JP6069470B1 - Injection device, injection molding machine and injection method - Google Patents
Injection device, injection molding machine and injection method Download PDFInfo
- Publication number
- JP6069470B1 JP6069470B1 JP2015239948A JP2015239948A JP6069470B1 JP 6069470 B1 JP6069470 B1 JP 6069470B1 JP 2015239948 A JP2015239948 A JP 2015239948A JP 2015239948 A JP2015239948 A JP 2015239948A JP 6069470 B1 JP6069470 B1 JP 6069470B1
- Authority
- JP
- Japan
- Prior art keywords
- diameter
- unit
- screw
- fiber
- end side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
【課題】連続する強化繊維のせん断・切断を最小限に抑えて、熱可塑性樹脂に添加すること。【解決手段】バレル20と、バレル20内に収容されるスクリュ30とを備え、スクリュ30は、熱可塑性樹脂が供給される第1材料溶融部50と、連続する強化繊維が供給される第2材料混練部60とを有し、第2材料混練部60は、第2供給部61と、第2圧縮部62と、第2計量部63とを有し、バレル30は、第2供給部61で、かつ、第1材料溶融部50との境界から少なくともスクリュ30のフライト32の1ピッチと等しい距離以上に離間した位置に強化繊維を送り込む繊維供給部23が設けられている。【選択図】図1An object of the present invention is to add to a thermoplastic resin while minimizing shearing and cutting of continuous reinforcing fibers. SOLUTION: A barrel 20 and a screw 30 accommodated in the barrel 20 are provided. The screw 30 has a first material melting portion 50 to which a thermoplastic resin is supplied and a second material to which a continuous reinforcing fiber is supplied. The second material kneading unit 60 includes a second supply unit 61, a second compression unit 62, and a second metering unit 63, and the barrel 30 includes the second supply unit 61. And the fiber supply part 23 which sends a reinforced fiber in the position spaced apart from the boundary with the 1st material fusion | melting part 50 at least more than the distance equal to 1 pitch of the flight 32 of the screw 30 is provided. [Selection] Figure 1
Description
本発明は、射出装置、射出成形機及び射出方法に関し、特に熱可塑性樹脂を溶融しつつ強化繊維を添加する技術に関する。 The present invention, I De apparatus, a injection molding machine及beauty injection how, to a technique for adding reinforcing fibers while particular melt the thermoplastic resin.
従来、成形品の強度を向上させるために、熱可塑性樹脂に炭素繊維やガラス繊維等の強化繊維を添加して、繊維強化樹脂の成形品を製造することが行われている。繊維強化樹脂の成形品を製造する方法としては、あらかじめ熱可塑性樹脂に強化繊維が添加されたペレットを装置に供給し、溶融及び混練を行って成形する方法が知られている。また、熱可塑性樹脂のペレットを装置に供給して溶融し、途中から連続する強化繊維を供給して、強化繊維のせん断・切断及び溶融した熱可塑性樹脂との混練を行って成形する方法も知られている。 Conventionally, in order to improve the strength of a molded product, reinforcing fibers such as carbon fiber and glass fiber are added to a thermoplastic resin to produce a molded product of fiber reinforced resin. As a method for producing a molded product of fiber reinforced resin, a method is known in which pellets in which reinforced fibers are added to a thermoplastic resin in advance are supplied to an apparatus, and melted and kneaded for molding. Also known is a method in which thermoplastic resin pellets are supplied to the apparatus and melted, and continuous reinforcing fibers are supplied from the middle, and the reinforcing fibers are sheared and cut and kneaded with the molten thermoplastic resin to form. It has been.
このような成形方法は、ペレットの溶融から金型への射出までを連続して行うインライン式射出成形機や、可塑化装置でペレットを溶融して強化繊維を添加し、プランジャ装置に供給して金型へ射出するプランジャ式射出成形機を用いて行われる(例えば、特許文献1参照)。 Such molding methods include in-line injection molding machines that continuously perform the process from melting of the pellets to injection into the mold, and melting the pellets with a plasticizer, adding reinforcing fibers, and supplying them to the plunger device. This is performed using a plunger-type injection molding machine that injects into a mold (see, for example, Patent Document 1).
しかしながら、上述した射出成形機での成形には、次のような問題があった。 However, the above-described injection molding machine has the following problems.
インライン式射出成形機では、あらかじめ熱可塑性樹脂に強化繊維が添加されたペレットを供給して成形するので、ペレットに含まれる強化繊維の長さが十分ではなく、所望の強度の成形品が得られない場合や、スクリュにより混練する過程で強化繊維がせん断・切断されて短くなり、所望の強度の成形品が得られない場合があった。 In an inline type injection molding machine, pellets in which reinforcing fibers have been added to thermoplastic resin in advance are supplied and molded, so the length of reinforcing fibers contained in the pellets is not sufficient, and a molded product with a desired strength can be obtained. In some cases, the reinforcing fibers are sheared and cut in the process of kneading with a screw and shortened, and a molded product having a desired strength may not be obtained.
プランジャ式射出成形機においても、途中で供給された強化繊維が可塑化装置で細かくせん断・切断されて、所望の強度の成形品が得られない場合や、途中から供給された強化繊維が過度にスクリュに巻き付き、溶融した熱可塑性樹脂への添加が十分になされず、所望の強度の成形品が得られない場合があった。 Even in the plunger type injection molding machine, if the reinforcing fiber supplied in the middle is finely sheared and cut by a plasticizer and a molded product with a desired strength cannot be obtained, or the reinforcing fiber supplied from the middle is excessive. There is a case where a molded product having a desired strength cannot be obtained due to insufficient addition to the thermoplastic resin wound around the screw and melted.
