JP6069924B2 - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP6069924B2
JP6069924B2 JP2012162327A JP2012162327A JP6069924B2 JP 6069924 B2 JP6069924 B2 JP 6069924B2 JP 2012162327 A JP2012162327 A JP 2012162327A JP 2012162327 A JP2012162327 A JP 2012162327A JP 6069924 B2 JP6069924 B2 JP 6069924B2
Authority
JP
Japan
Prior art keywords
valve
valve seat
refrigerant
plunger
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012162327A
Other languages
Japanese (ja)
Other versions
JP2014020738A (en
Inventor
祐輔 大西
祐輔 大西
賢哲 安嶋
賢哲 安嶋
幸裕 高野
幸裕 高野
土屋 敏章
敏章 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012162327A priority Critical patent/JP6069924B2/en
Publication of JP2014020738A publication Critical patent/JP2014020738A/en
Application granted granted Critical
Publication of JP6069924B2 publication Critical patent/JP6069924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

本発明は、プランジャの先端に設けた弁体と細径の冷媒流路(オリフィス)を有した弁座によって、冷媒を膨張させる冷媒流路を開閉可能に構成した膨張弁に関する。   The present invention relates to an expansion valve configured to be able to open and close a refrigerant flow path for expanding refrigerant by a valve seat provided at the tip of a plunger and a valve seat having a small-diameter refrigerant flow path (orifice).

従来より、自動販売機等の冷却や加熱に用いられる冷媒サイクル装置に備えられる冷媒の膨張手段として、電磁弁を開閉することにより冷媒の膨張度を調整するパルス式の電子膨張弁が知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a pulse-type electronic expansion valve that adjusts the degree of expansion of a refrigerant by opening and closing an electromagnetic valve has been known as a refrigerant expansion unit provided in a refrigerant cycle device used for cooling and heating of vending machines or the like. (For example, refer to Patent Document 1).

この種の電子膨張弁の構成の一例を図6に示す。図6に示す電子膨張弁100は、図示しない圧縮機、凝縮器及び蒸発器等によって冷媒回路が構成された冷媒サイクル装置に用いられるものであり、高圧冷媒が流通する高圧流入管101が接続される入口ポート102と、弁座104に形成された細径の冷媒流路(オリフィス)106を介して膨張された低圧冷媒が流通する低圧流出管107が接続される出口ポート108とを備える。そして、電磁コイル110とヨーク112によって形成される磁気回路により、ヨーク112の下端にコイルばね114を介して支持されたプランジャ116を進退移動させることで、冷媒流路106を開閉制御する。   An example of the configuration of this type of electronic expansion valve is shown in FIG. An electronic expansion valve 100 shown in FIG. 6 is used in a refrigerant cycle device in which a refrigerant circuit is configured by a compressor, a condenser, an evaporator, and the like (not shown), and is connected to a high-pressure inlet pipe 101 through which high-pressure refrigerant flows. And an outlet port 108 to which a low-pressure outlet pipe 107 through which low-pressure refrigerant expanded through a small-diameter refrigerant passage (orifice) 106 formed in the valve seat 104 flows is connected. The refrigerant flow path 106 is controlled to open and close by moving the plunger 116 supported by the lower end of the yoke 112 via the coil spring 114 by a magnetic circuit formed by the electromagnetic coil 110 and the yoke 112.

特開昭53−1352号公報Japanese Patent Laid-Open No. 53-1352

図6に示すように、電子膨張弁100では、電磁コイル110への通電をオンすると、プランジャ116がコイルばね114の付勢力に抗して後退し、該プランジャ116の先端面116aが弁座104から離間して、冷媒流路106が開放される。一方、電磁コイル110への通電をオフすると、プランジャ116がコイルばね114の付勢力によって前進し、その先端面116aが弁座104に着地(密着)して冷媒流路106を閉塞する(図6中に破線で示すプランジャ116参照)。これらの動きを高速で行うために、プランジャ116の移動に必要な力が大きいと駆動部を大型化する傾向があった。また、冷媒流路(オリフィス)の高低圧力差が大きいとプランジャ116の所要引き上げ力が大きくなり、電磁コイルの大型化によるコストアップ、消費電力量の増大につながる。   As shown in FIG. 6, in the electronic expansion valve 100, when energization of the electromagnetic coil 110 is turned on, the plunger 116 retreats against the urging force of the coil spring 114, and the distal end surface 116 a of the plunger 116 is in the valve seat 104. The refrigerant flow path 106 is opened away from the center. On the other hand, when the energization to the electromagnetic coil 110 is turned off, the plunger 116 moves forward by the urging force of the coil spring 114, and the front end surface 116a is landed (contacted) on the valve seat 104 to close the refrigerant flow path 106 (FIG. 6). (See the plunger 116 indicated by a broken line in the inside). In order to perform these movements at a high speed, if the force necessary for moving the plunger 116 is large, the drive section tends to be enlarged. Further, if the pressure difference between the refrigerant flow paths (orifices) is large, the required pulling force of the plunger 116 is increased, leading to an increase in cost and an increase in power consumption due to an increase in the size of the electromagnetic coil.

また、このような電子膨張弁100では、可動部材であるプランジャ116を用いているため、プランジャ116の外周面と該プランジャ116を収納するケース118の内周面との間に一定量の隙間120が設けられている。このため、プランジャ116の可動状態によっては、図7に示すように、隙間120によってプランジャ116が傾いて動作することがある。そうすると、電磁コイル110への通電をオフした場合であっても、プランジャ116の先端面116aが弁座104に密着することができず、冷媒流路106からの冷媒漏れが発生し、冷媒サイクルの能力が低下し消費電力が増大することになる。   In addition, since the electronic expansion valve 100 uses the plunger 116 that is a movable member, a certain amount of gap 120 is provided between the outer peripheral surface of the plunger 116 and the inner peripheral surface of the case 118 that houses the plunger 116. Is provided. For this reason, depending on the movable state of the plunger 116, as shown in FIG. As a result, even when the energization of the electromagnetic coil 110 is turned off, the tip end surface 116a of the plunger 116 cannot be brought into close contact with the valve seat 104, refrigerant leakage from the refrigerant flow path 106 occurs, and the refrigerant cycle The capacity will decrease and the power consumption will increase.

