JP6071536B2 - Charging member and electrophotographic apparatus - Google Patents

Charging member and electrophotographic apparatus Download PDF

Info

Publication number
JP6071536B2
JP6071536B2 JP2012283066A JP2012283066A JP6071536B2 JP 6071536 B2 JP6071536 B2 JP 6071536B2 JP 2012283066 A JP2012283066 A JP 2012283066A JP 2012283066 A JP2012283066 A JP 2012283066A JP 6071536 B2 JP6071536 B2 JP 6071536B2
Authority
JP
Japan
Prior art keywords
elastic layer
charging member
hollow
hollow particles
conductive elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012283066A
Other languages
Japanese (ja)
Other versions
JP2014126680A (en
Inventor
道隆 北原
道隆 北原
雄彦 青山
雄彦 青山
健一 山内
健一 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012283066A priority Critical patent/JP6071536B2/en
Publication of JP2014126680A publication Critical patent/JP2014126680A/en
Application granted granted Critical
Publication of JP6071536B2 publication Critical patent/JP6071536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

本発明は、電子写真装置に用いられる帯電部材および電子写真装置に関する。   The present invention relates to a charging member used in an electrophotographic apparatus and an electrophotographic apparatus.

電子写真方式を採用した電子写真装置は、主に、電子写真感光体、帯電装置、露光装置、現像装置、転写装置及び定着装置からなる。帯電装置における帯電方式には、電子写真感光体の表面に接触又は近接配置された帯電部材に電圧(直流電圧のみの電圧又は直流電圧に交流電圧を重畳した電圧)を印加することによって電子写真感光体の表面を帯電する方式が採用されている。   An electrophotographic apparatus adopting an electrophotographic system mainly includes an electrophotographic photosensitive member, a charging device, an exposure device, a developing device, a transfer device, and a fixing device. As a charging method in the charging device, an electrophotographic photosensitive member is applied by applying a voltage (a voltage of only a DC voltage or a voltage in which an AC voltage is superimposed on a DC voltage) to a charging member that is in contact with or close to the surface of the electrophotographic photosensitive member. A system that charges the surface of the body is adopted.

帯電を安定に行う、及び、オゾンの発生を低減するという観点から、接触式の帯電方式が好んで用いられている。接触式の帯電方式の場合、ローラ形状の帯電部材(以下、「帯電ローラ」と呼ぶ)が好んで用いられている。また、帯電ローラは、回転する電子写真感光体に対して、バネ等の所定の押し圧力により当接され、従動回転するように配置される。そのため帯電ローラは軸両端から当接のための加圧が付与される構成で用いられることが多い。通常の円柱形状では構造上中央部分の加圧が弱くなり、電子写真感光体と帯電ローラの間に隙間が発生してしまうことがある。上記の理由により、帯電ローラを電子写真感光体に対して帯電ローラ軸方向に均一な圧力で接触させるため、帯電ローラの軸方向の中央が端部よりも太い外径を有するクラウン形状に形成した帯電ローラが開示されている(特許文献1参照)。   From the viewpoint of stably charging and reducing the generation of ozone, a contact-type charging method is preferably used. In the case of the contact charging method, a roller-shaped charging member (hereinafter referred to as “charging roller”) is preferably used. In addition, the charging roller is disposed so as to be in contact with the rotating electrophotographic photosensitive member by a predetermined pressing force such as a spring and to be driven to rotate. Therefore, the charging roller is often used in a configuration in which pressure for contact is applied from both ends of the shaft. In the normal cylindrical shape, the pressure at the central portion is weak due to the structure, and a gap may be generated between the electrophotographic photosensitive member and the charging roller. For the above reasons, in order to bring the charging roller into contact with the electrophotographic photosensitive member with uniform pressure in the axial direction of the charging roller, the center of the charging roller in the axial direction is formed in a crown shape having an outer diameter larger than the end portion. A charging roller is disclosed (see Patent Document 1).

特開2010−243797号公報JP 2010-243797 A

また、近年のプリンタ及び複写機に代表される電子写真方式を採用する画像形成装置においては、高速化・高耐久化への要求がより一層高まっている。像形成速度(以下、プロセススピードと記す)を向上させ、さらに帯電部材及び電子写真感光体(以下、「感光体」と呼ぶ)を含むユニットの目標とする耐久寿命値が伸びている。   In recent image forming apparatuses employing an electrophotographic system represented by printers and copiers, there is a growing demand for higher speed and higher durability. The image forming speed (hereinafter referred to as “process speed”) is improved, and the target durable life value of the unit including the charging member and the electrophotographic photosensitive member (hereinafter referred to as “photosensitive member”) is increased.

しかしながら、特許文献1記載の方法は、塗膜層の厚みを帯電部材の長手方向で変えることでクラウン形状を形成しているため、プロセススピードの向上により、感光体と帯電部材が従動するときに帯電部材にかかるねじれが大きくなってしまう場合がある。その結果、帯電部材にかかるねじれが開放されるときに生じるスティックスリップが発生しやすくなる場合があった。   However, in the method described in Patent Document 1, since the crown shape is formed by changing the thickness of the coating layer in the longitudinal direction of the charging member, when the photosensitive member and the charging member are driven by the improvement of the process speed. The twist applied to the charging member may increase. As a result, stick slip that occurs when the twist applied to the charging member is released may easily occur.

更に、電子写真装置における高速化、高耐久化及び高画質化等のための改良に伴い、改良以前には発生しなかった画像が、顕在化する場合が懸念される。そのため帯電部材の長手方向全域にわたる回転安定性を向上することは、より安定した帯電性能および電子写真性能を得るために解決すべき課題であると、本願発明者らは認識した。   Furthermore, there is a concern that an image that has not been generated before the improvement becomes apparent along with improvements in the electrophotographic apparatus for high speed, high durability, and high image quality. Therefore, the inventors of the present application have recognized that improving rotational stability over the entire longitudinal direction of the charging member is a problem to be solved in order to obtain more stable charging performance and electrophotographic performance.

本発明の目的は、電子写真装置の帯電部材において、スティックスリップを軽減することで、高速・高耐久の電子写真装置等にも好適に用いることのできる帯電部材を提供することにある。また、本発明の他の目的は、高品位な電子写真画像の形成に資する電子写真装置を提供することにある。   An object of the present invention is to provide a charging member that can be suitably used for a high-speed, high-durability electrophotographic apparatus and the like by reducing stick slip in the charging member of the electrophotographic apparatus. Another object of the present invention is to provide an electrophotographic apparatus that contributes to the formation of high-quality electrophotographic images.

本発明によれば、
導電性基体と、導電性弾性層とを有する帯電部材において、
該導電性弾性層は、バインダーとして、アクリロニトリルブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンジエンゴム、エピクロルヒドリンゴムから選ばれる少なくとも1種のゴムを含み、
該導電性弾性層は、多中空粒子を、該導電性弾性層から一部が露出した状態で保持しており、
該帯電部材は、該多中空粒子の中空部分に由来する凹部を表面に有し、
該多中空粒子は、
スチレン、ジビニルベンゼンおよびアクリル酸メチルの共重合体、
スチレンおよびジビニルベンゼンの共重合体、
スチレン、ジビニルベンゼンおよびアクリロニトリルの共重合体、
スチレン、ジビニルベンゼンおよび塩化ビニリデンの共重合体、および、
スチレン、ジビニルベンゼンおよび塩化ビニルの共重合体
からなる群から選択されるいずれかの共重合体からなる樹脂粒子であって、かつ、その内部に複数個の空孔を有するものである、
ことを特徴とする帯電部材が提供される。
According to the present invention,
In a charging member having a conductive substrate and a conductive elastic layer,
The conductive elastic layer contains, as a binder, at least one rubber selected from acrylonitrile butadiene rubber, styrene butadiene rubber, ethylene propylene diene rubber, and epichlorohydrin rubber,
The conductive elastic layer holds the multi-hollow particles in a state where a part thereof is exposed from the conductive elastic layer,
The charging member has a concave portion derived from a hollow portion of the multi-hollow particle on the surface,
The multi-hollow particles are
Copolymer of styrene, divinylbenzene and methyl acrylate,
A copolymer of styrene and divinylbenzene,
Copolymer of styrene, divinylbenzene and acrylonitrile,
A copolymer of styrene, divinylbenzene and vinylidene chloride, and
Copolymer of styrene, divinylbenzene and vinyl chloride
Resin particles made of any copolymer selected from the group consisting of, and having a plurality of pores therein,
A charging member is provided.

また、本発明によれば、電子写真感光体と、該電子写真感光体に接触配置される帯電部材とを具備しており、該帯電部材が上記の帯電部材である電子写真装置が提供される。   Further, according to the present invention, there is provided an electrophotographic apparatus comprising an electrophotographic photosensitive member and a charging member disposed in contact with the electrophotographic photosensitive member, wherein the charging member is the above-described charging member. .

本発明によれば、使用する環境によらず、高速印刷や長期使用における多数枚印刷において、帯電部材のスティックスリップを抑制し、帯電部材の長手方向全域にわたる回転安定性が向上される。更に、本発明によれば、帯電部材の長手方向全域にわたる回転安定性の低下に伴う異常放電に起因した横縞状のバンディング画像の発生を抑制することができる。   According to the present invention, sticking slip of the charging member is suppressed and rotational stability over the entire longitudinal direction of the charging member is improved in high-speed printing and long-term printing regardless of the environment in which the charging member is used. Furthermore, according to the present invention, it is possible to suppress the generation of a horizontal striped banding image due to abnormal discharge accompanying a decrease in rotational stability over the entire longitudinal direction of the charging member.

導電性の軸芯体上に導電性弾性層を形成する工程の概略図である。It is the schematic of the process of forming a conductive elastic layer on a conductive shaft core. 本発明に係る帯電部材(ローラ形状)の軸方向に対して直交する断面を示す模式図である。(a)は、導電性基体201と導電性弾性層202を有する帯電ローラの模式的断面図であり、(b)は表面層205を更に有する帯電ローラの模式的断面図である。It is a schematic diagram which shows the cross section orthogonal to the axial direction of the charging member (roller shape) which concerns on this invention. (A) is a schematic cross-sectional view of a charging roller having a conductive base 201 and a conductive elastic layer 202, and (b) is a schematic cross-sectional view of a charging roller further having a surface layer 205. 本発明に係る帯電部材(平板形状)の断面を示す模式図である。(a)は、導電性基体201と導電性弾性層202を有する帯電ローラの模式的断面図であり、(b)は表面層205を更に有する帯電ローラの模式的断面図である。It is a schematic diagram which shows the cross section of the charging member (flat plate shape) which concerns on this invention. (A) is a schematic cross-sectional view of a charging roller having a conductive base 201 and a conductive elastic layer 202, and (b) is a schematic cross-sectional view of a charging roller further having a surface layer 205. 本発明に係る帯電部材の導電性弾性層の断面(導電性弾性層表面近傍)を示す模式的部分断面図である。It is a typical fragmentary sectional view which shows the cross section (conductive electroconductive layer surface vicinity) of the electroconductive elastic layer of the charging member which concerns on this invention. プランジカット方式円筒研磨機による帯電部材の研磨方法の一例を示す模式図である。It is a schematic diagram which shows an example of the grinding | polishing method of the charging member by a plunge cut type cylindrical grinder. 帯電ローラの電気抵抗値測定器の概略図である。It is the schematic of the electrical resistance value measuring device of a charging roller. 本発明に係る帯電部材を用いた電子写真装置の実施形態の1例を示した断面概略図である。1 is a schematic cross-sectional view illustrating an example of an embodiment of an electrophotographic apparatus using a charging member according to the present invention.

本発明にかかる帯電部材は、少なくとも導電性基体と導電性弾性層とを有して構成される。必要に応じて、導電性弾性層上には表面層を設けることができる。導電性弾性層は、バインダーとして、アクリロニトリルブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンジエンゴム、エピクロルヒドリンゴムから選ばれる少なくとも1種のゴムを含む。   The charging member according to the present invention includes at least a conductive substrate and a conductive elastic layer. If necessary, a surface layer can be provided on the conductive elastic layer. The conductive elastic layer contains at least one rubber selected from acrylonitrile butadiene rubber, styrene butadiene rubber, ethylene propylene diene rubber, and epichlorohydrin rubber as a binder.

本発明にかかる帯電部材は、導電性弾性層が導電性弾性層から一部が露出した状態で多中空粒子を保持していることにより、多中空粒子の中空部分に由来する凹部を表面に有するものとなっている。
多中空粒子は、スチレン及びジビニルベンゼンの共重合体、あるいはスチレン及びジビニルベンゼンに、アクリル酸メチル、アクリロニトリル、塩化ビニリデンまたは塩化ビニルを組み合わせて得られる共重合体から形成される。
多中空粒子としてはその内部には複数の中空部を有し、その複数の中空部の少なくとも一部は、多中空粒子の外壁面に開口して凹部を形成している。すなわち、多中空粒子の内部に設けられた複数の中空部の少なくとも一部は、多中空粒子の外面に凹部を形成する開口を有している。本発明にかかる帯電部材の表面には、この多孔中空粒子の外壁面に形成された中空部の開口からなる凹部に由来する凹部が形成される。この多中空粒子の中空部に由来する凹部は、帯電部材の表面に露出した多中空粒子の外壁面に形成された中空部の開口からなる凹部そのものであってもよいし、この中空部の開口からなる凹部が表面層で覆われた状態で得られるものであってもよい。
The charging member according to the present invention has a concave portion derived from the hollow portion of the multi-hollow particle on the surface by holding the multi-hollow particle in a state in which the conductive elastic layer is partially exposed from the conductive elastic layer. It has become a thing.
The multi-hollow particles are formed from a copolymer of styrene and divinylbenzene, or a copolymer obtained by combining styrene and divinylbenzene with methyl acrylate, acrylonitrile, vinylidene chloride or vinyl chloride.
The multi-hollow particle has a plurality of hollow portions therein, and at least a part of the plurality of hollow portions is opened to the outer wall surface of the multi-hollow particle to form a recess. That is, at least a part of the plurality of hollow portions provided in the interior of the multi-hollow particle has an opening that forms a recess in the outer surface of the multi-hollow particle. On the surface of the charging member according to the present invention, a concave portion derived from the concave portion formed by the opening of the hollow portion formed on the outer wall surface of the porous hollow particle is formed. The concave portion derived from the hollow portion of the multi-hollow particle may be the concave portion itself formed by the opening of the hollow portion formed on the outer wall surface of the multi-hollow particle exposed on the surface of the charging member, or the opening of the hollow portion. It may be obtained in a state where the concave portion made of is covered with the surface layer.

以下、本発明にかかる帯電部材における好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of the charging member according to the present invention will be described in detail.

<帯電部材>
本発明に係る帯電部材は、導電性基体上に、導電性弾性層を有する構成の電子写真用帯電部材であり、被帯電体を帯電するのに用いられる。例えば電子写真感光体などを帯電するのに用いられる。この導電性弾性層は、粒子内部に多数の中空部分を有する粒子(以下、「多中空粒子」と呼ぶ)を含有してなる。本発明の多中空粒子は、先に記載した通り、スチレン及びジビニルベンゼンの共重合体、あるいはスチレン及びジビニルベンゼンに、アクリル酸メチル、アクリロニトリル、塩化ビニリデンまたは塩化ビニルを組み合わせて得られる共重合体から形成される。
<Charging member>
The charging member according to the present invention is an electrophotographic charging member having a conductive elastic layer on a conductive substrate, and is used to charge an object to be charged. For example, it is used to charge an electrophotographic photoreceptor. This conductive elastic layer contains particles having a large number of hollow portions inside the particles (hereinafter referred to as “multi-hollow particles”). As described above, the multi-hollow particle of the present invention is a copolymer of styrene and divinylbenzene, or a copolymer obtained by combining styrene and divinylbenzene with methyl acrylate, acrylonitrile, vinylidene chloride or vinyl chloride. It is formed.

導電性弾性層に含有される多中空粒子の少なくとも一部の多中空粒子が、導電性弾性層から露出しており、かつ、導電性弾性層は該多中空粒子の中空部分に由来する凹部を有する。つまり上記の状態は、導電性弾性層中に含まれる多中空粒子の一部の粒子について、これらの多中空粒子の断面が導電性弾性層の表面に露出している状態である。多中空粒子は、粒子内部に多数の中空部分を有するため、その断面に中空部分に由来する凹部を多数有しており、かつこの凹部が導電性弾性層の表面に露出した状態となる。すなわち、多中空粒子の中空部の少なくとも一部が多中空粒子の外壁面に開口していることにより生じた凹部が導電性弾性層の表面に露出した状態となっている。このように、導電性弾性層はその内部に多中空粒子を含むとともに、中空部の開口により形成される凹部を有する多中空粒子をその表面に露出した状態で有している。   At least some of the multi-hollow particles of the multi-hollow particles contained in the conductive elastic layer are exposed from the conductive elastic layer, and the conductive elastic layer has a recess derived from the hollow portion of the multi-hollow particle. Have. That is, the above-described state is a state in which a part of the multi-hollow particles contained in the conductive elastic layer has a cross-section of the multi-hollow particles exposed on the surface of the conductive elastic layer. Since the multi-hollow particle has a large number of hollow portions inside the particle, it has a large number of concave portions derived from the hollow portion in its cross section, and the concave portions are exposed on the surface of the conductive elastic layer. That is, the recessed part produced when at least one part of the hollow part of the multi-hollow particle is opening in the outer wall surface of the multi-hollow particle is in the state exposed to the surface of the electroconductive elastic layer. As described above, the conductive elastic layer includes the multi-hollow particles inside thereof, and has the multi-hollow particles having the concave portions formed by the openings of the hollow portions in a state of being exposed on the surface thereof.

接触式の帯電方式の場合、帯電部材の形状としては、導電性基体および導電性弾性層を有するローラ形状の帯電部材が好んで用いられている。帯電部材のスティックスリップの発生および抑制メカニズムについて帯電ローラの例を用いて説明する。   In the case of the contact-type charging system, the charging member is preferably a roller-shaped charging member having a conductive base and a conductive elastic layer. The generation and suppression mechanism of stick slip of the charging member will be described using an example of a charging roller.

一般的に帯電ローラは、回転する感光体に対して、導電性基体の両端にバネ等の所定の押し圧力を加えることより当接され、従動回転するように配置される。帯電ローラは導電性基体の両端から当接のための加圧が付与されるため、通常の円柱形状では構造上ローラの軸方向において中央部分の加圧が弱くなり、感光体と帯電ローラの当接圧に分布が発生してしまう。そのため帯電ローラの形状や硬度、押し圧力の設定などによっては、感光体と帯電ローラとの間に隙間が発生し、帯電ローラが浮く状態となることがある。前記の理由により帯電ローラの形状としては、軸方向の中央外径が太く、両端部に向けて順次縮径していくクラウン形状に形成されることが多い。これにより、帯電ローラを軸方向に均一な圧力で感光体に当接させることが可能となる。   In general, the charging roller is placed in contact with a rotating photosensitive member by applying a predetermined pressing force such as a spring to both ends of the conductive substrate, and is driven to rotate. Since the charging roller is applied with pressure for contact from both ends of the conductive substrate, in a normal cylindrical shape, the pressure at the central portion is weak in the axial direction of the roller due to the structure, and the contact between the photosensitive member and the charging roller is weak. Distribution occurs in contact pressure. Therefore, depending on the setting of the charging roller, the hardness, the pressing force, etc., a gap may be generated between the photosensitive member and the charging roller, and the charging roller may float. For the above reason, the charging roller is often formed in a crown shape having a thick central outer diameter in the axial direction and gradually reducing the diameter toward both ends. As a result, the charging roller can be brought into contact with the photosensitive member with a uniform pressure in the axial direction.

また、帯電ローラは、回転する感光体に当接し従動回転させて用いられることが多い。感光体としては、軸方向に円柱形状の一様な外径を持つものが多く用いられている。したがって、一様な外径を有する感光体を回転させつつ、クラウン形状を有する帯電ローラを当接させると、帯電ローラは感光体の回転に合わせて従動回転する。帯電ローラの回転速度は、感光体の回転速度に依存する従動回転であるため、感光体と帯電ローラの間にすべりが無いと仮定した場合、感光体の周速(感光体の円周長さ×単位時間あたりの回転数)と一致する。   In many cases, the charging roller is used in contact with a rotating photosensitive member and driven to rotate. Many photoreceptors having a uniform cylindrical outer diameter in the axial direction are used. Accordingly, when the charging roller having a crown shape is brought into contact with the photoconductor having a uniform outer diameter, the charging roller is driven and rotated in accordance with the rotation of the photoconductor. Since the rotation speed of the charging roller is a driven rotation that depends on the rotation speed of the photosensitive member, assuming that there is no slip between the photosensitive member and the charging roller, the peripheral speed of the photosensitive member (the circumferential length of the photosensitive member) X Number of rotations per unit time).