そこで本発明は、連続して供給される強化繊維のせん断・切断を最小限に抑えて、十分な強度を発揮できる長さに維持された状態で溶融した熱可塑性樹脂との混練を行い、熱可塑性樹脂に強化繊維を添加することができる射出装置、射出成形機及び射出方法を提供することを目的としている。 Accordingly, the present invention performs kneading with a molten thermoplastic resin while maintaining a length capable of exhibiting sufficient strength while minimizing shearing and cutting of continuously supplied reinforcing fibers, device out morphism Ru can be added reinforcing fibers in thermoplastic resins, and its object is to provide an injection molding machine及beauty injection how.
前記課題を解決し目的を達成するために、本発明の射出装置、射出成形機及び射出方法は次のように構成されている。 To achieve the solution to the purpose of the problem, it De apparatus of the present invention, an injection molding machine及beauty injection how is constructed as follows.
バレルと、前記バレル内に収容され、軸体の外周に螺旋状にフライトが設けられ、駆動部により回転駆動されるスクリュと、を有する可塑化装置と、シリンダと、駆動部により前記シリンダ内を前進又は後退するプランジャと、を有するプランジャ装置と、前記バレルと前記シリンダとを接続する配管とを備えた射出装置であって、前記スクリュは、基端側から先端側に向けて、熱可塑性樹脂が供給される第1材料溶融部と、糸状又は帯状の連続する強化繊維が供給される第2材料混練部と、を有し、前記第1材料溶融部は、基端側から先端側に向けて、第1供給部と、第1圧縮部と、第1計量部と、を有し、前記軸体は、前記第1供給部では直径D1とされ、前記第1圧縮部では漸次径が大きくなり、前記第1計量部では前記直径D1より大きい直径D2となり、前記第2材料混練部は、基端側から先端側に向けて、第2供給部と、第2圧縮部と、第2計量部と、を有し、前記軸体は、前記第2供給部では前記直径D2より小さい直径D3とされ、前記第2圧縮部では漸次径が大きくなり、前記第2計量部では前記直径D3より大きい直径D4となり、前記バレルは、前記第2供給部で、かつ、前記第1材料溶融部との境界から少なくとも前記スクリュのフライトの1ピッチと等しい距離以上に離間した位置に前記強化繊維を送り込む繊維供給部が設けられている。 And barrel, housed within the barrel, the flight is provided in a spiral manner around the circumference of the shaft, and a plasticizing unit having a screw which is rotated by the drive movement unit, and the cylinder, the inner cylinder by the driving unit An injection device comprising a plunger device having a plunger that moves forward or backward, and a pipe that connects the barrel and the cylinder, wherein the screw is thermoplastic from the proximal side to the distal side . A first material melting portion to which resin is supplied and a second material kneading portion to which continuous reinforcing fibers in the form of threads or belts are supplied , the first material melting portion from the proximal end side to the distal end side The first supply part, the first compression part, and the first metering part are provided, and the shaft body has a diameter D1 in the first supply part, and a gradual diameter in the first compression part. Larger than the diameter D1 in the first measuring section. Heard diameter D2, and the prior SL second material kneading section, toward the proximal end side to the distal side, and a second feed portion, a second compression unit, and a second metering section has a said shaft body , in the second supply part is to the diameter D2 smaller than the diameter D3, the gradual diameter becomes large in the second compression unit, and in the second measuring section and the diameter D3 is greater than the diameter D4, and the prior SL barrel, the A fiber supply unit that feeds the reinforcing fibers to a position that is a second supply unit and is separated from the boundary with the first material melting unit by at least a distance equal to one pitch of the screw flight is provided.
可塑化装置のバレル内に収容され、基端側から先端側に向けて熱可塑性樹脂が供給される第1材料溶融部と糸状又は帯状の連続する強化繊維が供給される第2材料混練部とを有し、軸体の外周に螺旋状にフライトが設けられ、前記第1材料溶融部は、基端側から先端側に向けて、第1供給部と、第1圧縮部と、第1計量部と、を有すると共に、前記第2材料混練部が、基端側から先端側に向けて、第2供給部と、第2圧縮部と、第2計量部とに区分されるスクリュで、前記軸体は、前記第1供給部では直径D1とされ、前記第1圧縮部では漸次径が大きくなり、前記第1計量部では前記直径D1より大きい直径D2となり、前記第2供給部では前記直径D2より小さい直径D3とされ、前記第2圧縮部では漸次径が大きくなり、前記第2計量部では前記直径D3より大きい直径D4であり、前記熱可塑性樹脂を溶融して前記強化繊維を添加することにより、溶融状態の繊維強化樹脂を生成し、前記可塑化装置より吐出される前記溶融状態の繊維強化樹脂をプランジャ装置のシリンダ内に送り込み、プランジャを作動して、前記溶融状態の繊維強化樹脂を射出する射出方法であって、前記可塑化装置の前記第1材料溶融部で前記熱可塑性樹脂を溶融し、前記第2供給部の前記第1材料溶融部との境界から少なくとも前記スクリュのフライトの1ピッチと等しい距離以上に離間した位置から前記強化繊維を送り込み、前記第2材料混練部で溶融した前記熱可塑性樹脂と前記強化繊維を混練し、前記熱可塑性樹脂に前記強化繊維を添加して、溶融状態の繊維強化樹脂を生成し、前記プランジャ装置の前記シリンダ内に送り込まれた前記溶融状態の繊維強化樹脂を、プランジャを作動して射出する。 A first material melting portion that is housed in a barrel of the plasticizing apparatus and is supplied with thermoplastic resin from the base end side toward the tip end side, and a second material kneading portion that is supplied with continuous reinforcing fibers in the form of threads or belts And the first material melting part has a first supply part, a first compression part, and a first metering from the base end side toward the tip end side. and parts, and having a, in screw second material kneading section before SL is, toward the base end side to the tip side, to be classified and the second supply section, and the second compression unit, and a second measuring unit, The shaft body has a diameter D1 in the first supply section, a gradually increasing diameter in the first compression section, a diameter D2 larger than the diameter D1 in the first metering section, and the diameter in the second supply section. The diameter D3 is smaller than the diameter D2, the diameter gradually increases in the second compression portion, and the second measurement In the in diameter D3 larger diameter D4, by adding the reinforcing fibers by melting the pre Kinetsu thermoplastic resin to produce a fiber-reinforced resin in a molten state, the molten state discharged from the plasticizing unit The fiber-reinforced resin is injected into the cylinder of the plunger device, and the plunger is operated to inject the molten fiber-reinforced resin, wherein the thermoplastic material is used in the first material melting portion of the plasticizing device. Melting the resin and feeding the reinforcing fiber from a position separated from the boundary between the second supply part and the first material melting part by a distance equal to or greater than at least one pitch of the flight of the screw, and the second material kneading part Kneading the thermoplastic resin and the reinforcing fiber melted in the step, and adding the reinforcing fiber to the thermoplastic resin to produce a molten fiber reinforced resin; The fiber-reinforced resin in the molten state the fed into the cylinder of the turbocharger unit, is injected by operating the plunger.