また、弁座面104aが大きい場合は、図8に示すように弁座104の外周両端部から冷媒流路106までの距離が長くなり、冷媒が減圧することによるプランジャ116の引き下げ力が発生し、引き上げ力が増加するため、磁気回路の大型化につながる。   In addition, when the valve seat surface 104a is large, as shown in FIG. 8, the distance from the outer peripheral ends of the valve seat 104 to the refrigerant flow path 106 becomes longer, and a pulling-down force of the plunger 116 due to the decompression of the refrigerant occurs. This increases the pulling force, leading to an increase in the size of the magnetic circuit.

なお、電子膨張弁としては、上記の電子膨張弁100のようにプランジャ116の平坦な先端面116aを弁体として弁座104に着地(密着)させる構成以外のものもあり、例えば、ボール型の弁体を用いた電磁弁によって冷媒流路を閉塞する構成もある。ボール型の弁体を用いると、プランジャの傾きの影響を少なくすることができるという利点があるが、その構造上、弁体の開閉に大きな力が必要となり、特に、二酸化炭素のように高い圧力差を生じる冷媒を用いた冷媒サイクルでは、磁気回路の大型化やコストアップの要因となり得る。   Note that there are other types of electronic expansion valves other than the configuration in which the flat distal end surface 116a of the plunger 116 is landed (contacted) on the valve seat 104 as a valve body like the electronic expansion valve 100 described above. There is also a configuration in which the refrigerant flow path is closed by an electromagnetic valve using a valve body. The use of a ball-type valve body has the advantage that the influence of the inclination of the plunger can be reduced. However, due to its structure, a large force is required to open and close the valve body. In a refrigerant cycle using a refrigerant that causes a difference, the magnetic circuit can be increased in size and cost.

本発明は、上記従来技術の課題を考慮してなされたものであり、弁構造を小型化し、特に弁座面を小型にして、弁体の開閉に必要な駆動力の増加を抑えると共に、冷媒漏れを低減することができる膨張弁を提供することを目的とする。   The present invention has been made in consideration of the above-described problems of the prior art. The valve structure is miniaturized, in particular, the valve seat surface is miniaturized to suppress an increase in driving force necessary to open and close the valve body, and It aims at providing the expansion valve which can reduce a leak.

上記目的を達成するために、本発明の請求項1に係る膨張弁は、少なくとも冷媒を流入させる入口ポート、前記冷媒を流出させる出口ポート、および前記入口ポートと前記出口ポートとの間に設けられる弁室とを有するケースと、前記弁室内に配置され、前記入口ポートから前記弁室内に流入した冷媒を膨張させて前記出口ポートへと流出させる冷媒流路が形成された弁座と、電磁コイルへの通電オン・オフにより前記弁室内を進退移動する態様で前記弁座に対向配置されるとともに付勢手段により前記弁座に向けて付勢され、電磁コイルへの通電オンにより前記弁座から離間する一方、電磁コイルへの通電オフにより前記弁座に当接(着地)して冷媒流路を開閉可能なプランジャとその下部の弁体と、を備える膨張弁であって、前記弁座あるいは前記弁体、または前記弁座と前記弁体の双方に高圧の冷媒が流通する溝部を有するとともに、前記弁座と前記弁体が当接する弁座面を、中央部にオリフィスを有する弁座面と、前記溝部を介して外方側に配した弁座面とを同一高さで形成したことを特徴とする。 In order to achieve the above object, an expansion valve according to claim 1 of the present invention is provided at least between an inlet port through which a refrigerant flows in, an outlet port through which the refrigerant flows out, and between the inlet port and the outlet port. A case having a valve chamber, a valve seat disposed in the valve chamber, and formed with a refrigerant flow path for expanding the refrigerant flowing into the valve chamber from the inlet port and flowing out to the outlet port; and an electromagnetic coil The valve seat is opposed to the valve seat in a manner of moving forward and backward by energizing on / off to the valve seat, and is biased toward the valve seat by the biasing means, and from the valve seat by energizing the electromagnetic coil. An expansion valve that includes a plunger that can open and close the refrigerant flow path by contacting (landing) the valve seat by energizing off the electromagnetic coil, and a valve body under the plunger. The valve body had, or with high-pressure refrigerant to both the valve body and the valve seat has a groove for distribution, the valve seat surface on which the valve body and the valve seat abuts a valve having an orifice in the central portion The seat surface and the valve seat surface arranged on the outer side through the groove are formed at the same height .

本発明によれば、弁座に高圧冷媒を流通する溝部を設置することにより、弁体開放時に弁体と弁座が当接する弁座面の負圧領域が減少し、より小さい力で弁体を引き上げることができる。また溝部の外方側にもオリフィスを有する弁座面と同じ高さの弁座面を設けることにより、弁座面を小さくした場合に発生していた弁体の不安定(傾き)を防止できる。その結果、冷媒流路の閉塞性が向上し、冷媒漏れを低減することができる。また、中央部にオリフィスを有する弁座面を溝部の内側に形成できるため、冷媒が減圧することによる引き下げ力が低減し、引き上げ力を抑制できるため、磁気回路を構成する電磁コイル等の小型化が可能となる。   According to the present invention, by installing the groove portion through which the high-pressure refrigerant flows in the valve seat, the negative pressure region of the valve seat surface where the valve body and the valve seat abut when the valve body is opened is reduced, and the valve body can be operated with a smaller force. Can be raised. In addition, by providing a valve seat surface that is the same height as the valve seat surface having an orifice on the outer side of the groove, it is possible to prevent instability (tilt) of the valve body that occurs when the valve seat surface is made smaller. . As a result, the blockage of the refrigerant flow path is improved, and refrigerant leakage can be reduced. In addition, since the valve seat surface having an orifice in the center can be formed inside the groove, the pulling-down force due to the decompression of the refrigerant can be reduced, and the pulling-up force can be suppressed, so that the electromagnetic coil constituting the magnetic circuit can be downsized. Is possible.