帯電ローラの従動回転は、感光体と帯電ローラの接触による転がり摩擦駆動の伝達による回転運動である。そのため帯電ローラ周速は、感光体の場合と同様に帯電ローラの円周長さ×単位時間あたりの回転数となる。   The driven rotation of the charging roller is a rotational motion by transmission of rolling friction drive due to contact between the photosensitive member and the charging roller. Therefore, the circumferential speed of the charging roller is the circumferential length of the charging roller × the number of rotations per unit time as in the case of the photoconductor.

また、クラウン形状を有する帯電ローラは、感光体と異なり軸方向に外径差を有するので、帯電ローラの半径は軸方向に分布をもつこととなる。感光体は軸方向に一様な周速を有するため、感光体と帯電ローラの間にすべりが無いと仮定した場合、帯電ローラに伝達される周速は軸方向で一様である。帯電ローラの半径は軸方向に分布もっているため、感光体から軸方向に一様な周速が伝達された場合、軸方向で回転数が異なる分布をもつ状態とならなければならない。つまり、帯電ローラの外径が太い中央部と外径の細い端部を比較した場合、中央部よりも端部の方が回転数が速くなければ、帯電ローラの周速は、一様な分布とならない。   In addition, the charging roller having a crown shape has an outer diameter difference in the axial direction unlike the photosensitive member, and therefore the radius of the charging roller has a distribution in the axial direction. Since the photosensitive member has a uniform peripheral speed in the axial direction, when it is assumed that there is no slip between the photosensitive member and the charging roller, the peripheral speed transmitted to the charging roller is uniform in the axial direction. Since the radius of the charging roller has a distribution in the axial direction, when a uniform peripheral speed is transmitted from the photosensitive member in the axial direction, the rotation speed must be different in the axial direction. In other words, when comparing the central part where the outer diameter of the charging roller is thick and the end part where the outer diameter is thin, the peripheral speed of the charging roller has a uniform distribution unless the rotational speed of the end part is faster than the central part. Not.

しかしながら、実際は、帯電ローラは、導電性基体および導電性弾性層が軸方向に連続しており、軸方向に異なる回転数をもつことはできない。すなわち、帯電ローラの回転数は軸方向一様である。そのためクラウン形状を有する帯電ローラの周速は、帯電ローラの半径×単位時間あたりの回転数の関係より、帯電ローラの外径が太い中央部は、周速が速く、外径の細い端部は中央部よりも周速が遅くなる。つまりクラウン形状を有する帯電ローラの周速は、軸方向に一様な分布とならない。   However, in reality, the charging roller has a conductive base and a conductive elastic layer that are continuous in the axial direction, and cannot have a different rotational speed in the axial direction. That is, the rotation speed of the charging roller is uniform in the axial direction. Therefore, the peripheral speed of the charging roller having a crown shape is such that the central portion where the outer diameter of the charging roller is thick is faster and the end portion where the outer diameter is thin is The peripheral speed is slower than the central part. That is, the circumferential speed of the charging roller having a crown shape does not have a uniform distribution in the axial direction.

上記の理由により一様な外径を有する感光体に当接させたクラウン形状を有する帯電ローラは、その構造上、必然的に軸方向で周速差が発生してしまう。   Due to the above reasons, a charging roller having a crown shape brought into contact with a photoconductor having a uniform outer diameter inevitably generates a difference in peripheral speed in the axial direction due to its structure.

クラウン形状を有する帯電ローラは、この周速差により、帯電ローラの回転方向とは逆の方向に導電性弾性層にねじれ力が発生する。そのねじれ力の分布は、帯電ローラの中央部から周速の遅い両端部に向かうにつれ、中央部との周速差に応じて順次大きくなる。このねじれ力により導電性弾性層には変形や歪みやねじれが発生するが、導電性弾性層の反発弾性の復元力によりねじれの解放が生じ、帯電ローラの回転方向つまり周速差を解消する方向に導電性弾性層が変形する。このスティックスリップのような導電性弾性層のねじれと解放の繰返しにより、導電性弾性層がねじ切れることなく帯電ローラは回転することができる。   In the charging roller having a crown shape, a twisting force is generated in the conductive elastic layer in the direction opposite to the rotation direction of the charging roller due to the difference in peripheral speed. The distribution of the torsional force gradually increases in accordance with the peripheral speed difference from the central portion as it goes from the central portion of the charging roller to both end portions where the peripheral speed is low. This twisting force causes deformation, distortion, and twist in the conductive elastic layer, but the rebound resilience of the conductive elastic layer releases the twist, and the direction of rotation of the charging roller, that is, the direction in which the peripheral speed difference is eliminated. The conductive elastic layer is deformed. By repeating the twist and release of the conductive elastic layer such as stick-slip, the charging roller can rotate without the conductive elastic layer being twisted.

しかしながら、上述した導電性弾性層のねじれと、導電性弾性層の復元力によるねじれの解放の繰り返しにより導電性弾性層と感光体との間に発生するスティックスリップが異常放電を引き起こす原因となる。その結果、横しま状のバンディング画像となってしまうことがあった。   However, stick slip generated between the conductive elastic layer and the photoconductor due to repeated twisting of the conductive elastic layer and release of twist by the restoring force of the conductive elastic layer causes abnormal discharge. As a result, a horizontal striped banding image may occur.

本発明にかかる帯電部材では、導電性弾性層中に多中空粒子を含有させ、かつ多中空粒子を導電性弾性層表面に露出させ、露出した多中空粒子が開口した中空部から形成される凹部を露出しているという構成によってスティックスリップを軽減している。   In the charging member according to the present invention, a concave portion formed of a hollow portion in which a multi-hollow particle is contained in the conductive elastic layer, the multi-hollow particle is exposed on the surface of the conductive elastic layer, and the exposed multi-hollow particle is opened. The stick-slip is reduced by the structure that is exposed.

多中空粒子は、導電性弾性層と比較し、高硬度かつ高弾性であるため変形が加わった時、高い反発性を発現する。そのため導電性弾性層にねじれ力が発生した場合でも、多中空粒子は、ねじれが生じにくく、ねじれを微小に抑えることができ、かつ、ねじれ力に反発し微小な変形状態からのねじれの開放とすることができる。   Since the multi-hollow particles have higher hardness and higher elasticity than the conductive elastic layer, they exhibit high resilience when deformed. Therefore, even when a torsional force is generated in the conductive elastic layer, the multi-hollow particles are less likely to be twisted, the twist can be suppressed to a very small level, and the twist is released from a minute deformation state by repelling the twisting force. can do.

また、感光体と帯電部材の接触面には、導電性弾性層中に含まれる多中空粒子の一部の粒子の断面が導電性弾性層の表面に露出している部分と、導電性弾性層のみの部分がある。多中空粒子の断面は、多中空粒子の中空部に由来する凹部を有している。そのため導電性弾性層のみが感光体と接触する場合と比較して、多中空粒子の中空部分に由来する凹部の効果により、感光体と帯電部材の接触面積が低下し、感光体と帯電部材の接触面は低摩擦となる。   Further, on the contact surface between the photosensitive member and the charging member, a portion where the cross section of a part of the multi-hollow particles contained in the conductive elastic layer is exposed on the surface of the conductive elastic layer, and the conductive elastic layer There is only a part. The cross section of the multi-hollow particle has a recess derived from the hollow portion of the multi-hollow particle. Therefore, compared with the case where only the conductive elastic layer is in contact with the photoconductor, the contact area between the photoconductor and the charging member is reduced due to the effect of the concave portion derived from the hollow portion of the multi-hollow particles. The contact surface has low friction.

したがって帯電部材の周速差によって導電性弾性層にねじれ力が発生した場合、導電性弾性層中の多中空粒子の反発力および導電性弾性層表面に露出した多中空粒子断面の低摩擦性の効果によって、感光体と帯電部材の間に帯電部材の周速差を解消する方向に微小にスリップが生じる。つまり、多中空粒子の表面で導電性弾性層のねじれが部分的に、効果的な速さをもって解放されることとなる。   Therefore, when a torsional force is generated in the conductive elastic layer due to the peripheral speed difference of the charging member, the repulsive force of the multi-hollow particles in the conductive elastic layer and the low friction property of the cross-section of the multi-hollow particles exposed on the surface of the conductive elastic layer. Due to the effect, a slight slip occurs between the photosensitive member and the charging member in a direction to eliminate the peripheral speed difference of the charging member. That is, the twist of the conductive elastic layer is partially released on the surface of the multi-hollow particle with an effective speed.

導電性弾性層のみでは、導電性弾性層の大きなねじれと解放が繰り返し発生することで、スティッスリップが発生し、結果として導電性弾性層の振動が生じてしまう場合がある。本発明の帯電部材では、導電性弾性層表面に多中空粒子露出させ、その露出表面に多中空粒子の外壁面での中空部の開口による凹部が形成されていることによって、導電性弾性層のかかる振動の発生を減少させることができる。この結果、上記で説明したメカニズムにより、バンディング画像の発生が低減・抑制される。   In the case of only the conductive elastic layer, a large twist and release of the conductive elastic layer are repeatedly generated, thereby causing a stick slip, which may result in vibration of the conductive elastic layer. In the charging member of the present invention, the hollow surface is exposed on the surface of the conductive elastic layer, and the exposed surface is formed with a recess due to the opening of the hollow portion on the outer wall surface of the hollow particle. Generation of such vibration can be reduced. As a result, the occurrence of banding images is reduced / suppressed by the mechanism described above.

本発明に係る帯電部材の一例を図2(ローラ形状)、図3(平板形状)に示す。なお、これらの図は、本発明に係る帯電部材の概略断面図(軸方向に対して直交する断面)を示したものである。   An example of the charging member according to the present invention is shown in FIG. 2 (roller shape) and FIG. 3 (flat plate shape). These drawings show schematic sectional views (cross sections orthogonal to the axial direction) of the charging member according to the present invention.

図2(a)は、導電性基体201と導電性弾性層202を有する帯電ローラである。図4は、本発明に係る帯電部材の導電性弾性層の断面(導電性弾性層表面近傍)を示す模式的部分断面図である。導電性弾性層202は、多中空粒子203を含有しており、多中空粒子の少なくとも一部の粒子は導電性弾性層表面に露出している。導電性弾性層表面に露出した多中空粒子204の少なくとも一部の粒子は、多中空粒子の中空部分に由来する凹部を有する。さらに図2(b)および図3(b)のように導電性弾性層202の上に表面層205を有しても良い。   FIG. 2A shows a charging roller having a conductive substrate 201 and a conductive elastic layer 202. FIG. 4 is a schematic partial cross-sectional view showing a cross section (near the surface of the conductive elastic layer) of the conductive elastic layer of the charging member according to the present invention. The conductive elastic layer 202 contains multi-hollow particles 203, and at least some of the multi-hollow particles are exposed on the surface of the conductive elastic layer. At least a part of the multi-hollow particles 204 exposed on the surface of the conductive elastic layer has a recess derived from the hollow portion of the multi-hollow particles. Furthermore, you may have the surface layer 205 on the electroconductive elastic layer 202 like FIG.2 (b) and FIG.3 (b).

導電性基体201と導電性弾性層202、あるいは、順次積層する層(例えば、図2(b)に示す導電性弾性層と表面層)は、接着層を介して接着してもよい。接着層としては、公知の接着剤や接着性フィルムなどを適宜用いることができる。この場合、接着層は導電性であることが好ましい。導電性とするため、接着層には公知の導電剤を含有させることができる。   The conductive substrate 201 and the conductive elastic layer 202, or the layers sequentially stacked (for example, the conductive elastic layer and the surface layer shown in FIG. 2B) may be bonded via an adhesive layer. As the adhesive layer, known adhesives, adhesive films, and the like can be used as appropriate. In this case, the adhesive layer is preferably conductive. In order to make it electrically conductive, the adhesive layer can contain a known conductive agent.

例えば、接着剤のバインダーとしては、熱硬化性樹脂や熱可塑性樹脂が挙げられるが、ウレタン系、アクリル系、ポリエステル系、ポリエーテル系、エポキシ系等の公知のものを用いることができる。   For example, examples of the binder of the adhesive include thermosetting resins and thermoplastic resins, and known ones such as urethane, acrylic, polyester, polyether, and epoxy can be used.

接着剤に導電性を付与するための導電剤としては、後に詳述する導電剤から適宜選択し、単独で、また2種類以上組み合わせて、用いることができる。   As a conductive agent for imparting conductivity to the adhesive, it can be appropriately selected from conductive agents described in detail later, and can be used alone or in combination of two or more.

[帯電部材の電気抵抗値]
本発明に係る帯電部材の電気抵抗値は、特に制限はなく所望の特性に応じて適宜設定される。例えば、帯電ローラとして使用するには感光体の帯電を良好なものとするため、通常、電気抵抗値が23℃、50%RH環境中において、1×10Ω以上、1×1010Ω以下であることが好ましく、1×10Ω以上、1×10Ω以下であることがより好ましい。また、帯電ローラの周方向の電気抵抗値は、最大値と最小値の比が1.0倍から5.0倍となるように設定することが好ましい。より好ましくは1.0倍から3.0倍程度である。
[Electrical resistance of charging member]
The electric resistance value of the charging member according to the present invention is not particularly limited and is appropriately set according to desired characteristics. For example, in order to improve the charging of the photoreceptor for use as a charging roller, the electrical resistance value is usually 1 × 10 2 Ω or more and 1 × 10 10 Ω or less in an environment of 23 ° C. and 50% RH. Preferably, it is 1 × 10 3 Ω or more and 1 × 10 8 Ω or less. The electrical resistance value in the circumferential direction of the charging roller is preferably set so that the ratio between the maximum value and the minimum value is 1.0 to 5.0 times. More preferably, it is about 1.0 to 3.0 times.

一例として、図6に帯電ローラの電気抵抗値の測定法を示す。導電性基体201の両端を、荷重のかかった軸受け602により感光体と同じ曲率の金属製円柱601に、これらの軸が平行になるように当接させる。この状態で、モータにより金属製円柱601を回転させ、当接した帯電ローラを従動回転させながら安定化電源603から直流電圧−200Vを印加する。この時に導電性弾性層202に流れる電流を電流計604で測定し、帯電ローラの電気抵抗値を計算する。本発明において、荷重は各4.9Nとし、金属製円柱は直径30mm、金属製円柱の回転は周速45mm/secとされる。   As an example, FIG. 6 shows a method of measuring the electrical resistance value of the charging roller. Both ends of the conductive substrate 201 are brought into contact with a metal cylinder 601 having the same curvature as that of the photosensitive member by a bearing 602 under load so that these axes are parallel to each other. In this state, the metal cylinder 601 is rotated by a motor, and a DC voltage of −200 V is applied from the stabilized power source 603 while the charging roller in contact is driven to rotate. At this time, the current flowing through the conductive elastic layer 202 is measured by an ammeter 604, and the electric resistance value of the charging roller is calculated. In the present invention, the load is 4.9 N, the metal cylinder has a diameter of 30 mm, and the rotation of the metal cylinder has a peripheral speed of 45 mm / sec.

〔導電性基体〕
本発明の帯電部材に用いられる導電性基体は、導電性を有し、その上に設けられる導電性弾性層等を支持する機能を有するものである。材質としては、例えば、鉄、銅、ステンレス、アルミニウム、ニッケル等の金属やその合金を挙げることができる。また、これらの表面に耐傷性付与を目的として、導電性を損なわない範囲で、メッキ処理等を施してもよい。さらに、導電性基体として、樹脂製の基材の表面を金属等で被覆して表面導電性としたものや導電性樹脂組成物から製造されたものも使用可能である。
[Conductive substrate]
The conductive substrate used in the charging member of the present invention is conductive and has a function of supporting a conductive elastic layer and the like provided thereon. Examples of the material include metals such as iron, copper, stainless steel, aluminum, nickel, and alloys thereof. In addition, for the purpose of imparting scratch resistance to these surfaces, plating treatment or the like may be performed as long as the conductivity is not impaired. Furthermore, as the conductive substrate, a resin substrate whose surface is made conductive by coating the surface with a metal or the like, or a substrate manufactured from a conductive resin composition can be used.

〔導電性弾性層〕
(導電性弾性層の材料)
本発明の帯電部材の導電性弾性層に用いる材料としては、抵抗値調整が容易であり、かつ圧縮永久歪みが低いという観点から、アクリロニトリルブタジエンゴム(NBR)、スチレンブタジエンゴム(SBR)、エチレンプロピレンジエンゴム(EPDM)、およびエピクロルヒドリンゴムから選ばれる少なくとも1種のゴムを好適に用いることができる。この中でも、電気抵抗値の調整が容易であることから、極性ゴムを用いるのがより好ましい。中でも、エピクロルヒドリンゴム及びNBRを挙げることができる。これらは、導電性弾性層の抵抗値制御及び硬度制御をより行い易いという利点がある。これら導電性弾性層に用いるゴム材料は、単独で用いる、あるいは、2種以上を混合して用いてもよいが、これらゴムを主成分として、必要に応じてその他の一般的な公知なゴムや熱可塑性エラストマーや樹脂などを含有してもよい。その他の一般的な公知なゴムや熱可塑性エラストマーや樹脂などを含有する場合、その含有量は、上記のゴム材料100質量部に対し、1〜50質量部の範囲であることがより好ましい。
[Conductive elastic layer]
(Material of conductive elastic layer)
As a material used for the conductive elastic layer of the charging member of the present invention, acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), ethylene propylene are used from the viewpoint of easy resistance adjustment and low compression set. At least one rubber selected from diene rubber (EPDM) and epichlorohydrin rubber can be suitably used. Among these, it is more preferable to use polar rubber because it is easy to adjust the electric resistance value. Among these, epichlorohydrin rubber and NBR can be mentioned. These have an advantage that resistance value control and hardness control of the conductive elastic layer can be performed more easily. These rubber materials used for the conductive elastic layer may be used singly or as a mixture of two or more. However, these rubbers are used as a main component, and other general known rubber or A thermoplastic elastomer or resin may be contained. When other general known rubbers, thermoplastic elastomers, resins, and the like are contained, the content is more preferably in the range of 1 to 50 parts by mass with respect to 100 parts by mass of the rubber material.

エピクロルヒドリンゴムは、ポリマー自体が中抵抗値領域の導電性を有し、導電剤の添加量が少なくても良好な導電性を発揮することができる。また、位置による電気抵抗値のバラツキも小さくすることができるので、高分子弾性材料として好適に用いられる。   In the epichlorohydrin rubber, the polymer itself has conductivity in a medium resistance value region, and can exhibit good conductivity even if the amount of the conductive agent added is small. Moreover, since the variation in the electric resistance value depending on the position can be reduced, it is suitably used as a polymer elastic material.

エピクロルヒドリンゴムとしては以下のものが挙げられる。
エピクロルヒドリン単独重合体、エピクロルヒドリン−エチレンオキサイド共重合体、エピクロルヒドリン−アリルグリシジルエーテル共重合体及びエピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル三元共重合体。
Examples of the epichlorohydrin rubber include the following.
Epichlorohydrin homopolymer, epichlorohydrin-ethylene oxide copolymer, epichlorohydrin-allyl glycidyl ether copolymer and epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer.

これらの中でも安定した中抵抗値領域の導電性を示すことから、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル三元共重合体が特に好適に用いられる。エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル三元共重合体は、重合度や組成比を適度に調整することで導電性や加工性を制御できる。   Among these, epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer is particularly preferably used since it exhibits stable conductivity in a medium resistance value region. The epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer can control conductivity and workability by appropriately adjusting the degree of polymerization and the composition ratio.

また、導電剤を適宜使用することによって弾性層の導電性を所定の値にすることができる。導電剤として電子導電性フィラーの種類および使用量を適宜選択することによって帯電部材の電気抵抗値を調整することができる。   Moreover, the electroconductivity of an elastic layer can be made into a predetermined value by using a conductive agent suitably. The electrical resistance value of the charging member can be adjusted by appropriately selecting the type and amount of the electronic conductive filler used as the conductive agent.