本発明によれば、連続して供給される強化繊維のせん断・切断を最小限に抑えて、十分な強度を発揮できる長さに維持された状態で溶融した熱可塑性樹脂との混練を行い、熱可塑性樹脂に強化繊維を添加することが可能となる。これにより、所望の強度の成形品を製造することができる。 According to the present invention, kneading with a thermoplastic resin melted in a state in which it is maintained in a length capable of exhibiting sufficient strength while minimizing shearing and cutting of continuously supplied reinforcing fibers, Reinforcing fibers can be added to the thermoplastic resin. Thereby, the molded article of desired intensity | strength can be manufactured.
本発明の実施形態を図1から図5により説明する。 An embodiment of the present invention will be described with reference to FIGS.
図1に、本発明の実施形態に係る可塑化装置10を備えた射出成形機1を示す。射出成形機1は、射出装置2と、金型3を開閉する型締装置(図示せず)を備える。射出装置2は、成形品の材料の1つである熱可塑性樹脂を溶融し、同じく材料の1つである強化繊維を添加して、溶融状態の繊維強化樹脂を生成する可塑化装置10と、生成された溶融状態の繊維強化樹脂を金型3のキャビティ4に射出するプランジャ装置11を備えている。 In FIG. 1, the injection molding machine 1 provided with the plasticizing apparatus 10 which concerns on embodiment of this invention is shown. The injection molding machine 1 includes an injection device 2 and a mold clamping device (not shown) for opening and closing the mold 3. The injection device 2 melts a thermoplastic resin that is one of the materials of a molded product, and adds a reinforcing fiber that is also one of the materials to generate a fiber-reinforced resin in a molten state; A plunger device 11 for injecting the produced molten fiber reinforced resin into the cavity 4 of the mold 3 is provided.
可塑化装置10は、円筒状のバレル20と、このバレル20に組み込まれ、同軸的に配置されたスクリュ30を備える。スクリュ30は、軸体31と、軸体31の外周に螺旋状に設けられたフライト32を備えている。図中Pは、隣り合うフライト32の距離、すなわちフライトピッチを示す。スクリュ30の基端は駆動部33に連結されている。駆動部33は、図示しないモータ、回転軸等を含んでいる。また、スクリュ30の先端には、スクリュヘッド34が取り付けられている。図中一点鎖線Cは、スクリュ30及び軸体31の回転軸を示し、スクリュ30は駆動部33により回転駆動される。 The plasticizing apparatus 10 includes a cylindrical barrel 20 and a screw 30 incorporated in the barrel 20 and arranged coaxially. The screw 30 includes a shaft body 31 and a flight 32 provided in a spiral shape on the outer periphery of the shaft body 31. P in the figure indicates the distance between adjacent flights 32, that is, the flight pitch. The base end of the screw 30 is connected to the drive unit 33. The drive unit 33 includes a motor, a rotating shaft, and the like (not shown). A screw head 34 is attached to the tip of the screw 30. In the drawing, a one-dot chain line C indicates a rotation axis of the screw 30 and the shaft body 31, and the screw 30 is rotationally driven by the drive unit 33.
スクリュ30は、上流側となる基端側に第1材料溶融部50を有し、下流側となる先端側に第2材料混練部60を有している。そして、第1材料溶融部50と第2材料混練部60は隣接している。つまり、スクリュ30は、上流側となる基端側から下流側となる先端側に向けて、第1材料溶融部50と、第1材料溶融部50の次に第2材料混練部60が配されている。さらに、第1材料溶融部50は、基端側から先端側に向けて、第1供給部51と、第1圧縮部52と、第1計量部53とに区分されている。同様に、第2材料混練部60も、基端側から先端側に向けて、第2供給部61と、第2圧縮部62と、第2計量部63とに区分されている。したがって、第1計量部53と第2供給部61、第1材料溶融部50と第2供給部61、第1計量部53と第2材料混練部60も隣接していると言える。 The screw 30 has a first material melting part 50 on the base end side that is the upstream side, and a second material kneading part 60 on the tip side that is the downstream side. The first material melting unit 50 and the second material kneading unit 60 are adjacent to each other. That is, in the screw 30, the first material melting part 50 and the second material kneading part 60 are arranged next to the first material melting part 50 from the upstream side proximal end side to the downstream side distal end side. ing. Further, the first material melting unit 50 is divided into a first supply unit 51, a first compression unit 52, and a first metering unit 53 from the proximal end side toward the distal end side. Similarly, the second material kneading unit 60 is also divided into a second supply unit 61, a second compression unit 62, and a second metering unit 63 from the proximal end side toward the distal end side. Therefore, it can be said that the 1st measurement part 53 and the 2nd supply part 61, the 1st material fusion | melting part 50 and the 2nd supply part 61, the 1st measurement part 53, and the 2nd material kneading part 60 are adjacent.