図1は、本発明に係る電子膨張弁を備えた冷媒サイクル装置の全体構成図である。FIG. 1 is an overall configuration diagram of a refrigerant cycle device including an electronic expansion valve according to the present invention. 図2は、本発明に係る電子膨張弁の側面断面図であり、図2(a)は電子膨張弁の通電をオンにした状態を示し、図2(b)は本発明に係る弁座の詳細図である。FIG. 2 is a side sectional view of the electronic expansion valve according to the present invention, FIG. 2 (a) shows a state in which energization of the electronic expansion valve is turned on, and FIG. 2 (b) shows a state of the valve seat according to the present invention. FIG. 図3は、本発明に係る電子膨張弁の側面断面図であり、弁体側に溝部を形成したものである。FIG. 3 is a side sectional view of the electronic expansion valve according to the present invention, in which a groove is formed on the valve body side. 図4は、本発明に係る電子膨張弁の側面断面図であり、弁体を板状で形成したものである。FIG. 4 is a side sectional view of the electronic expansion valve according to the present invention, in which the valve body is formed in a plate shape. 図5は、本発明に係る電子膨張弁の側面断面図であり、板状の弁体に連通孔を形成したものである。FIG. 5 is a side sectional view of the electronic expansion valve according to the present invention, in which a communication hole is formed in a plate-like valve body. 図6は、従来の電子膨張弁の構成を示す側面断面図である。FIG. 6 is a side sectional view showing a configuration of a conventional electronic expansion valve. 図7は、図6に示す電子膨張弁において、弁座面が小さくプランジャが傾いた状態を示す側面断面図である。FIG. 7 is a side sectional view showing a state where the valve seat surface is small and the plunger is inclined in the electronic expansion valve shown in FIG. 図8は、図6に示す電子膨張弁において、弁座面を大きくした状態を示す側面断面図である。FIG. 8 is a side sectional view showing a state in which the valve seat surface is enlarged in the electronic expansion valve shown in FIG.

以下、本発明に係る膨張弁について、この膨張弁を備えた冷媒サイクル装置との関係で好適な実施の形態を挙げ、添付の図面を参照しながら詳細に説明する。
図1は、本発明の一実施形態に係る電子膨張弁(膨張弁)10を備えた冷媒サイクル装置12の全体構成図である。この冷媒サイクル装置12は、例えば、自動販売機の冷却加熱装置として用いられ、3つの商品収納庫14a、14b、14cをそれぞれ冷却・加熱し、缶飲料等の販売商品を所定温度に保持するためのものである。勿論、電子膨張弁10は、自動販売機以外、例えば室内用や車両用の空調装置や各種ショーケース等に用いられる冷媒サイクル装置に適用することもできる。
DESCRIPTION OF EMBODIMENTS Hereinafter, an expansion valve according to the present invention will be described in detail with reference to the accompanying drawings by giving preferred embodiments in relation to a refrigerant cycle device provided with the expansion valve.
FIG. 1 is an overall configuration diagram of a refrigerant cycle device 12 including an electronic expansion valve (expansion valve) 10 according to an embodiment of the present invention. The refrigerant cycle device 12 is used, for example, as a cooling and heating device for a vending machine, and cools and heats the three product storages 14a, 14b, and 14c, respectively, and maintains the sales products such as canned beverages at a predetermined temperature. belongs to. Needless to say, the electronic expansion valve 10 can be applied to a refrigerant cycle device used for, for example, an indoor or vehicular air conditioner or various showcases other than the vending machine.

先ず、冷媒サイクル装置12の構成の一例について説明する。
図1に示すように、冷媒サイクル装置12は、図示しない自動販売機の機械室に配置される圧縮機16、庫外熱交換器18、補助熱交換器20、内部熱交換器22及び電子膨張弁10と、商品収納庫14aに配設される蒸発器24及び加熱用熱交換器26と、商品収納庫14bに配設される蒸発器28と、商品収納庫14cに配設される蒸発器30とを備え、これらが所定量の冷媒(例えば、二酸化炭素)を封入した配管によって接続されることで冷媒回路を構成している。商品収納庫14bには、さらに、庫内を加熱するためのヒータ32が設けられている。
First, an example of the configuration of the refrigerant cycle device 12 will be described.
As shown in FIG. 1, the refrigerant cycle device 12 includes a compressor 16, an external heat exchanger 18, an auxiliary heat exchanger 20, an internal heat exchanger 22, and an electronic expansion that are arranged in a machine room of a vending machine (not shown). The valve 10, the evaporator 24 and the heating heat exchanger 26 disposed in the commodity storage 14a, the evaporator 28 disposed in the commodity storage 14b, and the evaporator disposed in the commodity storage 14c. 30 and these are connected by a pipe filled with a predetermined amount of refrigerant (for example, carbon dioxide) to constitute a refrigerant circuit. The product storage 14b is further provided with a heater 32 for heating the interior.

