JP6066129B2 - Unloading method of water-containing roses - Google Patents
Unloading method of water-containing roses Download PDFInfo
- Publication number
- JP6066129B2 JP6066129B2 JP2014553996A JP2014553996A JP6066129B2 JP 6066129 B2 JP6066129 B2 JP 6066129B2 JP 2014553996 A JP2014553996 A JP 2014553996A JP 2014553996 A JP2014553996 A JP 2014553996A JP 6066129 B2 JP6066129 B2 JP 6066129B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- unloading
- spring water
- polymer
- suspended
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 231
- 238000000034 method Methods 0.000 title claims description 43
- 241000109329 Rosa xanthina Species 0.000 title claims description 32
- 235000004789 Rosa xanthina Nutrition 0.000 title claims description 32
- 229920000642 polymer Polymers 0.000 claims description 136
- 239000002245 particle Substances 0.000 claims description 60
- 239000006096 absorbing agent Substances 0.000 claims description 48
- 239000003463 adsorbent Substances 0.000 claims description 34
- 239000000725 suspension Substances 0.000 claims description 34
- 239000000843 powder Substances 0.000 claims description 31
- 241000220317 Rosa Species 0.000 claims description 29
- 239000003245 coal Substances 0.000 claims description 14
- 239000013590 bulk material Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 80
- 229910052742 iron Inorganic materials 0.000 description 40
- 238000003756 stirring Methods 0.000 description 25
- 238000009412 basement excavation Methods 0.000 description 24
- 239000002250 absorbent Substances 0.000 description 15
- 230000002745 absorbent Effects 0.000 description 15
- 230000009471 action Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 238000007790 scraping Methods 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 9
- 239000008187 granular material Substances 0.000 description 9
- 229920002401 polyacrylamide Polymers 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000008961 swelling Effects 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000002002 slurry Substances 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 206010048744 Fear of falling Diseases 0.000 description 3
- 229920006317 cationic polymer Polymers 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000008394 flocculating agent Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000012254 powdered material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- AJXBTRZGLDTSST-UHFFFAOYSA-N amino 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)ON AJXBTRZGLDTSST-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 229920000247 superabsorbent polymer Polymers 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B25/00—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
- B63B25/02—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
- B63B25/04—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods solid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B27/00—Arrangement of ship-based loading or unloading equipment for cargo or passengers
- B63B27/19—Other loading or unloading equipment involving an intermittent action, not provided in groups B63B27/04 - B63B27/18
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ship Loading And Unloading (AREA)
- Auxiliary Methods And Devices For Loading And Unloading (AREA)
- Aviation & Aerospace Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Description
本発明は、水分を含む鉱石や石炭等のバラ物を運搬船やはしけ(艀)などから橋形クレーンやアンローダまたは連続式アンローダのバケットによって、間欠的もしくは連続的に荷揚げする時、湧水が発生することによって起こる荷揚げ障害を解消するために開発された含水バラ物の荷揚げ方法に関するものである。 In the present invention, when unloading ores and coal containing moisture are intermittently or continuously unloaded from a carrier ship or barge (艀) by a bridge crane, an unloader or a bucket of a continuous unloader, spring water is generated. The present invention relates to a method for unloading hydrous roses that has been developed in order to eliminate unloading troubles caused by the operation.
鉱石や石炭などのバラ物は、大部分が外国から輸入されており、そのほとんどが船舶によって輸送されている。これらのバラ物、特に鉱石や石炭は、近年、高水分のものが多く、その水分は輸送過程においてバラ物から分離して船倉底部に溜まった状態になる。その結果、アンローダ等による荷揚げ過程の中盤或いは後半において、荷揚げのためのグラブバケットによる掴み取り等の後にバラ物に窪みができ、そこに粉体粒子と湧水とが混濁した状態の懸濁湧水を生成して溜まるだけではなく、やがてスラリー状態となって荷揚げ障害になるという問題があった。この問題は、バケットコンベア等からなる連続式アンローダのバケットによる荷揚げ過程でも同様に発生する。
また、船舶からの荷揚げ中に豪雨等が発生したときは、荷揚げを継続すると否とにかかわらず、バラ物が高水分となり、雨水が船倉底部に溜まった状態となる点でも同様な荷揚げ障害現象を生じることになる。
このことは、雨季を持つ国においても同様であり、船舶を含め橋形クレーンやアンローダを覆う屋根を備えないと、荷揚げ中のバラ物が高水分となり、荷揚げの継続に伴ってやがてスラリー状態となり、荷揚げ障害に至るという問題があった。Most of roses such as ore and coal are imported from abroad, and most of them are transported by ship. In recent years, many of these roses, especially ores and coal, have a high moisture content, and the moisture is separated from the roses during the transportation process and is accumulated at the bottom of the hold. As a result, in the middle or the latter half of the unloading process by an unloader, etc., a hollow is formed after grabbing with a grab bucket for unloading, etc., and suspended spring water in which powder particles and spring water are turbid In addition to generating and accumulating, there is a problem that it eventually becomes a slurry and becomes an obstacle to unloading. This problem also occurs in the unloading process using a bucket of a continuous unloader composed of a bucket conveyor or the like.
In addition, when heavy rains occur during unloading from a ship, the same unloading phenomenon also occurs in that roses become highly moist and rainwater accumulates at the bottom of the hold regardless of whether or not the unloading is continued. Will result.
This is the same in countries with rainy seasons.If there is no roof covering the bridge crane and unloader including the ship, the roses being unloaded will become highly moist and will eventually become a slurry as unloading continues. There was a problem of leading to unloading problems.
このような問題に対し、従来、特許文献1、2に開示されているような方法、即ち、湧水が発生したときは一旦その湧水を排水設備(吸引機)を介して汲み揚げ、その後、荷揚げを再開するという方法などが提案されてきた。
In order to deal with such problems, conventionally, the methods disclosed in
しかしながら、特許文献1、2で提案している汲み揚げ排水方法は、湧水を汲み揚げるために、船舶を排水(汲み揚げ)設備をもつ場所までその都度移動させるとか、あるいは、排水(汲み揚げ)設備自体を船倉間に配設して各船倉から湧水を汲み揚げることなどから、設備コストの増加に加え、排水に時間がかかるという問題があった。
とりわけ、湧水は、荷揚げ途中のグラブバケットによるバラ物の掴み取り後、または、連続式アンローダのバケットによるバラ物の掘削後に生ずる窪みに発現することから、上記のような湧水の汲み揚げ作業をたびたび繰り返す場合は、荷揚げ作業の中断、再開の繰り返を招いて、作業効率が大幅に低下するという問題があった。特に、近年では、鉱石や石炭は劣悪なもの、例えば、高水分のものが多くを占めるようになり、こうした問題がより顕在化している。However, the pumping and draining methods proposed in
In particular, since the spring water appears in the depressions that occur after grabbing a rose with a grab bucket in the middle of unloading or after excavating a rose with a bucket of a continuous unloader, When it is repeated frequently, there has been a problem that the work efficiency is greatly reduced due to the suspension and resumption of the unloading work. In particular, in recent years, ore and coal have become inferior, for example, those with high moisture content, and such problems have become more apparent.
さらに、特許文献1、2で提案している従来技術は、湧水のみを汲み揚げることを想定しているが、グラブバケットによるバラ物の掴み取り後、または、バケットによるバラ物の掘削後に生じる窪み部分には、粒径の大きいバラ物から分離した粒径の小さい粉体粒子が流入して泥状(スラリー)化していることが多く、この場合、従来の揚水機では汲み揚げが困難で荷揚げ作業の決定的な障害になっていた。
Furthermore, although the prior art proposed in
そこで、本発明の目的は、含水バラ物の荷揚げの際に不可避的に発生する湧水ならびに懸濁湧水の効果的な処理方法を提案することにある。 Accordingly, an object of the present invention is to propose an effective treatment method for spring water and suspension spring that are inevitably generated when a wet rose is unloaded.
従来技術が抱えている上述した問題を克服することができ、かつ上記目的を達成する上で有効な解決手段として、本発明は、鉱石や石炭の如き含水バラ物を貨物船から橋形クレーンやアンローダのグラブバケット、または、連続式アンローダのバケットを使って間欠的もしくは連続的に荷揚げするに当たり、荷揚げ作業時に、湧水中に粉体粒子が懸濁した状態の懸濁湧水が生成した場合に、前記懸濁湧水発生位置に高分子凝集剤および水分吸着剤を添加して、該高分子凝集剤の添加により、凝結粒子、凝集粒子を生成させ、一方、凝結粒子や、凝集粒子の生成がない前記懸濁湧水部分の少なくとも湧水については水分吸着剤に吸着させてから、バラ物とともに荷揚げを行なうことを特徴とする含水バラ物の荷揚げ方法、を提案する。 As a solution that can overcome the above-mentioned problems of the prior art and is effective in achieving the above-mentioned object, the present invention can be used to remove a wet bulk material such as ore or coal from a cargo ship, a bridge crane, When unloading grab buckets or continuous unloader buckets for unloading intermittently or continuously, when suspended springs with powder particles suspended in the spring water are generated during the unloading operation. In addition, a polymer flocculant and a water adsorbent are added to the position where the suspended spring is generated, and by adding the polymer flocculant, aggregated particles and aggregated particles are generated. On the other hand, aggregated particles and aggregated particles are generated. were allowed to adsorb moisture adsorbents for at least spring water of the suspension springs part no, proposes a unloading process, the hydrous rose product and performing unloading with rose thereof.
上記本発明に係る荷揚げ方法においては、
(1)前記水分吸着剤として、高分子吸水剤を用いること、
(2)前記水分吸着剤は、懸濁湧水量の0.5超〜3.3mass%相当量を添加すること、
(3)前記水分吸着剤は、懸濁湧水量の1.0〜2.0mass%相当量を添加すること、
が好ましい。
なお、
(4)前記高分子凝集剤は、懸濁湧水量の0.4〜1.0mass%相当量を添加すること、
(5)前記懸濁湧水の発生位置への水分吸着剤の添加により、前記懸濁湧水中の少なくとも湧水を減じると共に、高分子凝集剤の添加により、凝結粒子、凝集粒子を生成させてから荷揚げすること、
(6)バラ物重量と懸濁湧水重量との比率で表わされる粉鉱比(−)を7以上とすること、
が、より好ましい解決手段を提供できるものと考えられる。
In the unloading method according to the present invention,
( 1 ) Use of a polymer water-absorbing agent as the moisture adsorbent,
( 2 ) The moisture adsorbent is added in an amount equivalent to more than 0.5 to 3.3 mass% of the suspended spring water amount,
( 3 ) The moisture adsorbent is added in an amount equivalent to 1.0 to 2.0 mass% of the suspended spring water amount,
Is preferred.