ここで、図2を用いてスクリュ30の軸体31を説明する。軸体31は、回転軸C方向に沿って、直径が変化する。軸体31は、第1材料溶融部50において、第1供給部51では一定の直径D1とされ、第1圧縮部52では漸次径が大きくなり、第1計量部53では、直径D1より大きい一定の直径D2となる。さらに、軸体31は、第2材料混練部60において、第2供給部61では、直径D2より小さい一定の直径D3とされ、第2圧縮部62では漸次径が大きくなり、第2計量部63では、直径D3より大きい一定の直径D4となる。なお、軸体31の外周に形成されたフライト32の差し渡し、すなわちスクリュ30のスクリュ径は、第1材料溶融部50から第2材料混練部60にわたり一定の値とされている。そして、スクリュ30のスクリュ径は、バレル20の内径に対して、わずかに小さく設定されている。 Here, the shaft body 31 of the screw 30 will be described with reference to FIG. The diameter of the shaft body 31 changes along the rotation axis C direction. In the first material melting unit 50, the shaft body 31 has a constant diameter D1 in the first supply unit 51, a gradually increasing diameter in the first compression unit 52, and a constant larger than the diameter D1 in the first measuring unit 53. Of the diameter D2. Further, in the second material kneading unit 60, the shaft body 31 has a constant diameter D3 smaller than the diameter D2 in the second supply unit 61, and gradually increases in diameter in the second compression unit 62. Then, it becomes a constant diameter D4 larger than the diameter D3. In addition, the passing of the flight 32 formed on the outer periphery of the shaft body 31, that is, the screw diameter of the screw 30 is a constant value from the first material melting part 50 to the second material kneading part 60. The screw diameter of the screw 30 is set slightly smaller than the inner diameter of the barrel 20.
上述したスクリュ30がバレル20に組み込まれた状態において、バレル20の基端側は、スクリュ30の基端側と同じ方向であり、バレル20の基端側が上流側となる。 In the state where the screw 30 described above is incorporated in the barrel 20, the base end side of the barrel 20 is in the same direction as the base end side of the screw 30, and the base end side of the barrel 20 is the upstream side.
バレル20は、バレル20の基端側であって、スクリュ30の第1供給部51に対向する位置に、第1供給部51にペレット状の熱可塑性樹脂Qを供給するための樹脂供給部21が設けられている。樹脂供給部21には、熱可塑性樹脂Qを第1供給部51に投入することが可能なように、バレル20の外周から内周まで貫通する供給孔22が形成されている。 The barrel 20 is a base end side of the barrel 20 and a resin supply unit 21 for supplying the pellet-shaped thermoplastic resin Q to the first supply unit 51 at a position facing the first supply unit 51 of the screw 30. Is provided. The resin supply part 21 is formed with a supply hole 22 penetrating from the outer periphery to the inner periphery of the barrel 20 so that the thermoplastic resin Q can be introduced into the first supply part 51.
また、バレル20は、バレル20の中間部であって、スクリュ30の第2供給部61に対向する位置に、第2供給部61に糸状や帯状の連続する炭素繊維やガラス繊維等の強化繊維Fを供給するための繊維供給部23が設けられている。繊維供給部23には、強化繊維Fを第2供給部61に送り込むことが可能なように、バレル20の外周から内周まで貫通する供給孔24が形成されている。供給孔24は、スクリュ30の第1材料溶融部50と第2材料混練部60との境界であって、第1計量部53と第2供給部61との境界でもある脱圧位置Xから、下流側となる先端側へ少なくともフライト32の1ピッチ(1P)と等しい距離以上に離間した位置に設けられている。言いかえると、バレル20は、第2供給部61で、かつ、第1材料溶融部50との境界から少なくともスクリュ30のフライト32の1ピッチ(1P)と等しい距離以上に離間した位置に強化繊維Fを送り込む繊維供給部23が設けられている。 Further, the barrel 20 is an intermediate portion of the barrel 20, and is reinforced fiber such as carbon fiber or glass fiber that is continuous with the second supply unit 61 in a thread-like or belt-like manner at a position facing the second supply unit 61 of the screw 30. A fiber supply unit 23 for supplying F is provided. The fiber supply part 23 is formed with a supply hole 24 penetrating from the outer periphery to the inner periphery of the barrel 20 so that the reinforcing fiber F can be fed into the second supply part 61. The supply hole 24 is a boundary between the first material melting part 50 and the second material kneading part 60 of the screw 30 and from the depressurization position X which is also a boundary between the first measuring part 53 and the second supply part 61. It is provided at a position separated at least by a distance equal to or greater than one pitch (1P) of the flight 32 toward the downstream end side. In other words, the barrel 20 is a reinforcing fiber at a position separated from the boundary with the first material melting unit 50 by at least a distance equal to or more than one pitch (1P) of the flight 32 of the screw 30 from the boundary with the first material melting unit 50. A fiber supply unit 23 for feeding F is provided.
バレル20の先端には、プランジャ装置11のシリンダ40に接続される配管12が設けられている。プランジャ装置11は、図示しない駆動部により、シリンダ40内を前進及び後退するプランジャ41を備えている。 A pipe 12 connected to the cylinder 40 of the plunger device 11 is provided at the tip of the barrel 20. The plunger device 11 includes a plunger 41 that moves forward and backward in the cylinder 40 by a drive unit (not shown).
このように構成された可塑化装置10を備えた射出成形機1では、次のようにして射出成形を行う。 In the injection molding machine 1 including the plasticizing apparatus 10 configured as described above, injection molding is performed as follows.