圧縮機16は、低温低圧の冷媒を吸引側配管34を介して吸引口から吸引し、それを圧縮することで高温高圧状態にして吐出口から吐出側配管35へと吐出するものであり、例えば2段圧縮式で構成される。吐出側配管35は三方弁36によって2方に分岐しており、一方の配管38は庫外熱交換器18に接続され、他方の配管40は商品収納庫14a内へと配設されて加熱用熱交換器26に接続される。そして三方弁36を切替制御することにより、圧縮機16から吐出された冷媒は庫外熱交換器18又は加熱用熱交換器26に択一的に流通される。   The compressor 16 sucks low-temperature and low-pressure refrigerant from the suction port via the suction-side pipe 34, compresses it, and discharges it from the discharge port to the discharge-side pipe 35, for example, Consists of a two-stage compression type. The discharge side pipe 35 is branched in two directions by a three-way valve 36, one pipe 38 is connected to the external heat exchanger 18, and the other pipe 40 is disposed in the product storage 14a for heating. Connected to the heat exchanger 26. Then, by controlling the switching of the three-way valve 36, the refrigerant discharged from the compressor 16 is selectively distributed to the external heat exchanger 18 or the heating heat exchanger 26.

庫外熱交換器18の出口側において、配管38は、補助熱交換器20及び内部熱交換器22を順に経由して分配器42に接続される。分配器42は、配管38を3方に分岐させ、分岐した各配管43a、43b、43cは、それぞれ電子膨張弁10を介して蒸発器24、28、30に接続された後、その出口側の配管44a、44b、44cが、蒸発器24、28、30の出口側で吸引側配管34に合流し、内部熱交換器22を経て圧縮機16の吸引口に接続される。一方、加熱用熱交換器26の出口側において、配管40は、庫外熱交換器18と補助熱交換器20の間の配管38に合流し、補助熱交換器20の入口側へと接続される。   On the outlet side of the external heat exchanger 18, the pipe 38 is connected to the distributor 42 through the auxiliary heat exchanger 20 and the internal heat exchanger 22 in order. The distributor 42 branches the pipe 38 in three directions, and the branched pipes 43a, 43b, and 43c are connected to the evaporators 24, 28, and 30 through the electronic expansion valve 10, respectively. The pipes 44 a, 44 b and 44 c merge with the suction side pipe 34 on the outlet side of the evaporators 24, 28 and 30, and are connected to the suction port of the compressor 16 through the internal heat exchanger 22. On the other hand, on the outlet side of the heating heat exchanger 26, the pipe 40 joins the pipe 38 between the external heat exchanger 18 and the auxiliary heat exchanger 20 and is connected to the inlet side of the auxiliary heat exchanger 20. The

庫外熱交換器18、補助熱交換器20、蒸発器24、28、30及び加熱用熱交換器26には、図示しないファンが近接配置される。庫外熱交換器18及び補助熱交換器20に近接配置されるファンは庫外送風用であり、庫外熱交換器18等の周囲に外気を通過させて外部へと送出するためのものである。一方、蒸発器24、28、30及び加熱用熱交換器26に近接配置されるファンは庫内送風用であり、蒸発器24等の周囲を通過して加熱又は冷却された空気を各庫内に循環させるためのものである。   A fan (not shown) is disposed close to the external heat exchanger 18, the auxiliary heat exchanger 20, the evaporators 24, 28, 30 and the heating heat exchanger 26. The fan disposed close to the external heat exchanger 18 and the auxiliary heat exchanger 20 is for external air blowing, and is used for passing outside air around the external heat exchanger 18 and the like and sending it to the outside. is there. On the other hand, the fans disposed close to the evaporators 24, 28, 30 and the heat exchanger 26 for heating are used for ventilation in the cabinet, and the air heated or cooled by passing around the evaporator 24 or the like is placed in each cabinet. It is for circulation.

このような冷媒サイクル装置12では、圧縮機16の回転数や電子膨張弁10の開度を変化させ、さらに、三方弁36や分配器42を適宜開閉制御することにより、各庫内を所望の温度域で管理することができる。   In such a refrigerant cycle device 12, the number of revolutions of the compressor 16 and the opening degree of the electronic expansion valve 10 are changed, and further, the three-way valve 36 and the distributor 42 are appropriately controlled to be opened and closed so that each chamber has a desired interior. Can be managed in the temperature range.

この際、冷媒サイクル装置12では、商品収納庫14a〜14cに収納される商品種類や気候条件等に応じて、例えば3つの運転モード(CCC運転、HCC運転、HHC運転)を実行することができる。CCC運転は、各庫14a〜14cを全て冷却(COLD)運転する運転モードであり、三方弁36を配管38側に切り替え、分配器42を3方分配とする。HCC運転は、商品収納庫14aを加熱(HOT)運転し、商品収納庫14b、14cを冷却(COLD)運転する運転モードであり、三方弁36を配管40側に切り替え、分配器42を配管44b、44cの2方分配とする。HHC運転は、商品収納庫14a、14bを加熱(HOT)運転し、商品収納庫14cを冷却(COLD)運転する運転モードであり、三方弁36を配管40側に切り替え、分配器42を配管44cの1方分配とし、ヒータ32をオンする。勿論、冷媒サイクル装置12の運転モードは上記以外のものであってもよく、電子膨張弁10が適用される冷媒回路の構成も上記冷媒サイクル装置12以外の構成であってもよい。   At this time, the refrigerant cycle device 12 can execute, for example, three operation modes (CCC operation, HCC operation, and HHC operation) according to the product type and climate conditions stored in the product storage 14a to 14c. . The CCC operation is an operation mode in which all the warehouses 14a to 14c are cooled (COLD), and the three-way valve 36 is switched to the pipe 38 side, and the distributor 42 is distributed in three ways. The HCC operation is an operation mode in which the product storage 14a is heated (HOT) and the product storages 14b and 14c are cooled (COLD), the three-way valve 36 is switched to the pipe 40 side, and the distributor 42 is connected to the pipe 44b. , 44c. The HHC operation is an operation mode in which the product storages 14a and 14b are heated (HOT) and the product storage 14c is cooled (COLD), the three-way valve 36 is switched to the pipe 40 side, and the distributor 42 is connected to the pipe 44c. The heater 32 is turned on. Of course, the operation mode of the refrigerant cycle device 12 may be other than the above, and the configuration of the refrigerant circuit to which the electronic expansion valve 10 is applied may also be a configuration other than the refrigerant cycle device 12.

次に、電子膨張弁10の構成について説明する。
図2は、本発明に係る電子膨張弁10の側面断面図であり、図2(a)が電子膨張弁の通電をオンにした状態、図2(b)が本発明に係る弁座56の詳細図を示している。
Next, the configuration of the electronic expansion valve 10 will be described.
2 is a side sectional view of the electronic expansion valve 10 according to the present invention. FIG. 2 (a) shows a state in which the electronic expansion valve is energized, and FIG. 2 (b) shows the valve seat 56 according to the present invention. Detailed view is shown.

電子膨張弁10は、図示しない制御装置の制御下にパルス駆動制御されることで、冷媒流量及び冷媒蒸発温度を制御するものである。図2(a)に示すように、電子膨張弁10は、高圧冷媒が流入する入口ポート50と、低圧冷媒を流出させる出口ポート52と、入口ポート50と出口ポート52の間に形成される弁室54と、弁室54内に配置される弁座56と、弁室内54内で進退移動するプランジャ60と、入口ポート50、出口ポート52、弁室54を形成するとともに、プランジャ60を摺動可能に収容するケース62とを備える。   The electronic expansion valve 10 controls the refrigerant flow rate and the refrigerant evaporation temperature by being pulse-driven under the control of a control device (not shown). As shown in FIG. 2A, the electronic expansion valve 10 is a valve formed between an inlet port 50 through which high-pressure refrigerant flows, an outlet port 52 through which low-pressure refrigerant flows out, and an inlet port 50 and outlet port 52. A chamber 54, a valve seat 56 disposed in the valve chamber 54, a plunger 60 that moves forward and backward in the valve chamber 54, an inlet port 50, an outlet port 52, and the valve chamber 54 are formed, and the plunger 60 is slid And a case 62 that can be accommodated.

入口ポート50には、高圧流入管となる配管43a(43b、43c)が接続され、出口ポート52には、低圧流入管となる配管44a(44b、44c)が接続される。このような入口ポート50と出口ポート52との間に設けられる弁室54は、円筒形状のケース62の内部空間によって形成されており、この弁室54には、入口ポート50と出口ポート52との間を仕切るように弁座56が配設されている。   The inlet port 50 is connected to a pipe 43a (43b, 43c) serving as a high pressure inflow pipe, and the outlet port 52 is connected to a pipe 44a (44b, 44c) serving as a low pressure inflow pipe. The valve chamber 54 provided between the inlet port 50 and the outlet port 52 is formed by an internal space of a cylindrical case 62. The valve chamber 54 includes an inlet port 50, an outlet port 52, and an outlet port 52. A valve seat 56 is disposed so as to partition the space.

弁座56は、出口ポート52が開口形成されたケース62の底部に揺動可能に配設された溝部を有した円筒形状の部材であり、その中心を細径の冷媒流路64が貫通している。冷媒流路64は、入口ポート50と出口ポート52との間を連通させるものであり、高圧冷媒を膨張させて低圧冷媒として流出させるためのオリフィスとして機能する。   The valve seat 56 is a cylindrical member having a groove that is swingably disposed at the bottom of the case 62 in which the outlet port 52 is formed with an opening, and a small-diameter refrigerant channel 64 passes through the center thereof. ing. The refrigerant flow path 64 communicates between the inlet port 50 and the outlet port 52, and functions as an orifice for expanding the high-pressure refrigerant to flow out as the low-pressure refrigerant.

また、図2(b)の弁座56の詳細図に示すように弁座56の上部には弁座56の上面を弁座面(中)57と弁座面(外)58に分けるように溝部59が形成されている。そのため、溝部59は高圧流入管となる配管43a(43b、43c)の高圧冷媒と連通するようになっている。   2B, the upper surface of the valve seat 56 is divided into a valve seat surface (middle) 57 and a valve seat surface (outer) 58 at the upper portion of the valve seat 56. A groove 59 is formed. For this reason, the groove 59 communicates with the high-pressure refrigerant in the pipe 43a (43b, 43c) serving as a high-pressure inflow pipe.

プランジャ60は、ケース62によって形成された円筒状のシリンダ内を進退移動(図2では上下移動)可能なピストンであり、円筒形状のボビン66の中心孔66aの上部に内挿されたヨーク68の下端に対し、コイルばね70を介して支持されている。ヨーク68は、ハウジング(外ヨーク)69の上面に対して固定ねじ71によって固定されている。コイルばね70は、プランジャ60を前進方向(下方)に付勢する圧縮ばねである。このように、ボビン66の中心孔66aには、ヨーク68とケース62とが内挿されており、このケース62内でプランジャ60が摺動可能となっている。   The plunger 60 is a piston that can move back and forth (up and down in FIG. 2) in a cylindrical cylinder formed by the case 62, and a yoke 68 inserted in the upper part of the center hole 66 a of the cylindrical bobbin 66. The lower end is supported via a coil spring 70. The yoke 68 is fixed to the upper surface of the housing (outer yoke) 69 by a fixing screw 71. The coil spring 70 is a compression spring that biases the plunger 60 in the forward direction (downward). Thus, the yoke 68 and the case 62 are inserted into the center hole 66 a of the bobbin 66, and the plunger 60 can slide within the case 62.

電子膨張弁10では、ボビン66に巻回された電磁コイル72への通電がオンされると、電磁コイル72及びヨーク68によって形成される磁気回路により、ヨーク68の下端にコイルばね70を介して支持されたプランジャ60が、コイルばね70の付勢力に抗して後退(退動)する。一方、電磁コイル72への通電がオフされると、プランジャ60はコイルばね70の付勢力によって前進(進動)する。   In the electronic expansion valve 10, when energization of the electromagnetic coil 72 wound around the bobbin 66 is turned on, a magnetic circuit formed by the electromagnetic coil 72 and the yoke 68 causes the lower end of the yoke 68 to pass through the coil spring 70. The supported plunger 60 moves backward (retreats) against the biasing force of the coil spring 70. On the other hand, when energization to the electromagnetic coil 72 is turned off, the plunger 60 moves forward (advances) by the biasing force of the coil spring 70.

次に、以上のように構成される電子膨張弁10の作用について説明する。
例えば、冷媒サイクル装置12でCCC運転が実行されている場合には、図示しない制御装置の制御下に、各蒸発器24、28、30への冷媒の流通を制御する各電子膨張弁10は、図示しない通電装置から電磁コイル72へと所定のパルス通電によりオン・オフされる。各電子膨張弁10がオンするとプランジャ60が後退(退動)して弁座56から離間した状態では冷媒流路64が開放され、各電子膨張弁10がオフするとプランジャ60が前進(進動)してプランジャ60の先端面60aが弁座56に着地(密着)し、冷媒流路64が閉塞される。このパルス通電のオン・オフによって冷媒流路64が所定の時間周期で開閉され、蒸発器24、28、30での冷媒の蒸発温度が所定の温度に制御される。
Next, the operation of the electronic expansion valve 10 configured as described above will be described.
For example, when the CCC operation is being performed in the refrigerant cycle device 12, each electronic expansion valve 10 that controls the flow of the refrigerant to each evaporator 24, 28, 30 under the control of a control device (not shown) It is turned on / off by a predetermined pulse energization from an energizing device (not shown) to the electromagnetic coil 72. When each electronic expansion valve 10 is turned on, the plunger 60 is retracted (retracted) and separated from the valve seat 56, the refrigerant flow path 64 is opened, and when each electronic expansion valve 10 is turned off, the plunger 60 is advanced (advanced). Then, the front end surface 60a of the plunger 60 is landed (contacted) on the valve seat 56, and the refrigerant flow path 64 is closed. The refrigerant flow path 64 is opened and closed at a predetermined time period by turning on / off the pulse current, and the evaporation temperature of the refrigerant in the evaporators 24, 28, 30 is controlled to a predetermined temperature.

また、例えば、冷媒サイクル装置12でHCC運転が実行されている場合には、図示しない制御装置の制御下に、蒸発器24への冷媒の流通を制御する電子膨張弁10への通電はオフされ、他の蒸発器28、30への冷媒の流通を制御する各電子膨張弁10への通電がオンされる。これにより蒸発器24への冷媒の流通を制御する電子膨張弁10では、コイルばね70の付勢力によってプランジャ60の先端面60aが弁座56に着地(密着)して冷媒流路64を閉塞する一方、蒸発器28、30への冷媒の流通を制御する各電子膨張弁10では冷媒流路64が開閉され、蒸発器28、30での冷媒の蒸発温度が所定の温度に制御される。   Further, for example, when the HCC operation is performed in the refrigerant cycle device 12, the energization to the electronic expansion valve 10 that controls the flow of the refrigerant to the evaporator 24 is turned off under the control of a control device (not shown). The energization of each electronic expansion valve 10 that controls the flow of the refrigerant to the other evaporators 28 and 30 is turned on. Thus, in the electronic expansion valve 10 that controls the flow of the refrigerant to the evaporator 24, the front end surface 60 a of the plunger 60 is landed (contacted) on the valve seat 56 by the urging force of the coil spring 70 to close the refrigerant flow path 64. On the other hand, in each electronic expansion valve 10 that controls the flow of the refrigerant to the evaporators 28 and 30, the refrigerant flow path 64 is opened and closed, and the evaporation temperature of the refrigerant in the evaporators 28 and 30 is controlled to a predetermined temperature.

このように、電子膨張弁10への通電がオフされた状態では、プランジャ60がコイルばね70の付勢力によって前進位置となり、プランジャ60の先端面60aが弁座56に着地(密着)して冷媒流路64を閉塞する。また、電子膨張弁10への通電がオンされた状態では、図2(a)に示すように、電磁コイル72へ所定のパルス通電がオンされ、プランジャ60がコイルばね70の付勢力に抗して後退位置となり、弁座56から離間することで冷媒流路64が開放される。   As described above, in a state where the energization to the electronic expansion valve 10 is turned off, the plunger 60 is moved forward by the urging force of the coil spring 70, and the distal end surface 60a of the plunger 60 is landed (contacted) on the valve seat 56, and the refrigerant. The flow path 64 is closed. Further, in a state where the energization to the electronic expansion valve 10 is turned on, as shown in FIG. 2A, a predetermined pulse energization is turned on to the electromagnetic coil 72, and the plunger 60 resists the biasing force of the coil spring 70. Accordingly, the refrigerant flow path 64 is opened by moving away from the valve seat 56.

ここで、高圧流入管となる配管43a(43b、43c)に連通する弁室54は高圧部となっているが、図2(b)に示すように、弁座56に高圧部と連通する溝部59が形成されているため、プランジャ60の先端面60aと弁座面(中)57で遮断される高圧領域と低圧領域の縁面距離が短くなり、高低圧差が小さくなり、プランジャ60の下部の弁体61と弁座56との間での負圧領域が縮小し、プランジャ60を引き下げる力は抑制される。   Here, the valve chamber 54 communicating with the piping 43a (43b, 43c) serving as the high-pressure inflow pipe is a high-pressure portion, but as shown in FIG. 2B, the groove portion communicating with the high-pressure portion on the valve seat 56. 59 is formed, the edge surface distance between the high-pressure region and the low-pressure region blocked by the distal end surface 60a of the plunger 60 and the valve seat surface (medium) 57 is shortened, and the high-low pressure difference is reduced. The negative pressure region between the valve body 61 and the valve seat 56 is reduced, and the force to pull down the plunger 60 is suppressed.

また、図2(b)の弁座56の詳細図のように、弁座面(外)58を有することで、プランジャ60の不安定(傾き)を防止できる。ここで、弁座面(外)58は、突起状でもよく、弁座56と弁体61がオリフィス64を有する弁座面(中)57に対して、溝部59を介して外側で当接していればよい。   Further, as shown in the detailed view of the valve seat 56 in FIG. 2B, by providing the valve seat surface (outside) 58, instability (tilt) of the plunger 60 can be prevented. Here, the valve seat surface (outside) 58 may have a protruding shape, and the valve seat 56 and the valve body 61 are in contact with the valve seat surface (inside) 57 having the orifice 64 on the outside via the groove 59. Just do it.

また、図3に示すようにプランジャ60下部の弁体61に溝部(弁体)80を形成しても同様な効果が得られる。溝部(弁体)80が弁室54の高圧部と連通することにより、プランジャ60の先端面60aと弁座56の上面の弁座面56aで形成される負圧領域の縮小効果によりプランジャ60を引き下げる力を抑制する。   Further, as shown in FIG. 3, a similar effect can be obtained by forming a groove (valve element) 80 in the valve element 61 below the plunger 60. When the groove portion (valve element) 80 communicates with the high pressure portion of the valve chamber 54, the plunger 60 is moved by the reduction effect of the negative pressure region formed by the distal end surface 60 a of the plunger 60 and the valve seat surface 56 a on the upper surface of the valve seat 56. Suppresses the pulling force.

また、図4に示すように弁座56に高圧部と連通する溝部59とプランジャ60の下部の弁体61の下面に板状の弁体81を構成するときも、板状の弁体81の先端面81aと弁座56の上面の弁座面56aで形成される負圧領域の縮小効果によりプランジャ60を引き下げる力を抑制する。そのうえ板状の弁体81の弾性効果と軽量化により、冷媒の弁漏れ防止、動作力軽減効果がある。   As shown in FIG. 4, when the plate-like valve body 81 is configured on the lower surface of the valve body 61 below the plunger 60 and the groove portion 59 communicating with the high-pressure portion in the valve seat 56, The force of pulling down the plunger 60 is suppressed by the reduction effect of the negative pressure region formed by the distal end surface 81a and the valve seat surface 56a on the upper surface of the valve seat 56. In addition, the elastic effect and light weight of the plate-like valve body 81 have the effect of preventing refrigerant leakage and reducing the operating force.

また、図5に示すようにプランジャ60の下部の弁体61の下面に板状の弁体81の連通孔82を構成するときも、高圧冷媒の充満する連通室83により、溝部の場合と同様に、板状の弁体81の先端面81aと弁座56の上面の弁座面56aで形成される負圧領域の縮小効果によりプランジャ60を引き下げる力を抑制する。   Further, as shown in FIG. 5, when the communication hole 82 of the plate-like valve body 81 is formed on the lower surface of the valve body 61 below the plunger 60, the communication chamber 83 filled with the high-pressure refrigerant is used similarly to the case of the groove portion. Further, the force of pulling down the plunger 60 is suppressed by the effect of reducing the negative pressure region formed by the tip end surface 81a of the plate-like valve body 81 and the valve seat surface 56a on the upper surface of the valve seat 56.

以上のように、本実施形態に係る電子膨張弁10によれば、図2に示すように、プランジャ60の下部の弁体61の先端面60a、弁座56の上面の56aのいずれか、または双方に、高圧冷媒を供給する溝部59を形成することにより、先端面60aと弁座面56aで形成される負圧領域の縮小効果が図られ、プランジャを引き下げる力を抑制でき、開閉に要する力が小さくなるため、磁気回路を構成する電磁コイル72、つまり電子膨張弁10の小型化・低コスト化を図ることが可能となる。   As described above, according to the electronic expansion valve 10 according to the present embodiment, as shown in FIG. 2, either the front end surface 60 a of the valve body 61 below the plunger 60, the upper surface 56 a of the valve seat 56, or By forming the groove 59 for supplying the high-pressure refrigerant to both sides, the effect of reducing the negative pressure region formed by the tip surface 60a and the valve seat surface 56a can be achieved, and the force required to open and close the plunger can be suppressed. Therefore, the electromagnetic coil 72 constituting the magnetic circuit, that is, the electronic expansion valve 10 can be reduced in size and cost.

なお、本発明は、上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できる。
例えば、溝部59を設けて高圧部と連通させることにより負圧領域の縮小効果でプランジャ60の引き下げる力を抑制するものであればよい。
In addition, this invention is not limited to above-described embodiment, It can change freely in the range which does not deviate from the main point of this invention.
For example, what is necessary is just to suppress the pulling-down force of the plunger 60 by the reduction effect of a negative pressure area | region by providing the groove part 59 and connecting with a high voltage | pressure part.

10、100 電子膨張弁
12 冷媒サイクル装置
50、102 入口ポート
52、108 出口ポート
54 弁室
56、86、104 弁座
56a、104a 弁座面
57 弁座面(中)
58 弁座面(外)
59 溝部
60、116 プランジャ
60a、81a、116a 先端面
61、117 弁体
62、118 ケース
64、84、94、106 冷媒流路
68、112 ヨーク
70、114 コイルばね
72、110 電磁コイル
80 溝部(弁体)
81 板状弁体
82 連通孔
83 連通室
10, 100 Electronic expansion valve 12 Refrigerant cycle device 50, 102 Inlet port 52, 108 Outlet port 54 Valve chamber 56, 86, 104 Valve seat 56a, 104a Valve seat surface 57 Valve seat surface (middle)
58 Valve seat surface (outside)
59 Groove 60, 116 Plunger 60a, 81a, 116a Tip surface 61, 117 Valve body 62, 118 Case 64, 84, 94, 106 Refrigerant flow path 68, 112 Yoke 70, 114 Coil spring 72, 110 Electromagnetic coil 80 Groove (valve body)
81 Plate-shaped valve body 82 Communication hole 83 Communication chamber

Claims (1)

少なくとも冷媒を流入させる入口ポート、前記冷媒を流出させる出口ポート、および前記入口ポートと前記出口ポートとの間に設けられる弁室とを有するケースと、
前記弁室内に配置され、前記入口ポートから前記弁室内に流入した冷媒を膨張させて前記出口ポートへと流出させる冷媒流路が形成された弁座と、
電磁コイルへの通電オン・オフにより前記弁室内を進退移動する態様で前記弁座に対向配置されるとともに付勢手段により前記弁座に向けて付勢され、電磁コイルへの通電オンにより前記弁座から離間する一方、電磁コイルへの通電オフにより前記弁座に当接(着地)して冷媒流路を開閉可能なプランジャとその下部の弁体と、を備える膨張弁であって、
前記弁座あるいは前記弁体、または前記弁座と前記弁体の双方に高圧の冷媒が流通する溝部を有するとともに、前記弁座と前記弁体が当接する弁座面を、中央部にオリフィスを有する弁座面と、前記溝部を介して外方側に配した弁座面とを同一高さで形成したことを特徴とする膨張弁。
A case having at least an inlet port through which the refrigerant flows, an outlet port through which the refrigerant flows out, and a valve chamber provided between the inlet port and the outlet port;
A valve seat disposed in the valve chamber and formed with a refrigerant flow path for expanding the refrigerant flowing into the valve chamber from the inlet port and flowing out to the outlet port;
The solenoid valve is disposed opposite to the valve seat in such a manner that the solenoid coil is energized on and off, and is biased toward the valve seat by an urging means, and the solenoid coil is energized to turn on the valve. An expansion valve that includes a plunger that is spaced apart from the seat, and that can contact (land) the valve seat by turning off the energization of the electromagnetic coil to open and close the refrigerant flow path, and a valve body below the plunger.
The valve seat or the valve body, or a groove portion through which a high-pressure refrigerant flows through both the valve seat and the valve body, and a valve seat surface that contacts the valve seat and the valve body, and an orifice in the center portion An expansion valve characterized in that a valve seat surface having a valve seat surface disposed on the outer side through the groove is formed at the same height .
JP2012162327A 2012-07-23 2012-07-23 Expansion valve Active JP6069924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012162327A JP6069924B2 (en) 2012-07-23 2012-07-23 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012162327A JP6069924B2 (en) 2012-07-23 2012-07-23 Expansion valve

Publications (2)

Publication Number Publication Date
JP2014020738A JP2014020738A (en) 2014-02-03
JP6069924B2 true JP6069924B2 (en) 2017-02-01

Family

ID=50195823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012162327A Active JP6069924B2 (en) 2012-07-23 2012-07-23 Expansion valve

Country Status (1)

Country Link
JP (1) JP6069924B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108799557A (en) * 2017-04-28 2018-11-13 浙江三花智能控制股份有限公司 Valve gear
CN108799533A (en) * 2017-04-28 2018-11-13 浙江三花智能控制股份有限公司 Valve gear

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108799528B (en) * 2017-04-28 2020-01-03 浙江三花智能控制股份有限公司 Valve device
CN108799534B (en) * 2017-04-28 2019-09-27 浙江三花智能控制股份有限公司 Valve gear

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892465U (en) * 1981-12-16 1983-06-22 株式会社デンソー Fuel cutoff device for fuel injection pump
US4459819A (en) * 1982-03-05 1984-07-17 Emerson Electric Co. Pulse controlled expansion valve and method
JPH04203570A (en) * 1990-11-29 1992-07-24 Kanbishi Denki Seizou Kk Gas control valve
JP4465122B2 (en) * 2001-01-15 2010-05-19 パナソニック株式会社 Air conditioner
JP2004150580A (en) * 2002-10-31 2004-05-27 Daikin Ind Ltd Solenoid valve
JP4285156B2 (en) * 2003-08-27 2009-06-24 ダイキン工業株式会社 Multistage electric expansion valve and refrigeration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108799557A (en) * 2017-04-28 2018-11-13 浙江三花智能控制股份有限公司 Valve gear
CN108799533A (en) * 2017-04-28 2018-11-13 浙江三花智能控制股份有限公司 Valve gear
CN108799557B (en) * 2017-04-28 2020-02-14 浙江三花智能控制股份有限公司 Valve device
CN108799533B (en) * 2017-04-28 2020-02-14 浙江三花智能控制股份有限公司 Valve device

Also Published As

Publication number Publication date
JP2014020738A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
US10260786B2 (en) Electromagnetic valve
US7739881B2 (en) Refrigeration cycle
CN105004109B (en) Six-way valve and the heating and air conditioner with the six-way valve
JP5544459B2 (en) Pilot operated solenoid valve
JP6069924B2 (en) Expansion valve
US10753662B2 (en) Refrigeration apparatus
EP2479520B1 (en) Three-way electromagnetic valve
US11371768B2 (en) Refrigerator and method for controlling the same
JP2013145090A (en) Expansion valve
KR102229436B1 (en) Refrigeration cycle device
CN113286974B (en) Fast switching multiple evaporator system for appliances
JP5604626B2 (en) Expansion valve
WO2011114991A1 (en) Electronic expansion valve
CN108253669B (en) Multi-way reversing device and air conditioning system
JP5910054B2 (en) Expansion valve
CN204718206U (en) Six-way valve and there is the heating and air conditioner of this six-way valve
CN107990583B (en) Four-way valve, refrigerating system and control method of refrigerating system
JP6014997B2 (en) Expansion valve
JP2005016890A (en) Refrigeration device
JP2006316913A (en) Solenoid valve and cooling system
JP7274960B2 (en) Showcase
JP6326621B2 (en) vending machine
JP2013122356A (en) Expansion valve
JP2005016891A (en) Opening and closing valve
KR20010065565A (en) Four Valve Structure For Cooling And Heating Type Air Conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6069924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250