In addition,
( 4 ) The polymer flocculant is added in an amount equivalent to 0.4 to 1.0 mass% of the amount of suspended spring water,
(5) The addition of the moisture adsorbent to the occurrence position of the suspension springs, Rutotomoni subtracting at least spring water of the suspension Spring water, by the addition of the polymeric flocculant, to produce coagulated particles, agglomerated particles It is unloading from,
( 6 ) The fine ore ratio (-) represented by the ratio of the weight of the roses and the suspended spring water is 7 or more,
However, it is considered that a more preferable solution can be provided.
前記のような構成を有する本発明方法を採用すれば、貨物船の船倉内で荷揚げの途中に懸濁湧水が発生した場合でも、高分子凝集剤および水分吸着剤を添加することにより、湧水と粉体粒子の凝結・凝集をもたらし、少なくとも湧水を該水分吸着剤に吸着(吸水・保水)させてから、固形物(湧水、高分子凝集剤、水分吸着剤、粉体粒子)を、他のバラ物とともに一緒に荷揚げするようにしたため、懸濁湧水のみの汲み揚げ作業を行なう必要がなくなる。
そのため、従来のように荷揚げ作業の中断を招くことなく、連続的な荷揚げ作業を行なうことができるので、荷揚げ作業効率が著しく向上することになる。
By adopting the method of the present invention having the above-described configuration, even when suspended spring water is generated during unloading in the cargo ship hold, by adding a polymer flocculant and a water adsorbent, resulted in coagulation and aggregation of the water and the powder particles, the adsorbed spring water in the moisture adsorbent (water-water retention) even without low, solid (spring water, polymer flocculant, water absorbent, powder Since the particles are unloaded together with other roses, there is no need to carry out only the suspension spring pumping operation.
For this reason, since the unloading operation can be performed continuously without interrupting the unloading operation as in the prior art, the unloading operation efficiency is remarkably improved.
ところで、高分子凝集剤と水分吸着剤を併用したときは、高分子凝集剤で取り込めない範囲の水分を水分吸着剤に吸着させることでバラ物の含水量の上限を高めることができ、水分吸着剤のみを使用する場合に比してコストを低下させることができ、そして、水分吸着剤のみの使用に比して、次工程や搬送ラインへの影響を小さくできる利点がある。 By the way, when a polymer flocculant and a water adsorbent are used together, the upper limit of the moisture content of roses can be increased by adsorbing water in a range that cannot be taken up by the polymer flocculant to the water adsorbent. The cost can be reduced as compared with the case where only the agent is used, and there is an advantage that the influence on the next process and the conveying line can be reduced as compared with the case where only the moisture adsorbent is used.
以下に本発明の実施形態を図面に示すところに基いて説明する。
図1に示すところにおいて、貨物船の船倉(荷室)1に収容されているバラ物2と呼ばる鉱石や石炭(以下、「鉱石類」とも言う)を橋形クレーンやアンローダのグラブバケットを使って荷揚げする場合、一般に、鉱石類堆積層の下層部分には湧水からなる水溜り3が発生する。バラ物2の荷揚げ作業が進み、中層〜下層部分に達すると、バラ物堆積層の一部にはグラブバケットによる掴み出し後に窪み4が生じ、その窪み4内に、主に礫状の鉱石類から分離した粉体粒子が分散して懸濁した状態の懸濁湧水Wmが溜まることが知られている。Embodiments of the present invention will be described below with reference to the drawings.
In the place shown in FIG. 1, an ore or coal (hereinafter also referred to as “ores”) called
船倉内のバラ物堆積層に前記懸濁湧水Wmが発生すると、荷揚げが進むと共に次第にスラリー化して、アンローダのグラブバケット5などでの荷揚げが困難になる。しかも、一旦、スラリー化したものは、たとえグラブバケット5で掴み得たとしても、アンローダ機内の図示を省略したホッパーやベルトコンベア部分で流出してしまい、アンローダの運転が継続できなくなる。特に、船倉1の底部ではこのような状態になることが多く、荷揚げ作業をしばしば中断して、湧水を汲み揚げることが必要になる。この問題はグラブバケットによる荷揚げに代わり、近年使用されている連続式アンローダのバケットによる荷揚げを行なう場合にも同様である。
図2、7に示すように、連続式アンローダでは船倉1内に垂直支持ビーム部が挿入され、多数のバケット5による連続掘削で荷揚げが行われる。バケット5はチェーンを介して連結されて、油圧シリンダー機構によりスプロケット間の長さ調整によって、船倉1への挿入長さ、掻き取り長さ等の調整ができるようになっており、駆動リンク部では掘削深さ調整が行えるようになっている。また、別途の駆動装置による駆動で、駆動リンク部で掘削量を調整しながらバケット5が、図では反時計回りに回転され、該バケット5により原料表面を掘削して高い作業能率での荷揚げを行なうことができる。掘削したバラ物はバケットエレベータで船外に荷揚げされる。
バラ物堆積層の下層部分には輸送過程においてバラ物から分離して船倉底部に溜まった水溜り3、あるいは雨水により高水分化して溜まった水溜り3が発生する。連続式アンローダによる荷揚げ作業が進み、中層〜下層部分に達すると、バラ物堆積層の一部にはバケットによる掘削後に窪み4が生じ、その窪み4内に、懸濁した状態の懸濁湧水Wmが発生する。荷揚げが進むと共に次第にスラリー化して、連続式アンローダのバケット5によっても荷揚げが困難になる。
即ち、一旦、スラリー化したものは、グラブバケットと同様にバケット5により掘削し得たとしても、連続式アンローダ機内のホッパーやベルトコンベア部分で流出してしまい、連続式アンローダであってもその運転が継続できなくなる。When the suspended spring water Wm is generated in the bulk sediment layer in the hold, unloading proceeds and the slurry gradually becomes slurried, and unloading with the
As shown in FIGS. 2 and 7, in the continuous unloader, a vertical support beam portion is inserted into the
In the lower layer portion of the rose deposit layer, a
That is, once slurried, even if it can be excavated by the
そこで本発明では、前記懸濁湧水Wmが発生したとき、前記窪み4内の懸濁湧水Wmに対し、高分子凝集剤および、高分子吸水剤のような水分吸着剤を所定量添加し、たとえば、高分子凝集剤で該懸濁湧水(湧水+粉体粒子)中の粉体粒子を絡めとって凝結・凝集させて粒体化させ、また、懸濁湧水Wmを水分吸着剤に吸着(吸水および保水)させた状態でバラ物とともに荷揚げすることにより、荷揚げ作業効率の向上を図るようにした。
即ち、本発明方法に従えば、鉱石類等のバラ物2と共に、凝結・凝集された粒状体および懸濁湧水Wmを吸着した水分吸着剤を同時に荷揚げすることができる。
Therefore, in the present invention, when the suspension spring water Wm occurs, to suspension springs Wm of the
That is, according to the method of the present invention, it is possible to landing with roses was 2 ore, and the like, the moisture adsorbent that has adsorbed the granules and suspension NigoYumizu Wm which is condensed and aggregation at the same time.
図3(a)〜(c)は、粉体粒子Pを含む懸濁湧水Wm中に高分子凝集剤Aを添加した状態を示すものである。この添加により、懸濁湧水Wmは図3(b)に示すように、粉体粒子Pの一部が高分子凝集剤Aの分子鎖が枝状に広がったポリマーに絡めとられるようにして凝結し、まず、粒状の小さい凝結粒子6の幾らかを形成する。次いで、時間の経過(荷揚げの進捗)と共に、その凝結粒子6の複数個がやがて凝集(集合)して、図3(c)に示すように、粒径の大きな凝集粒子7へと成長する。
3A to 3C show a state in which the polymer flocculant A is added to the suspended spring water Wm containing the powder particles P. FIG. By this addition, as shown in FIG. 3 (b), the suspension spring water Wm is such that a part of the powder particle P is entangled with the polymer in which the molecular chain of the polymer flocculant A spreads in a branch shape. Aggregates and first forms some of the small, granular agglomerated
この段階になると、懸濁湧水Wmは固形物状態となり、グラブバケット5等によって容易に掴み取り、掻き取り等することができるようになって、懸濁湧水Wm自体もバラ物と共に荷揚げされることになる。
At this stage, the suspended spring water Wm is in a solid state and can be easily grasped and scraped by the
図3(d)、(e)は、粉体粒子Pを含む懸濁湧水Wm中に水分吸着剤Bを添加した状態を示すものである。ここでは、懸濁湧水Wmの水は図3(e)に示すように、粉体粒子Pとともに水分吸着剤Bの架橋構造の中に閉じ込められて膨潤した形で粒状化する。 FIGS. 3D and 3E show a state in which the moisture adsorbent B is added to the suspended spring water Wm containing the powder particles P. FIG. Here, the water of the suspension spring Wm is granulated in a swollen form confined in the crosslinked structure of the moisture adsorbent B together with the powder particles P as shown in FIG.
即ち、懸濁湧水Wmは、水分吸着剤B中に吸収されて固形物状態(膨潤状態)となるので、その後は、グラブバケット5により、容易に掴み取ることができるようになって、この懸濁湧水Wm自体もバラ物2と共に荷揚げできるようになる。同様にして、連続式アンローダのバケットでも、懸濁湧水Wmをバラ物2とともに掘削できるようになる。
That is, the suspended spring water Wm is absorbed in the moisture adsorbent B and becomes a solid state (swelled state). Thereafter, the suspended spring water Wm can be easily grasped by the
本発明の他の実施形態では、前記懸濁湧水Wmに、高分子凝集剤および水分吸着剤を添加すると共に、窪み4近傍あるいはその他の部位にある礫状のバラ物2をグラブバケット5を使って加えて、できればさらに攪拌(グラブバケットによる掴み揚げと開放落下とを繰返す操作を)することが、前述の固形物化を促進し、荷揚げ作業の効率化を図る上で望ましい。
なお、連続式アンローダでは、前記懸濁湧水Wmに、高分子凝集剤および水分吸着剤を添加すると共に、バケット掘削により発生した窪み4近傍あるいはその他の部位にある礫状のバラ物2をバケットを使って掻き寄せ、できればさらに攪拌(バケットによる掻き寄せ方向の切り替えを繰返す操作を)することが、前述の固形物化を促進し、荷揚げ作業の効率化を図る上で望ましい。
In another embodiment of the present invention, a polymer flocculant and a water adsorbent are added to the suspended spring water Wm, and the gravel-
In the continuous unloader, a polymer flocculant and a water adsorbent are added to the suspended spring water Wm, and the gravel-
本発明で使用する水溶性の高分子凝集剤としては、懸濁湧水にこの薬剤を添加することによって、高分子のもつ静電気力および水素結合によって粉体に吸着活性を生じさせ、粉体間架橋作用を起すことにより、固粒化構造を形成して、凝結粒子を形成させる類のものが使用可能である。例えば、粉末、顆粒状または液状の有機系凝集剤であるポリアクリルアミド系(アクリルアミドとアクリル酸ナトリウムを共重合したもの)、ポリビニルアミジン系、両性高分子系の凝集剤などは、凝結作用のみならず、凝集作用を発揮するので好ましい。勿論、無機系凝集剤と混ぜて使用してもよい。
また、アクリル酸カチオンポリマー、アクリルアミド系カチオンポリマー、メタクリル酸系ポリマー、メタクリル酸アミノエステルカチオンポリマー、アミジンポリマーなどを使用することもできる。As the water-soluble polymer flocculant used in the present invention, by adding this agent to the suspension spring water, an adsorption activity is generated in the powder by the electrostatic force and hydrogen bond of the polymer, The thing of forming a solidified structure by causing a crosslinking action to form a condensed particle can be used. For example, polyacrylamide-based (copolymerized acrylamide and sodium acrylate), polyvinylamidine-based, and amphoteric polymer-based flocculants that are powder, granular or liquid organic flocculants are not only coagulating. It is preferable because it exhibits an aggregating action. Of course, you may mix and use an inorganic type flocculant.
In addition, an acrylic acid cationic polymer, an acrylamide-based cationic polymer, a methacrylic acid-based polymer, a methacrylic acid aminoester cationic polymer, an amidine polymer, and the like can also be used.
また、水分吸着剤としては、たとえば、高吸水性樹脂(Super Absorbent Polymer、略してSAP)が使用でき、水分吸収速度が速く、かつ高い吸水性と高い保水性とを具え、しかも一度吸水した水分は外部から多少の力がかかっても水分をほとんど放出しない薬剤、例えば、ポリアクリル酸塩(ナトリウム、カリウム)樹脂などの高分子吸水剤が好適である。この高分子吸水剤は、水分吸収後に、分子構造内に水分を吸着しても粘着性を示さない物性を有し、この意味において、無機系のシリカゲル、活性アルミナ、ゼオライト等も併せて用いることがより好ましい。この水分吸着剤としては、粉状、顆粒状のものが用いられる。
なお、水分吸着剤として粉状、顆粒状のものを用いる理由は、湧水との接触面積を高め、水分吸収速度を速めるためであり、使用時の飛散防止のため微粉状のものは避け、粒径が0.5mm以上、10mm未満のものとする。より好ましくは1mm以上、5mm以下のものを使用する。In addition, as the water adsorbent, for example, a super absorbent polymer (abbreviated as SAP) can be used, it has a high water absorption rate, has high water absorption and high water retention, and has once absorbed water. A drug that hardly releases water even when a certain amount of force is applied from the outside, for example, a polymer water-absorbing agent such as polyacrylate (sodium, potassium) resin is suitable. This polymeric water-absorbing agent has physical properties that do not exhibit tackiness even when moisture is adsorbed in the molecular structure after moisture absorption. In this sense, inorganic silica gel, activated alumina, zeolite, etc. should also be used. Is more preferable. As this moisture adsorbent, powdery or granular materials are used.
The reason why powdered and granular materials are used as the moisture adsorbent is to increase the contact area with the spring water and increase the moisture absorption rate, avoiding fine powdered materials to prevent scattering during use, The particle size is 0.5 mm or more and less than 10 mm. More preferably, one of 1 mm or more and 5 mm or less is used.
即ち、粒径が0.5mm未満では使用時の飛散を有効に防止することができず、一方、10mm以上では、湧水との接触表面積が相対的に小さくなって、水分吸収速度が低下する傾向にあり、水分の吸収に時間がかかりすぎて、短時間のうちに十分な効果を得ることができない。従って、より好ましくは1mm以上、5mm以下とする。 That is, when the particle size is less than 0.5 mm, scattering during use cannot be effectively prevented, while when the particle size is 10 mm or more, the contact surface area with the spring water becomes relatively small and the moisture absorption rate decreases. It tends to take a long time to absorb moisture, and a sufficient effect cannot be obtained in a short time. Therefore, it is more preferably 1 mm or more and 5 mm or less.
ところで、懸濁湧水Wm内への高分子凝集剤と、水分吸着剤としての高分子吸水剤との両者を添加する場合は、図4(a)〜(c)に示すように、それらを同時に添加すると、図4(d)〜(f)に示すように、高分子凝集剤を先に添加し、高分子吸水剤を遅れて添加するとの別なく、最終的には同様の効果が得られることになる。 By the way, when adding both the polymer flocculant into the suspension spring Wm and the polymer water-absorbing agent as the moisture adsorbent, as shown in FIGS. When added simultaneously, as shown in FIGS. 4D to 4F, the same effect is finally obtained regardless of whether the polymer flocculant is added first and the polymer water-absorbing agent is added later. Will be.
つまり、図4(a)〜(c)に示すところでは、高分子凝集剤と、該凝集剤だけでは対応できない水に対処するための高分子吸水剤とを同時に添加して攪拌することで、粉体粒子と水分子との高分子ポリマーによる絡めとりが行われるとともに、余剰の水分子等の高分子吸水剤による吸着が行われ、最終的には図4(c)に示すように、凝集粒子と、膨潤した高分子吸水剤とが塊状となる。 That is, in the places shown in FIGS. 4A to 4C, the polymer flocculant and the polymer water-absorbing agent for coping with water that cannot be handled by the flocculant alone are simultaneously added and stirred, The entanglement of the powder particles and the water molecules with the polymer polymer is performed, and the polymer particles are adsorbed with the polymer water-absorbing agent such as excess water molecules. Finally, as shown in FIG. The particles and the swollen polymer water-absorbing agent are agglomerated.
また、図4(d)〜(f)に示すところでは、懸濁湧水Wm内へ、はじめに高分子凝集剤の一例としての、クリサットC−333L(栗田工業(株)登録商標)を添加し、攪拌して粉体粒子と水分子との凝結をもたらし、その後、高分子吸水剤の一例としての、クリサットC−500L(栗田工業(株)登録商標)を添加して攪拌した。
その結果、図4(f)に示すように、凝集粒子と、膨潤した高分子吸水剤が塊状に一体化した、図4(c)に示すものと同様の塊状体が得られた。4 (d) to (f), Chrysat C-333L (registered trademark of Kurita Kogyo Co., Ltd.) as an example of the polymer flocculant is first added to the suspended spring water Wm. The mixture was agitated to cause coagulation of the powder particles and water molecules, and then, Chrysat C-500L (registered trademark of Kurita Kogyo Co., Ltd.) as an example of the polymer water-absorbing agent was added and stirred.
As a result, as shown in FIG. 4 (f), a mass similar to that shown in FIG. 4 (c) in which the aggregated particles and the swollen polymer water-absorbing agent were integrated into a mass was obtained.
次に、本発明の作用効果を確認するために行なった実験について説明する。
この実験は、図5に示す鉄製容器Cを用いて行なった。
含水バラ物鉱石として水分の多いブラジル産カラジャス鉄鉱石を使用し、上記鉄製容器C中に円錐状に装入し堆積させて水を加え、次いで、その円錐状堆積層のちょうど中央部分を掴み揚げ、そこに窪みを作って水溜り(懸濁湧水相当)が発生した段階で、水溶性のポリアクリルアミド系高分子凝集剤を加えた。Next, an experiment conducted for confirming the effect of the present invention will be described.
This experiment was performed using an iron container C shown in FIG.
Brazilian Calajas iron ore with high moisture content is used as hydrous rose ore, and it is charged into the iron container C in a conical shape and deposited, water is added, and then the central part of the conical layer is grabbed and fried At the stage where a pit was created and a water pool (equivalent to suspended spring) was generated, a water-soluble polyacrylamide polymer flocculant was added.
この実験では、カラジャス鉄鉱石に単にポリアクリルアミド系高分子凝集剤を添加しただけでも、粉体粒子と水分子を高分子ポリマーで絡めとる作用が生じたが、それはまだ小さく何らかの処理が必要であることが判明した。そこで、スコップによって中央窪み部分に生じた前記水溜り部分を掻き混ぜる攪拌を行なった。なお、この掻き混ぜ操作は、実機でのグラブバケットによる掴み揚げ、開放落下の繰り返し操作を模擬したものである。 In this experiment, simply adding polyacrylamide polymer flocculant to Calajas iron ore produced an action of entanglement of powder particles and water molecules with a polymer, but it is still small and requires some kind of treatment. It has been found. Therefore, stirring was performed by stirring the water pool portion generated in the central depression portion by a scoop. This stirring operation is a simulation of repeated operations of grabbing and releasing with a grab bucket in an actual machine.