すなわち、可塑化装置10のバレル20の外周に設けられたヒータ(図示せず)及びプランジャ装置11のシリンダ40の外周に設けられたヒータ(図示せず)により、バレル20及びシリンダ40を所定の温度に加熱する。次に、駆動部33によりスクリュ30を連続回転させる。次いで、ペレット状の熱可塑性樹脂Qを、バレル20に設けられた樹脂供給部21の供給孔22を通じて供給することにより、スクリュ30の第1供給部51に熱可塑性樹脂Qを投入する。投入した熱可塑性樹脂Qを、スクリュ30の回転により、第1材料溶融部50の第1供給部51から第1圧縮部52、第1計量部53へと移送しつつ溶融し計量する。溶融し計量した熱可塑性樹脂Qをスクリュ30の回転により引き続き移送し、脱圧位置Xを通過させて、第2供給部61に到達させる。 That is, the barrel 20 and the cylinder 40 are fixed to each other by a heater (not shown) provided on the outer periphery of the barrel 20 of the plasticizer 10 and a heater (not shown) provided on the outer periphery of the cylinder 40 of the plunger device 11. Heat to temperature. Next, the screw 30 is continuously rotated by the drive unit 33. Next, the thermoplastic resin Q is put into the first supply part 51 of the screw 30 by supplying the pellet-shaped thermoplastic resin Q through the supply hole 22 of the resin supply part 21 provided in the barrel 20. The introduced thermoplastic resin Q is melted and measured while being transferred from the first supply unit 51 of the first material melting unit 50 to the first compression unit 52 and the first measuring unit 53 by the rotation of the screw 30. The melted and weighed thermoplastic resin Q is continuously transferred by the rotation of the screw 30, passes through the depressurization position X, and reaches the second supply unit 61.
次に、糸状や帯状の連続する炭素繊維やガラス繊維等の強化繊維Fを、バレル20に設けられた繊維供給部23の供給孔24を通じて供給することにより、スクリュ30の第2供給部61に強化繊維Fを送り込む。このとき、強化繊維Fがスクリュ30へ過度に巻き付く現象が発生する可能性があるが、本発明によりこれが解消される。その理由については、後述する。なお、脱圧位置Xの上流側の第1計量部53における隣り合うフライト32間の容積よりも、脱圧位置Xの下流側の第2供給部61における隣り合うフライト32間の容積の方が大きいので、溶融した熱可塑性樹脂Qの圧力は第2供給部61で低下し、強化繊維Fを送り込み易くなるとともに、強化繊維Fが上流側に引き込まれることがない。 Next, the reinforcing fiber F such as continuous carbon fiber or glass fiber in the form of thread or belt is supplied through the supply hole 24 of the fiber supply unit 23 provided in the barrel 20, thereby supplying the second supply unit 61 of the screw 30. Reinforcement fiber F is fed. At this time, there is a possibility that the reinforcing fiber F is excessively wound around the screw 30, but this is solved by the present invention. The reason will be described later. Note that the volume between adjacent flights 32 in the second supply unit 61 downstream of the depressurization position X is larger than the volume between adjacent flights 32 in the first measuring unit 53 upstream of the depressurization position X. Since it is large, the pressure of the molten thermoplastic resin Q is lowered at the second supply unit 61, and it becomes easy to feed the reinforcing fibers F, and the reinforcing fibers F are not drawn upstream.
スクリュ30の回転により、溶融した熱可塑性樹脂Qと連続する強化繊維Fを第2材料混練部60の第2供給部61から第2圧縮部62に移送し、第2圧縮部62で強化繊維Fのせん断・切断と、溶融した熱可塑性樹脂Qとせん断・切断した強化繊維Fの混練を行う。この第2材料混練部60の第2圧縮部62での混練により、溶融した熱可塑性樹脂Qに、せん断・切断が最小限に抑えられ、十分な強度を発揮できる長さに維持された強化繊維Fが添加されて、溶融状態の繊維強化樹脂が生成される。生成された溶融状態の繊維強化樹脂を、引き続きスクリュ30の回転により、第2計量部63に移送して計量し、可塑化装置10より吐出する。 By rotating the screw 30, the reinforcing fiber F continuous with the molten thermoplastic resin Q is transferred from the second supply unit 61 of the second material kneading unit 60 to the second compression unit 62, and the second compression unit 62 uses the reinforcing fiber F. And the melted thermoplastic resin Q and the sheared and cut reinforcing fiber F are kneaded. Reinforcing fibers maintained in a length that can minimize shearing and cutting and exhibit sufficient strength in the molten thermoplastic resin Q by kneading in the second compression unit 62 of the second material kneading unit 60 F is added to produce a fiber reinforced resin in a molten state. The produced molten fiber reinforced resin is continuously transferred to the second measuring unit 63 by the rotation of the screw 30, measured, and discharged from the plasticizing device 10.
可塑化装置10より連続して吐出される溶融状態の繊維強化樹脂を、配管12を通じてプランジャ装置11のシリンダ40内に送り込む。プランジャ41を作動し、シリンダ40内に供給した溶融状態の繊維強化樹脂を、あらかじめ型締装置を作動させて、型締め動作を行い、金型3の内部に形成したキャビティ4に射出する。その後、キャビティ4に射出された溶融状態の繊維強化樹脂は、金型3内で冷却され、成形品が製造される。 A molten fiber reinforced resin continuously discharged from the plasticizing device 10 is fed into the cylinder 40 of the plunger device 11 through the pipe 12. The plunger 41 is operated, and the fiber reinforced resin in the molten state supplied into the cylinder 40 is injected into the cavity 4 formed inside the mold 3 by performing a mold clamping operation by operating a mold clamping device in advance. Thereafter, the molten fiber reinforced resin injected into the cavity 4 is cooled in the mold 3 to produce a molded product.
ここで、強化繊維Fがスクリュ30へ過度に巻き付く現象が解消される理由について、図2〜図5を用いて説明する。 Here, the reason why the phenomenon in which the reinforcing fiber F is excessively wound around the screw 30 is eliminated will be described with reference to FIGS.