電子導電性フィラーとしては、電子導電性を示す導電性粒子であれば特に限定されるものではなく、公知の各種のものが使用できる。例えば、ファーネスブラック、サーマルブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラックを用いることができる。具体的には、Super Abrasion Furnace(SAF:超耐摩耗性)、Intermediate Super Abrasion Furnace(ISAF:準超耐摩耗性)、High Abrasion Furnace(HAF:高耐摩耗性)、Fast Extruding Furnace(FEF:良押出性)、General Purpose Furnace(GPF:汎用性)、Semi Rein Forcing Furnace(SRF:中補強性)、Fine Thermal(FT:微粒熱分解)およびMedium Thermal(MT:中粒熱分解)などの各ゴム用カーボンが挙げられる。   The electroconductive filler is not particularly limited as long as it is conductive particles exhibiting electronic conductivity, and various known ones can be used. For example, carbon black such as furnace black, thermal black, acetylene black, and ketjen black can be used. Specifically, Super Abrasion Furnace (SAF: Super Abrasion Resistance), Intermediate Super Abrasion Furnace (ISAF: Quasi Super Abrasion Resistance), High Abrasion Furnace (HAF: High Wear Resistance) Each rubber such as extrudability), General Purpose Furnace (GPF: versatility), Semi Rein Forcing Furnace (SRF: medium reinforcement), Fine Thermal (FT: fine particle thermal decomposition) and Medium Thermal (MT: medium particle thermal decomposition) For carbon.

また、天然グラファイトおよび人造グラファイトなどのグラファイト、酸化チタン、酸化錫、酸化亜鉛等の金属酸化物系導電性粒子、アルミニウム、鉄、銅、銀等の金属系導電性粒子を挙げることができる。また、これら電子導電性フィラーは、単独で又は2種以上組み合わせて用いることができる。   In addition, graphite such as natural graphite and artificial graphite, metal oxide conductive particles such as titanium oxide, tin oxide, and zinc oxide, and metal conductive particles such as aluminum, iron, copper, and silver can be given. These electronic conductive fillers can be used alone or in combination of two or more.

また、導電性ポリマー、イオン導電剤などを前記の電子導電性フィラーと併用して弾性層に導電性を付与しても良い。イオン導電剤としては、イオン導電性を示すイオン導電剤であれば特に限定されるものではない。イオン導電剤としては、以下のものが挙げられる。過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カルシウム等の無機イオン物質が挙げられる。ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、過塩素酸テトラブチルアンモニウム等の四級アンモニウム塩が挙げられる。トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸カリウム等の有機酸無機塩が挙げられる。これらを単独又は2種類以上組み合わせて用いることができる。イオン導電剤の中でも、環境変化に対して抵抗が安定なことから特に過塩素酸4級アンモニウム塩が好適に用いられる。   Further, a conductive polymer, an ionic conductive agent or the like may be used in combination with the electronic conductive filler to impart conductivity to the elastic layer. The ionic conductive agent is not particularly limited as long as it is an ionic conductive agent exhibiting ionic conductivity. Examples of the ionic conductive agent include the following. Examples include inorganic ionic substances such as lithium perchlorate, sodium perchlorate, and calcium perchlorate. Examples thereof include quaternary ammonium salts such as lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, and tetrabutylammonium perchlorate. Examples thereof include organic acid inorganic salts such as lithium trifluoromethanesulfonate and potassium perfluorobutanesulfonate. These can be used alone or in combination of two or more. Among ionic conductive agents, quaternary ammonium perchlorate is particularly preferably used because of its resistance to environmental changes.

また、導電性弾性層形成用のゴム混合物には、無機または有機の充填剤や架橋剤を添加してもよい。   In addition, an inorganic or organic filler or a crosslinking agent may be added to the rubber mixture for forming the conductive elastic layer.

ゴム混合物を架橋させるための添加剤として、加硫剤、加硫促進剤が挙げられる。充填剤としては、例えば、シリカ(ホワイトカーボン)、炭酸カルシウム、炭酸マグネシウム、クレー、タルク、ゼオライト、アルミナ、硫酸バリウムおよび硫酸アルミニウムなどから選択された少なくとも1種が挙げられる。加硫剤としては、公知の加硫剤を適宜使用することができ、例えば、粉末硫黄、有機過酸化物が挙げられる。粉末硫黄を加硫剤として使用する場合は、加硫促進剤として、公知の加硫促進剤を適宜使用することができ、チアゾール系、ジチオカルバミン酸塩系、スルフェンアミド系、チウラム系などが挙げられる。 Examples of the additive for crosslinking the rubber mixture include a vulcanizing agent and a vulcanization accelerator. Examples of the filler include at least one selected from silica (white carbon), calcium carbonate, magnesium carbonate, clay, talc, zeolite, alumina, barium sulfate, aluminum sulfate, and the like. As the vulcanizing agent, known vulcanizing agents can be used as appropriate, and examples thereof include powdered sulfur and organic peroxides. When powdered sulfur is used as a vulcanizing agent, a known vulcanizing accelerator can be appropriately used as the vulcanizing accelerator, and examples thereof include thiazole, dithiocarbamate, sulfenamide, and thiuram. It is done.

また、導電性弾性層には、硬度等を調整するために、軟化油、可塑剤等の添加剤を添加してもよい。可塑剤等の配合量は、弾性層の材料100質量部に対して、好ましくは1〜30質量部であり、より好ましくは3〜20質量部である。可塑剤としては、高分子タイプのものを用いることがより好ましい。高分子可塑剤の分子量は、好ましくは2000以上、より好ましくは4000以上である。更に、弾性層には、種々な機能を付与する材料を適宜含有させてもよい。
さらに、老化防止剤、帯電防止剤、紫外線吸収剤、補強剤、充填剤、滑剤、離型剤、顔料、染料、難燃剤等を必要に応じて適宜に添加することもできる。
Moreover, in order to adjust hardness etc., you may add additives, such as a softening oil and a plasticizer, to a conductive elastic layer. The amount of the plasticizer or the like is preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the elastic layer material. It is more preferable to use a polymer type plasticizer. The molecular weight of the polymer plasticizer is preferably 2000 or more, more preferably 4000 or more. Furthermore, the elastic layer may appropriately contain materials that impart various functions.
Furthermore, anti-aging agents, antistatic agents, ultraviolet absorbers, reinforcing agents, fillers, lubricants, mold release agents, pigments, dyes, flame retardants, and the like can be appropriately added as necessary.

(多中空粒子)
本発明に使用する弾性ローラの弾性層は、多中空粒子が含有されている。本発明における多中空粒子とは、粒子の内部に複数個の空孔(中空)を有する粒子のことをいう。
多中空粒子の材質としては、アクリル樹脂、スチレン樹脂、アクリロニトリル樹脂、塩化ビニリデン樹脂、塩化ビニル樹脂から選ばれる少なくとも1種の樹脂を用いることができる。これら樹脂は、単独で、または2種以上用いることができる。更に、これら樹脂の単量体を共重合させ、共重合体として用いても良い。この中でも、高い反発弾性を示すアクリル樹脂、アクリロニトリル樹脂、塩化ビニリデン樹脂、から選ばれる少なくとも1種の樹脂を用いることが好ましい。これら樹脂を主成分として、必要に応じてその他の一般的な公知な樹脂などを含有してもよい。
以上のことに基づいて、本発明においては、多中空粒子の材質として、以下の共重合体の1種が用いられる。
・スチレン、ジビニルベンゼンおよびアクリル酸メチルの共重合体
・スチレンおよびジビニルベンゼンの共重合体
・スチレン、ジビニルベンゼンおよびアクリロニトリルの共重合体
・スチレン、ジビニルベンゼンおよび塩化ビニリデンの共重合体
・スチレン、ジビニルベンゼンおよび塩化ビニルの共重合体
(Multi hollow particles)
The elastic layer of the elastic roller used in the present invention contains multi-hollow particles. The multi-hollow particle in the present invention refers to a particle having a plurality of pores (hollow) inside the particle.
As the material of the multi-hollow particles, at least one resin selected from acrylic resin, styrene resin, acrylonitrile resin, vinylidene chloride resin, and vinyl chloride resin can be used. These resins can be used alone or in combination of two or more. Further, monomers of these resins may be copolymerized and used as a copolymer. Among these, it is preferable to use at least one resin selected from an acrylic resin, acrylonitrile resin, and vinylidene chloride resin exhibiting high impact resilience. You may contain other general well-known resin etc. as needed by using these resins as a main component.
Based on the above, in the present invention, one of the following copolymers is used as the material of the multi-hollow particles.
・ Copolymer of styrene, divinylbenzene and methyl acrylate
・ Styrene and divinylbenzene copolymer
・ Styrene, divinylbenzene and acrylonitrile copolymer
・ Copolymers of styrene, divinylbenzene and vinylidene chloride
・ Copolymer of styrene, divinylbenzene and vinyl chloride

これら多中空粒子は、懸濁重合法、界面重合法、界面沈殿法、液中乾燥法といった公知の製法により製造することができる。また市販されているような公知の多中空粒子も用いることができる。   These multi-hollow particles can be produced by a known production method such as a suspension polymerization method, an interfacial polymerization method, an interfacial precipitation method, or a submerged drying method. Moreover, the well-known multi-hollow particle | grains which are marketed can also be used.

以下に多中空粒子の作製例を示す。
(1−1)まず、スチレンモノマーと、多官能重合性単量体とからなる単量体混合物に、セルロース樹脂を溶解させた溶解液を得る。
An example of producing multi-hollow particles is shown below.
(1-1) First, a solution in which a cellulose resin is dissolved in a monomer mixture composed of a styrene monomer and a polyfunctional polymerizable monomer is obtained.

[多官能重合性単量体]
多官能重合性単量体としては、芳香族ジビニル化合物、多価アルコールのアクリル酸エステル、多価アルコールのメタクリル酸エステル等が挙げられる。これらは1種又は2種以上を組み合わせて用いることができる。
[Polyfunctional polymerizable monomer]
Examples of the polyfunctional polymerizable monomer include aromatic divinyl compounds, polyhydric alcohol acrylic esters, polyhydric alcohol methacrylates, and the like. These can be used alone or in combination of two or more.

具体的には、芳香族ジビニル化合物として、ジビニルベンゼン、ジビニルナフタレン等が挙げられる。多価アルコールの(メタ)アクリル酸エステルとして、エチレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリメタクリレート等が挙げられる。なお、(メタ)アクリレートは、アクリレート又はメタクリレートを意味する。上記の内、良好な空孔を形成するにはジビニルベンゼン、エチレングリコールジメタクリレートを用いるのが好ましい。なお、ここでいう良好な空孔とは、粒子中により多くの空孔を有することを意味する。すなわち、粒子中に占める空孔の割合が大きく、空孔の数が多いほど、多中空粒子の中空部分に由来する凹部の数が多くなり、感光体と帯電部材の接触面積が低下し、感光体と帯電部材の接触面は低摩擦となる効果を得ることができる。従って、少量の多中空粒子を弾性層として添加することでも、良好な効果を得ることができることを意味する。   Specifically, examples of the aromatic divinyl compound include divinylbenzene and divinylnaphthalene. Examples of the (meth) acrylic acid ester of polyhydric alcohol include ethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and trimethylolpropane trimethacrylate. In addition, (meth) acrylate means an acrylate or a methacrylate. Of these, divinylbenzene and ethylene glycol dimethacrylate are preferably used to form good pores. Here, the term “good vacancies” means that the particles have more vacancies. That is, the larger the proportion of holes in the particles and the greater the number of holes, the greater the number of recesses derived from the hollow portions of the multi-hollow particles, and the contact area between the photoreceptor and the charging member decreases, and The contact surface between the body and the charging member can obtain an effect of low friction. Therefore, adding a small amount of multi-hollow particles as an elastic layer means that a good effect can be obtained.

上記多官能重合性単量体は、スチレンモノマー100重量部に対して、5〜100重量部、好ましくは5〜50重量部となるよう用いる。5重量部未満、100重量部を超える量を用いた場合、目的とする多中空粒子を得ることは困難である。   The polyfunctional polymerizable monomer is used in an amount of 5 to 100 parts by weight, preferably 5 to 50 parts by weight, based on 100 parts by weight of the styrene monomer. When an amount less than 5 parts by weight or more than 100 parts by weight is used, it is difficult to obtain the intended multi-hollow particles.

また、上記多官能性単量体及びスチレンモノマーと共重合可能なその他の単量体を、多中空粒子の特性を損なわない範囲で添加してもかまわない。この共重合可能なその他の単量体としては以下のものを挙げることができる。
アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、アクリル酸2ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル等のアクリル酸もしくはメタクリル酸誘導体、エチレン、プロピレン、ブチレン、イソブチレン等のエチレン不飽和モノオレフィン類、塩化ビニル、塩化ビニリデン、臭化ビニル、弗化ビニル等のハロゲン化ビニル類、 酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類等が挙げられる。
Moreover, you may add the other monomer copolymerizable with the said polyfunctional monomer and a styrene monomer in the range which does not impair the characteristic of a multi-hollow particle. Examples of other copolymerizable monomers include the following.
Acrylic acid or methacrylic acid derivatives such as acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, ethylene, propylene, Examples include ethylene unsaturated monoolefins such as butylene and isobutylene, vinyl halides such as vinyl chloride, vinylidene chloride, vinyl bromide and vinyl fluoride, vinyl esters such as vinyl acetate, vinyl propionate and vinyl butyrate. .

[セルロース樹脂]
セルロース樹脂としては、セルロースアセテート、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルエチルセルロース等が挙げられる。この内、良好な空孔を形成するにはエチルセルロースが好ましい。
[Cellulose resin]
Examples of the cellulose resin include cellulose acetate, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl ethyl cellulose and the like. Of these, ethyl cellulose is preferable for forming good pores.

エチルセルロースは、一般に、塩化エチルをアルカリセルロースに反応させて得られるエチルセルロースエーテルである。市販のエチルセルロースは、通常、エトキシル基含有率が44〜50重量%である。エチルセルロースの中でも、粘度(重量比でトルエン:エタノール=80:20の混合溶液にエチルセルロースを5重量%溶解したときの粘度)10〜200cPのものを好適に用いることができる。更に好ましくは、20〜100cPのものを用いるのがよい。粘度が200cPを越える場合には、溶解液の粘度が高くなり、懸濁重合時の重合系の安定性や多中空粒子の粒子径制御が困難になるため好ましくない。粘度が10cP未満の場合、多中空粒子が得られ難いため好ましくない。   Ethyl cellulose is generally an ethyl cellulose ether obtained by reacting ethyl chloride with alkali cellulose. Commercially available ethyl cellulose usually has an ethoxyl group content of 44 to 50% by weight. Among ethyl celluloses, those having a viscosity (viscosity when 5% by weight of ethyl cellulose is dissolved in a mixed solution of toluene: ethanol = 80: 20 by weight) of 10 to 200 cP can be suitably used. More preferably, 20 to 100 cP is used. When the viscosity exceeds 200 cP, the viscosity of the solution becomes high, which is not preferable because the stability of the polymerization system during suspension polymerization and the control of the particle diameter of the multi-hollow particles become difficult. When the viscosity is less than 10 cP, it is difficult to obtain multi-hollow particles, which is not preferable.

なお、粘度は、JIS Z8803に従って、ウベローデ粘度計(毛細管粘度計)によって25℃±0.5℃の温度で測定した値である。   The viscosity is a value measured at a temperature of 25 ° C. ± 0.5 ° C. with an Ubbelohde viscometer (capillary viscometer) according to JIS Z8803.

セルロース樹脂は、スチレンモノマーと多官能重合性単量体を加えた単量体混合物100重量部に対し、0.5〜5重量部の割合で使用され、好ましくは1〜3重量部である。5重量部を超える量を用いた場合には、粘度の上昇によりセルロース樹脂を単量体混合物に溶解することが実質的に困難な場合があり、また、溶解液の粘度が高くなり、懸濁重合時の重合系の安定性や多中空粒子の粒子径制御が困難になるため好ましくない。0.5重量%より少ない場合には、多中空粒子が得られないため好ましくない。   The cellulose resin is used in a proportion of 0.5 to 5 parts by weight, preferably 1 to 3 parts by weight, based on 100 parts by weight of the monomer mixture obtained by adding the styrene monomer and the polyfunctional polymerizable monomer. When an amount exceeding 5 parts by weight is used, it may be substantially difficult to dissolve the cellulose resin in the monomer mixture due to an increase in viscosity, and the viscosity of the solution becomes high and the suspension is suspended. This is not preferable because the stability of the polymerization system during polymerization and the control of the particle diameter of the multi-hollow particles become difficult. When it is less than 0.5% by weight, it is not preferable because multi-hollow particles cannot be obtained.

[重合開始剤]
上記溶解液には重合開始剤が含まれていてもよい。重合開始剤としては、通常、懸濁重合に用いられる油溶性の過酸化物系あるいはアゾ系開始剤が利用できる。
[Polymerization initiator]
The solution may contain a polymerization initiator. As the polymerization initiator, an oil-soluble peroxide-based or azo-based initiator usually used for suspension polymerization can be used.

例えば、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、キュメンハイドロパーオキサイド、シクロヘキサノンパーオキサイド、t−ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等の過酸化物系開始剤、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,3−ジメチルブチロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、2,2’−アゾビス(2,3,3−トリメチルブチロニトリル)、2,2’−アゾビス(2−イソプロピルブチロニトリル)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス(4−メチキシ−2,4−ジメチルバレロニトリル)、2−(カルバモイルアゾ)イソブチロニトリル、4,4’−アゾビス(4−シアノバレリン酸)、ジメチル−2,2’−アゾビスイソブチレート等のアゾ系開始剤が挙げられる。   For example, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide, cyclohexanone peroxide, t-butyl hydroperoxide , Peroxide initiators such as diisopropylbenzene hydroperoxide, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2,3-dimethylbutyronitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,3,3-trimethylbutyronitrile), 2,2′-azobis (2-Isopropylbutyronitrile ), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2- (carbamoylazo) isobutyronitrile, 4, Examples thereof include azo initiators such as 4′-azobis (4-cyanovaleric acid) and dimethyl-2,2′-azobisisobutyrate.

この中でも、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)が、多中空粒子が得られやすいという点から好ましい。   Among these, 2,2'-azobisisobutyronitrile and 2,2'-azobis (2,4-dimethylvaleronitrile) are preferable from the viewpoint that multi-hollow particles can be easily obtained.

重合開始剤の使用割合は、単量体混合物に対し、0.01〜10重量%が好ましく、特に0.1〜5.0重量%が好ましい。   The use ratio of the polymerization initiator is preferably 0.01 to 10% by weight, particularly preferably 0.1 to 5.0% by weight, based on the monomer mixture.

(1−2)次に、上記溶解液を、水系分散媒体中に分散させる。
[水系分散媒体]
水系分散媒体としては、例えば、水、水と水溶性有機溶媒(低級アルコール等)との混合媒体が挙げられる。更に、水系分散媒体は、上記溶解液100重量部に対して、通常100〜1000重量部程度の水を含んでいることが好ましい。この範囲で水を含むことで、水系懸濁重合の際に、懸濁粒子の安定化を図ることができる。
(1-2) Next, the solution is dispersed in an aqueous dispersion medium.
[Aqueous dispersion medium]
Examples of the aqueous dispersion medium include water and a mixed medium of water and a water-soluble organic solvent (such as a lower alcohol). Further, the aqueous dispersion medium preferably contains about 100 to 1000 parts by weight of water with respect to 100 parts by weight of the solution. By containing water in this range, the suspension particles can be stabilized during the aqueous suspension polymerization.