この実験の結果を表1に示す。この実験結果から判るように、攪拌を伴わない、高分子凝集剤等の単なる添加は効果が少ない。一方、攪拌(30〜80sec)を伴うとき、とくに、バラ物重量に対する高分子凝集剤や水分吸着剤を含む懸濁湧水重量の割合を示す粉鉱比(−)は、7以上となるようにする。なお、このとき、懸濁湧水には、0.4〜1.0mass%に相当する量の高分子凝集剤を添加すると、よりよい効果が得られた。 The results of this experiment are shown in Table 1. As can be seen from the experimental results, the simple addition of a polymer flocculant and the like without stirring is less effective. On the other hand, when accompanied by agitation (30 to 80 sec), in particular, the fine ore ratio (−) indicating the ratio of the weight of the suspended spring water containing the polymer flocculant and the moisture adsorbent to the weight of the rose is 7 or more. To. At this time, when the polymer flocculant in an amount corresponding to 0.4 to 1.0 mass% was added to the suspended spring water, a better effect was obtained.
なお、懸濁湧水中に高分子凝集剤を添加した上で、さらにそこに別のバラ物であるカラジャス鉄鉱石を加えて混ぜ合わせると添加の効果がさらに向上することもわかった。 It was also found that the addition effect was further improved by adding a polymer flocculant to the suspended spring water and then adding another rose carajas iron ore to the suspension.
表1において、重量比として示される数値、即ち、懸濁湧水中に含まれるバラ物の重量の割合が、7以上であれば、粉体粒子の凝結・凝集が十分に進行して凝集粒子を確実に得ることができる。なお、凝集粒子とは、例えばグラブバケット等で掴める程度の強度をもつ凝集体となったものである。 In Table 1, if the numerical value shown as the weight ratio, that is, the ratio of the weight of the roses contained in the suspended spring water is 7 or more, the aggregation / aggregation of the powder particles is sufficiently advanced and the aggregated particles are You can definitely get it. The aggregated particles are aggregates having a strength that can be grasped by, for example, a grab bucket.
さらに、本発明の作用効果を確認するために行なった他の実験について説明する。
この実験は、図5に示す鉄製容器Cを用いて、含水バラ物鉱石として水分の多いブラジル産カラジャス鉄鉱石を使用し、上記鉄製容器C中に円錐状に装入し堆積させて水を加え、次いで、その円錐状堆積層のちょうど中央部分を、掴み揚げて、そこにスコップを使って窪みを作って水溜り(懸濁湧水相当)を発生させ、そして、水溜りに前記高分子吸水剤として顆粒状(ビーズ)のポリアクリル塩ナトリウム樹脂を加えた。Furthermore, another experiment conducted for confirming the effect of the present invention will be described.
In this experiment, brazilian calajas iron ore with a high water content was used as the hydrous rose ore using the iron container C shown in FIG. 5, and the water was added to the iron container C in a conical shape and deposited. Then, the central part of the conical sedimentary layer is grabbed and lifted, and a dent is made there with a scoop to generate a puddle (equivalent to a suspended spring), and the polymer water absorption in the puddle A granular (bead) sodium polyacrylic salt resin was added as an agent.
この実験の結果を表2に示す。これによれば、単に高分子吸水剤を添加するだけでは、添加、吸水後の高分子吸水剤がだま状(塊状)となり、取扱いに支障をきたすことが判明した。ここで、高分子吸水剤は、自重の数百倍以上の水分を取り込んで膨潤する薬剤をいう。
例えば、高分子吸水剤(吸水性高分子ポリマー)は、純水中では約400倍に膨潤する特性をもっている。但し、本発明のように、粉体粒子と湧水が懸濁状態にある懸濁湧水では約200倍程度が実用上の限界であることを確認している。なお、添加した高分子吸水剤の膨潤率が小さい時、その膨潤体は跳ねやすく、ベルトコンベアなどによる輸送時にコンベア外へ飛散することが予想されるため、膨潤率にして30倍以上となるようにすることが好ましい。The results of this experiment are shown in Table 2. According to this, it has been found that simply adding a polymer water-absorbing agent makes the polymer water-absorbing agent after the addition and water absorption a dull form (lumps), which hinders handling. Here, the polymer water-absorbing agent refers to a drug that swells by taking in water several hundred times or more of its own weight.
For example, a polymer water-absorbing agent (water-absorbing polymer polymer) has a characteristic of swelling about 400 times in pure water. However, as in the present invention, it has been confirmed that about 200 times is the practical limit for suspended spring water in which powder particles and spring water are in a suspended state. In addition, when the swelling rate of the added polymer water-absorbing agent is small, the swollen body is likely to jump and is expected to scatter outside the conveyor when transported by a belt conveyor or the like, so that the swelling rate is 30 times or more. It is preferable to make it.
懸濁湧水Wmに対する上記水分吸着剤(吸水性高分子ポリマー)の添加量は、前記膨潤率に換算して約200倍以内にするには、懸濁湧水に対する該水分吸着剤の量を0.5mass%超の添加量にする。また、膨潤率30倍以上にする場合、該水分吸着剤の添加量は3.3mass%以内とする。
表2に示したように、膨潤率が100倍以内なら、水分吸着剤の添加量は1.0mass%以上が、そして、膨潤率50倍以内では、水分吸着剤の添加量は2.0mass%以下が好ましいと言える。The amount of the water adsorbent (water-absorbing polymer) added to the suspended spring water Wm should be approximately 200 times in terms of the swelling rate. Addition amount exceeding 0.5 mass%. When the swelling ratio is 30 times or more, the amount of the moisture adsorbent added is within 3.3 mass%.
As shown in Table 2, if the swelling rate is within 100 times, the amount of water adsorbent added is 1.0 mass% or more, and if the swelling rate is within 50 times, the amount of water adsorbent added is 2.0 mass%. It can be said that the following is preferable.
前述したように、この実験では、カラジャス鉄鉱石にポリアクリル酸ナトリウム樹脂顆粒を単に添加しただけでも、だま状(塊状)にはなるが、粉体粒子入り懸濁湧水の吸着作用としては弱く、それ故にさらに何らかの処理を加える必要のあることが判明した。そこで、この実験においては、中央窪み4部分に生じた前記水溜り部分をスコップによって掻き混ぜる攪拌操作を行なった。なお、この掻き混ぜの操作は、実機でのグラブバケットによる掴み揚げ、開放落下の繰り返し操作、あるいは、連続式アンローダのバケットによる掻き寄せ方向の切り替えを繰返す操作による攪拌操作を模擬したものである。
As described above, in this experiment, simply adding sodium polyacrylate resin granules to Carajas iron ore results in a lumpy shape (agglomeration), but it is weak as an adsorbing action of suspended spring water containing powder particles. Therefore, it was found that some further processing was necessary. Therefore, in this experiment, a stirring operation was performed in which the water pool portion formed in the
輸入過程において水分とバラ物とが分離して国内到着時に船倉底部に湧水が溜まった状態になる鉄鉱石であるカラジャス鉄鉱石を例にとって説明する。 The explanation will be given by taking Carajas iron ore, which is an iron ore, in which water and roses are separated in the import process and spring water accumulates at the bottom of the hold when it arrives in Japan.
図6(a)に示す状態にある鉄鉱石の荷揚げにおいて、水分値が7.9mass%〜24.7mass%のカラジャス鉄鉱石を運搬船から荷揚げする際、アクリルアミド系高分子凝集剤を懸濁湧水量に対し、0.6mass%に相当する薬液濃度になるような量を添加した。この懸濁湧水Wmの量に対する高分子凝集剤の量は、懸濁湧水Wmがグラブバケットで掴み取った後に発生するため、グラブバケット容量から推定し、添加すべき高分子凝集剤の量を決定するという方法で行なった。同様に、重量比として示される、バラ物重量と懸濁湧水重量との比である粉鉱比:7以上の判定も、グラブバケット容量から推定して行った。 In unloading iron ore in the state shown in FIG. 6 (a), when unloading Carajas iron ore with a moisture value of 7.9 mass% to 24.7 mass% from the carrier, the acrylamide polymer flocculant is suspended. On the other hand, an amount such that the chemical concentration corresponding to 0.6 mass% was obtained was added. The amount of the polymer flocculant with respect to the amount of the suspended spring water Wm is generated after the suspended spring water Wm is grabbed by the grab bucket. Therefore, the amount of the polymer flocculant to be added is estimated from the grab bucket capacity. It was done by the method of determining. Similarly, the determination of the ratio of fine ore ratio: 7 or more, which is the ratio of the weight of the bulk material and the weight of the suspended spring, shown as the weight ratio, was also estimated from the grab bucket capacity.
次に、船倉内の鉱石堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子凝集剤を添加した後、その懸濁湧水Wmの周囲のバラ物(カラジャス鉄鉱石)をその懸濁湧水Wm中に、懸濁湧水Wmの約10倍相当を加えてグラブバケットを使って30〜80秒掻き混ぜた。即ち、グラブバケット5にてバラ物(高分子凝集剤)の掴み揚げと開放落下の各操作を繰り返した後に、荷揚げの作業を行なった。
その結果、懸濁湧水Wmに高分子凝集剤を加えてかき混ぜることによって、懸濁湧水Wmの粉体粒子と湧水を高分子ポリマーによって絡めとる作用が促進され、ポリマーによって凝結した粒子がさらに大きな塊(凝集粒子)を作って、荷揚げが可能になった。Next, after adding a polymer flocculant to the suspended spring water Wm generated in the depression generated in the ore deposit in the hold, the roses (carajas iron ore) around the suspended spring water Wm About 10 times the suspension spring water Wm was added to the suspension spring water Wm, and stirred for 30 to 80 seconds using a grab bucket. That is, after the grabbing
As a result, by adding a polymer flocculant to the suspension spring Wm and stirring, the action of entanglement of the powder particles and the spring water of the suspension spring Wm with the polymer polymer is promoted, and the particles condensed by the polymer are Larger lumps (aggregated particles) can be made and unloaded.
特に、従来、船底に多量の湧水が残っていたが、上記の処理によって残湧水も少なくなった。以上の結果から、従来のカラジャス鉄鉱石の輸送では、カラジャス鉄鉱石自体に水分が多いため、陸上への荷揚げに際しては、湧水が多く発生するため、間欠的に懸濁湧水Wmの除去(排水)作業を行ないつつ実施していたものが、本発明に適合する上記の荷揚げ方法を採用すると、湧水の発生がない時の効率を100%とした時、排水作業を行なう荷揚げでは、65%の効率しか出せなかったものが、約92%の効率を達成することができた。 In particular, a large amount of spring water has remained in the bottom of the ship, but the remaining spring water has been reduced by the above treatment. From the above results, in the conventional transport of the Carajas iron ore, the Carajas iron ore itself has a lot of water, so when unloading it to the land, a lot of spring water is generated. If the above-described unloading method conforming to the present invention is employed while performing the (drainage) operation, the unloading operation for drainage operation is 65% when the efficiency when no spring water is generated is 100%. An efficiency of about 92% could be achieved, although only an efficiency of% was achieved.
図6(a)に示す状態にあるバラ物2の一例であるカラジャス鉄鉱石を運搬船の船倉1から荷揚げする際、実施例1の高分子凝集剤に代えて、高分子吸水剤であるポリアクリル酸塩樹脂顆粒を懸濁湧水量に対し、1.0〜2.0mass%に相当する量を添加した。
When unloading the Carajas iron ore, which is an example of the
この懸濁湧水の量に対する高分子吸水剤の量は、懸濁湧水Wmが、グラブバケットで掴み取った後の窪み4に発生するため、グラブバケット5容量から推定し、添加すべき高分子吸収剤の量を決定するという方法で行なった。同様に、重量比としての、懸濁湧水量に対するバラ物の重量の比率を示す数値7以上の判定もグラブバケット容量から推定して行った。
The amount of the polymer water-absorbing agent relative to the amount of the suspended spring is estimated from the capacity of the
次に、船倉内の鉱石堆積層に生じた窪み4部分に発生した懸濁湧水Wmに、高分子吸水剤を添加した後、その懸濁湧水Wmの周囲のバラ物2(カラジャス鉄鉱石)をその懸濁湧水Wm中に投入し、グラブバケット5を使って掻き混ぜた。即ち、グラブバケット5にてバラ物の掴み揚げと開放落下の各操作を繰り返した後に、荷揚げの作業を繰り返した。
その結果、懸濁湧水Wmに高分子吸水剤を加えてかき混ぜることによって、懸濁湧水Wm中の粉体と湧水分子を高分子吸着剤に吸着する作用が促進され、荷揚げが容易になった。
なお、掴み揚げと開放落下の繰り返しのみでは、高分子吸水剤どうしが集合して大きな塊を作る場合があり、ホッパーで詰り易く、また、高分子吸水剤が分散できても膨潤体は跳ねやすく、輸送中のベルトコンベアからの落下の憂いがあるため、懸濁湧水を吸水した高分子吸水剤の重量に対するバラ物重量の比を示す粉鉱比を7以上とすることにより、バラ物中に、懸濁湧水Wmを吸水した膨潤体(高分子吸水剤)をより分散させた。Next, after adding a polymer water-absorbing agent to the suspended spring water Wm generated in the four depressions generated in the ore deposit in the hold, rose 2 around the suspended spring water Wm (Carajas iron ore) ) Was put into the suspension spring water Wm and stirred using the
As a result, the action of adsorbing the powder and spring water molecules in the suspended spring water Wm to the polymer adsorbent is facilitated by adding the polymer water absorbent to the suspended spring water Wm and stirring, so that unloading is easy. became.
It should be noted that, only by repeated lifting and dropping, the polymer water-absorbing agent may gather together to form a large lump, and it is easy to clog with a hopper, and even if the polymer water-absorbing agent can be dispersed, the swollen body is likely to jump. Because there is a fear of falling from the belt conveyor during transportation, the ratio of the powdered ore weight to the weight of the polymer water-absorbing agent that absorbed suspended spring water is set to 7 or more. In addition, a swollen body (polymer water-absorbing agent) that absorbed the suspended spring water Wm was further dispersed.
これにより、従来は、船底に多量の水が残っていたが、上記の処理によって残湧水も少なくなった。
以上の結果から、カラジャス鉄鉱石の輸送では、カラジャス鉄鉱石自体の水分が多いため、陸上への荷揚げに際しては、湧水が多く、従来は、懸濁湧水Wmの除去(排水)を行ないつつ実施していたものを、本発明に適合する上記の荷揚げ方法を採用すると、湧水の発生がない場合の効率を100%とした時、従来の排水方法での荷揚げでは65%の効率しか出せなかったものが、約90%の効率を達成することができた。Thus, conventionally, a large amount of water remained on the bottom of the ship, but the remaining spring water was reduced by the above treatment.
From the above results, in the transport of Carajas iron ore, the water content of Carajas iron ore itself is high, so there is much spring water when unloading to land, and conventionally, suspended spring water Wm is being removed (drained). If the above-described unloading method conforming to the present invention is adopted, the efficiency when there is no spring water is assumed to be 100%, and unloading by the conventional drainage method can only give an efficiency of 65%. None were able to achieve efficiencies of about 90%.
豪雨時に、連続式アンローダによる荷揚げを継続し、水分過多となった鉄鉱石を例にとって以下に説明する。 The following is an example of iron ore that continues to be unloaded by a continuous unloader during heavy rain and becomes excessively watery.
豪雨中も図7に示すような連続式アンローダのバケットによる荷揚げを継続し、荷揚げ作業が進み、荷揚げ後半の下層部分に達する段階で豪雨による高水分化により湧水が観察され始めた図8(a)に示す状態にある鉄鉱石を、運搬船から荷揚げする際、高分子吸水剤であるポリアクリル酸塩樹脂顆粒を、懸濁湧水量に対し、1.0〜2.0mass%に相当する量を添加した。
この懸濁湧水Wmの量に対する高分子吸水剤の量は、懸濁湧水Wmが、バケットで掘削した後の窪みに発生するため、バケット容量と掘削深さに基づく掘削量から推定し、添加すべき高分子吸収剤の量を決定するという方法で行なった。同様に、後述する重量比として示す数値もバケット容量と掘削深さに基づく掘削量から推定して行った。During the heavy rain, unloading with the bucket of the continuous unloader as shown in Fig. 7 was continued, and the unloading work progressed, and spring water began to be observed due to high moisture due to heavy rain when reaching the lower layer part of the latter half of the unloading (Fig. 8 ( When the iron ore in the state shown in a) is unloaded from the carrier ship, the amount corresponding to 1.0 to 2.0 mass% of the polyacrylate resin granule, which is a polymer water-absorbing agent, with respect to the amount of suspended spring water Was added.
The amount of the polymeric water-absorbing agent relative to the amount of the suspended spring water Wm is estimated from the excavation amount based on the bucket capacity and the excavation depth because the suspended spring water Wm is generated in the depression after excavation with the bucket. This was done by determining the amount of polymer absorbent to be added. Similarly, the numerical value shown as a weight ratio described later was estimated from the excavation amount based on the bucket capacity and the excavation depth.
次に、船倉1内のバラ物堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子吸水剤を添加した後、その懸濁湧水周囲のバラ物をバケットを使ってかき寄せその懸濁湧水中に投入し、バケットを使って掻き混ぜた。
即ち、連続式アンローダのバケットにて掻き寄せ方向の切り替えを繰返す操作による攪拌操作によりバラ物と高分子吸収剤の攪拌を繰り返した後に、荷揚げの作業を継続した。その結果、懸濁湧水Wmに高分子吸水剤を加えてかき混ぜることによって、懸濁湧水中の粉体粒子と湧水分子の、高分吸水剤による吸着作用が促進され、荷揚げが容易になった。
なお、バケットの掻き寄せ方向の切り替えを繰返す攪拌のみでは、高分子吸水剤どうしが集合して大きな塊を作る場合があり、ホッパーで詰り易く、また、高分子吸水剤が分散できても膨潤体は跳ねやすく、輸送中のベルトコンベアからの落下の憂いがあるため、懸濁湧水を吸水した高分子吸水剤の重量に対するバラ物重量の比率を示す粉鉱比を7以上とすることにより、バラ物中に、懸濁湧水Wmを吸水した膨潤体(高分子吸水剤)をより分散させることができた。Next, after adding a polymer water-absorbing agent to the suspended spring water Wm generated in the hollow portion of the bulk material deposit in
That is, after the stirring of the bulk material and the polymer absorbent was repeated by the stirring operation by the operation of repeatedly switching the scraping direction with the bucket of the continuous unloader, the unloading operation was continued. As a result, by adding a polymer water-absorbing agent to the suspended spring water Wm and stirring, the adsorption action of the powder particles and spring water molecules in the suspended spring water by the high water-absorbing agent is promoted, and unloading becomes easy. It was.
It should be noted that with only agitation that repeatedly switches the bucket scraping direction, the polymeric water-absorbing agent may gather together to form a large lump, which is easily clogged with a hopper, and even if the polymeric water-absorbing agent can be dispersed, the swollen body Because it is easy to jump and there is a fear of falling from the belt conveyor during transportation, by setting the ratio of the fine ore weight to the weight of the polymer water absorbent that absorbed the suspended spring water to 7 or more, The swelling body (polymer water-absorbing agent) that absorbed the suspended spring water Wm could be further dispersed in the rose.
荷揚げ途中に、湧水が観察されたときは、従来は、船底に多量の水が残っていたが、上記の処理によって残湧水も少なくなった。以上の結果から、従来は、豪雨中での荷揚げを控えていた。しかるに、陸上への荷揚げに際しては、本発明に適合する上記の荷揚げ方法を採用すると、通常時の効率を100%とした時、長時間の豪雨時の荷揚げでも、約85%の効率を達成することができた。 When spring water was observed during unloading, a large amount of water remained in the bottom of the ship, but the remaining water was also reduced by the above treatment. Based on the above results, conventionally, unloading during heavy rain was refrained. However, when the above-mentioned unloading method conforming to the present invention is adopted when unloading to land, an efficiency of about 85% is achieved even when unloading during heavy rain for a long time when the normal efficiency is 100%. I was able to.
豪雨時に、連続式アンローダによる荷揚げを継続し、水分過多となった石炭を例にとって以下に説明する。 In the following, an explanation will be given by taking as an example coal that has continued to be unloaded by a continuous unloader during heavy rain and has become excessively watery.
豪雨中も図7に示すような連続式アンロータのバケットによる荷揚げを継続し、荷揚げ作業が進み、荷揚げ後半の下層部分に達する段階で豪雨による高水分化により湧水が観察され始めた、図9(a)に示す状態にある石炭を、実施例1、2、3の鉄鉱石の荷揚げと同様に、運搬船から荷揚げする際、高分子吸水剤であるポリアクリル酸塩樹脂顆粒を懸濁湧水量に対し、1.0〜2.0mass%に相当する量を添加した。
この懸濁湧水Wmの量に対する高分子吸収剤の量は、懸濁湧水が、バケットで掘削した後の窪みに発生するため、バケット容量と掘削深さに基づく掘削量から推定し、添加すべき高分子吸収剤の量を決定するという方法で行なった。同様に、重量比として示される数値も、バケット容量と掘削深さに基づく掘削量から推定して行った。During the heavy rain, the unloading with the continuous unrotor bucket as shown in Fig. 7 was continued, the unloading work progressed, and the spring water began to be observed due to the high moisture due to heavy rain when reaching the lower layer part of the latter half of the unloading, Fig. 9 When the coal in the state shown in (a) is unloaded from the carrier ship, similarly to the unloading of the iron ore of Examples 1, 2, and 3, the polyacrylate resin granule that is a polymer water-absorbing agent is suspended in the amount of suspended spring water. The amount corresponding to 1.0 to 2.0 mass% was added.
The amount of the polymer absorbent relative to the amount of suspended spring water Wm is estimated from the amount of excavation based on the bucket capacity and excavation depth, since suspended spring water is generated in the depression after excavating with the bucket. This was done by determining the amount of polymeric absorbent to be used. Similarly, the numerical value shown as the weight ratio was estimated from the excavation amount based on the bucket capacity and the excavation depth.
次に、船倉内のバラ物堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子吸水剤を添加した後、その懸濁湧水周囲の石炭をバケットを使ってその懸濁湧水中に掻き寄せ、バケットを使って掻き混ぜた。即ち、連続式アンローダのバケットにて掻き寄せ方向の切り替えを繰返す操作による攪拌操作により石炭と高分子吸水剤の攪拌を繰り返した後に、荷揚げの作業を継続した。
その結果、懸濁湧水Wmに高分子吸水剤を加えてかき混ぜることによって、懸濁湧水中の粉体粒子と湧水分子を高分子吸水剤によって吸着する作用が促進され、荷揚げが容易になったことが確認できた。
なお、石炭でも鉄鉱石と同様に掻き寄せ方向の切り替えを繰返す攪拌のみでは、高分子吸水剤どうしが集合して大きな塊を作る場合があり、ホッパーで詰り易く、また、高分子吸水剤が分散できても膨潤体は跳ねやすく、輸送中のベルトコンベアからの落下の憂いがあるため、バラ物重量と懸濁湧水を吸水した高分子吸水剤重量との比率を示す粉鉱比(−)を7以上とすることによって、バラ物中に懸濁湧水を吸水した膨潤体(高分子吸水剤)をより分散させた。Next, after adding a polymeric water-absorbing agent to the suspended spring water Wm generated in the hollow portion of the bulk sediment layer in the hold, coal around the suspended spring water is suspended using a bucket. Squeezed into the spring water and stirred using a bucket. That is, after the stirring of the coal and the polymer water-absorbing agent was repeated by the stirring operation by the operation of repeatedly switching the scraping direction with the bucket of the continuous unloader, the unloading operation was continued.
As a result, the action of adsorbing the powder particles and the spring water molecules in the suspended spring water with the polymer water absorbent is facilitated by adding the polymer water absorbent to the suspended spring water Wm, and the unloading becomes easy. I was able to confirm.
As with iron ore, even with coal, stirring only by repeatedly switching the scraping direction may cause polymer water absorbents to gather together to form large lumps, easily clogging with a hopper, and the polymer water absorbent is dispersed. Even if it can, the swollen body is easy to jump, and there is a fear of falling from the belt conveyor during transportation, so the ratio of the weight of the rose and the weight of the polymer water absorbent that absorbed the suspended spring water is the ratio of the fine ore (-) By setting the value to 7 or more, the swollen body (polymer water-absorbing agent) that absorbed suspended spring water in the rose was further dispersed.
荷揚げの途中、湧水が観察されたとき、従来は、船底に多量の水が残っていたが、上記の処理によって残湧水も少なくなった。
以上の結果から、従来は、豪雨中では荷揚げを控えていた陸上への荷揚げに際しては、本発明に適合する上記の荷揚げ方法を採用すると、通常時の効率を100%とした時、長時間の豪雨時での荷揚げでも、約95%の効率を達成することができた。When spring water was observed during unloading, a large amount of water remained in the bottom of the ship, but the remaining water was also reduced by the above treatment.
From the above results, in the past, when unloading to land, which was refrained from unloading in heavy rain, when the above-described unloading method conforming to the present invention is adopted, when the normal efficiency is assumed to be 100%, it takes a long time. Even when unloading during heavy rain, an efficiency of about 95% was achieved.
なお、実施例2〜4とも高分子吸水剤の使用は過少であるので、グラブバケットあるいはバケットを介してベルトコンベアで陸上に荷揚げされた後は、原料ヤードに積み上げられ、そのまま、鉄鉱石は焼結原料として、石炭は、コークス原料として使用可能であった。 In addition, since the use of the polymer water-absorbing agent is too small in both Examples 2 to 4, after being unloaded on the land by a belt conveyor via a grab bucket or bucket, it is stacked in a raw material yard, and iron ore is baked as it is. As a raw material, coal could be used as a coke raw material.
輸入過程において水分とバラ物とが分離して国内到着時に船倉底部に湧水が溜まった状態になる鉄鉱石であるカラジャス鉄鉱石の、連続式アンローダによる荷揚げを例にとって説明する。 An example will be given of the unloading of a Carajas iron ore, which is an iron ore that separates moisture and bulk from the import process and causes spring water to accumulate at the bottom of the hold when it arrives in Japan.
図6(a)に示す状態にある鉄鉱石の荷揚げにおいて、水分値が7.9mass%〜24.7mass%のカラジャス鉄鉱石を運搬船から荷揚げする際、アクリルアミド系高分子凝集剤を懸濁湧水量に対し、0.6mass%に相当する薬液濃度になるような量を添加した。この懸濁湧水Wmの量に対する高分子凝集剤の量は、懸濁湧水Wmが連続式アンローダのバケットで掻き取った(掘削)後の窪みに発生するため、グラブバケット容量と掘削深さに基づく掘削量から窪み量を求め、この窪みに生じている懸濁湧水Wmを推定し、添加すべき高分子凝集剤の量を決定するという方法で行なった。同様に、重量比として示される、バラ物重量の、高分子凝集剤を含む懸濁湧水Wmの重量に対する比である数値7も、バケット容量と掘削深さに基づく掘削量から窪み量を求め、この窪みに生じている懸濁湧水Wm量を推定して行った。
In unloading iron ore in the state shown in FIG. 6 (a), when unloading Carajas iron ore with a moisture value of 7.9 mass% to 24.7 mass% from the carrier, the acrylamide polymer flocculant is suspended. On the other hand, an amount such that the chemical concentration corresponding to 0.6 mass% was obtained was added. The amount of polymer flocculant relative to the amount of suspended spring water Wm is generated in the recess after the suspended spring water Wm is scraped (excavated) by the bucket of the continuous unloader. The amount of depression was obtained from the amount of excavation based on the above, the suspended spring water Wm generated in this depression was estimated, and the amount of the polymer flocculant to be added was determined. Similarly, the
次に、船倉内の鉱石堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子凝集剤を添加した後、その懸濁湧水Wmの周囲のバラ物(カラジャス鉄鉱石)をその懸濁湧水Wm中に、該懸濁湧水Wmの約10倍相当を加えてバケットを使ってバラ物を掻き寄せ、30〜80秒掻き混ぜた。
即ち、連続式アンローダのバケットにて掻き寄せ方向の切り替えを繰返す操作による攪拌操作によりバラ物と高分子凝集剤の攪拌を繰り返した後に、荷揚げの作業を継続した。
その結果、懸濁湧水Wmに高分子凝集剤を加えてかき混ぜることによって、グラブバケットを使用するときと同じように、懸濁湧水Wm中の粉体粒子と湧水を高分子ポリマーによって絡めとる作用が促進され、ポリマーによって凝結した粒子がさらに大きな塊(凝集粒子)を作って、荷揚げが可能になった。Next, after adding a polymer flocculant to the suspended spring water Wm generated in the depression generated in the ore deposit in the hold, the roses (carajas iron ore) around the suspended spring water Wm About 10 times as much as the suspension spring Wm was added to the suspension spring Wm, and the roses were scraped using a bucket and stirred for 30 to 80 seconds.
That is, after the stirring of the bulk material and the polymer flocculant was repeated by the stirring operation by the operation of repeatedly switching the scraping direction with the bucket of the continuous unloader, the unloading operation was continued.
As a result, by adding a polymer flocculant to the suspended spring water Wm and stirring, the powder particles and the spring water in the suspended spring water Wm are entangled with the polymer polymer in the same way as when using a grab bucket. The action to take is promoted, and the particles condensed by the polymer form larger lumps (aggregated particles) and can be unloaded.
特に、従来、船底に多量の湧水が残っていたが、上記の処理によって残湧水もほとんどみられなくなった。以上の結果から、従来のカラジャス鉄鉱石の輸送では、カラジャス鉄鉱石自体に水分が多く、陸上への荷揚げに際しては、湧水が多く発生するため、間欠的に懸濁湧水Wmの除去(排水)作業を行ないつつ実施していたものが、本発明に適合する上記の荷揚げ方法を採用すると、湧水の発生がない時の効率を100%とした時、排水作業を行なう荷揚げでは、65%の効率しか出せなかったものが、約93%の効率を達成することができた。 In particular, a large amount of spring water has remained in the bottom of the ship, but the remaining water is hardly seen by the above treatment. From the above results, in the conventional transport of Carajas iron ore, there is a lot of water in the Carajas iron ore itself, and a lot of spring water is generated when unloading to land, so intermittent removal of suspended spring water Wm (drainage) ) If the above-mentioned unloading method conforming to the present invention is adopted while performing the work, the unloading work is 65% when the efficiency is 100% when no spring water is generated. However, it was possible to achieve an efficiency of about 93%.
豪雨時に、連続式アンローダによる荷揚げを継続し、水分過多となった鉄鉱石の荷揚げを例にとって以下に説明する。 In the following, an example of unloading iron ore that has continued to be unloaded by continuous unloader during heavy rain and has become excessively watery will be described.
豪雨中も図7に示すような連続式アンローダのバケットによる荷揚げを継続し、荷揚げ作業が進み、荷揚げ後半の下層部分に達する段階で豪雨による高水分化により湧水が観察され始めた図8(a)に示す状態にある鉄鉱石を、運搬船から荷揚げする際、アクリルアミド系高分子凝集剤を懸濁湧水量に対し、0.6mass%に相当する薬液濃度になるような量を添加した。
この懸濁湧水Wmの量に対する高分子凝集剤の量は、懸濁湧水Wmが、バケットで掘削した後の窪みに発生するため、バケット容量と掘削深さに基づく掘削量から窪み量を求め、この窪みに生じている懸濁湧水Wm量を推定し、添加すべき高分子凝集剤の量を決定するという方法で行なった。
同様に、後述する重量比としての、懸濁湧水を吸水した高分子凝集剤の重量に対するバラ物の重量の比率を示す数値(粉鉱比)も、バケット容量と掘削深さに基づく掘削量から推定して行った。During the heavy rain, unloading with the bucket of the continuous unloader as shown in Fig. 7 was continued, and the unloading work progressed, and spring water began to be observed due to high moisture due to heavy rain when reaching the lower layer part of the latter half of the unloading (Fig. 8 ( When the iron ore in the state shown in a) was unloaded from the carrier ship, an amount of acrylamide polymer flocculant was added to a concentration of chemical solution corresponding to 0.6 mass% with respect to the amount of suspended spring water.
The amount of the polymer flocculant with respect to the amount of the suspended spring water Wm is generated in the depression after the suspended spring water Wm is excavated with the bucket. Therefore, the amount of depression is calculated from the excavation amount based on the bucket capacity and the excavation depth. The amount of suspended spring water Wm generated in the depression was estimated and the amount of the polymer flocculant to be added was determined.
Similarly, the numerical value indicating the ratio of the weight of the bulk material to the weight of the polymer flocculant that absorbed suspended spring water (the ratio of fine ore) as the weight ratio described later is also the amount of excavation based on the bucket capacity and the excavation depth. It was estimated from.
次に、船倉1内のバラ物堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子凝集剤を添加した後、その懸濁湧水周囲のバラ物をバケットを使ってかき寄せその懸濁湧水中に投入し、バケットを使って掻き混ぜた。
即ち、連続式アンローダのバケットにて掻き寄せ方向の切り替えを繰返す操作による攪拌操作によりバラ物と高分子凝集剤の攪拌を繰り返した後に、荷揚げの作業を継続した。
その結果、懸濁湧水Wmに高分子凝集剤を加えてかき混ぜることによって、懸濁湧水Wm中の粉体粒子と湧水を高分子ポリマーによって絡めとる作用が促進され、ポリマーによって凝結した粒子がさらに大きな塊(凝集粒子)を作って、荷揚げが可能になった。Next, after adding a polymer flocculant to the suspended spring water Wm generated in the hollow portion generated in the bulk sediment layer in
That is, after the stirring of the bulk material and the polymer flocculant was repeated by the stirring operation by the operation of repeatedly switching the scraping direction with the bucket of the continuous unloader, the unloading operation was continued.
As a result, by adding a polymer flocculant to the suspended spring water Wm and stirring, the action of entwining the powder particles and the spring water in the suspended spring water Wm with the polymer polymer is promoted, and the particles condensed by the polymer Made a larger lump (agglomerated particles) that could be unloaded.
荷揚げ途中に、湧水が観察されたときは、従来は、船底に多量の水が残っていたが、上記の処理によって残湧水も少し観察される程度であった。
以上の結果から、従来は、豪雨中での荷揚げを控えていた。しかるに、陸上への荷揚げに際しては、本発明に適合する上記の荷揚げ方法を採用すると、通常時の効率を100%とした時、長時間の豪雨時の荷揚げでも、約87%の効率を達成することができた。When spring water was observed during unloading, a large amount of water remained in the bottom of the ship in the past, but only a small amount of residual spring water was observed by the above treatment.
Based on the above results, conventionally, unloading during heavy rain was refrained. However, when the above-mentioned unloading method conforming to the present invention is adopted when unloading to land, the efficiency of about 87% is achieved even when unloading during heavy rain for a long time when the normal efficiency is set to 100%. I was able to.
豪雨時に、連続式アンローダによる荷揚げを継続し、高分子凝集剤単体では改質が出来ない状態(粉鉱比が7未満)の水分過多となった鉄鉱石を例にとって以下に説明する。 In the following, an explanation will be given by taking as an example an iron ore that has continued to be unloaded by a continuous unloader during heavy rain and has become excessively watery in a state in which the polymer flocculant alone cannot be modified (the fine ore ratio is less than 7).
豪雨中も図9に示すような連続式アンローダのバケットによる荷揚げを継続し、荷揚げ作業が進み、荷揚げ後半の下層部分に達する段階で豪雨による高水分化により湧水が観察され始めた図9(a)に示す状態にある鉄鉱石を、運搬船から荷揚げする際、アクリルアミド系高分子凝集剤を懸濁湧水量に対し、0.6mass%に相当する薬液濃度になるような量を添加し、その後、粉鉱比にして7未満となる懸濁湧水量に対し、高分子吸水剤であるポリアクリル酸塩樹脂顆粒を、1.0超〜2.0mass%添加した。
この懸濁湧水Wmの量に対する高分子吸水剤および高分子凝集剤の添加量は、懸濁湧水Wmが、バケットで掘削した後の窪みに発生するため、バケット容量と掘削深さに基づく掘削量から推定し、添加すべき薬剤の量を決定するという方法で行なった。During heavy rain, unloading with a continuous unloader bucket as shown in Fig. 9 was continued, and unloading work progressed, and spring water began to be observed due to high moisture due to heavy rain when it reached the lower layer part of the latter half of unloading (Fig. 9 ( When the iron ore in the state shown in a) is unloaded from the carrier ship, the acrylamide polymer flocculant is added to the suspended spring water in such an amount that the chemical concentration is equivalent to 0.6 mass%, and then More than 1.0 to 2.0 mass% of a polyacrylate resin granule, which is a polymer water-absorbing agent, was added with respect to the amount of suspended spring water that is less than 7 in terms of the powder ore ratio.
The amount of the polymer water-absorbing agent and the polymer flocculant added to the amount of the suspended spring water Wm is based on the bucket capacity and the excavation depth because the suspended spring water Wm is generated in the depression after excavating with the bucket. It was estimated from the amount of excavation, and was performed by determining the amount of drug to be added.
次に、船倉1内のバラ物堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子凝集剤及び高分子吸水剤を添加した後、その懸濁湧水周囲のバラ物をバケットを使ってかき寄せその懸濁湧水中に投入し、バケットを使って掻き混ぜた。
即ち、連続式アンローダのバケットにて掻き寄せ方向の切り替えを繰返す操作による攪拌操作によりバラ物と高分子凝集剤、高分子吸収剤の攪拌を繰り返した後に、荷揚げの作業を継続した。
その結果、懸濁湧水Wmに高分子吸水剤を加えてかき混ぜることによって、高分子凝集剤単体では改質しきれなかった水分が高分子吸水剤に吸着され、残った懸濁湧水中の粉体粒子と湧水分子の、高分子凝集剤による改質作用が促進され、荷揚げが容易になった。
なお、高分子吸水剤と高分子凝集剤の添加順序は逆、もしくは同時に添加しても同様の効果が得られた。Next, after adding a polymer flocculant and a polymer water-absorbing agent to the suspended spring water Wm generated in the hollow portion generated in the rose deposit layer in
That is, after the stirring of the rose, the polymer flocculant, and the polymer absorbent was repeated by the stirring operation by repeatedly switching the scraping direction with the bucket of the continuous unloader, the unloading operation was continued.
As a result, by adding a polymer water-absorbing agent to the suspended spring water Wm and stirring, the water that could not be modified by the polymer flocculant alone was adsorbed by the polymer water-absorbing agent, and the remaining suspended spring water powder The modification of body particles and spring water molecules by the polymer flocculant was promoted, and unloading became easier.
The order of addition of the polymer water-absorbing agent and the polymer flocculant was reversed, or the same effect was obtained even when they were added simultaneously.
荷揚げ途中に、湧水が観察されたときは、従来は、船底に多量の水が残っていたが、上記の処理によって残湧水も殆ど見られなくなった。
以上の結果から、従来は、豪雨中での荷揚げを控えていた。しかるに、陸上への荷揚げに際しては、本発明に適合する上記の荷揚げ方法を採用すると、通常時の効率を100%とした時、長時間の豪雨時の荷揚げでも、約90%の効率を達成することができた。When spring water was observed during unloading, a large amount of water remained in the bottom of the ship, but the remaining water was hardly seen by the above treatment.
Based on the above results, conventionally, unloading during heavy rain was refrained. However, when the above-mentioned unloading method conforming to the present invention is adopted when unloading to land, an efficiency of about 90% is achieved even when unloading during heavy rain for a long time when the normal efficiency is set to 100%. I was able to.
豪雨時に、グラブ式アンローダによる荷揚げを継続し、高分子凝集剤単体では改質が出来ない状態(粉鉱比が7未満)の水分過多となった鉄鉱石を例にとって以下に説明する。 An explanation will be given below of iron ore that continues to be unloaded by a grab type unloader during heavy rain and has become excessively watery in a state where the polymer flocculant cannot be modified alone (the ratio of the fine ore is less than 7).
豪雨中も図10に示すようなグラブ式アンローダによる荷揚げを継続し、荷揚げ作業が進み、荷揚げ後半の下層部分に達する段階で豪雨による高水分化により湧水が観察され始めた図10(a)に示す状態にある鉄鉱石を、運搬船から荷揚げする際、アクリルアミド系高分子凝集剤を懸濁湧水量に対し、0.6mass%に相当する薬液濃度になるような量を添加し、その後、粉鉱比にて7未満となる懸濁湧水量に対し、高分子吸水剤であるポリアクリル酸塩樹脂顆粒を1.0超〜2.0mass%添加した。
この懸濁湧水Wmの量に対する高分子吸水剤および高分子凝集剤の添加量は、懸濁湧水Wmが、グラブバケットで掘削した後の窪みに発生するため、バケット容量と掘削深さに基づく掘削量から推定し、添加すべき薬剤の量を決定するという方法で行なった。During heavy rain, unloading with a grab type unloader as shown in Fig. 10 was continued, and unloading work progressed, and spring water began to be observed due to high moisture due to heavy rain when reaching the lower layer part of the latter half of unloading. When the iron ore in the state shown in Fig. 2 is unloaded from the carrier, an amount of acrylamide polymer flocculant is added to the suspension spring water so that the chemical concentration is equivalent to 0.6 mass%, More than 1.0 to 2.0 mass% of a polyacrylate resin granule, which is a polymer water-absorbing agent, was added to the amount of suspended spring water that was less than 7 in the mineral ratio.
The amount of the polymer water-absorbing agent and the polymer flocculant added to the amount of the suspended spring water Wm depends on the bucket capacity and the excavation depth because the suspended spring water Wm is generated in the depression after excavating with the grab bucket. It was estimated by the amount of excavation based on the method, and the amount of drug to be added was determined.
次に、船倉内の鉱石堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子吸水剤及び高分子凝集剤を添加した後、その懸濁湧水Wmの周囲のバラ物(カラジャス鉄鉱石)をその懸濁湧水Wm中に加えてグラブバケットを使って30〜80秒掻き混ぜた。即ち、グラブバケットにてバラ物(高分子凝集剤)の掴み揚げと開放落下の各操作を繰り返した後に、荷揚げの作業を行なった。
その結果、懸濁湧水Wmに高分子吸水剤を加えてかき混ぜることによって、高分子凝集剤単体では改質しきれなかった水分が高分子吸水剤に吸着され、残った懸濁湧水中の粉体粒子と湧水分子の、高分子凝集剤による改質作用が促進され、荷揚げが容易になった。
なお、高分子吸水剤と高分子凝集剤の添加順序は逆、もしくは同時に添加しても同様の効果が得られた。Next, after adding a polymer water-absorbing agent and a polymer flocculant to the suspended spring water Wm generated in the hollow portion generated in the ore deposit in the hold, the roses around the suspended spring water Wm ( Carajas iron ore) was added to the suspended spring water Wm and stirred for 30 to 80 seconds using a grab bucket. That is, after each operation of grabbing roses (polymer flocculant) and opening and dropping with a grab bucket was repeated, the unloading operation was performed.
As a result, by adding a polymer water-absorbing agent to the suspended spring water Wm and stirring, the water that could not be modified by the polymer flocculant alone was adsorbed by the polymer water-absorbing agent, and the remaining suspended spring water powder The modification of body particles and spring water molecules by the polymer flocculant was promoted, and unloading became easier.
The order of addition of the polymer water-absorbing agent and the polymer flocculant was reversed, or the same effect was obtained even when they were added simultaneously.
荷揚げ途中に、湧水が観察されたときは、従来は、船底に多量の水が残っていたが、上記の処理によって残湧水も殆ど見られなくなった。
以上の結果から、従来は、豪雨中での荷揚げを控えていた。しかるに、陸上への荷揚げに際しては、本発明に適合する上記の荷揚げ方法を採用すると、通常時の効率を100%とした時、長時間の豪雨時の荷揚げでも、約93%の効率を達成することができた。When spring water was observed during unloading, a large amount of water remained in the bottom of the ship, but the remaining water was hardly seen by the above treatment.
Based on the above results, conventionally, unloading during heavy rain was refrained. However, when the above-mentioned unloading method conforming to the present invention is adopted when unloading to land, an efficiency of about 93% is achieved even when unloading during heavy rain for a long time, assuming that the efficiency during normal times is 100%. I was able to.
本発明の上述したバラ物の荷揚げ技術は、例示した含水鉱石や石炭の他、砂利、砂、穀物等のバラ物の荷揚げ作業にも適用が可能である。 The above-described technique for unloading roses according to the present invention can be applied to the unloading work of loose objects such as gravel, sand, and grains in addition to the exemplified hydrous ore and coal.
1 船倉
2 バラ物
3 水溜り
4 窪み
5 バケット
A 水分吸着剤
C 鉄製容器
P 粉体
Wm 懸濁湧水 DESCRIPTION OF
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/084038 WO2014103005A1 (en) | 2012-12-28 | 2012-12-28 | Method for unloading water-containing bulk material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2014103005A1 JPWO2014103005A1 (en) | 2017-01-12 |
JP6066129B2 true JP6066129B2 (en) | 2017-01-25 |
Family
ID=51020156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014553996A Active JP6066129B2 (en) | 2012-12-28 | 2012-12-28 | Unloading method of water-containing roses |
Country Status (7)
Country | Link |
---|---|
JP (1) | JP6066129B2 (en) |
KR (1) | KR101773271B1 (en) |
CN (1) | CN104870343B (en) |
AU (1) | AU2012397782B2 (en) |
BR (1) | BR112015014549B1 (en) |
CA (1) | CA2894830C (en) |
WO (1) | WO2014103005A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112016022304B1 (en) * | 2014-04-01 | 2023-04-25 | Jfe Steel Corporation | METHOD FOR PROCESSING A BULK MATERIAL CONTAINING WATER AND APPARATUS FOR ADDING FLOCULANT TO BULK MATERIAL CONTAINING WATER |
JP7011480B2 (en) * | 2018-02-02 | 2022-01-26 | 株式会社Ihi | Unloading device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60204526A (en) * | 1984-03-29 | 1985-10-16 | Nisshin Steel Co Ltd | Method of removing moisture from ship hold during landing of ore |
JP2000176493A (en) * | 1998-12-17 | 2000-06-27 | Kyoei Kinzoku Kogeisha:Kk | Sludge solidifying material and solidifying treatment |
JP2002371279A (en) * | 2001-06-14 | 2002-12-26 | Chuo Kogyo Kk | Soil conditioner |
JP2005013973A (en) * | 2003-06-25 | 2005-01-20 | Eco Project:Kk | Solidification material of sludge, processing method of sludge using the same and reutilizing method of solidified sludge |
JP2006110537A (en) * | 2004-09-16 | 2006-04-27 | Idemitsu Kosan Co Ltd | Method and agent for treating livestock excrement |
JP2006305537A (en) * | 2005-04-28 | 2006-11-09 | Okamoto Kogyo Kk | Technique concerned with treatment of high water content sludge in water treatment plant by high water absorption resin |
JP2008088304A (en) * | 2006-10-02 | 2008-04-17 | Nippon Poly-Glu Co Ltd | Flowability suppression method for mud of high water content ratio and flowability suppressing agent used for this |
JP5817974B2 (en) * | 2011-07-25 | 2015-11-18 | Jfeスチール株式会社 | Unloading method of water-containing roses |
JP5910810B2 (en) * | 2011-07-25 | 2016-04-27 | Jfeスチール株式会社 | Unloading method of water-containing roses |
-
2012
- 2012-12-28 BR BR112015014549-3A patent/BR112015014549B1/en active IP Right Grant
- 2012-12-28 KR KR1020157016059A patent/KR101773271B1/en active IP Right Grant
- 2012-12-28 AU AU2012397782A patent/AU2012397782B2/en active Active
- 2012-12-28 CA CA2894830A patent/CA2894830C/en active Active
- 2012-12-28 CN CN201280077987.6A patent/CN104870343B/en active Active
- 2012-12-28 JP JP2014553996A patent/JP6066129B2/en active Active
- 2012-12-28 WO PCT/JP2012/084038 patent/WO2014103005A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
AU2012397782A1 (en) | 2015-07-09 |
CN104870343A (en) | 2015-08-26 |
WO2014103005A1 (en) | 2014-07-03 |
JPWO2014103005A1 (en) | 2017-01-12 |
CA2894830C (en) | 2018-02-20 |
CA2894830A1 (en) | 2014-07-03 |
CN104870343B (en) | 2017-04-05 |
KR101773271B1 (en) | 2017-08-31 |
BR112015014549A2 (en) | 2017-07-11 |
KR20150086509A (en) | 2015-07-28 |
BR112015014549B1 (en) | 2020-12-22 |
AU2012397782B2 (en) | 2016-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5817974B2 (en) | Unloading method of water-containing roses | |
JP2006525104A (en) | Treatment of aqueous suspension | |
KR101869330B1 (en) | Method for modifying slurry of coal and/or iron ore | |
JP2009537315A (en) | Treatment of aqueous suspension | |
EP3744742A1 (en) | Process for production of multivalent cation-containing copolymer | |
JP5910810B2 (en) | Unloading method of water-containing roses | |
TWI558639B (en) | Discharge Handling Method for Waterborne Bulk Cargo | |
JP6041627B2 (en) | Method for conveying steelmaking raw material and method for producing solidified ironmaking raw material | |
CA2983393A1 (en) | Separation of suspensions of solids employing water soluble polymer and a chemical agent | |
JP6066129B2 (en) | Unloading method of water-containing roses | |
CN106186636A (en) | A kind of water silt cleaning and harmless treatment and disposal system | |
JP6041109B2 (en) | Unloading method of water-containing roses | |
TWI558640B (en) | Discharge method of watery bulk cargo | |
JP2015129053A (en) | Method for landing aqueous bulk material | |
JP6505668B2 (en) | Method for treating hydrated solid and flocculant addition device to hydrated solid | |
JP6131902B2 (en) | Device for adding chemicals to water-containing roses | |
JP4035090B2 (en) | Processing method of building excavated soil | |
JP2004321939A (en) | Volumetric reducing treatment method for dehydrated cake and volumetric reducing treatment machine therefor | |
CA2335330C (en) | Method and apparatus for the beneficiation of ores | |
CN203577459U (en) | On-line separation and dewatering device | |
KR20130128318A (en) | Method of conveying stell raw material and method of manufacturing solidified substrate of steel raw material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6066129 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |