided into three lenses L31 to L33. Further, the positive lens L8 of the first embodiment is divided into two lenses L41 and L42. 12A to 12D are diagrams showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion) of the condensing optical system 10 for scanning according to the fifth embodiment. Table 5 shows specific numerical configurations of optical components including the condensing optical system 10 for scanning according to the fifth embodiment. In the scanning condensing optical system 10 of the fifth embodiment, NA (numerical aperture on the test surface side) is 0.30, the image height is 0.14 mm, and the back focus BF is 0.14 mm.

Figure 0006074246
Figure 0006074246

図13は、本発明の実施例6の走査用集光光学系10及びその後段の光学部品(カバーガラス80)の配置を示す断面図である。図13に示されるように、本実施例6の走査用集光光学系10は、本実施例1と同様のレンズ配置となっている。図14(a)〜(d)は、本実施例6の走査用集光光学系10の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表6は、本実施例6の走査用集光光学系10を含む各光学部品の具体的数値構成を示す。また、本実施例6の走査用集光光学系10は、NA(被検面側開口数)が0.30、像高が0.13mm、バックフォーカスBFが0.08mmである。   FIG. 13 is a cross-sectional view showing the arrangement of the condensing optical system 10 for scanning and the optical component (cover glass 80) at the subsequent stage according to the sixth embodiment of the present invention. As shown in FIG. 13, the scanning condensing optical system 10 of the sixth embodiment has the same lens arrangement as that of the first embodiment. 14A to 14D are diagrams showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion aberration) of the condensing optical system 10 for scanning according to the sixth embodiment. Table 6 shows a specific numerical configuration of each optical component including the condensing optical system 10 for scanning according to the sixth embodiment. In the scanning condensing optical system 10 of Example 6, the NA (numerical aperture on the test surface side) is 0.30, the image height is 0.13 mm, and the back focus BF is 0.08 mm.

Figure 0006074246
Figure 0006074246

図15は、本発明の実施例7の走査用集光光学系10及びその後段の光学部品(カバーガラス80)の配置を示す断面図である。図15に示されるように、本実施例7の走査用集光光学系10は、本実施例1と同様のレンズ配置となっている。図16(a)〜(d)は、本実施例7の走査用集光光学系10の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表7は、本実施例7の走査用集光光学系10を含む各光学部品の具体的数値構成を示す。また、本実施例7の走査用集光光学系10は、NA(被検面側開口数)が0.30、像高が0.13mm、バックフォーカスBFが0.19mmである。   FIG. 15 is a sectional view showing the arrangement of the condensing optical system 10 for scanning and the optical component (cover glass 80) at the subsequent stage according to the seventh embodiment of the present invention. As shown in FIG. 15, the scanning condensing optical system 10 of the seventh embodiment has the same lens arrangement as that of the first embodiment. FIGS. 16A to 16D are graphs showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion) of the condensing optical system 10 for scanning according to the seventh embodiment. Table 7 shows a specific numerical configuration of each optical component including the condensing optical system 10 for scanning according to the seventh embodiment. Further, the condensing optical system for scanning 10 of Example 7 has an NA (numerical aperture on the test surface side) of 0.30, an image height of 0.13 mm, and a back focus BF of 0.19 mm.

Figure 0006074246
Figure 0006074246

図17は、本発明の実施例8の走査用集光光学系10及びその後段の光学部品(カバーガラス80)の配置を示す断面図である。図17に示されるように、本実施例8の走査用集光光学系10は、本実施例1と同様のレンズ配置となっている。図18(a)〜(d)は、本実施例8の走査用集光光学系10の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表8は、本実施例8の走査用集光光学系10を含む各光学部品の具体的数値構成を示す。また、本実施例8の走査用集光光学系10は、NA(被検面側開口数)が0.30、像高が0.12mm、バックフォーカスBFが0.08mmである。   FIG. 17 is a cross-sectional view showing the arrangement of the condensing optical system 10 for scanning and the optical component (cover glass 80) at the subsequent stage according to the eighth embodiment of the present invention. As shown in FIG. 17, the scanning condensing optical system 10 of the eighth embodiment has the same lens arrangement as that of the first embodiment. 18A to 18D are diagrams showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion aberration) of the condensing optical system 10 for scanning according to the eighth embodiment. Table 8 shows specific numerical configurations of optical components including the condensing optical system 10 for scanning according to the eighth embodiment. Further, the condensing optical system for scanning 10 of Example 8 has an NA (numerical aperture on the test surface side) of 0.30, an image height of 0.12 mm, and a back focus BF of 0.08 mm.

Figure 0006074246
Figure 0006074246

(比較例1)
図19は、比較例1の走査用集光光学系及びその後段の光学部品(カバーガラス80)の配置を示す断面図である。比較例1の走査用集光光学系は、本実施例1と同様のレンズ配置となっている。図20(a)〜(d)は、比較例1の走査用集光光学系の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表9は、比較例1の走査用集光光学系を含む各光学部品の具体的数値構成を示す。また、比較例1の走査用集光光学系は、NA(被検面側開口数)が0.30、像高が0.12mm、バックフォーカスBFが0.17mmである。
(Comparative Example 1)
FIG. 19 is a cross-sectional view showing the arrangement of the condensing optical system for scanning of Comparative Example 1 and the optical component (cover glass 80) at the subsequent stage. The scanning condensing optical system of Comparative Example 1 has the same lens arrangement as that of Example 1. 20A to 20D are diagrams showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion aberration) of the scanning condensing optical system of Comparative Example 1. FIG. Table 9 shows a specific numerical configuration of each optical component including the condensing optical system for scanning of Comparative Example 1. Further, the scanning condensing optical system of Comparative Example 1 has an NA (numerical aperture on the test surface side) of 0.30, an image height of 0.12 mm, and a back focus BF of 0.17 mm.

Figure 0006074246
(比較検証)
表10は、本実施例1〜8及び比較例1の各例において、条件式(1)〜(10)のそれぞれを適用したときに算出される値の一覧表である。なお、表10中、各条件式の各値の右隣に記載された符号は、当該条件式を主として規定するレンズを示す。条件式(1)及び(7)を主として規定するレンズは、全系のうち最も点光源側に配置されるレンズ(例えばメニスカスレンズL1)である。条件式(2)及び(8)を主として規定するレンズは、全系のうち最も被検面側に配置されるレンズ(例えばメニスカスレンズL12)である。条件式(3)を主として規定するレンズは、第1群G1を構成するレンズのうち最も負のパワーの強いレンズ(例えば負レンズL4)である。条件式(4)を主として規定するレンズは、第2群G2を構成するレンズのうち最も負のパワーの強いレンズ(例えば負レンズL6)である。条件式(5)を主として規定するレンズは、第1群G1を構成するレンズのうち最も正のパワーの強いレンズ(例えば正レンズL5)である。条件式(6)を主として規定するレンズは、第2群G2を構成するレンズのうち最も正のパワーの強いレンズ(例えば正レンズL8)である。なお、条件式(9)については、当該条件式を満たす負レンズの符号が記載されている。
Figure 0006074246
(Comparison verification)
Table 10 is a list of values calculated when each of the conditional expressions (1) to (10) is applied in each of Examples 1 to 8 and Comparative Example 1. Note that in Table 10, a symbol written to the right of each value in each conditional expression indicates a lens that mainly defines the conditional expression. The lens that mainly defines the conditional expressions (1) and (7) is a lens (for example, a meniscus lens L1) arranged closest to the point light source in the entire system. The lens that mainly defines the conditional expressions (2) and (8) is a lens (for example, a meniscus lens L12) arranged closest to the test surface in the entire system. The lens that mainly defines the conditional expression (3) is a lens having the strongest negative power (for example, the negative lens L4) among the lenses constituting the first group G1. The lens that mainly defines the conditional expression (4) is a lens having the strongest negative power (for example, the negative lens L6) among the lenses constituting the second group G2. The lens that mainly defines the conditional expression (5) is the lens having the strongest positive power (for example, the positive lens L5) among the lenses constituting the first group G1. The lens that mainly defines the conditional expression (6) is the lens having the strongest positive power (for example, the positive lens L8) among the lenses constituting the second group G2. Regarding conditional expression (9), the sign of a negative lens that satisfies the conditional expression is described.

Figure 0006074246
Figure 0006074246

表10に示されるように、比較例1の走査用集光光学系は、条件式(2)を満たさない。そのため、比較例1の走査用集光光学系は、図20に示されるように、球面収差、軸上色収差及び倍率色収差が抑えられていない。すなわち、小型化及び広画角化の両立及び像面湾曲の補正を試みた結果、少なくとも一部の光学性能を犠牲にせざるを得ない。   As shown in Table 10, the condensing optical system for scanning in Comparative Example 1 does not satisfy the conditional expression (2). Therefore, as shown in FIG. 20, the condensing optical system for scanning in Comparative Example 1 does not suppress spherical aberration, axial chromatic aberration, and lateral chromatic aberration. That is, as a result of trying to achieve both a reduction in size and a wide angle of view and correction of field curvature, at least a part of optical performance must be sacrificed.

これに対して、本実施例1〜8の走査用集光光学系10は、表10に示されるように、条件式(1)、(2)を同時に満たすことにより、小型化及び広画角化を両立させた場合も像面湾曲及び諸収差の発生が抑えられている。また、点光源からの射出光を効率的に取り込むことができ、かつ励起光を被検面に効率的に照射し、照射された被検面からの自家蛍光を効率的に取り込むことができる。   On the other hand, as shown in Table 10, the condensing optical system for scanning 10 of Examples 1 to 8 satisfies the conditional expressions (1) and (2) at the same time, thereby reducing the size and wide angle of view. Even in the case where both are realized, curvature of field and occurrence of various aberrations are suppressed. Further, it is possible to efficiently capture the light emitted from the point light source, efficiently irradiate the test surface with the excitation light, and efficiently capture the autofluorescence from the irradiated test surface.

また、本実施例1〜8の走査用集光光学系10は、条件式(1)及び(2)以外の他の条件式も更に満たす。従って、本実施例1〜8の走査用集光光学系10では、条件式(1)及び(2)を満たすことによる効果のみならず、他の条件式を満たすことによる効果も奏される。   Moreover, the condensing optical system 10 for a scanning of the present Examples 1-8 further satisfy | fills conditional expressions other than conditional expression (1) and (2). Therefore, in the scanning condensing optical systems 10 of the first to eighth embodiments, not only the effect of satisfying conditional expressions (1) and (2) but also the effect of satisfying other conditional expressions are exhibited.

以上が本発明の例示的な実施形態の説明である。本発明の実施形態は、上記に説明したものに限定されず、本発明の技術的思想の範囲において様々な変形が可能である。例えば明細書中に例示的に明示される実施例等又は自明な実施例等を適宜組み合わせた内容も本願の実施形態に含まれる。   The above is the description of the exemplary embodiments of the present invention. Embodiments of the present invention are not limited to those described above, and various modifications are possible within the scope of the technical idea of the present invention. For example, the embodiment of the present application also includes contents appropriately combined with examples and the like clearly shown in the specification or obvious examples.

10 走査用集光光学系
100 共焦点光学システム
300 一体型内視鏡
10 Condensing optical system for scanning 100 Confocal optical system 300 Integrated endoscope

Claims (10)

所定の面上を移動する点光源より射出される光を集光させる集光光学系を備える内視鏡であって、
前記集光光学系は、
前記点光源側から順に、
正のパワーを持つ第1群、
正のパワーを持つ第2群、
からなり
前記第1群と前記第2群との間の軸上光は略平行光であり、
前記第1群は、
前記点光源側から順に、
前記点光源側に凹面を向けた第1のメニスカスレンズ、
前記光が集光される被検面側に凸面を向けた第1の正レンズ、
前記点光源側に凸面を向けた第2の正レンズ、
前記被検面側に凹面を向けた、負レンズと正レンズからなる第1の接合レンズ、
からなり
前記第2群は、
前記点光源側から順に、
前記点光源側に凹面を向けた、負レンズと正レンズからなる第1の接合レンズ、
第1の正レンズ、
前記被検面側に凹面を向けた第1のメニスカスレンズ、
からなり
前記第1のメニスカスレンズの前記点光源側の面の曲率半径をr11と定義し、該第1のメニスカスレンズの前記被検面側の面の曲率半径をr21と定義し、前記第1のメニスカスレンズの前記点光源側の面の曲率半径をr12と定義し、該第1のメニスカスレンズの前記被検面側の面の曲率半径をr22と定義した場合に、次の条件式
−0.4<SF<0.0
−0.6<SF<−0.1
但し、
SF:(r11−r21)/(r11+r21
SF:(r12−r22)/(r12+r22
を満たす
内視鏡
An endoscope including a condensing optical system that condenses light emitted from a point light source moving on a predetermined surface,
The condensing optical system is
In order from the point light source side,
The first group with positive power,
The second group with positive power,
Consists of
The axial light between the first group and the second group is substantially parallel light,
The first group is:
In order from the point light source side,
A first meniscus lens having a concave surface facing the point light source,
A first positive lens having a convex surface directed toward the test surface on which the light is collected;
Second first positive lens having a convex surface on the point light source side,
A first cemented lens comprising a negative lens and a positive lens, the concave surface facing the test surface side;
Consists of
The second group is
In order from the point light source side,
A concave surface facing the point light source side, the first and second cemented lens consisting of a negative lens and a positive lens,
First and second positive lenses,
First and second meniscus lens having a concave surface facing the predetermined surface side,
Consists of
The radius of curvature of the point light source side surface of the first 1 of the meniscus lens is defined as r 11, the radius of curvature of the test surface side of the first one meniscus lens is defined as r 21, wherein the radius of curvature of the point light source side surface of the first and second meniscus lens is defined as r 12, the radius of curvature of the test surface side of the first and second meniscus lens when defined as r 22, The following conditional expression −0.4 <SF 1 <0.0
−0.6 <SF 2 <−0.1
However,
SF 1 : (r 11 −r 21 ) / (r 11 + r 21 )
SF 2: (r 12 -r 22 ) / (r 12 + r 22)
Meet ,
Endoscope .
所定の面上を移動する点光源より射出される光を集光させる集光光学系を備える内視鏡であって、
前記集光光学系は、
前記点光源側から順に、
正のパワーを持つ第1群、
正のパワーを持つ第2群、
からなり
前記第1群と前記第2群との間の軸上光は略平行光であり、
前記第1群は、
前記点光源側から順に、
前記点光源側に凹面を向けた第1のメニスカスレンズ、
前記光が集光される被検面側に凸面を向けた第1の正レンズ、
負レンズと正レンズからなる第1の接合レンズ、
前記被検面側に凹面を向けた第2のメニスカスレンズ、
からなり
前記第2群は、
前記点光源側から順に、
前記点光源側に凹面を向けた、負レンズと正レンズからなる第1の接合レンズ、
第1の正レンズ、
前記被検面側に凹面を向けた第1のメニスカスレンズ、
からなり
前記第1のメニスカスレンズの前記点光源側の面の曲率半径をr11と定義し、該第1のメニスカスレンズの前記被検面側の面の曲率半径をr21と定義し、前記第1のメニスカスレンズの前記点光源側の面の曲率半径をr12と定義し、該第1のメニスカスレンズの前記被検面側の面の曲率半径をr22と定義した場合に、次の条件式
−0.4<SF<0.0
−0.6<SF<−0.1
但し、
SF:(r11−r21)/(r11+r21
SF:(r12−r22)/(r12+r22
を満たす
内視鏡
An endoscope including a condensing optical system that condenses light emitted from a point light source moving on a predetermined surface,
The condensing optical system is
In order from the point light source side,
The first group with positive power,
The second group with positive power,
Consists of
The axial light between the first group and the second group is substantially parallel light,
The first group is:
In order from the point light source side,
A first meniscus lens having a concave surface facing the point light source,
A first positive lens having a convex surface directed toward the test surface on which the light is collected;
A first cemented lens comprising a negative lens and a positive lens;
Second first meniscus lens having a concave surface facing the predetermined surface side,
Consists of
The second group is
In order from the point light source side,
A concave surface facing the point light source side, the first and second cemented lens consisting of a negative lens and a positive lens,
First and second positive lenses,
First and second meniscus lens having a concave surface facing the predetermined surface side,
Consists of
The radius of curvature of the point light source side surface of the first 1 of the meniscus lens is defined as r 11, the radius of curvature of the test surface side of the first one meniscus lens is defined as r 21, wherein the radius of curvature of the point light source side surface of the first and second meniscus lens is defined as r 12, the radius of curvature of the test surface side of the first and second meniscus lens when defined as r 22, The following conditional expression −0.4 <SF 1 <0.0
−0.6 <SF 2 <−0.1
However,
SF 1 : (r 11 −r 21 ) / (r 11 + r 21 )
SF 2: (r 12 -r 22 ) / (r 12 + r 22)
Meet ,
Endoscope .
前記第1群を構成するレンズのうち最も負のパワーの強いレンズの焦点距離をf1nと定義し、該第1群の焦点距離をfと定義した場合に、次の条件式
−4.5≦f1n/f≦−0.5
を満たす
請求項1又は請求項2に記載の内視鏡
When the focal length of the lens having the strongest negative power among the lenses constituting the first group is defined as f 1n and the focal length of the first group is defined as f 1 , the following conditional expression-4. 5 ≦ f 1n / f 1 ≦ −0.5
Meet ,
The endoscope according to claim 1 or claim 2.
前記第2群を構成するレンズのうち最も負のパワーの強いレンズの焦点距離をf2nと定義し、該第2群の焦点距離をfと定義した場合に、次の条件式
−0.9≦f2n/f≦−0.5
を満たす
請求項1から請求項3の何れか一項に記載の内視鏡
When the focal length of the lens having the strongest negative power among the lenses constituting the second group is defined as f 2n and the focal length of the second group is defined as f 2 , the following conditional expression −0. 9 ≦ f 2n / f 2 ≦ −0.5
Meet ,
The endoscope according to any one of claims 1 to 3.
前記第1群を構成するレンズのうち最も正のパワーの強いレンズの焦点距離をf1pと定義し、該第1群の焦点距離をfと定義した場合に、次の条件式
1.0≦f1p/f≦4.0
を満たす
請求項1から請求項4の何れか一項に記載の内視鏡
When the focal length of the lens having the strongest positive power among the lenses constituting the first group is defined as f 1p and the focal length of the first group is defined as f 1 , the following conditional expression 1.0 ≦ f 1p / f 1 ≦ 4.0
Meet ,
The endoscope according to any one of the preceding claims 1.
前記第2群を構成するレンズのうち最も正のパワーの強いレンズの焦点距離をf2pと定義し、該第2群の焦点距離をfと定義した場合に、次の条件式
0.5≦f2p/f≦3.0
を満たす
請求項1から請求項5の何れか一項に記載の内視鏡
When the focal length of the lens having the strongest positive power among the lenses constituting the second group is defined as f 2p and the focal length of the second group is defined as f 2 , the following conditional expression 0.5 ≦ f 2p / f 2 ≦ 3.0
Meet ,
The endoscope according to any one of claims 1 to 5.
前記第1のメニスカスレンズの焦点距離をf1mと定義し、前記第1群の焦点距離をfと定義した場合に、次の条件式
5.0≦|f1m/f|≦20.0
を満たす
請求項1から請求項6の何れか一項に記載の内視鏡
When the focal length of the first meniscus lens is defined as f 1m and the focal length of the first group is defined as f 1 , the following conditional expression 5.0 ≦ | f 1m / f 1 | ≦ 20 .0
Meet ,
The endoscope according to any one of claims 1 to 6.
前記第1のメニスカスレンズの焦点距離をf2mと定義し、前記第2群の焦点距離をfと定義した場合に、次の条件式
1.5≦|f2m/f|≦4.5
を満たす
請求項1から請求項7の何れか一項に記載の内視鏡
The focal length of the first and second meniscus lens is defined as f 2m, the focal length of said second group when defined as f 2, the following conditional expression 1.5 ≦ | f 2m / f 2 | ≦ 4 .5
Meet ,
The endoscope according to any one of claims 1 to 7.
前記第1群を構成するレンズのレンズ面のうち最も被検面側に配置される面と、前記第2群を構成するレンズのレンズ面のうち最も点光源側に配置される面とが互いに向き合う一対の凹面であり、該凹面を持つ少なくとも一方が負レンズであり、
前記一対の凹面のうち、前記被検面側に向く凹面の曲率半径をr31と定義し、該曲率半径r31を持つ凹面と向き合う凹面の曲率半径をr32と定義した場合に、次の条件式
―0.2<SF<0.0
但し、
SF:(r31+r32)/(r31−r32
を満たす
請求項1から請求項8の何れか一項に記載の内視鏡
Of the lens surfaces of the lenses constituting the first group, the surface arranged closest to the test surface and the surface of the lenses constituting the second group arranged closest to the point light source are mutually connected. A pair of concave surfaces facing each other, at least one of the concave surfaces is a negative lens,
Of a pair of concave, the radius of curvature of the concave surface facing the object surface side is defined as r 31, the radius of curvature of the concave surface facing the concave surface with a curvature radius r 31 when defined as r 32, the following Conditional expression-0.2 <SF 3 <0.0
However,
SF 3: (r 31 + r 32) / (r 31 -r 32)
Meet ,
The endoscope according to any one of claims 1 to 8.
前記曲率半径r31の凹面を持つレンズ、前記曲率半径r32の凹面を持つレンズは、
夫々が符号の異なるパワーを持つレンズと接合されることにより、一対の正負の接合レンズを構成する
請求項9に記載の内視鏡
A lens having a concave surface with the radius of curvature r 31 and a lens having a concave surface with the radius of curvature r 32 are:
A pair of positive and negative cemented lenses are formed by being cemented with lenses having different powers, respectively .
The endoscope according to claim 9.
JP2012269986A 2012-12-11 2012-12-11 Endoscope Active JP6074246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012269986A JP6074246B2 (en) 2012-12-11 2012-12-11 Endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269986A JP6074246B2 (en) 2012-12-11 2012-12-11 Endoscope

Publications (2)

Publication Number Publication Date
JP2014115495A JP2014115495A (en) 2014-06-26
JP6074246B2 true JP6074246B2 (en) 2017-02-01

Family

ID=51171537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269986A Active JP6074246B2 (en) 2012-12-11 2012-12-11 Endoscope

Country Status (1)

Country Link
JP (1) JP6074246B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974285B1 (en) * 2017-11-29 2019-04-30 김도현 Propjection potical system and lens assembly for low field of view

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216118A1 (en) * 2017-05-23 2018-11-29 オリンパス株式会社 Lighting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325265A (en) * 1996-06-04 1997-12-16 Sony Cinema Prod Corp Data recorder for movie film
FR2834348B1 (en) * 2001-12-28 2004-02-27 Mauna Kea Technologies MINIATURIZED FOCUSING OPTICAL HEAD, ESPECIALLY FOR AN ENDOSCOPE
FR2900741B1 (en) * 2006-05-05 2008-07-18 Mauna Kea Technologies Soc Par MINIATURIZED OPTICAL HEAD WITH HIGH SPACE RESOLUTION AND HIGH SENSITIVITY, ESPECIALLY FOR FIBROUS CONFOCAL FLUORESCENCE IMAGING

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974285B1 (en) * 2017-11-29 2019-04-30 김도현 Propjection potical system and lens assembly for low field of view

Also Published As

Publication number Publication date
JP2014115495A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
US7338439B2 (en) Condensing optical system, confocal optical system, and scanning confocal endoscope
US7046450B2 (en) Liquid-immersion objective optical system
JP4544904B2 (en) Optical system
CN100474028C (en) Laser scanning type fluorescent microscope
EP1970743A1 (en) Optical scanning observation apparatus
JP5105882B2 (en) Stereo microscope
WO2018047335A1 (en) Stereoscopic endoscope
WO2018189853A1 (en) Stereoscopic endoscope optical system and endoscope provided therewith
US7907335B2 (en) Focus-adjusting unit and microscope
JP4426234B2 (en) Condensing optical system, confocal optical system, and scanning confocal endoscope
KR101387823B1 (en) Catadioptric system and image pickup apparatus
JP6074246B2 (en) Endoscope
JP2006079000A (en) Optical scanning observation device
JP4862368B2 (en) Zoom microscope
JP2006119300A (en) Liquid immersion objective optical system
JP6080255B2 (en) Endoscope
JP5268988B2 (en) Two-dimensional scanning device
US8717672B2 (en) Variable-focus optical system
JP4475912B2 (en) Condensing optical system, confocal optical system, and scanning confocal endoscope
US20210165201A1 (en) Microscope objective lens and microscope
JP4240754B2 (en) Telecentric optics
JP2006091714A (en) Endoscope objective optical system and endoscope
JP6392947B2 (en) Immersion microscope objective lens and microscope using the same
JP6562259B2 (en) Microscope objective lens and microscope apparatus
JP2015036706A (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170106

R150 Certificate of patent or registration of utility model

Ref document number: 6074246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170717

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250