[分散安定剤]
更に、水性分散媒体には、分散安定剤が添加されていてもよい。分散安定剤としては、リン酸カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛等のリン酸塩、ピロリン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸アルミニウム、ピロリン酸亜鉛等のピロリン酸塩、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウム、コロイダルシリカ等の難水溶性無機化合物、ポリビニルアルコール、メチルセルロース、ポリビニルピロリドン等の水溶性高分子等が挙げられる。これらの中でも、多中空粒子を安定して得ることができるという点において、第三リン酸カルシウムやコロイダルシリカが特に好ましい。
[Dispersion stabilizer]
Furthermore, a dispersion stabilizer may be added to the aqueous dispersion medium. Dispersion stabilizers include phosphates such as calcium phosphate, magnesium phosphate, aluminum phosphate and zinc phosphate, pyrophosphates such as calcium pyrophosphate, magnesium pyrophosphate, aluminum pyrophosphate and zinc pyrophosphate, calcium carbonate, magnesium carbonate , Calcium hydroxide, magnesium hydroxide, aluminum hydroxide, calcium metasilicate, calcium sulfate, barium sulfate, colloidal silica and other poorly water-soluble inorganic compounds, polyvinyl alcohol, methyl cellulose, polyvinyl pyrrolidone and other water-soluble polymers . Among these, tricalcium phosphate and colloidal silica are particularly preferable in that multi-hollow particles can be stably obtained.

分散安定剤は、得られる多中空粒子の粒子径ならびに重合時の溶解液の分散安定性等を考慮して、選択や組み合わせ、添加量等を適宜調整して使用される。一例を挙げれば、分散安定剤の単量体混合物に対する添加量は0.5〜20重量%で程度である。   The dispersion stabilizer is used by appropriately adjusting the selection, combination, addition amount, etc. in consideration of the particle diameter of the obtained multi-hollow particles and the dispersion stability of the solution during polymerization. For example, the amount of the dispersion stabilizer added to the monomer mixture is about 0.5 to 20% by weight.

[界面活性剤]
また、水系分散媒体には、上記の分散安定剤に加えて、アニオン性界面活性剤、カチオン性界面活性剤、両性イオン性界面活性剤、ノニオン性界面活性剤等の界面活性剤を使用してもよい。
[Surfactant]
In addition to the above dispersion stabilizer, the aqueous dispersion medium uses a surfactant such as an anionic surfactant, a cationic surfactant, a zwitterionic surfactant, and a nonionic surfactant. Also good.

アニオン性界面活性剤としては、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩等がある。   Examples of anionic surfactants include fatty acid oils such as sodium oleate and castor oil potassium, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfonates. , Alkane sulfonate, dialkyl sulfosuccinate, alkyl phosphate ester salt, naphthalene sulfonate formalin condensate, polyoxyethylene alkylphenyl ether sulfate, polyoxyethylene alkyl sulfate, and the like.

ノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン−オキシプロピレンブロックポリマー等がある。   Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, oxyethylene- Examples include oxypropylene block polymers.

カチオン性界面活性剤としては、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩等がある。   Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.

両性イオン界面活性剤としては、ラウリルジメチルアミンオキサイド等がある。   Examples of the zwitterionic surfactant include lauryl dimethylamine oxide.

界面活性剤は、得られる多中空粒子の粒子径ならびに重合時の溶解液の分散安定性等を考慮して、選択や組み合わせ、添加量等を適宜調整して使用される。一例を挙げれば、界面活性剤の添加量は水系分散媒体に対し0.001〜0.1重量%程度である。   The surfactant is used by appropriately adjusting the selection, combination, addition amount, etc. in consideration of the particle diameter of the obtained multi-hollow particles and the dispersion stability of the solution during polymerization. For example, the addition amount of the surfactant is about 0.001 to 0.1% by weight with respect to the aqueous dispersion medium.

[水溶性重合禁止剤]
また、水系分散媒体中での単量体の重合を抑制するために、水系分散媒体中に0.01〜1重量%程度の水溶性重合禁止剤を加えてもよい。水溶性重合禁止剤としては、特に限定されず公知の禁止剤を使用でき、例えば亜硝酸塩類、ハイドロキノン等を挙げることができる。
[Water-soluble polymerization inhibitor]
In order to suppress the polymerization of the monomer in the aqueous dispersion medium, about 0.01 to 1% by weight of a water-soluble polymerization inhibitor may be added to the aqueous dispersion medium. The water-soluble polymerization inhibitor is not particularly limited, and a known inhibitor can be used, and examples thereof include nitrites and hydroquinone.

[溶解液の分散法]
水系分散媒体に溶解液を分散する方法としては、例えば、プロペラ翼等の撹拌力によって分散する方法、ローターとステーターから構成され、高剪断力を利用する分散機であるホモミキサー、超音波分散機等を用いて分散する方法が挙げられる。分散された溶解液は、水系分散媒体中で、液滴として存在する。なお、得られる多中空粒子の粒度分布を揃えるには、マイクロフルイダイザー、ナノマイザー等の液滴同士の衝突や機壁への衝突力を利用した高圧型分散機を用いればよい。また、溶解液には、必要に応じて、界面活性剤が含まれていてもよいが、できるだけ含まれないことが好ましい。
[Dispersion method of solution]
Examples of a method for dispersing a solution in an aqueous dispersion medium include a method of dispersing by a stirring force such as a propeller blade, a homomixer that is a disperser that includes a rotor and a stator and uses a high shear force, and an ultrasonic disperser. And the like, and the like. The dispersed solution is present as droplets in the aqueous dispersion medium. In order to make the particle size distribution of the obtained multi-hollow particles uniform, a high-pressure disperser using a collision between droplets such as a microfluidizer or a nanomizer or a collision force against the machine wall may be used. Further, the solution may contain a surfactant as required, but it is preferable that the solution is not contained as much as possible.

(1−3)更に、水系分散媒体に分散した溶解液中に含まれる単量体混合物を水系分散媒体中で重合させる。   (1-3) Furthermore, the monomer mixture contained in the solution dispersed in the aqueous dispersion medium is polymerized in the aqueous dispersion medium.

重合は、単量体混合物からなる液滴を分散させた水系分散媒体を加熱することにより行われる。重合温度は、通常30〜100℃、好ましくは40〜80℃である。この重合温度を保持する時間としては、一般的に0.1〜10時間程度である。重合中は、液滴の浮上や重合後の多中空粒子の沈降を防止できる程度の緩い撹拌を行うのが好ましい。   The polymerization is performed by heating an aqueous dispersion medium in which droplets made of a monomer mixture are dispersed. The polymerization temperature is usually 30 to 100 ° C, preferably 40 to 80 ° C. The time for maintaining this polymerization temperature is generally about 0.1 to 10 hours. During the polymerization, it is preferable to perform gentle stirring to such an extent that droplets can be prevented from floating and sedimentation of the multi-hollow particles after the polymerization can be prevented.

重合終了後、所望により、分散安定剤を塩酸等により溶解し、樹脂粒子を吸引濾過、遠心分離、遠心濾過等の操作により分散媒から分離し、更にイオン交換水等で洗浄を行ってもよい。更に、その後、乾燥、解砕、分級により所望の粒径の多中空粒子を得てもよい。
本発明では、スチレンに組み合わせて用いる多官能重合性単量体としてジビニルベンゼンを、スチレンと重合可能な単量体としてアクリル酸メチル、アクリロニトリル、塩化ビニリデンまたは塩化ビニルを用いて先に挙げた特定のモノマー構成の共重合体からなる多中空粒子が作製される。
After the completion of the polymerization, if desired, the dispersion stabilizer may be dissolved with hydrochloric acid or the like, and the resin particles may be separated from the dispersion medium by operations such as suction filtration, centrifugation, and centrifugal filtration, and further washed with ion exchange water or the like. . Furthermore, after that, multi-hollow particles having a desired particle diameter may be obtained by drying, crushing, and classification.
In the present invention, divinylbenzene is used as the polyfunctional polymerizable monomer used in combination with styrene, and the specific monomers listed above using methyl acrylate, acrylonitrile, vinylidene chloride or vinyl chloride as the monomer polymerizable with styrene. Multi-hollow particles made of a monomer-structured copolymer are produced.

本発明においては、多中空粒子の平均粒径は5μm以上100μm以下であることが好ましい。さらに好ましくは15μm以上50μm以下である。弾性層中の多中空粒子の大きさを本範囲とすることにより、帯電部材にかかるねじれを微小に抑え、微小な状態からのねじれの開放という多中空粒子の効果を効果的に実現できる。加えて弾性層から露出した比較的粒径の大きな多中空粒子表面にトナーや外添剤などが付着して異常放電の原因となることを抑えることもできる。   In the present invention, the average particle size of the multi-hollow particles is preferably 5 μm or more and 100 μm or less. More preferably, they are 15 micrometers or more and 50 micrometers or less. By setting the size of the multi-hollow particles in the elastic layer within this range, the effect of the multi-hollow particles can be effectively realized by minimizing the twist applied to the charging member and releasing the twist from the micro state. In addition, it is possible to suppress the occurrence of abnormal discharge due to adhesion of toner or external additives to the surface of the multi-hollow particles having a relatively large particle diameter exposed from the elastic layer.

弾性層に含まれる多中空粒子の含有率としては、上記の弾性層を構成するゴム100質量部に対して、5質量部以上80質量部以下が好ましく、更には、10質量部以上50質量部以下がより好ましい。本範囲とすることにより、一つ一つの多中空粒子に加わるねじれを微小に抑え、高反発性によるねじれの微小な状態からの開放という多中空粒子の特性がより効果的に実現される。   The content of the multi-hollow particles contained in the elastic layer is preferably 5 parts by mass or more and 80 parts by mass or less, and more preferably 10 parts by mass or more and 50 parts by mass with respect to 100 parts by mass of the rubber constituting the elastic layer. The following is more preferable. By setting this range, the twist of each of the multi-hollow particles is suppressed to a small level, and the characteristics of the multi-hollow particles such as release from a small state of twist due to high resilience are more effectively realized.

また、多中空粒子中の空孔径は、平均空孔径として1μm以上15μm以下であることが好ましい。多中空粒子の空孔径を本範囲とすることにより、多中空粒子に対して低硬度かつ高反発性という特性を、より効果的に付与することができる。   The pore diameter in the multi-hollow particles is preferably 1 μm or more and 15 μm or less as an average pore diameter. By setting the pore diameter of the multi-hollow particles within this range, it is possible to more effectively impart the characteristics of low hardness and high resilience to the multi-hollow particles.

また、多中空粒子の比重としては、内部に空孔を有さない中実粒子の比重に対して50%以上80%以下とすることが好ましい。多中空粒子は、内部に複数個の空孔を有するため、中実の粒子と比較し比重が軽くなる。多中空粒子の比重は、粒子内部に含まれる空孔数が多い、あるいは空孔径が大きい場合に軽くなり、空孔数が少ない、あるいは空孔径が小さい場合に重くなり、中実の粒子の比重に近づく。   The specific gravity of the multi-hollow particles is preferably 50% or more and 80% or less with respect to the specific gravity of the solid particles having no pores inside. Since the multi-hollow particles have a plurality of pores inside, the specific gravity is lighter than that of solid particles. The specific gravity of multi-hollow particles becomes light when the number of pores contained in the particle is large or the pore diameter is large, and becomes heavy when the number of pores is small or the pore diameter is small, and the specific gravity of solid particles Get closer to.

多中空粒子の内部に含まれる空孔の径としては、多中空粒子の粒径に対して10%以上25%以下とすることが好ましい。空孔径が大きいあるいは空孔数が多すぎる場合、粒子の反発性が低下し、弾性層のねじれの解放できず本発明の効果が低くなる。空孔径が小さいあるいは空孔径が少なすぎる場合、弾性層表面の多中空粒子の断面の凹部が減少し、感光体と帯電部材との接触面が増加するために低摩擦性が維持できなくなり、本発明の効果が低くなる。本範囲とすることにより弾性層中に含まれる一つ一つの多中空粒子に加わるねじれを微小に抑え、高反発性によるねじれの微小な状態からの開放という多中空粒子の特性がより効果的に実現される。   The diameter of the pores contained in the multi-hollow particles is preferably 10% to 25% with respect to the particle size of the multi-hollow particles. When the hole diameter is large or the number of holes is too large, the resilience of the particles is lowered, and the twist of the elastic layer cannot be released, and the effect of the present invention is reduced. If the hole diameter is small or the hole diameter is too small, the number of recesses in the cross section of the multi-hollow particles on the elastic layer surface decreases, and the contact surface between the photoconductor and the charging member increases. The effect of the invention is reduced. By making this range, the twist of each multi-hollow particle contained in the elastic layer is suppressed to a small level, and the characteristics of the multi-hollow particle, which is the release from a minute state of twist due to high resilience, is more effective. Realized.

なお、評価に用いた各種測定方法は以下の通りである。
<平均粒子径の測定>
孔径50〜280μmの細孔に電解質溶液を満たし、当該電解質溶液を多中空粒子が通過する際の電界質溶液の導電率変化から体積を求め、体積平均粒子径を計算する。具体的には、ベックマンコールター社製のコールターマルチザイザー2によって測定した体積平均粒子径である。なお、測定に際してはCoulter Electronics Limited発行のREFERENCE MANUAL FOR THE COULTER MULTISIZER(1987)に従って、測定する多中空粒子の粒子径に適合したアパチャーを用いてキャリブレーションを行い測定する。
In addition, the various measuring methods used for evaluation are as follows.
<Measurement of average particle diameter>
The electrolyte solution is filled in pores having a pore diameter of 50 to 280 μm, the volume is determined from the change in conductivity of the electrolyte solution when the hollow particles pass through the electrolyte solution, and the volume average particle diameter is calculated. Specifically, it is a volume average particle diameter measured by a Coulter Multisizer 2 manufactured by Beckman Coulter. In the measurement, calibration is performed using an aperture suitable for the particle diameter of the multi-hollow particles to be measured according to REFERENCE MANUAL FOR THE COULTER MULTISIZER (1987) issued by Coulter Electronics Limited.

具体的には、市販のガラス製の試験管に多中空粒子0.1gと0.1%ノニオン系界面活性剤溶液10mlを投入し、ヤマト科学社製タッチミキサー TOUCHMIXERMT−31で2秒間混合する。その後、試験管を市販の超音洗浄機であるヴェルヴォクリーア社製ULTRASONIC CLEANER VS−150を用いて10秒間予備分散させる。これを本体備え付けの、ISOTON2(ベックマンコールター社製:測定用電解液)を満たしたビーカー中に、緩く攪拌しながらスポイドで滴下して、本体画面の濃度計の示度を10%前後に合わせる。次にマルチサイザー2本体にアパチャーサイズ、Current,Gain,PolarityをCoulterElectronicsLimited発行のREFERENCE MANUAL FOR THE COULTER MULTISIZER(1987)に従って入力し、manualで測定する。測定中はビーカー内を気泡が入らない程度に緩く攪拌しておき、多中空粒子を1万個測定した点で測定を終了する。   Specifically, 0.1 g of multi-hollow particles and 10 ml of a 0.1% nonionic surfactant solution are put into a commercially available glass test tube, and mixed for 2 seconds with a touch mixer TOUCHMIXERMT-31 manufactured by Yamato Kagaku. Thereafter, the test tube is predispersed for 10 seconds using a ULTRASONIC CLEANER VS-150 manufactured by Vervocrea, a commercially available ultrasonic cleaner. In a beaker filled with ISOTON2 (manufactured by Beckman Coulter, Inc .: electrolyte for measurement) equipped with a main body, this is dropped with a dropper while gently stirring, and the concentration meter reading on the main body screen is adjusted to about 10%. Next, the aperture size, Current, Gain, and Polarity are input to the Multisizer 2 main body according to REFERENCE MANUAL FOR THE MULTILIZER (1987) issued by Coulter Electronics Limited, and measured manually. During the measurement, the beaker is stirred gently to the extent that bubbles do not enter, and the measurement is terminated when 10,000 multi-hollow particles are measured.

<平均空孔径の測定>
多中空粒子の平均空孔径の測定は、下記の方法で行うことができる。
多中空粒子の外観及び断面を走査型電子顕微鏡により観察する。具体的には、多中空粒子断面の観察は2液タイプのエポキシ接着剤を用い多中空粒子を固め、硬化後にカミソリ刃でスライスすることで多中空粒子の断面を露出させる。その後、走査型電子顕微鏡で観察し、多中空粒子の断面に存在する空孔径を測定する。用いた走査型電子顕微鏡は、FE−SEM(日立製作所社製 S−4700)である。この測定を多中空粒子100個について行う。得られた合計100個の多中空粒子の断面に存在する空孔径の平均値を算出し、多中空粒子の平均空孔径とする。
<Measurement of average pore diameter>
The average pore diameter of the multi-hollow particles can be measured by the following method.
The appearance and cross section of the multi-hollow particles are observed with a scanning electron microscope. Specifically, the cross-section of the multi-hollow particle is exposed by solidifying the multi-hollow particle using a two-pack type epoxy adhesive and slicing with a razor blade after curing. Then, it observes with a scanning electron microscope and the hole diameter which exists in the cross section of many hollow particles is measured. The scanning electron microscope used was FE-SEM (S-4700, manufactured by Hitachi, Ltd.). This measurement is performed on 100 multi-hollow particles. The average value of the pore diameters present in the cross section of the total of 100 obtained multi-hollow particles is calculated and set as the average pore diameter of the multi-hollow particles.

<平均比重の測定>
質量M(g)および容量V(cm)の既知の円筒状容器内に、多中空粒子を充填する。容器の上部に堆積した過剰量の多中空粒子をすり落とす。容器の側面等に付着した多中空粒子を刷毛などを用いて除去した後、全体の質量M(g)を測定する。次式により多中空粒子の比重ρ(g/cm)を計算する。
ρ=(M−M)/V
測定は10回繰り返し、その平均値を多中空粒子の比重とする。同様にして中実粒子ρの比重を測定し、ρ/ρを計算することで、中実粒子に対する多中空粒子の比重の割合を算出する。
<Measurement of average specific gravity>
Multi-hollow particles are packed into a known cylindrical container of mass M 0 (g) and volume V (cm 3 ). Scrape off excess amount of multi-hollow particles deposited on top of container. After removing the multi-hollow particles adhering to the side surface or the like of the container using a brush or the like, the entire mass M t (g) is measured. The specific gravity ρ t (g / cm 3 ) of the multi-hollow particles is calculated by the following formula.
ρ t = (M t −M 0 ) / V
The measurement is repeated 10 times, and the average value is defined as the specific gravity of the multi-hollow particles. Similarly, by measuring the specific gravity of the solid particles ρ 0 and calculating ρ t / ρ 0 , the ratio of the specific gravity of the multi-hollow particles to the solid particles is calculated.

(導電性弾性層の形成)
導電性弾性層の形成方法としては、特に制約はなく、公知の方法を適宜用いればよい。例えば、上述の各種ゴム成分その他の成分からなる組成物をリボンブレンダー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、バンバリーミキサー、加圧ニーダー等で混合するなど、公知の方法を用い、導電性弾性層用の未加硫ゴム組成物を得る。さらに、得られた未加硫ゴム組成物に上述の多中空粒子を、二本ロール機等を用いて、混合する。
(Formation of conductive elastic layer)
There is no restriction | limiting in particular as a formation method of a conductive elastic layer, What is necessary is just to use a well-known method suitably. For example, the conductive elastic layer is formed by using a known method such as mixing the above-mentioned various rubber components and other components with a ribbon blender, nauter mixer, Henschel mixer, super mixer, Banbury mixer, pressure kneader, etc. An unvulcanized rubber composition is obtained. Furthermore, the above-mentioned multi-hollow particles are mixed into the obtained unvulcanized rubber composition using a two-roll machine or the like.

得られた多中空粒子を含有した未加硫ゴム組成物を、クロスヘッドを備えた押出機を用いて、導電性基体と未加硫ゴム組成物を一体的に押出して予備成形体を作製することができる。クロスヘッドとは、電線や針金の被覆層を構成するために用いられる、押出機のシリンダ先端に設置して使用する押出金型である。さらに、得られた予備成形体を熱風炉などの高温雰囲気中にて加熱架橋させることで、帯電部材を得る。   The unvulcanized rubber composition containing the obtained multi-hollow particles is integrally extruded with the conductive substrate and the unvulcanized rubber composition using an extruder equipped with a crosshead to produce a preform. be able to. A crosshead is an extrusion die that is used at the tip of a cylinder of an extruder, which is used to form a coating layer for electric wires and wires. Furthermore, the obtained preform is heated and crosslinked in a high temperature atmosphere such as a hot stove to obtain a charging member.

または、多中空粒子を含有した未加硫ゴム組成物を予め所定の膜厚に形成されたシート形状又はチューブ形状にしたのちに、導電性基体に接着又は被覆して帯電部材予備成形体を作製する。次いでこの予備成形体を円筒状のキャビティを有する円筒型または割型内に設置して加熱し、所定の寸法を有する帯電部材を得る方法がある。また、前記円筒型内に未加硫ゴム組成物と導電性基体を設置してから加熱架橋する方法も用いられる。   Alternatively, after forming an unvulcanized rubber composition containing multi-hollow particles into a sheet shape or tube shape formed in advance to a predetermined film thickness, it is bonded to or coated on a conductive substrate to produce a charging member preform. To do. Next, there is a method in which the preform is placed in a cylindrical mold or split mold having a cylindrical cavity and heated to obtain a charging member having a predetermined dimension. Further, a method in which an unvulcanized rubber composition and a conductive substrate are placed in the cylindrical mold and then heat-crosslinked is also used.

[導電性弾性層の研磨]
次に、導電性弾性層に含まれる多中空粒子の中空部が開口する端面を導電性弾性層の表面に露出させるために、導電性弾性層の外周面を研磨加工する。例えば一般に帯電ローラは、導電性の軸芯体の端部をバネで他部材に均一に当接させるため、帯電ローラの当接による撓みを考慮し、クラウン形状と呼ばれる中央部の外径を端部の外径より太くする形状に仕上げる。このような形状は、円筒金型で製造するのは脱型することが困難であるため、研磨機で仕上げることが好ましい。研磨加工を行う研磨機としては円筒研磨機が挙げられる。トラバース方式のNC円筒研磨機、プランジカット方式のNC円筒研磨機等を例示することができる。プランジカット方式のNC研磨機はトラバース方式に比べて幅広な研削砥石を用いており、導電性弾性層の長手全域を同時に研磨できるため、加工時間の短縮を図ることができるため好ましく用いられる。
[Polishing the conductive elastic layer]
Next, the outer peripheral surface of the conductive elastic layer is polished in order to expose the end surface where the hollow portions of the multi-hollow particles contained in the conductive elastic layer are open to the surface of the conductive elastic layer. For example, in general, the charging roller uniformly contacts the other end of the conductive shaft core with a spring. Therefore, considering the bending due to the contact of the charging roller, the outer diameter of the central portion called a crown shape is the end. Finish in a shape that is thicker than the outer diameter of the part. Since it is difficult to remove such a shape with a cylindrical mold, it is preferable to finish with a polishing machine. An example of a polishing machine that performs polishing is a cylindrical polishing machine. Examples include a traverse type NC cylindrical polishing machine and a plunge cut type NC cylindrical polishing machine. The plunge cut type NC polishing machine uses a grinding wheel that is wider than that of the traverse type, and can preferably polish the entire length of the conductive elastic layer at the same time, so that the processing time can be shortened.

図5に、プランジカット方式円筒研磨機による帯電ローラの研磨方法の一例を示す模式図を示す。コレットチャック501のような把持冶具により導電性基体201を介して両端保持された帯電ローラは駆動モータ502にてコレットチャック501ごと回転駆動される。帯電ローラの回転中心に対して研磨砥石503の回転中心は平行に配置され、研磨砥石用駆動モータ504にて、帯電ローラとは別に回転駆動される。研磨砥石503は、帯電ローラの回転中心と研磨砥石の回転中心対して直交する方向に移動可能な構成である。帯電ローラの弾性層202は、研磨砥石の移動量および移動速度、研磨砥石の回転数および帯電ローラの回転数を適宜選択することにより、表面を研磨加工され、形状が所望の形状に仕上げられる。コレットチャックの代わりに公知のダイヤフラムチャック等により両端保持してもよい。研磨砥石503の形状としては、研磨後の帯電ローラの弾性層にクラウン形状を形成するため、端部から中央部に向けて徐々に外径が小さくなる縮径形状(以下、逆クラウン形状とよぶ)をとることが好ましい。   FIG. 5 is a schematic view showing an example of a charging roller polishing method using a plunge cut type cylindrical polishing machine. The charging roller held at both ends by the gripping jig such as the collet chuck 501 via the conductive substrate 201 is rotated by the drive motor 502 together with the collet chuck 501. The rotation center of the grinding wheel 503 is arranged in parallel with the rotation center of the charging roller, and is driven to rotate separately from the charging roller by the grinding wheel drive motor 504. The polishing grindstone 503 is configured to be movable in a direction orthogonal to the rotation center of the charging roller and the rotation center of the polishing grindstone. The surface of the elastic layer 202 of the charging roller is polished by appropriately selecting the moving amount and moving speed of the polishing wheel, the number of rotations of the polishing wheel and the number of rotations of the charging roller, and the shape is finished to a desired shape. Both ends may be held by a known diaphragm chuck or the like instead of the collet chuck. As the shape of the grinding wheel 503, a crown shape is formed on the elastic layer of the charged roller after polishing, so that the outer diameter gradually decreases from the end portion toward the center portion (hereinafter referred to as an inverted crown shape). ) Is preferred.

[表面層]
本発明の帯電部材は、導電性弾性層および導電性弾性層表面に露出した多中空粒子および導電性弾性層に含まれる多中空粒子の中空部が開口する端面上に表面層を形成することもできる。表面層は、帯電部材の更なる高機能化、高耐久化を目的として形成する。例えば、表面層を抵抗調整層として機能させることで、帯電ローラとして用いた場合に、帯電均一性や耐リーク性を向上することができる。
[Surface layer]
The charging member of the present invention may be hollow portion of the multi-hollow particles contained in the multi-hollow particles and a conductive elastic layer exposed to the conductive elastic layer and a conductive elastic layer surface to form a surface layer on the end face of the opening it can. The surface layer is formed for the purpose of further enhancing the function and durability of the charging member. For example, by making the surface layer function as a resistance adjusting layer, charging uniformity and leakage resistance can be improved when used as a charging roller.

導電性弾性層上に表面層を形成する工程には、静電スプレー塗布やディッピング塗布等の塗布法が利用できる。または、表面層は、予め所定の膜厚に成膜されたシート形状又はチューブ形状の層を接着又は被覆することにより形成できる。あるいは、型内で所定の形状に材料を硬化、成形する方法も用いることができる。この中でも、塗布法によって塗料を塗工し、塗膜を形成することが好ましい。   For the step of forming the surface layer on the conductive elastic layer, a coating method such as electrostatic spray coating or dipping coating can be used. Alternatively, the surface layer can be formed by adhering or covering a sheet-shaped or tube-shaped layer that has been previously formed to a predetermined film thickness. Alternatively, a method of curing and molding the material into a predetermined shape in the mold can also be used. Among these, it is preferable to apply a paint by a coating method to form a coating film.

塗布法によって層を形成する場合、塗布液に用いられる溶剤としては、バインダー樹脂を溶解することができる溶剤であればよい。具体的には、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル等のエーテル類、酢酸メチル、酢酸エチル等のエステル類、キシレン、リグロイン、クロロベンゼン、ジクロロベンゼン等の芳香族化合物などが挙げられる。これらの溶剤は、使用するバインダー樹脂に応じて適宜選択される。   When a layer is formed by a coating method, the solvent used in the coating solution may be any solvent that can dissolve the binder resin. Specifically, alcohols such as methanol, ethanol, isopropanol, ketones such as acetone, methyl ethyl ketone, cyclohexanone, amides such as N, N-dimethylformamide, N, N-dimethylacetamide, sulfoxides such as dimethyl sulfoxide, Examples thereof include ethers such as tetrahydrofuran, dioxane and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, and aromatic compounds such as xylene, ligroin, chlorobenzene and dichlorobenzene. These solvents are appropriately selected according to the binder resin used.

塗布液に、バインダーや粒子等を分散する方法としては、ボールミル、サンドミル、ペイントシェーカー、ダイノミル、パールミル等の公知の溶液分散手段を用いることができる。   As a method for dispersing the binder, particles and the like in the coating solution, known solution dispersing means such as a ball mill, a sand mill, a paint shaker, a dyno mill, and a pearl mill can be used.

また、表面層には、本発明の効果を損なわない範囲で他の粒子を含有させることができる。他の粒子としては、絶縁性粒子あるいは導電性粒子を挙げることができる。絶縁性粒子あるいは導電性粒子は1種を使用しても、2種以上を組み合わせて用いてもよく、また、表面処理、変性、官能基や分子鎖の導入、コーティング等を施したものでもよい。粒子の分散性を高めるために、粒子は表面処理が施されていることがより好ましい。   The surface layer can contain other particles as long as the effects of the present invention are not impaired. Examples of the other particles include insulating particles or conductive particles. Insulating particles or conductive particles may be used singly or in combination of two or more types, or may be subjected to surface treatment, modification, introduction of functional groups or molecular chains, coating, etc. . In order to improve the dispersibility of the particles, the particles are more preferably subjected to a surface treatment.

表面層には、更に、離型性を向上させるために、離型剤を含有させても良い。表面層に離型剤を含有させることで、帯電部材の表面に汚れが付着することを防ぎ、帯電部材の耐久性を向上させることができる。離型剤が液体の場合は、表面層を形成する際にレベリング剤としても作用する。各種公知の塗料を表面層として塗布することもできる。   The surface layer may further contain a release agent in order to improve the releasability. By including a release agent in the surface layer, it is possible to prevent dirt from adhering to the surface of the charging member and improve the durability of the charging member. When the release agent is a liquid, it also acts as a leveling agent when forming the surface layer. Various known paints can also be applied as a surface layer.

表面層は、0.01μm以上10μm以下の厚さを有することが好ましい。より好ましくは、0.1μm以上5μm以下である。表面層の膜厚としては多中空粒子断面の低摩擦性を維持するため、導電性弾性層の表面に露出する多中空粒子の、中空部が開口する端面に由来する凹部を埋めない程度の膜厚とすることが好ましい。上記のように表面層を形成した場合は、導電性弾性層中の多中空粒子の反発力および導電性弾性層表面に露出した多中空粒子断面の低摩擦性の効果が維持されることによって、スティックスリップが軽減し、バンディング画像の発生が低減・抑制される。なお、表面層の膜厚は、帯電部材断面を鋭利な刃物で切り出して、光学顕微鏡や電子顕微鏡で観察することで測定できる。本発明における最表面層の膜厚測定は、走査型電子顕微鏡(SEM)を用いて、倍率10000倍で数箇所の測定を行い、平均値を平均膜厚とする。   The surface layer preferably has a thickness of 0.01 μm or more and 10 μm or less. More preferably, it is 0.1 μm or more and 5 μm or less. The film thickness of the surface layer is such that the hollow portion exposed on the surface of the conductive elastic layer does not fill the concave portion derived from the end face where the hollow portion opens in order to maintain the low friction of the cross section of the hollow particle. Thickness is preferred. When the surface layer is formed as described above, the repulsive force of the multi-hollow particles in the conductive elastic layer and the low friction effect of the cross-section of the multi-hollow particles exposed on the surface of the conductive elastic layer are maintained. Stick-slip is reduced and the generation of banding images is reduced / suppressed. The film thickness of the surface layer can be measured by cutting the charging member cross section with a sharp blade and observing with an optical microscope or an electron microscope. In the measurement of the film thickness of the outermost layer in the present invention, several points are measured at a magnification of 10,000 times using a scanning electron microscope (SEM), and the average value is defined as the average film thickness.

また、導電性弾性層上に表面層を形成する工程としては、紫外線、電子線など公知のエネルギー線の照射による導電性弾性層表面を改質する方法も例として挙げられる。例えば紫外線の照射には、高圧水銀ランプ、メタルハライドランプ、低圧水銀ランプ、エキシマUVランプなどを用いることができ、これらのうち、紫外線の波長が150nm以上480nm以下の光を豊富に含む紫外線源が好適に用いられる。   Examples of the step of forming the surface layer on the conductive elastic layer include a method of modifying the surface of the conductive elastic layer by irradiation with a known energy beam such as an ultraviolet ray or an electron beam. For example, a high-pressure mercury lamp, a metal halide lamp, a low-pressure mercury lamp, an excimer UV lamp, or the like can be used for ultraviolet irradiation. Among these, an ultraviolet ray source rich in light having an ultraviolet wavelength of 150 nm to 480 nm is preferable. Used for.

なお、紫外線の積算光量は、以下のように定義される。
紫外線積算光量[mJ/cm]=紫外線強度[mW/cm]×照射時間[s]
紫外線の積算光量の調節は、照射時間や、ランプ出力や、ランプと被照射体との距離などで行うことが可能である。また、照射時間内で積算光量に勾配をつけてもよい。
The integrated light quantity of ultraviolet rays is defined as follows.
UV integrated light quantity [mJ / cm 2 ] = UV intensity [mW / cm 2 ] × irradiation time [s]
The adjustment of the integrated amount of ultraviolet light can be performed by the irradiation time, lamp output, distance between the lamp and the irradiated object, and the like. Moreover, you may give a gradient to integrated light quantity within irradiation time.

低圧水銀ランプを用いる場合、紫外線の積算光量は、ウシオ電機(株)製の紫外線積算光量計UIT−150−AやUVD−S254を用いて測定することができる。エキシマUVランプを用いる場合、紫外線の積算光量は、ウシオ電機(株)製の紫外線積算光量計UIT−150−AやVUV−S172を用いて測定することができる。   In the case of using a low-pressure mercury lamp, the integrated light amount of ultraviolet rays can be measured using an ultraviolet integrated light amount meter UIT-150-A or UVD-S254 manufactured by USHIO INC. When an excimer UV lamp is used, the integrated light quantity of ultraviolet rays can be measured using an ultraviolet integrated light quantity meter UIT-150-A or VUV-S172 manufactured by USHIO INC.

例えば、電子線照射装置は、弾性ローラを回転させながら導電性弾性層表面に電子線を照射するものであり、電子線発生部と照射室と照射口とを備えるものである。
電子線発生部は、電子線を発生するターミナルと、ターミナルで発生した電子線を真空空間(加速空間)で加速する加速管とを有するものである。また電子線発生部の内部は、電子が気体分子と衝突してエネルギーを失うことを防ぐため、真空ポンプ等により10−3〜10−4[Pa]程度の真空に保たれている。
For example, the electron beam irradiation apparatus irradiates the surface of the conductive elastic layer while rotating an elastic roller, and includes an electron beam generation unit, an irradiation chamber, and an irradiation port.
The electron beam generator includes a terminal that generates an electron beam and an acceleration tube that accelerates the electron beam generated at the terminal in a vacuum space (acceleration space). The inside of the electron beam generator is kept at a vacuum of about 10 −3 to 10 −4 [Pa] by a vacuum pump or the like in order to prevent electrons from colliding with gas molecules and losing energy.

電源によりフィラメントに電流を通じて加熱するとフィラメントは熱電子を放出し、この熱電子のうち、ターミナルを通過したものだけが電子線として有効に取り出される。そして、電子線の加速電圧により加速管内の加速空間で加速された後、照射口箔を突き抜け、照射口の下方の照射室内を搬送されるローラに照射される。   When a filament is heated by a power source through a current, the filament emits thermoelectrons, and only those thermoelectrons that have passed through the terminal are effectively extracted as electron beams. And after accelerating in the acceleration space in an acceleration tube with the acceleration voltage of an electron beam, it penetrates through an irradiation opening foil, and is irradiated to the roller conveyed in the irradiation chamber under the irradiation opening.

弾性ローラに電子線を照射する場合には、照射室の内部は窒素雰囲気又は空気雰囲気としている。また、ローラはローラ回転用部材で回転させて照射室内を搬送手段により、移動および通過可能な状態である。尚、電子線発生部及び照射室の周囲は電子線照射時に二次的に発生するX線が外部へ漏出しないように、鉛遮蔽が施されている。   When the elastic roller is irradiated with an electron beam, the inside of the irradiation chamber is a nitrogen atmosphere or an air atmosphere. Further, the roller is rotated by a roller rotating member, and can move and pass through the irradiation chamber by the conveying means. In addition, the surroundings of the electron beam generator and the irradiation chamber are shielded from lead so that X-rays that are secondarily generated during electron beam irradiation do not leak to the outside.

照射口箔は金属箔からなり、電子線発生部内の真空雰囲気と照射室内の空気雰囲気とを仕切るものであり、また照射口箔を介して照射室内に電子線を取り出すものである。ローラの照射に電子線を応用する場合には、ローラが電子線を照射される照射室の内部は窒素雰囲気又は空気雰囲気である。よって電子線発生部と照射室との境界に設ける照射口箔には、ピンホールがなく、電子線発生部内の真空雰囲気を十分維持できる機械的強度があり、しかも、電子線が透過しやすいように比重が小さく肉厚の薄い金属が望ましい。例えば、照射口箔に使用される金属として厚さ約5〜15μm程度のTiがよく使用される。例えば最大加速電圧150kV・最大電子電流40mAの電子線照射装置(岩崎電気株式会社製)等が用いられる。また、照射時には窒素雰囲気又は空気雰囲気で行うが、窒素雰囲気下での照射が好ましく、酸素濃度500ppm以下の環境が好ましい。   The irradiation port foil is made of a metal foil, and partitions the vacuum atmosphere in the electron beam generator and the air atmosphere in the irradiation chamber, and takes out the electron beam into the irradiation chamber through the irradiation port foil. When an electron beam is applied to the irradiation of the roller, the inside of the irradiation chamber in which the roller is irradiated with the electron beam is a nitrogen atmosphere or an air atmosphere. Therefore, the irradiation mouth foil provided at the boundary between the electron beam generating part and the irradiation chamber has no pinhole, has a mechanical strength that can sufficiently maintain the vacuum atmosphere in the electron beam generating part, and is easy to transmit the electron beam. A metal having a small specific gravity and a small thickness is desirable. For example, Ti having a thickness of about 5 to 15 μm is often used as a metal used for the irradiation port foil. For example, an electron beam irradiation apparatus (manufactured by Iwasaki Electric Co., Ltd.) having a maximum acceleration voltage of 150 kV and a maximum electron current of 40 mA is used. In addition, although irradiation is performed in a nitrogen atmosphere or an air atmosphere, irradiation in a nitrogen atmosphere is preferable, and an environment having an oxygen concentration of 500 ppm or less is preferable.

尚、電子線の線量は、下記で定義される。
線量(kGy)=[装置定数K×電子電流(mA)]/処理スピード(m/min)
ここで、装置定数Kは、装置個々の効率を表す定数であって、装置の性能の指標となる。例えば本来、電子線照射装置では、K=18以上とする必要がある。したがって、一定の電子電流と処理スピードに対して、加速電圧を変えて線量を測定し、これから得られる装置定数Kが所定の値以上になるような加速電圧を求めることより、加速電圧についての制限が得られる。
The electron beam dose is defined below.
Dose (kGy) = [equipment constant K × electron current (mA)] / processing speed (m / min)
Here, the device constant K is a constant representing the efficiency of each device, and serves as an index of device performance. For example, in an electron beam irradiation apparatus, it is originally necessary to set K = 18 or more. Therefore, for a certain electron current and processing speed, the acceleration voltage is changed, the dose is measured, and the acceleration voltage is determined by obtaining the acceleration voltage so that the device constant K obtained from this is a predetermined value or more. Is obtained.

電子線の線量については、表面処理の効果に応じて適宜選択すれば良い。その調節は、電子電流、処理スピードのいずれでも行う事が可能であり、所望の線量が得られるように決めればよい。   What is necessary is just to select suitably about the dose of an electron beam according to the effect of surface treatment. The adjustment can be performed using either an electronic current or a processing speed, and it is sufficient to determine that a desired dose can be obtained.

[電子写真装置]
本発明に従い製造した帯電部材を帯電ローラとして備えた電子写真装置の1例の概略構成を図7に示す。
[Electrophotographic equipment]
FIG. 7 shows a schematic configuration of an example of an electrophotographic apparatus provided with a charging member manufactured according to the present invention as a charging roller.

電子写真装置は、感光体、感光体を帯電する帯電装置、露光を行う潜像形成装置、トナー像に現像する現像装置、転写材に転写する転写装置、感光体上の転写トナーを回収するクリーニング装置、トナー像を定着する定着装置等から構成されている。   The electrophotographic apparatus includes a photosensitive member, a charging device that charges the photosensitive member, a latent image forming device that performs exposure, a developing device that develops the toner image, a transfer device that transfers to a transfer material, and a cleaning that collects the transfer toner on the photosensitive member. And a fixing device for fixing the toner image.

感光体701は、導電性の軸芯体上に感光層を有する回転ドラム型である。感光体は矢示の方向に所定の周速度(プロセススピード)で回転駆動される。帯電装置は、感光体701に所定の押圧力で当接されることにより接触配置される接触式の帯電ローラ702を有する。帯電ローラ702は、感光体の回転に従い回転する従動回転であり、帯電用電源712から所定の電圧を印加することにより、感光体を所定の電位に帯電する。感光体701に静電潜像を形成する潜像形成装置708は、例えばレーザービームスキャナーなどの露光装置が用いられる。一様に帯電された感光体に画像情報に対応した露光を行うことにより、静電潜像が形成される。   The photoreceptor 701 is a rotating drum type having a photosensitive layer on a conductive shaft core. The photoreceptor is driven to rotate in the direction of the arrow at a predetermined peripheral speed (process speed). The charging device includes a contact-type charging roller 702 that is placed in contact with the photosensitive member 701 by contacting the photosensitive member 701 with a predetermined pressing force. The charging roller 702 is driven rotation that rotates in accordance with the rotation of the photoconductor, and charges the photoconductor to a predetermined potential by applying a predetermined voltage from the charging power source 712. For example, an exposure apparatus such as a laser beam scanner is used as the latent image forming apparatus 708 that forms an electrostatic latent image on the photoreceptor 701. An electrostatic latent image is formed by performing exposure corresponding to image information on a uniformly charged photoconductor.

現像装置は、感光体701に近接又は接触して配設される現像ローラ703を有する。現像ローラ703はトナー供給ローラ710と当接されており、該現像ローラ表面にトナーが供給される。現像ローラ703は弾性規制ブレード709と当接されており、現像ローラ表面に坦持されるトナー量を規制している。現像ローラ703、トナー供給ローラ710、弾性規制ブレード709に対して、現像用電源711から所定の電圧を印加することにより、感光体帯電極性と同極性に静電的処理されたトナーを反転現像することにより、静電潜像をトナー像に可視化現像する。   The developing device has a developing roller 703 disposed close to or in contact with the photoreceptor 701. The developing roller 703 is in contact with the toner supply roller 710, and toner is supplied to the surface of the developing roller. The developing roller 703 is in contact with the elasticity regulating blade 709 and regulates the amount of toner carried on the developing roller surface. By applying a predetermined voltage from the developing power supply 711 to the developing roller 703, the toner supply roller 710, and the elasticity regulating blade 709, the toner electrostatically processed to the same polarity as the photosensitive member charging polarity is reversely developed. Thus, the electrostatic latent image is visualized and developed into a toner image.

転写装置は、接触式の転写ローラ705を有し、転写用電源713から所定の電圧が印加される。感光体からトナー像を普通紙などの印刷メディア704(印刷メディアは、搬送部材を有する給紙システムにより搬送される。)に転写する。   The transfer device includes a contact-type transfer roller 705, and a predetermined voltage is applied from a transfer power supply 713. The toner image is transferred from the photoreceptor to a print medium 704 such as plain paper (the print medium is conveyed by a paper feed system having a conveyance member).

クリーニング装置は、ブレード型のクリーニングブレード707、回収容器を有し、転写した後、感光体上に残留する転写残トナーを機械的に掻き落とし回収する。ここで、現像装置にて転写残トナーを回収する現像同時クリーニング方式を採用することにより、クリーニング装置を省くことも可能である。定着装置706は、加熱されたローラ等で構成され、転写されたトナー像を印刷メディア704に定着し、機外に排出する。   The cleaning device has a blade-type cleaning blade 707 and a recovery container, and after transferring, mechanically scrapes and recovers transfer residual toner remaining on the photosensitive member. Here, it is possible to omit the cleaning device by adopting a development simultaneous cleaning system in which the transfer device collects the transfer residual toner. The fixing device 706 includes a heated roller or the like, fixes the transferred toner image on the print medium 704, and discharges the image to the outside.

以下に、上記で説明した本発明の帯電部材を、具体的な実施例と比較例とによりさらに更に詳細に説明するが、本発明の技術的範囲はこれらに限定されるものではない。   Hereinafter, the charging member of the present invention described above will be described in more detail by way of specific examples and comparative examples, but the technical scope of the present invention is not limited to these.

製造例1〜13は、多中空粒子A1〜A13の製造例である。また、製造例14〜18は、中実粒子A1〜A5の製造例である。また、製造例19〜22は、導電性弾性層に用いられる未加硫ゴム組成物A1〜A4の製造例である。なお、以下において、特記しない限り、「部」及び「%」は重量基準である。
〔製造例1〕多中空粒子A1の作製
水300gと、分散安定剤として市販の第三リン酸カルシウムスラリー300g(固形分10% 商品名:スーパータイト 日本化成社製)とを1000mlのビーカーに入れ、次いで、界面活性剤としてラウリル硫酸ナトリウム0.12gを水に溶解させて水系分散媒体を作製した。
Production Examples 1 to 13 are production examples of the multi-hollow particles A1 to A13. In addition, Production Examples 14 to 18 are production examples of solid particles A1 to A5. In addition, Production Examples 19 to 22 are production examples of unvulcanized rubber compositions A1 to A4 used for the conductive elastic layer. In the following, “part” and “%” are based on weight unless otherwise specified.
[Production Example 1] Preparation of multi-hollow particles A1 300 g of water and 300 g of a commercially available tricalcium phosphate slurry (solid content 10%, trade name: Supertite Nippon Kasei Co., Ltd.) as a dispersion stabilizer were placed in a 1000 ml beaker, Then, 0.12 g of sodium lauryl sulfate as a surfactant was dissolved in water to prepare an aqueous dispersion medium.

これとは別に、スチレン200g、ジビニルベンゼン50g、アクリル酸メチル40gを混合し、単量体混合物を調整した。単量体混合物200gをビーカーに計り取り、エチルセルロース樹脂(45cP 関東化学社製)5gを加え均一に混合溶解し、次いで、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)2.0gを均一に混合溶解して溶解液を得た。   Separately, 200 g of styrene, 50 g of divinylbenzene, and 40 g of methyl acrylate were mixed to prepare a monomer mixture. 200 g of the monomer mixture was weighed into a beaker, 5 g of ethyl cellulose resin (45 cP manufactured by Kanto Chemical Co., Inc.) was added and mixed and dissolved uniformly, and then 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator 2.0 g was mixed and dissolved uniformly to obtain a solution.

得られた溶解液を上記水系分散媒体に混合し、混合物をホモミキサー(IKA社製 ULTRATURRAX T−25)にて6000rpmで30秒分散した。得られた分散液を1000mlのセパラブルフラスコに投入し、撹拌翼、温度計及び還流冷却器を取り付け、フラスコを窒素パージした後、60℃で水浴させた。撹拌速度200rpmで10時間加熱を継続し、重合を行った。   The obtained solution was mixed with the aqueous dispersion medium, and the mixture was dispersed at 6000 rpm for 30 seconds with a homomixer (ULTRATRARAX T-25 manufactured by IKA). The obtained dispersion was put into a 1000 ml separable flask, a stirring blade, a thermometer and a reflux condenser were attached, and the flask was purged with nitrogen and then bathed in water at 60 ° C. Polymerization was carried out by continuing heating at a stirring speed of 200 rpm for 10 hours.

重合が終了したことを確認した後、分散液を冷却し、スラリーのpHが2程度になるまで塩酸を添加して分散安定剤を分解した。濾紙を用いたブフナー漏斗で重合物を吸引濾過し、5リットルのイオン交換水で洗浄して分散安定剤を除去し、60℃のオーブン中で24時間乾燥して樹脂粒子を得た。   After confirming that the polymerization was completed, the dispersion was cooled, and hydrochloric acid was added until the pH of the slurry was about 2, whereby the dispersion stabilizer was decomposed. The polymer was suction filtered through a Buchner funnel using filter paper, washed with 5 liters of ion exchange water to remove the dispersion stabilizer, and dried in an oven at 60 ° C. for 24 hours to obtain resin particles.

得られた樹脂粒子は、平均粒子径が5.1μmであり、走査型電子顕微鏡で観察すると球状の樹脂粒子であり、内部に複数個の空孔を有する多中空粒子であることが確認できた。さらに、上記樹脂粒子を分級することにより多中空粒子A1を得た。またジビニルベンゼンを添加しないこと以外は、製造例1と同様の方法で中実粒子を作製し、多中空粒子と中実粒子の比重の割合ρ/ρを測定した。多中空粒子A1の平均粒径、平均空孔径、比重の割合の測定結果を表2に示す。
〔製造例2〜9〕多中空粒子A2~A9の作製
ジビニルベンゼン量、撹拌速度を調整すること以外は、製造例1と同様の方法で、多中空粒子A2〜A9を作製した。単量体混合物の組成、分散条件、重合条件を表1に、粒子の測定結果を表2に示す。
〔製造例10〕多中空粒子A10の作製
製造例4において、アクリル酸メチルを使用しないこと以外は、製造例4と同様の方法で多中空粒子A10を作製した。単量体混合物の組成、分散条件、重合条件を表1に、粒子の測定結果を表2に示す。
〔製造例11〕多中空粒子A11の作製
製造例4において、アクリル酸メチルをアクリロニトリルとした以外は、製造例4と同様の方法で多中空粒子A11を作製した。単量体混合物の組成、分散条件、重合条件を表1に、粒子の測定結果を表2に示す。
〔製造例12〕多中空粒子A12の作製
製造例4において、アクリル酸メチルを塩化ビニリデンとした以外は、製造例4と同様の方法で多中空粒子A12を作製した。単量体混合物の組成、分散条件、重合条件を表1に、粒子の測定結果を表2に示す。
〔製造例13〕多中空粒子A13の作製
製造例4において、アクリル酸メチルを塩化ビニルとした以外は、製造例4と同様の方法で多中空粒子A13を作製した。単量体混合物の組成、分散条件、重合条件を表1に、粒子の測定結果を表2に示す。
〔製造例14〜18〕中実粒子A1〜A5の作製
ジビニルベンゼンを添加しないこと以外は、製造例4、10〜13と同様の方法で中実粒子A1〜A5を作製した。単量体混合物の組成、分散条件、重合条件を表1に、粒子の測定結果を表2に示す。
The obtained resin particles have an average particle diameter of 5.1 μm, and when observed with a scanning electron microscope, they were spherical resin particles and confirmed to be multi-hollow particles having a plurality of pores inside. . Furthermore, multi-hollow particles A1 were obtained by classifying the resin particles. Further, solid particles were prepared in the same manner as in Production Example 1 except that divinylbenzene was not added, and the ratio ρ t / ρ 0 of the specific gravity between the multi-hollow particles and the solid particles was measured. Table 2 shows the measurement results of the average particle diameter, average pore diameter, and specific gravity ratio of the multi-hollow particles A1.
[Production Examples 2 to 9] Production of multi-hollow particles A2 to A9 Multi-hollow particles A2 to A9 were produced in the same manner as in Production Example 1 except that the amount of divinylbenzene and the stirring speed were adjusted. Table 1 shows the composition, dispersion conditions, and polymerization conditions of the monomer mixture, and Table 2 shows the measurement results of the particles.
[Production Example 10] Production of multi-hollow particles A10 Multi-hollow particles A10 were produced in the same manner as in Production Example 4 except that methyl acrylate was not used in Production Example 4. Table 1 shows the composition, dispersion conditions, and polymerization conditions of the monomer mixture, and Table 2 shows the measurement results of the particles.
[Production Example 11] Production of multi-hollow particles A11 Multi-hollow particles A11 were produced in the same manner as in Production Example 4 except that methyl acrylate was changed to acrylonitrile in Production Example 4. Table 1 shows the composition, dispersion conditions, and polymerization conditions of the monomer mixture, and Table 2 shows the measurement results of the particles.
[Production Example 12] Production of multi-hollow particles A12 Multi-hollow particles A12 were produced in the same manner as in Production Example 4, except that methyl acrylate was changed to vinylidene chloride. Table 1 shows the composition, dispersion conditions, and polymerization conditions of the monomer mixture, and Table 2 shows the measurement results of the particles.
[Production Example 13] Production of multi-hollow particles A13 Multi-hollow particles A13 were produced in the same manner as in Production Example 4 except that methyl acrylate was changed to vinyl chloride in Production Example 4. Table 1 shows the composition, dispersion conditions, and polymerization conditions of the monomer mixture, and Table 2 shows the measurement results of the particles.
[Production Examples 14 to 18] Production of solid particles A1 to A5 Solid particles A1 to A5 were produced in the same manner as in Production Examples 4 and 10 to 13 except that divinylbenzene was not added. Table 1 shows the composition, dispersion conditions, and polymerization conditions of the monomer mixture, and Table 2 shows the measurement results of the particles.

〔製造例19〕NBRを用いた未加硫ゴム組成物A1の作製
アクリロニトリルブタジエンゴム(NBR)(商品名:N230SV、JSR社製)100質量部に対し下記の4成分を加えて、50℃に調節した密閉型ミキサーにて15分間混練した。
・カーボンブラック(商品名:トーカブラック#7360SB、東海カーボン社製):48質量部、
・ステアリン酸亜鉛(商品名:SZ−2000、堺化学工業社製):1質量部、
・酸化亜鉛(商品名:亜鉛華2種、堺化学工業社製):5質量部、
・炭酸カルシウム(商品名:シルバーW、白石工業社製):20質量部。
[Production Example 19] Preparation of unvulcanized rubber composition A1 using NBR Acrylonitrile butadiene rubber (NBR) (trade name: N230SV, manufactured by JSR) 100 parts by mass, the following 4 components were added to 50 ° C The mixture was kneaded for 15 minutes with a controlled closed mixer.
Carbon black (trade name: Toka Black # 7360SB, manufactured by Tokai Carbon Co., Ltd.): 48 parts by mass
-Zinc stearate (trade name: SZ-2000, manufactured by Sakai Chemical Industry Co., Ltd.): 1 part by mass,
-Zinc oxide (trade name: Zinc Hana 2 types, manufactured by Sakai Chemical Industry Co., Ltd.): 5 parts by mass
Calcium carbonate (trade name: Silver W, manufactured by Shiroishi Kogyo Co.): 20 parts by mass.

これに、多中空粒子A1を13質量部、加硫剤として硫黄1.2質量部、加硫促進剤としてテトラベンジルチウラムジスルフィド(TBzTD)(商品名:パーカシットTBzTD、フレキシス社製)4.5質量部を添加し、25℃に冷却した二本ロール機にて10分間混練し、未加硫ゴム組成物A1を得た。
〔製造例20〕エピクロルヒドリンゴムを用いた未加硫ゴム組成物A2の作製
エピクロルヒドリンゴム(EO−EP−AGE三元共化合物)(商品名:エピオンON301、ダイソー社製)100質量部に対し下記の7成分を加えて、50℃に調節した密閉型ミキサーにて10分間混練した。
・炭酸カルシウム(商品名:ナノックス#30、丸尾カルシウム社製):60質量部、
・脂肪族ポリエステル系可塑剤(商品名:ポリサイザーP−202、大日本インキ化学工業社製):10質量部、
・ステアリン酸亜鉛(商品名:SZ−2000、堺化学工業社製):1質量部、
・2−メルカプトベンズイミダゾール(商品名:ノクラックNS−5、大内新興化学工業社製):0.5質量部、
・酸化亜鉛(商品名:亜鉛華2種、堺化学工業社製):2質量部、
・四級アンモニウム塩(商品名:アデカサイザーLV70、旭電化工業社製):2質量部、
・カーボンブラック(商品名:シーストGSO、東海カーボン社製):5質量部。
To this, 13 parts by mass of the multi-hollow particles A1, 1.2 parts by mass of sulfur as a vulcanizing agent, and tetrabenzylthiuram disulfide (TBzTD) (trade name: Parkasit TBzTD, manufactured by Flexis) as a vulcanization accelerator 4.5 mass Then, the mixture was kneaded for 10 minutes with a two-roll mill cooled to 25 ° C. to obtain an unvulcanized rubber composition A1.
[Production Example 20] Preparation of unvulcanized rubber composition A2 using epichlorohydrin rubber Epichlorohydrin rubber (EO-EP-AGE ternary co-compound) (trade name: Epion ON301, manufactured by Daiso Corporation) Seven components were added and kneaded for 10 minutes in a closed mixer adjusted to 50 ° C.
Calcium carbonate (trade name: Nanox # 30, manufactured by Maruo Calcium Co.): 60 parts by mass
Aliphatic polyester plasticizer (trade name: Polycizer P-202, manufactured by Dainippon Ink & Chemicals, Inc.): 10 parts by mass
-Zinc stearate (trade name: SZ-2000, manufactured by Sakai Chemical Industry Co., Ltd.): 1 part by mass,
2-mercaptobenzimidazole (trade name: NOCRACK NS-5, manufactured by Ouchi Shinsei Chemical Co., Ltd.): 0.5 parts by mass,
・ Zinc oxide (trade name: Zinc Hana 2 types, manufactured by Sakai Chemical Industry Co., Ltd.): 2 parts by mass
-Quaternary ammonium salt (trade name: Adeka Sizer LV70, manufactured by Asahi Denka Kogyo Co., Ltd.): 2 parts by mass,
Carbon black (trade name: Seast GSO, manufactured by Tokai Carbon Co., Ltd.): 5 parts by mass.

これに、多中空粒子A3を1質量部、加硫剤として硫黄0.8質量部、加硫促進剤としてジベンゾチアジルスルフィド(DM)(商品名:ノクセラーDM、大内新興化学工業社製)1質量部、テトラメチルチウラムモノスルフィド(TS)(商品名:ノクセラーTS、大内新興化学工業社製)0.5質量部を添加し、25℃に冷却した二本ロール機にて10分間混練し、未加硫ゴム組成物A2を得た。
〔製造例21〕SBRを用いた未加硫ゴム組成物A3の作製
スチレンブタジエンゴム(SBR)(商品名:SBR1500、JSR社製)100質量部に対し下記の6成分を加えて、80℃に調節した密閉型ミキサーにて15分間混練した。
・酸化亜鉛(商品名:亜鉛華2種、堺化学工業社製):5質量部、
・ステアリン酸亜鉛(商品名:SZ−2000、堺化学工業社製):2質量部、
・カーボンブラック(商品名:ケッチェンブラックEC600JD、ライオン社製):8質量部、
・カーボンブラック(商品名:シーストS、東海カーボン社製):40質量部、
・炭酸カルシウム(商品名:ナノックス#30、丸尾カルシウム社製):15質量部、
・パラフィンオイル(商品名:PW380、出光興産社製):20質量部。
In addition, 1 part by mass of the multi-hollow particles A3, 0.8 part by mass of sulfur as a vulcanizing agent, dibenzothiazyl sulfide (DM) as a vulcanization accelerator (trade name: Noxeller DM, manufactured by Ouchi Shinsei Chemical Co., Ltd.) 1 part by mass, 0.5 part by mass of tetramethylthiuram monosulfide (TS) (trade name: Noxeller TS, manufactured by Ouchi Shinsei Chemical Co., Ltd.) is added, and the mixture is kneaded for 10 minutes with a two-roll mill cooled to 25 ° C. Thus, an unvulcanized rubber composition A2 was obtained.
[Production Example 21] Preparation of unvulcanized rubber composition A3 using SBR Styrene butadiene rubber (SBR) (trade name: SBR1500, manufactured by JSR) 100 parts by mass, the following 6 components were added to 80 ° C The mixture was kneaded for 15 minutes with a controlled closed mixer.
-Zinc oxide (trade name: Zinc Hana 2 types, manufactured by Sakai Chemical Industry Co., Ltd.): 5 parts by mass
-Zinc stearate (trade name: SZ-2000, manufactured by Sakai Chemical Industry Co., Ltd.): 2 parts by mass
Carbon black (trade name: Ketjen Black EC600JD, manufactured by Lion): 8 parts by mass
Carbon black (trade name: Seast S, manufactured by Tokai Carbon Co.): 40 parts by mass
Calcium carbonate (trade name: Nanox # 30, manufactured by Maruo Calcium Co., Ltd.): 15 parts by mass
Paraffin oil (trade name: PW380, manufactured by Idemitsu Kosan Co., Ltd.): 20 parts by mass.

これに、多中空粒子A3を5質量部、加硫剤として硫黄1質量部、加硫促進剤としてジベンゾチアジルスルフィド(DM)(商品名:ノクセラーDM、大内新興化学工業社製)1質量部、テトラメチルチウラムモノスルフィド(TS)(商品名:ノクセラーTS、大内新興化学工業社製)1質量部を添加し、25℃に冷却した二本ロール機にて10分間混練し、未加硫ゴム組成物A3を得た。
〔製造例22〕EPDMを用いた未加硫ゴム組成物A4の作製
エチレンプロピレンジエンゴム(EPDM)(商品名:エスプレンEPDM505A、住友化学工業社製)100質量部に対し下記の6成分を加えて、80℃に調節した密閉型ミキサーにて15分間混練した。
・酸化亜鉛(商品名:亜鉛華2種、堺化学工業社製):5質量部
・ステアリン酸亜鉛(商品名:SZ−2000、堺化学工業社製):2質量部、
・カーボンブラック(商品名:ケッチェンブラックEC600JD、ライオン社製):8質量部、
・カーボンブラック(商品名:シーストS、東海カーボン社製):30質量部、
・炭酸カルシウム(商品名:ナノックス#30、丸尾カルシウム社製):15質量部、
・パラフィンオイル(商品名:PW380、出光興産社製):20質量部。
To this, 5 parts by mass of multi-hollow particles A3, 1 part by mass of sulfur as a vulcanizing agent, 1 part by mass of dibenzothiazyl sulfide (DM) as a vulcanization accelerator (trade name: Noxeller DM, manufactured by Ouchi Shinsei Chemical Co., Ltd.) 1 part by mass of tetramethylthiuram monosulfide (TS) (trade name: Noxeller TS, manufactured by Ouchi Shinsei Chemical Co., Ltd.), kneaded for 10 minutes with a two-roll mill cooled to 25 ° C. A vulcanized rubber composition A3 was obtained.
[Production Example 22] Production of unvulcanized rubber composition A4 using EPDM The following 6 components were added to 100 parts by mass of ethylene propylene diene rubber (EPDM) (trade name: Esprene EPDM505A, manufactured by Sumitomo Chemical Co., Ltd.). The mixture was kneaded for 15 minutes in a closed mixer adjusted to 80 ° C.
-Zinc oxide (trade name: 2 types of zinc white, manufactured by Sakai Chemical Industry Co., Ltd.): 5 parts by mass-Zinc stearate (trade name: SZ-2000, manufactured by Sakai Chemical Industry Co., Ltd.): 2 parts by mass,
Carbon black (trade name: Ketjen Black EC600JD, manufactured by Lion): 8 parts by mass
Carbon black (trade name: Seast S, manufactured by Tokai Carbon Co.): 30 parts by mass
Calcium carbonate (trade name: Nanox # 30, manufactured by Maruo Calcium Co., Ltd.): 15 parts by mass
Paraffin oil (trade name: PW380, manufactured by Idemitsu Kosan Co., Ltd.): 20 parts by mass.

これに、多中空粒子A3を1質量部、加硫剤として硫黄1質量部、加硫促進剤としてジベンゾチアジルスルフィド(DM)(商品名:ノクセラーDM、大内新興化学工業社製)1質量部、テトラメチルチウラムモノスルフィド(TS)(商品名:ノクセラーTS、大内新興化学工業社製)1質量部を添加し、25℃に冷却した二本ロール機にて10分間混練し、未加硫ゴム組成物A4を得た。   To this, 1 part by mass of multi-hollow particles A3, 1 part by mass of sulfur as a vulcanizing agent, and 1 part by mass of dibenzothiazyl sulfide (DM) (trade name: Noxeller DM, manufactured by Ouchi Shinsei Chemical Co., Ltd.) as a vulcanization accelerator 1 part by mass of tetramethylthiuram monosulfide (TS) (trade name: Noxeller TS, manufactured by Ouchi Shinsei Chemical Co., Ltd.), kneaded for 10 minutes with a two-roll mill cooled to 25 ° C. A vulcanized rubber composition A4 was obtained.

〔実施例1〕
(弾性ローラの作製)
直径6mm、長さ258mmのステンレス製棒に、熱硬化性接着剤(商品名:「メタロックU−20」、東洋化学研究所製)をあらかじめ両端部12mmを除いた領域に塗布し、180℃に調節した熱風炉内にて30分間静置して導電性基体を得た。
[Example 1]
(Production of elastic roller)
A thermosetting adhesive (trade name: “Metaloc U-20”, manufactured by Toyo Chemical Laboratories) was applied to a stainless steel rod having a diameter of 6 mm and a length of 258 mm in advance to the area excluding both ends 12 mm, and the temperature was adjusted to 180 ° C. It left still for 30 minutes in the adjusted hot stove, and obtained the electroconductive base | substrate.

続いて、図1に示す単層クロスヘッド102を具備する押出成形装置として、汎用のゴム用押出機101(商品名:「ベント付き押出機」、三葉製作所製;スクリュー直径が45mm、L/D=20押出機、Lはスクリュー長さ、Dはスクリュー直径)を使用した。スクリューのフライト形状は、真空ベントゾーンを除く箇所についてフルフライト形状とした。押出時の温調はヘッド温度80℃、シリンダ温度80℃、スクリュー温度80℃とした。単層クロスヘッドの先端には、内径がφ9.8mmの口金を装着した。押出機(図1)による未加硫ゴム組成物A1の吐出速度(単位時間あたりの押出量)を所定の弾性ローラの外径となるように押出機のスクリュー回転数を10.5rpmとした。   Subsequently, as an extrusion molding apparatus having the single-layer crosshead 102 shown in FIG. 1, a general-purpose rubber extruder 101 (trade name: “extruder with vent”, manufactured by Mitsuba Seisakusho; screw diameter: 45 mm, L / L D = 20 extruder, L is screw length, D is screw diameter). The flight shape of the screw was a full flight shape except for the vacuum vent zone. The temperature during extrusion was set at a head temperature of 80 ° C, a cylinder temperature of 80 ° C, and a screw temperature of 80 ° C. A base having an inner diameter of 9.8 mm was attached to the tip of the single-layer crosshead. The screw rotation speed of the extruder was set to 10.5 rpm so that the discharge speed (the amount of extrusion per unit time) of the unvulcanized rubber composition A1 by the extruder (FIG. 1) became the predetermined outer diameter of the elastic roller.

上記押出機および単層クロスヘッドを用いて、導電性基体201を送りロール103によりクロスヘッドへ挿入し、導電性基体201を中心軸として、同軸上に円筒状に、未加硫ゴム組成物A1を被覆して、外径がΦ9.4mmである帯電部材予備成形体104を得た。   Using the extruder and the single-layer crosshead, the conductive substrate 201 is inserted into the crosshead by the feed roll 103, and the unvulcanized rubber composition A1 is formed coaxially and cylindrically with the conductive substrate 201 as the central axis. To obtain a charging member preform 104 having an outer diameter of Φ9.4 mm.

この帯電部材予備成形体を熱風炉にて160℃で1時間加熱、加硫して、導電性基体の外周に導電性被覆層を形成した。この導電性被覆層の両端部を切断除去して、長さが224.2mmの導電性被覆層を有するローラを得た。   This charging member preform was heated in a hot air oven at 160 ° C. for 1 hour and vulcanized to form a conductive coating layer on the outer periphery of the conductive substrate. Both ends of this conductive coating layer were cut and removed to obtain a roller having a conductive coating layer having a length of 224.2 mm.

次いで、この導電性被覆層の外周面を、プランジカット式の円筒研磨機(水口製作所製、砥石:GC-120)を用いて研磨して、外径がΦ8.5mm、長さが224.2mmの導電性弾性層を有する弾性ローラA1を得た。クラウン量は100μmであった。
(クラウン量の測定方法)
外径測定機としては、(商品名:「LS−7500(コントローラ)」および「LS−7030M(測定部)」、キーエンス社製)を用いて、導電性弾性層の長手方向の中央部(112.1mm)と、中央部より両端方向に各90mm部(22.1mm、202.1mm)の3箇所の外径を測定する。中央部の外径をD2、両端方向に各90mm部の外径をそれぞれD1、D3とし、クラウン量Dは、D=(D2−(D1+D3)/2)として算出した。
(表面層の作成)
表面層A1:
最大加速電圧150kV・最大電子電流40mAの電子線照射装置(岩崎電気株式会社製)の照射口を当該弾性ローラA1の軸方向と平行に設置して、当該弾性ローラA1を円周方向に500rpmの回転数で回転させながら導電性弾性層上に直接電子線を照射して表面に電子線処理層(表面層A1)を形成した。このようにして帯電ローラA1を得た。なお、電子線の照射条件としては加速電圧150KV、電子電流15mA、照射時間1sec、の設定とした。照射時には窒素雰囲気(酸素濃度約300ppm)で行った。帯電ローラA1について、導電性弾性層の種類、多中空粒子の種類(番号)および配合量、帯電ローラA1のクラウン量、表面層の種類を表4−1に示す。
Next, the outer peripheral surface of the conductive coating layer is polished by using a plunge cut type cylindrical polishing machine (manufactured by Mizuguchi Seisakusho, grindstone: GC-120), and the outer diameter is Φ8.5 mm and the length is 224.2 mm. An elastic roller A1 having a conductive elastic layer was obtained. The crown amount was 100 μm.
(Crown amount measurement method)
As the outer diameter measuring device, (product names: “LS-7500 (controller)” and “LS-7030M (measurement unit)”, manufactured by Keyence Corporation) are used, and the central portion (112 0.1 mm) and three outer diameters of 90 mm portions (22.1 mm, 202.1 mm) in the both end directions from the center portion. The outer diameter of the central portion was D2, the outer diameter of each 90 mm portion in both end directions was D1 and D3, and the crown amount D was calculated as D = (D2− (D1 + D3) / 2).
(Create surface layer)
Surface layer A1:
An irradiation port of an electron beam irradiation apparatus (manufactured by Iwasaki Electric Co., Ltd.) having a maximum acceleration voltage of 150 kV and a maximum electron current of 40 mA is installed in parallel with the axial direction of the elastic roller A1, and the elastic roller A1 is set at 500 rpm in the circumferential direction. The electron beam treatment layer (surface layer A1) was formed on the surface by directly irradiating the conductive elastic layer with an electron beam while rotating at a rotational speed. In this way, a charging roller A1 was obtained. The electron beam irradiation conditions were set to an acceleration voltage of 150 KV, an electron current of 15 mA, and an irradiation time of 1 sec. The irradiation was performed in a nitrogen atmosphere (oxygen concentration of about 300 ppm). Regarding the charging roller A1, Table 4-1 shows the type of the conductive elastic layer, the type (number) and amount of the hollow particles, the crown amount of the charging roller A1, and the type of the surface layer.

[耐久性能の評価]
図7に示す構成を有する電子写真装置であるカラーレーザープリンタ(商品名:HPColar LaserJet CP4525dn、ヒューレット・パッカード社製)を40ppm出力を60ppm(A4縦出力)で記録メディアを出力できるよう改造して使用した。1次帯電の出力は、直流電圧(Vdc)が−1100Vである。画像の解像度は、600dpiである。感光体701は感光層を含む全膜厚が40μmである有機感光体ドラムを用いた。この電子写真装置のプロセスカートリッジから帯電ローラを取り外し、帯電ローラ1をセットした。また、帯電ローラ1は、図7に示すように感光体に対し、一端で4.9N、両端で合計9.8Nのバネによる押し圧力で当接させた。
[Evaluation of durability]
A color laser printer (trade name: HPolar LaserJet CP4525dn, manufactured by Hewlett-Packard Company), which is an electrophotographic apparatus having the configuration shown in FIG. 7, is modified and used so that a recording medium can be output at 60 ppm (A4 vertical output). did. The primary charging output is a DC voltage (Vdc) of −1100V. The resolution of the image is 600 dpi. As the photoreceptor 701, an organic photoreceptor drum having a total film thickness including the photosensitive layer of 40 μm was used. The charging roller was removed from the process cartridge of the electrophotographic apparatus, and the charging roller 1 was set. Further, as shown in FIG. 7, the charging roller 1 was brought into contact with the photosensitive member by a pressing force of a spring of 4.9 N at one end and a total of 9.8 N at both ends.

帯電ローラ1をセットしたプロセスカートリッジを15℃、10%RH環境(環境1)、23℃、50%RH環境(環境2)、及び30℃、80%RH環境(環境3)に24時間放置した後、それぞれの環境にて、耐久性能評価を行った。   The process cartridge on which the charging roller 1 was set was left in a 15 ° C., 10% RH environment (environment 1), 23 ° C., 50% RH environment (environment 2), and 30 ° C., 80% RH environment (environment 3) for 24 hours. Later, durability performance was evaluated in each environment.

具体的には、印字濃度1%画像を60ppmのスピードで2枚間欠耐久性能試験(2枚ごとにプリンタの回転を3秒停止して耐久性能評価)を行った。評価方法は、50000枚通紙後に、ハーフトーン画像(感光体の回転方向と垂直方向に幅1ドット、間隔2ドットの横線を描く画像)を、出力し、評価した。なお、評価は、得られたハーフトーン画像を目視にて観察し、前述した帯電ローラ表面の汚れが原因で発生する帯電部材周期のバンディング画像(横しま状の画像)ぽち画像、及びガサツキ画像を、評価した。
ここで、評価の基準は以下の通りである。
ランクA;横しま状のバンディング画像の発生はなし。
ランクB;端部にごく軽微な横しま状の画像が認められる。
ランクC;一部に横しま状のバンディング画像が帯電ローラのピッチで確認できるが、実用上問題の無い画質である。
ランクD:横しま状のバンディング画像が目立ち、画質の低下が認められる。
Specifically, a two-sheet intermittent durability performance test (an evaluation of durability performance was performed by stopping the rotation of the printer for 3 seconds for every two sheets) was performed at an image density of 1% at a speed of 60 ppm. In the evaluation method, after passing 50,000 sheets, a halftone image (an image in which a horizontal line having a width of 1 dot and an interval of 2 dots is drawn in a direction perpendicular to the rotation direction of the photosensitive member) is output and evaluated. In the evaluation, the obtained halftone image is visually observed, and the banding image (horizontal striped image) of the charging member period generated due to the above-described contamination on the surface of the charging roller, and the rough image are displayed. ,evaluated.
Here, the evaluation criteria are as follows.
Rank A: No horizontal striped banding image is generated.
Rank B: A very slight horizontal stripe image is recognized at the end.
Rank C: A partially banded banding image can be confirmed by the pitch of the charging roller, but the image quality has no practical problem.
Rank D: A horizontal striped banding image is conspicuous, and deterioration in image quality is observed.

画像評価試験の結果、本実施例の帯電ローラA1については、横しま状のバンディング画像は発生せず良好な画像が得られた。画像ランクは、ランクAであった。評価結果を表4−1に示す。 As a result of the image evaluation test, for the charging roller A1 of the present example, a horizontal striped banding image was not generated and a good image was obtained. The image rank was rank A. The evaluation results are shown in Table 4-1 .

〔実施例2〜21〕
導電性弾性層の種類、多中空粒子の種類(番号)および多中空粒子の添加部数、帯電ローラのクラウン量を表4−1及び表4−2に示す組み合わせとした以外は、実施例1と同様にして、帯電ローラA2〜A21を作製した。評価結果を表4−1及び表4−2に示す。
〔実施例22〕
実施例4において、表面層A1を下記の表面層A2と変更した以外は、実施例4と同様にして帯電ローラA22を作製した。評価結果を表4−2に示す。
表面層A2:
波長250nm近傍の紫外線ランプを当該弾性ローラA1の軸方向と平行に設置して、当該ローラA1を円周方向に回転させながら254nmの波長の紫外線を積算光量が9000mJ/cmになるように2分間照射して、表面に紫外線処理層を形成した。なお、紫外線照射には低圧水銀ランプ(商品名:「QLC500」、ハリソン東芝ライティング(株)社製)を用いた。
〔実施例23〕
実施例4において、表面層A1を下記の表面層A3と変更した以外は、実施例4と同様にして帯電ローラA23を作製した。評価結果を表4−2に示す。
表面層A3:
まず以下の4成分を混合した後、室温で30分攪拌した。
・3−グリシドキシプロピルトリメトキシシラン(加水分解性シラン化合物(A)、信越化学工業(株)):10.62g(0.045モル)、
・ヘキシルトリメトキシシラン(加水分解性シラン化合物(B)、信越化学工業(株)):26.82g(0.13モル)、
・エタノール:40.50g、
・イオン交換水:9.45g。
[Examples 2 to 21]
Example 1 except that the type of the conductive elastic layer, the type (number) of the multi-hollow particles, the number of added parts of the multi-hollow particles, and the crown amount of the charging roller are the combinations shown in Tables 4-1 and 4-2. Similarly, charging rollers A2 to A21 were produced. The evaluation results are shown in Tables 4-1 and 4-2.
[Example 22]
A charging roller A22 was produced in the same manner as in Example 4 except that the surface layer A1 was changed to the following surface layer A2 in Example 4. The evaluation results are shown in Table 4-2 .
Surface layer A2:
An ultraviolet lamp having a wavelength of 250nm near installed parallel to the axial direction of the elastic roller A1, as ultraviolet integrated light amount of the wavelength of 254nm while rotating the roller A1 in the circumferential direction is 9000 mJ / cm 2 2 Irradiated for minutes to form an ultraviolet treatment layer on the surface. A low pressure mercury lamp (trade name: “QLC500”, manufactured by Harrison Toshiba Lighting Co., Ltd.) was used for ultraviolet irradiation.
Example 23
In Example 4, a charging roller A23 was produced in the same manner as in Example 4 except that the surface layer A1 was changed to the following surface layer A3. The evaluation results are shown in Table 4-2 .
Surface layer A3:
First, the following four components were mixed and then stirred at room temperature for 30 minutes.
3-glycidoxypropyltrimethoxysilane (hydrolyzable silane compound (A), Shin-Etsu Chemical Co., Ltd.): 10.62 g (0.045 mol),
Hexyltrimethoxysilane (hydrolyzable silane compound (B), Shin-Etsu Chemical Co., Ltd.): 26.82 g (0.13 mol),
-Ethanol: 40.50 g,
-Ion exchange water: 9.45g.

続いてオイルバスを用い、120℃で20時間加熱還流を行うことによって、縮合物A1を得た。この縮合物A1の理論固形分(加水分解性シラン化合物が全て脱水縮合したと仮定した時のポリシロキサン重合物の、溶液全重量に対する質量比率)は28.0質量%である。またこのときの(D)/{(A)+(B)}の値は3.0であった。   Subsequently, a condensate A1 was obtained by heating and refluxing at 120 ° C. for 20 hours using an oil bath. The theoretical solid content of this condensate A1 (the mass ratio of the polysiloxane polymer to the total weight of the solution when it is assumed that all hydrolyzable silane compounds have been dehydrated and condensed) is 28.0% by mass. The value of (D) / {(A) + (B)} at this time was 3.0.

25gの縮合物A1に光カチオン重合開始剤としての芳香族スルホニウム塩(商品名:アデカオプトマーSP−150、旭電化工業社製)をメタノールで10質量%に希釈したものを0.7g添加し縮合物1−2を得た。縮合物1−2を固形分が5.0質量%になるようにエタノールと2−ブタノールの混合液(エタノール:2−ブタノール=1:1)で希釈し、表面層用塗布液A1を調製した。表面層用塗布液A1を用いて、図示しないリング塗布装置を用いて、導電性弾性層表面に1回塗布を行った。25℃の大気中で30秒風乾した後、実施例22と同様にして紫外線を照射し、表面層を紫外線処理した。このとき表面層の膜厚は0.05μmであった。
〔実施例24〕
実施例4において、未加硫ゴム組成物A2を用いて、導電性弾性層を形成し、表面層A1を下記の表面層A4と変更した以外は、実施例4と同様にして帯電ローラA24を作製した。評価結果を表4−2に示す。
表面層A4:
カプロラクトン変性アクリルポリオール溶液(商品名:プラクセルDC2016、ダイセル化学工業社製)にメチルイソブチルケトン(MIBK)を加え、固形分2質量%となるように調整した。この溶液1000質量部(アクリルポリオール固形分100質量部)に対して、下記の3成分を加え、混合溶液を調製した。
・カーボンブラック(商品名:#52、三菱化学社製):25質量部、
・変性ジメチルシリコーンオイル(商品名:SH28PA、東レ・ダウコーニングシリコーン社製):0.08質量部、
・ブロックイソシアネート混合物(HDI(商品名:デュラネートTPA−B80E、旭化成工業社製)とIPDI(商品名:ベスタナートB1370、デグサ・ヒュルス社製)の各ブタノンオキシムブロック体の7:3混合物):80.14質量部。
このとき、ブロックイソシアネート混合物は、イソシアネート量としては「NCO/OH=1.0」となる量であった。
0.7 g of an aromatic sulfonium salt (trade name: Adekaoptomer SP-150, manufactured by Asahi Denka Kogyo Co., Ltd.) as a photocationic polymerization initiator diluted to 10% by mass with 25 g of the condensate A1 is added. Condensate 1-2 was obtained. The condensate 1-2 was diluted with a mixed solution of ethanol and 2-butanol (ethanol: 2-butanol = 1: 1) so that the solid content was 5.0% by mass to prepare a coating solution A1 for the surface layer. . Using the surface layer coating liquid A1, coating was performed once on the surface of the conductive elastic layer using a ring coating apparatus (not shown). After air-drying in the atmosphere at 25 ° C. for 30 seconds, ultraviolet rays were irradiated in the same manner as in Example 22 to treat the surface layer with ultraviolet rays. At this time, the film thickness of the surface layer was 0.05 μm.
Example 24
In Example 4, a conductive elastic layer was formed using the unvulcanized rubber composition A2, and the charging roller A24 was changed in the same manner as in Example 4 except that the surface layer A1 was changed to the following surface layer A4. Produced. The evaluation results are shown in Table 4-2 .
Surface layer A4:
Methyl isobutyl ketone (MIBK) was added to a caprolactone-modified acrylic polyol solution (trade name: Plaxel DC2016, manufactured by Daicel Chemical Industries) to adjust the solid content to 2% by mass. The following three components were added to 1000 parts by mass of this solution (100 parts by mass of acrylic polyol solid content) to prepare a mixed solution.
Carbon black (trade name: # 52, manufactured by Mitsubishi Chemical Corporation): 25 parts by mass
Modified dimethyl silicone oil (trade name: SH28PA, manufactured by Toray Dow Corning Silicone): 0.08 parts by mass,
Block isocyanate mixture (7: 3 mixture of each butanone oxime block body of HDI (trade name: Duranate TPA-B80E, manufactured by Asahi Kasei Kogyo) and IPDI (trade name: Bestanat B1370, manufactured by Degussa Huls)): 80. 14 parts by weight.
At this time, the blocked isocyanate mixture was such that the amount of isocyanate was “NCO / OH = 1.0”.

内容積450mLのガラス瓶に上記混合溶液200gを、メディアとしての平均粒径0.8mmのガラスビーズ200gと共に入れ、ペイントシェーカー分散機を用いて28時間分散し、ガラスビーズを除去して表面層用塗布液A2を得た。   200 g of the above mixed solution is put in a glass bottle with an internal volume of 450 mL together with 200 g of glass beads having an average particle diameter of 0.8 mm as a medium, and dispersed for 28 hours using a paint shaker disperser to remove the glass beads and apply for the surface layer. A liquid A2 was obtained.

上記表面層用塗布液A2を用いて、図示しない塗布装置を用いて、導電性弾性層表面に1回ディッピング塗布を行った。ここで、ディッピング塗布は以下の通りである。浸漬時間9秒、ディッピング塗布引き上げ速度は、初期速度20mm/s、最終速度2mm/s、その間は時間に対して直線的に速度を変化させて行った。塗布後に常温で30分間以上風乾し、熱風循環乾燥機にて80℃で1時間、更に160℃で1時間乾燥し、導電性弾性層上に表面層A4を形成した。このとき表面層の膜厚は1.5μmであった。
〔実施例25〕
実施例24において、未加硫ゴム組成物A2および多中空粒子A5を用いて、導電性弾性層を形成し、表面層A4を下記の表面層A5と変更した以外は、実施例24と同様にして帯電ローラA25を作製した。評価結果を表4−2に示す。
表面層A5:
実施例24の表面層用塗布液A2にメチルイソブチルケトンを加え、固形分が5質量%となるよう調整した表面層用塗布液A3を用いて表面層A5を形成した。表面層の膜厚は4.1μmであった。
〔実施例26、27〕
実施例4において、砥石の形状を変更することで帯電ローラのクラウン量を変更した以外は、実施例4と同様にして帯電ローラA26、A27を作製した。その時の帯電ローラのクラウン量はそれぞれ73μm、96μmであった。評価結果を表4−2に示す。
参考例1
実施例1において、多中空粒子A1の代わりに多中空粒子A14として多中空粒子(積水化成品工業株式会社製、アクリル樹脂、粒径30μm)を用いた以外は、実施例1と同様にして帯電ローラA28を作製した。平均空孔径は2.6μm、比重ρtは0.51g/cmであり、ρt/ρ0は0.73であった。評価結果を表4−2に示す。
参考例2
実施例9において、多中空粒子A4の代わりに多中空粒子A15として多中空粒子(積水化成品工業株式会社製、アクリル樹脂、粒径20μm)を用いた以外は、実施例9と同様にして帯電ローラA29を作製した。平均空孔径は2.1μm、比重ρtは0.52g/cmであり、ρt/ρ0は0.75であった。評価結果を表4−2に示す。
Using the above surface layer coating solution A2, dip coating was performed once on the surface of the conductive elastic layer using a coating apparatus (not shown). Here, the dipping coating is as follows. The immersion time was 9 seconds, the dipping coating lifting speed was an initial speed of 20 mm / s and a final speed of 2 mm / s, and the speed was changed linearly with respect to the time. After coating, the film was air-dried at room temperature for 30 minutes or more, and then dried with a hot air circulating dryer at 80 ° C. for 1 hour and further at 160 ° C. for 1 hour to form a surface layer A4 on the conductive elastic layer. At this time, the film thickness of the surface layer was 1.5 μm.
Example 25
In Example 24, except that the conductive elastic layer was formed using the unvulcanized rubber composition A2 and the multi-hollow particles A5, and the surface layer A4 was changed to the following surface layer A5, the same as in Example 24. Thus, a charging roller A25 was produced. The evaluation results are shown in Table 4-2 .
Surface layer A5:
Methyl isobutyl ketone was added to the surface layer coating solution A2 of Example 24, and the surface layer A5 was formed using the surface layer coating solution A3 adjusted to have a solid content of 5% by mass. The film thickness of the surface layer was 4.1 μm.
[Examples 26 and 27]
In Example 4, charging rollers A26 and A27 were produced in the same manner as in Example 4 except that the crown amount of the charging roller was changed by changing the shape of the grindstone. The crown amount of the charging roller at that time was 73 μm and 96 μm, respectively. The evaluation results are shown in Table 4-2 .
[ Reference Example 1 ]
In Example 1, charging was carried out in the same manner as in Example 1 except that multi-hollow particles (manufactured by Sekisui Plastics Co., Ltd., acrylic resin, particle size 30 μm) were used as multi-hollow particles A14 instead of multi-hollow particles A1. Roller A28 was produced. The average pore diameter was 2.6 μm, the specific gravity ρt was 0.51 g / cm 3 , and ρt / ρ0 was 0.73. The evaluation results are shown in Table 4-2 .
[ Reference Example 2 ]
In Example 9, charging was performed in the same manner as in Example 9 except that multi-hollow particles (manufactured by Sekisui Plastics Co., Ltd., acrylic resin, particle size 20 μm) were used as multi-hollow particles A15 instead of multi-hollow particles A4. Roller A29 was produced. The average pore diameter was 2.1 μm, the specific gravity ρt was 0.52 g / cm 3 , and ρt / ρ0 was 0.75. The evaluation results are shown in Table 4-2 .

〔比較例1〕
実施例4において、多中空粒子A4を中実粒子A1に変更した以外は、実施例4と同様にして、帯電ローラA30を作製した。評価結果を表4−2に示す。
〔比較例2〕
実施例4において、多中空粒子A4を中実粒子A2に変更した以外は、実施例4と同様にして、帯電ローラA31を作製した。評価結果を表4−2に示す。
〔比較例3〕
実施例10において、多中空粒子A4を中実粒子A3に変更した以外は、実施例10と同様にして、帯電ローラA32を作製した。評価結果を表4−2に示す。
〔比較例4〕
実施例20において、多中空粒子A4を中実粒子A4に変更した以外は、実施例20と同様にして、帯電ローラA33を作製した。評価結果を表4−2に示す。
〔比較例5〕
実施例21において、多中空粒子A4を中実粒子A5に変更した以外は、実施例21と同様にして、帯電ローラA34を作製した。評価結果を表4−2に示す。
[Comparative Example 1]
In Example 4, a charging roller A30 was produced in the same manner as in Example 4 except that the multi-hollow particles A4 were changed to solid particles A1. The evaluation results are shown in Table 4-2 .
[Comparative Example 2]
In Example 4, a charging roller A31 was produced in the same manner as in Example 4 except that the multi-hollow particles A4 were changed to solid particles A2. The evaluation results are shown in Table 4-2 .
[Comparative Example 3]
In Example 10, a charging roller A32 was produced in the same manner as in Example 10 except that the multi-hollow particles A4 were changed to solid particles A3. The evaluation results are shown in Table 4-2 .
[Comparative Example 4]
In Example 20, a charging roller A33 was produced in the same manner as in Example 20 except that the multi-hollow particles A4 were changed to solid particles A4. The evaluation results are shown in Table 4-2 .
[Comparative Example 5]
In Example 21, a charging roller A34 was produced in the same manner as in Example 21, except that the multi-hollow particles A4 were changed to solid particles A5. The evaluation results are shown in Table 4-2 .

Figure 0006071536
Figure 0006071536

Figure 0006071536
Figure 0006071536

Figure 0006071536
Figure 0006071536

Figure 0006071536
Figure 0006071536

Figure 0006071536
Figure 0006071536

101‥‥押出機
102‥‥単層クロスヘッド
103‥‥送りロール
104‥‥帯電部材予備成形体
201‥‥導電性基体
202‥‥導電性弾性層
203‥‥多中空粒子
204‥‥導電性弾性層表面に露出した多中空粒子
501‥‥ コレットチャック
502‥‥ 駆動モータ
503‥‥ 研磨砥石
504‥‥ 研磨砥石用駆動モータ
601‥‥金属製円柱
602‥‥軸受け
603‥‥安定化電源
604‥‥電流計
701‥‥感光体
702‥‥帯電ローラ
703‥‥現像ローラ
704‥‥印刷メディア
705‥‥転写ローラ
706‥‥定着装置
707‥‥クリーニングブレード
708‥‥潜像形成装置
709‥‥弾性規制ブレード
710‥‥トナー供給ローラ
711‥‥現像用電源
712‥‥帯電用電源
713‥‥転写用電源
DESCRIPTION OF SYMBOLS 101 ... Extruder 102 ... Single layer crosshead 103 ... Feed roll 104 ... Charged member preform 201 ... Conductive base 202 ... Conductive elastic layer 203 ... Multi hollow particle 204 ... Conductive elasticity Multi-hollow particles 501 exposed on the surface of the layer Collet chuck 502 Drive motor 503 Polishing wheel 504 Polishing wheel drive motor 601 Metal cylinder 602 Bearing 603 Stabilizing power supply 604 Ammeter 701 ... Photoconductor 702 ... Charging roller 703 ... Development roller 704 ... Printing media 705 ... Transfer roller 706 ... Fixing device 707 ... Cleaning blade 708 ... Latent image forming device 709 ... Elasticity regulating blade 710 ... Toner supply roller 711 ... Development power supply 712 ... Charging power supply 713 ... Transfer power supply

Claims (7)

導電性基体と、導電性弾性層とを有する帯電部材において、
該導電性弾性層は、バインダーとして、アクリロニトリルブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンジエンゴム、エピクロルヒドリンゴムから選ばれる少なくとも1種のゴムを含み、
該導電性弾性層は、多中空粒子を、該導電性弾性層から一部が露出した状態で保持しており、
該帯電部材は、該多中空粒子の中空部分に由来する凹部を表面に有し、
該多中空粒子は、
スチレン、ジビニルベンゼンおよびアクリル酸メチルの共重合体、
スチレンおよびジビニルベンゼンの共重合体、
スチレン、ジビニルベンゼンおよびアクリロニトリルの共重合体、
スチレン、ジビニルベンゼンおよび塩化ビニリデンの共重合体、および、
スチレン、ジビニルベンゼンおよび塩化ビニルの共重合体
からなる群から選択されるいずれかの共重合体からなる樹脂粒子であって、かつ、その内部に複数個の空孔を有するものである、
ことを特徴とする帯電部材。
In a charging member having a conductive substrate and a conductive elastic layer,
The conductive elastic layer contains, as a binder, at least one rubber selected from acrylonitrile butadiene rubber, styrene butadiene rubber, ethylene propylene diene rubber, and epichlorohydrin rubber,
The conductive elastic layer holds the multi-hollow particles in a state where a part thereof is exposed from the conductive elastic layer,
The charging member has a concave portion derived from a hollow portion of the multi-hollow particle on the surface,
The multi-hollow particles are
Copolymer of styrene, divinylbenzene and methyl acrylate,
A copolymer of styrene and divinylbenzene,
Copolymer of styrene, divinylbenzene and acrylonitrile,
A copolymer of styrene, divinylbenzene and vinylidene chloride, and
Copolymer of styrene, divinylbenzene and vinyl chloride
Resin particles made of any copolymer selected from the group consisting of, and having a plurality of pores therein,
A charging member.
前記導電性弾性層の表面と、該導電性弾性層の表面から露出している前記多中空粒子とを被覆する表面層を更に有し、
該表面層は、該多中空粒子の中空部分に由来する凹部をその表面に有する請求項1に記載の帯電部材。
A surface layer covering the surface of the conductive elastic layer and the multi-hollow particles exposed from the surface of the conductive elastic layer;
The charging member according to claim 1, wherein the surface layer has a concave portion derived from a hollow portion of the multi-hollow particle on the surface.
前記導電性弾性層中における前記多中空粒子の含有率が、前記導電性弾性層中の前記ゴム100質量部に対して、5質量部以上80質量部以下である請求項1または2に記載の帯電部材。   The content rate of the said hollow particle in the said electroconductive elastic layer is 5 mass parts or more and 80 mass parts or less with respect to 100 mass parts of said rubber | gum in the said electroconductive elastic layer. Charging member. 前記多中空粒子の平均粒径は5μm以上100μm以下である請求項1〜3のいずれか一項に記載の帯電部材。   The charging member according to claim 1, wherein the multi-hollow particles have an average particle size of 5 μm to 100 μm. 前記多中空粒子中の空孔径は、平均空孔径として1μm以上15μm以下である請求項1〜4のいずれか1項に記載の帯電部材。   5. The charging member according to claim 1, wherein a pore diameter in the multi-hollow particles is 1 μm or more and 15 μm or less as an average pore diameter. 前記多中空粒子の比重は、内部に空孔を有さない中実粒子の比重に対して50%以上80%以下である請求項1〜5のいずれか1項に記載の帯電部材。   The charging member according to any one of claims 1 to 5, wherein the specific gravity of the multi-hollow particles is 50% or more and 80% or less with respect to the specific gravity of the solid particles having no pores therein. 電子写真感光体と、該電子写真感光体に接触配置される帯電部材とを具備しており、該帯電部材が請求項1〜6のいずれか一項に記載の帯電部材であることを特徴とする電子写真装置。   An electrophotographic photosensitive member and a charging member disposed in contact with the electrophotographic photosensitive member, wherein the charging member is the charging member according to any one of claims 1 to 6. An electrophotographic device.
JP2012283066A 2012-12-26 2012-12-26 Charging member and electrophotographic apparatus Active JP6071536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012283066A JP6071536B2 (en) 2012-12-26 2012-12-26 Charging member and electrophotographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012283066A JP6071536B2 (en) 2012-12-26 2012-12-26 Charging member and electrophotographic apparatus

Publications (2)

Publication Number Publication Date
JP2014126680A JP2014126680A (en) 2014-07-07
JP6071536B2 true JP6071536B2 (en) 2017-02-01

Family

ID=51406226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012283066A Active JP6071536B2 (en) 2012-12-26 2012-12-26 Charging member and electrophotographic apparatus

Country Status (1)

Country Link
JP (1) JP6071536B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10082741B2 (en) * 2015-10-06 2018-09-25 Canon Kabushiki Kaisha Member for electrophotography, developing apparatus, and electrophotographic apparatus
US9910379B2 (en) * 2015-10-26 2018-03-06 Canon Kabushiki Kaisha Charging member with concave portions containing insulating particles and electrophotographic apparatus
US10317811B2 (en) * 2016-10-07 2019-06-11 Canon Kabushiki Kaisha Charging member, method for producing same, process cartridge and electrophotographic image forming apparatus
US10416588B2 (en) 2016-10-31 2019-09-17 Canon Kabushiki Kaisha Charging member, process cartridge, electrophotographic image forming apparatus, and method for manufacturing charging member
JP6370453B1 (en) * 2017-08-08 2018-08-08 キヤノン株式会社 Electrophotographic member, process cartridge, and electrophotographic image forming apparatus
JP7187270B2 (en) * 2017-11-24 2022-12-12 キヤノン株式会社 Process cartridge and electrophotographic device
JP7444063B2 (en) * 2018-08-22 2024-03-06 株式会社大阪ソーダ Resin-containing rubber composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3192923B2 (en) * 1995-06-16 2001-07-30 キヤノン株式会社 Charging member and electrophotographic apparatus
JP2003084520A (en) * 2001-09-14 2003-03-19 Toyo Tire & Rubber Co Ltd Semiconductive foamed rubber roller and method of manufacturing the same
JP2004101717A (en) * 2002-09-06 2004-04-02 Canon Inc Foam conductive roller, manufacture of the roller and electrophographic device using the roller
WO2010050615A1 (en) * 2008-10-31 2010-05-06 キヤノン株式会社 Charging member, process cartridge, and electrophotographic apparatus
JP5451514B2 (en) * 2010-04-30 2014-03-26 キヤノン株式会社 Charging member, process cartridge, and electrophotographic apparatus
JP5679799B2 (en) * 2010-12-20 2015-03-04 キヤノン株式会社 Charging roller and electrophotographic apparatus

Also Published As

Publication number Publication date
JP2014126680A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP6071536B2 (en) Charging member and electrophotographic apparatus
US9158213B2 (en) Charging member, process cartridge and electrophotographic apparatus
EP1991915B1 (en) Charging member, process cartridge, and electrophotographic apparatus
JP5451514B2 (en) Charging member, process cartridge, and electrophotographic apparatus
JP5936595B2 (en) Charging member, process cartridge, and electrophotographic apparatus
JP5471176B2 (en) Composition for conductive roller, conductive roller, charging device, image forming apparatus and process cartridge, and method for manufacturing conductive roller
WO2015040660A1 (en) Charging member, method for manufacturing same, process cartridge, and electrophotographic device
US20100135695A1 (en) Charging member, process cartridge, and electrophotographic apparatus
US20160062259A1 (en) Charging member, process cartridge, and electrophotographic apparatus
JP5160728B2 (en) Semiconductive rubber member for electrophotography
JP5591082B2 (en) Charging roller and manufacturing method thereof
JP6303573B2 (en) Charging device, process cartridge, and image forming apparatus
JP4854326B2 (en) Charging member, process cartridge, and electrophotographic apparatus
JP5679799B2 (en) Charging roller and electrophotographic apparatus
EP3413138B1 (en) Electrophotographic roller, process cartridge and electrophotographic apparatus
JP5183100B2 (en) Process cartridge
JP2008276020A (en) Electrifying member, process cartridge and electrophotographic device
JP2005315979A (en) Conductive member, process cartridge, and image forming apparatus
JP2006163147A (en) Electrifying roller, electrifying method, process cartridge and electrophotographic device
JP2006023727A (en) Conductive roller and image forming device equipped therewith
JP4571442B2 (en) Charging roller and image forming apparatus having the same
JP2005165213A (en) Charging member, image forming apparatus, charging method and process cartridge
JP2008107622A (en) Conductive roller and method for manufacturing the same
JP5776245B2 (en) Conductive member, charging device, process cartridge, and image forming apparatus
JP5641903B2 (en) Charging member, process cartridge, and electrophotographic apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R151 Written notification of patent or utility model registration

Ref document number: 6071536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151