図2に示すように、本発明では、繊維供給部23の供給孔24は、脱圧位置Xから下流側となる先端側へ少なくともフライト32の1ピッチ(1P)と等しい距離以上に離間した位置に設けられている。このため、フライト32を回転軸Cの方向に見た場合、図3に示すように、フライト32の投影面は、フライト32の差し渡し、すなわちスクリュ径を有する円から、軸体31の断面を除いた円環状となる。この投影面の面積は、溶融した熱可塑性樹脂Qを下流側に押し進めるための推力と比例する。このため、大きい推力で溶融した熱可塑性樹脂Q及び送り込まれた強化繊維Fを押し進めるため、二点鎖線Gの領域で強化繊維Fがスクリュ30に過度に巻き付き、細かくせん断・切断されることを防止できる。したがって、溶融した熱可塑性樹脂Qに、せん断・切断が最小限に抑えられ、十分な強度を発揮できる長さに維持された強化繊維Fを混練して添加することができる。 As shown in FIG. 2, in the present invention, the supply hole 24 of the fiber supply unit 23 is spaced from the pressure-reducing position X to the downstream end side by a distance equal to or greater than at least one pitch (1P) of the flight 32. Is provided. For this reason, when the flight 32 is viewed in the direction of the rotation axis C, as shown in FIG. 3, the projection surface of the flight 32 removes the cross section of the shaft body 31 from the passing of the flight 32, that is, from a circle having a screw diameter. It becomes a circular ring. The area of this projection surface is proportional to the thrust for pushing the molten thermoplastic resin Q downstream. For this reason, in order to push the molten thermoplastic resin Q and the fed reinforcing fiber F with a large thrust, the reinforcing fiber F is prevented from being excessively wound around the screw 30 in the region of the two-dot chain line G, and finely sheared or cut. it can. Therefore, it is possible to knead and add to the molten thermoplastic resin Q the reinforcing fiber F maintained in a length that can minimize shearing and cutting and exhibit sufficient strength.
これに対し、図4に、比較例として、脱圧位置Xから繊維供給部23の供給孔24までの距離が、フライト32AのピッチPの1/4に等しい距離であるスクリュ30Aの軸体31Aを示す。脱圧位置Xから繊維供給部23の供給孔24までの距離が、(1/4)Pであるため、図5に示すように、フライト32の投影面は図3における投影面の1/4となる。すると、溶融した熱可塑性樹脂Q及び送り込まれた強化繊維Fを下流側に押し進めるための推力が十分に得られず、二点鎖線Lの領域で強化繊維Fがスクリュ30Aに過度に巻き付き、細かくせん断・切断されてしまう。したがって、溶融した熱可塑性樹脂Qに、せん断・切断が最小限に抑えられ、十分な強度を発揮できる長さに維持された強化繊維Fを混練して添加することができない。 On the other hand, in FIG. 4, as a comparative example, the shaft 31A of the screw 30A in which the distance from the decompression position X to the supply hole 24 of the fiber supply unit 23 is equal to ¼ of the pitch P of the flight 32A. Indicates. Since the distance from the decompression position X to the supply hole 24 of the fiber supply unit 23 is (1/4) P, as shown in FIG. 5, the projection plane of the flight 32 is 1/4 of the projection plane in FIG. It becomes. Then, the thrust for pushing the molten thermoplastic resin Q and the fed reinforcing fiber F forward is not sufficiently obtained, and the reinforcing fiber F is excessively wound around the screw 30A in the region of the two-dot chain line L, and is finely sheared.・ It will be cut off. Accordingly, it is impossible to knead and add the reinforcing fiber F maintained in a length that can minimize shearing and cutting and exhibit sufficient strength to the molten thermoplastic resin Q.
このように、本実施形態に係る可塑化装置10を備えた射出成形機1では、連続して送り込まれる強化繊維Fのせん断・切断を最小限に抑えて、十分な強度を発揮できる長さに維持された状態で溶融した熱可塑性樹脂との混練を行い、熱可塑性樹脂に強化繊維を添加することができる。これにより、所望の強度の成形品を製造することができる。 Thus, in the injection molding machine 1 provided with the plasticizing apparatus 10 according to the present embodiment, the length of the sufficient strength can be exhibited by minimizing the shearing and cutting of the reinforcing fibers F that are continuously fed. Kneading with a molten thermoplastic resin in a maintained state can be performed, and reinforcing fibers can be added to the thermoplastic resin. Thereby, the molded article of desired intensity | strength can be manufactured.
なお、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形実施可能であることは勿論である。例えば、上述した実施形態での熱可塑性樹脂Qの形態はペレット状に限らず、例えば、粉体状、粒状、チップ状等、他の形態であってもよい。また、上述した実施形態での強化繊維Fは炭素繊維、ガラス繊維に限らず、アラミド繊維、ボロン繊維等であってもよい。また、上述した実施形態では、連続した強化繊維Fを送り込んでいるが、本発明はこれに限らず、例えば、長尺の強化繊維Fを間断なく送り込んでもよい。 In addition, this invention is not limited to the above-mentioned embodiment, Of course, various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention. For example, the form of the thermoplastic resin Q in the above-described embodiment is not limited to the pellet form, and may be other forms such as a powder form, a granular form, a chip form, and the like. Further, the reinforcing fiber F in the embodiment described above is not limited to carbon fiber and glass fiber, but may be aramid fiber, boron fiber, or the like. Moreover, in embodiment mentioned above, although the continuous reinforcement fiber F is sent, this invention is not limited to this, For example, you may send the long reinforcement fiber F without interruption.
1…射出成形機、2…射出装置、3…金型、4…キャビティ、10…可塑化装置、11…プランジャ装置、12…配管、20…バレル、21…樹脂供給部、22…供給孔、23…繊維供給部、24…供給孔、30…スクリュ、31…軸体、32…フライト、33…駆動部、34…スクリュヘッド、40…シリンダ、41…プランジャ、50…第1材料溶融部、51…第1供給部、52…第1圧縮部、53…第1計量部、60…第2材料混練部、61…第2供給部、62…第2圧縮部、63…第2計量部。 DESCRIPTION OF SYMBOLS 1 ... Injection molding machine, 2 ... Injection device, 3 ... Mold, 4 ... Cavity, 10 ... Plasticizing device, 11 ... Plunger device, 12 ... Pipe, 20 ... Barrel, 21 ... Resin supply part, 22 ... Supply hole, DESCRIPTION OF SYMBOLS 23 ... Fiber supply part, 24 ... Supply hole, 30 ... Screw, 31 ... Shaft body, 32 ... Flight, 33 ... Drive part, 34 ... Screw head, 40 ... Cylinder, 41 ... Plunger, 50 ... 1st material fusion | melting part, DESCRIPTION OF SYMBOLS 51 ... 1st supply part, 52 ... 1st compression part, 53 ... 1st measurement part, 60 ... 2nd material kneading part, 61 ... 2nd supply part, 62 ... 2nd compression part, 63 ... 2nd measurement part.
Claims (3)
シリンダと、駆動部により前記シリンダ内を前進又は後退するプランジャと、を有するプランジャ装置と、
前記バレルと前記シリンダとを接続する配管とを備えた射出装置であって、
前記スクリュは、基端側から先端側に向けて、熱可塑性樹脂が供給される第1材料溶融部と、糸状又は帯状の連続する強化繊維が供給される第2材料混練部と、を有し、
前記第1材料溶融部は、基端側から先端側に向けて、第1供給部と、第1圧縮部と、第1計量部と、を有し、
前記軸体は、前記第1供給部では直径D1とされ、前記第1圧縮部では漸次径が大きくなり、前記第1計量部では前記直径D1より大きい直径D2となり、
前記第2材料混練部は、基端側から先端側に向けて、第2供給部と、第2圧縮部と、第2計量部と、を有し、
前記軸体は、前記第2供給部では前記直径D2より小さい直径D3とされ、前記第2圧縮部では漸次径が大きくなり、前記第2計量部では前記直径D3より大きい直径D4となり、
前記バレルは、前記第2供給部で、かつ、前記第1材料溶融部との境界から少なくとも前記スクリュのフライトの1ピッチと等しい距離以上に離間した位置に前記強化繊維を送り込む繊維供給部が設けられている
ことを特徴とする射出装置。 And barrel, housed within the barrel, the flight is provided in a spiral manner around the circumference of the shaft, and a plasticizing unit having a screw which is rotated by the drive movement unit,
A plunger device having a cylinder and a plunger that moves forward or backward in the cylinder by a drive unit;
An injection device comprising a pipe connecting the barrel and the cylinder,
The screw has a first material melting portion to which a thermoplastic resin is supplied from a proximal end side to a distal end side, and a second material kneading portion to which a continuous reinforcing fiber in the form of a thread or a belt is supplied. ,
The first material melting part has a first supply part, a first compression part, and a first metering part from the base end side toward the tip end side,
The shaft body has a diameter D1 in the first supply unit, a gradually increasing diameter in the first compression unit, and a diameter D2 larger than the diameter D1 in the first measurement unit,
The second material kneading section before SL is toward the proximal side to the distal side, and a second feed portion, a second compression unit, and a second metering section, and
The shaft body has a diameter D3 smaller than the diameter D2 in the second supply unit, a gradually increasing diameter in the second compression unit, and a diameter D4 larger than the diameter D3 in the second measurement unit,
Before SL barrel in the second supply section, and the fiber feed unit for feeding the reinforcing fibers at a position spaced at least in the screw flights one pitch equal to the distance over from the boundary between the first material melt portion An injection apparatus characterized by being provided.
軸体の外周に螺旋状にフライトが設けられ、前記第1材料溶融部は、基端側から先端側に向けて、第1供給部と、第1圧縮部と、第1計量部と、を有すると共に、前記第2材料混練部が、基端側から先端側に向けて、第2供給部と、第2圧縮部と、第2計量部とに区分されるスクリュで、
前記軸体は、前記第1供給部では直径D1とされ、前記第1圧縮部では漸次径が大きくなり、前記第1計量部では前記直径D1より大きい直径D2となり、前記第2供給部では前記直径D2より小さい直径D3とされ、前記第2圧縮部では漸次径が大きくなり、前記第2計量部では前記直径D3より大きい直径D4であり、前記熱可塑性樹脂を溶融して前記強化繊維を添加することにより、溶融状態の繊維強化樹脂を生成し、前記可塑化装置より吐出される前記溶融状態の繊維強化樹脂をプランジャ装置のシリンダ内に送り込み、プランジャを作動して、前記溶融状態の繊維強化樹脂を射出する射出方法であって、
前記可塑化装置の前記第1材料溶融部で前記熱可塑性樹脂を溶融し、
前記第2供給部の前記第1材料溶融部との境界から少なくとも前記スクリュのフライトの1ピッチと等しい距離以上に離間した位置から前記強化繊維を送り込み、
前記第2材料混練部で溶融した前記熱可塑性樹脂と前記強化繊維を混練し、前記熱可塑性樹脂に前記強化繊維を添加して、溶融状態の繊維強化樹脂を生成し、前記プランジャ装置の前記シリンダ内に送り込まれた前記溶融状態の繊維強化樹脂を、プランジャを作動して射出することを特徴とする射出方法。 A first material melting portion that is housed in a barrel of the plasticizing apparatus and is supplied with thermoplastic resin from the base end side toward the tip end side, and a second material kneading portion that is supplied with continuous reinforcing fibers in the form of threads or belts Have
A spiral flight is provided on the outer periphery of the shaft body, and the first material melting part includes a first supply part, a first compression part, and a first metering part from the base end side toward the tip end side. and having a second material kneading section before SL is, toward the base end side to the distal side, and a second feed portion, a second compression unit, in screw is divided into a second metering section,
The shaft body has a diameter D1 in the first supply section, a gradually increasing diameter in the first compression section, a diameter D2 larger than the diameter D1 in the first metering section, and the diameter in the second supply section. is the diameter D2 smaller than the diameter D3, gradually diameter becomes large in the second compression unit, and in the second metering section is the diameter D3 larger diameter D4, the reinforcing fibers by melting the pre Kinetsu thermoplastic resin By adding, the fiber reinforced resin in a molten state is generated, the fiber reinforced resin in the molten state discharged from the plasticizing device is fed into the cylinder of the plunger device, the plunger is operated, and the fiber in the molten state is An injection method for injecting reinforced resin,
Melting the thermoplastic resin in the first material melting portion of the plasticizer;
The reinforcing fiber is fed from a position separated from the boundary between the second supply part and the first material melting part by a distance equal to or more than at least one pitch of the screw flight,
The thermoplastic resin melted in the second material kneading section and the reinforcing fiber are kneaded, the reinforcing fiber is added to the thermoplastic resin to produce a molten fiber reinforced resin, and the cylinder of the plunger device An injection method characterized by injecting the molten fiber reinforced resin fed into the interior by operating a plunger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015239948A JP6069470B1 (en) | 2015-12-09 | 2015-12-09 | Injection device, injection molding machine and injection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015239948A JP6069470B1 (en) | 2015-12-09 | 2015-12-09 | Injection device, injection molding machine and injection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6069470B1 true JP6069470B1 (en) | 2017-02-01 |
JP2017105044A JP2017105044A (en) | 2017-06-15 |
Family
ID=57937442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015239948A Active JP6069470B1 (en) | 2015-12-09 | 2015-12-09 | Injection device, injection molding machine and injection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6069470B1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020168444A1 (en) * | 2001-04-12 | 2002-11-14 | Demag Ergotech Gmbh | Injection unit for injection molding machines with continuously operating plasticizing unit |
JP2007203638A (en) * | 2006-02-02 | 2007-08-16 | Mazda Motor Corp | Method and apparatus for molding fiber-reinforced resin molding |
JP2013173330A (en) * | 2012-02-27 | 2013-09-05 | Toyota Motor Corp | Method of manufacturing fiber-reinforced resin material |
JP2013208866A (en) * | 2012-03-30 | 2013-10-10 | Toshiba Mach Co Ltd | Plasticizing apparatus, injection apparatus, injection molding apparatus, extruder, and method for manufacturing molding |
JP2014104597A (en) * | 2012-11-23 | 2014-06-09 | Meiki Co Ltd | Plasticization apparatus and plasticization method of resin material including textile material |
WO2014170932A1 (en) * | 2013-04-15 | 2014-10-23 | 三菱重工プラスチックテクノロジー株式会社 | Injection molding apparatus and injection molding method |
-
2015
- 2015-12-09 JP JP2015239948A patent/JP6069470B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020168444A1 (en) * | 2001-04-12 | 2002-11-14 | Demag Ergotech Gmbh | Injection unit for injection molding machines with continuously operating plasticizing unit |
JP2007203638A (en) * | 2006-02-02 | 2007-08-16 | Mazda Motor Corp | Method and apparatus for molding fiber-reinforced resin molding |
JP2013173330A (en) * | 2012-02-27 | 2013-09-05 | Toyota Motor Corp | Method of manufacturing fiber-reinforced resin material |
JP2013208866A (en) * | 2012-03-30 | 2013-10-10 | Toshiba Mach Co Ltd | Plasticizing apparatus, injection apparatus, injection molding apparatus, extruder, and method for manufacturing molding |
JP2014104597A (en) * | 2012-11-23 | 2014-06-09 | Meiki Co Ltd | Plasticization apparatus and plasticization method of resin material including textile material |
WO2014170932A1 (en) * | 2013-04-15 | 2014-10-23 | 三菱重工プラスチックテクノロジー株式会社 | Injection molding apparatus and injection molding method |
Also Published As
Publication number | Publication date |
---|---|
JP2017105044A (en) | 2017-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5846998B2 (en) | Plasticizing device, injection device, injection molding device, extruder, and method for producing molded product | |
EP2979837B1 (en) | Injection molding method | |
JP5889493B1 (en) | Injection molding machine and injection molding method | |
JP5894349B1 (en) | Injection molding method, screw, and injection molding machine | |
US20170050359A1 (en) | Injection molding apparatus | |
JP6933951B2 (en) | Fiber reinforced thermoplastic resin kneading method and plasticizing equipment | |
JP2007230087A (en) | Method and apparatus for injection foaming | |
JP2016060206A (en) | Plasticization device, injection device, molding device, and molding manufacturing method | |
JP5932159B1 (en) | Injection molding method, screw of injection molding machine and injection molding machine | |
JPH02153714A (en) | Injection molding equipment | |
JP6069470B1 (en) | Injection device, injection molding machine and injection method | |
KR20200042934A (en) | Fiber-reinforced thermoplastic resin kneading method, plasticizer and extruder | |
CN101918185B (en) | Resin molding apparatus | |
JP2016043623A (en) | Screw of injection molding machine | |
JP2015080851A (en) | Apparatus and method for injection molding of fiber-reinforced resin | |
JP6855137B2 (en) | Molding method and molding equipment for fiber-reinforced thermoplastic resin molded products | |
JP2013208779A (en) | Screw, plasticizing apparatus, injection apparatus, injection molding apparatus, extruder, and method for manufacturing molding | |
JP2018183938A (en) | Plasticizing apparatus | |
EP2258533A1 (en) | Screw and injection device | |
JP5872663B1 (en) | INJECTION DEVICE, MOLDING DEVICE, AND MOLDED PRODUCT MANUFACTURING METHOD | |
WO2023176029A1 (en) | Screw for direct molding, injection molding device, and kneading piece | |
JP6522456B2 (en) | Method and apparatus for molding composite material molding | |
CN105751475A (en) | Hollow single screw extruder with vibrating mandrel | |
JP6869622B2 (en) | Extruder for fiber reinforced thermoplastic resin | |
JP2019038211A (en) | Injection molding apparatus and method of manufacturing reinforced resin molded article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6069470 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |