JP6065746B2 - Layered rock salt structure active material manufacturing method, layered rock salt structure active material - Google Patents

Layered rock salt structure active material manufacturing method, layered rock salt structure active material Download PDF

Info

Publication number
JP6065746B2
JP6065746B2 JP2013107773A JP2013107773A JP6065746B2 JP 6065746 B2 JP6065746 B2 JP 6065746B2 JP 2013107773 A JP2013107773 A JP 2013107773A JP 2013107773 A JP2013107773 A JP 2013107773A JP 6065746 B2 JP6065746 B2 JP 6065746B2
Authority
JP
Japan
Prior art keywords
active material
rock salt
salt structure
layered rock
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013107773A
Other languages
Japanese (ja)
Other versions
JP2014229465A (en
Inventor
武文 福本
武文 福本
正則 原田
正則 原田
大 松代
大 松代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013107773A priority Critical patent/JP6065746B2/en
Publication of JP2014229465A publication Critical patent/JP2014229465A/en
Application granted granted Critical
Publication of JP6065746B2 publication Critical patent/JP6065746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は層状岩塩構造の活物質の製造方法、層状岩塩構造の活物質に関する。   The present invention relates to a method for producing an active material having a layered rock salt structure and an active material having a layered rock salt structure.

従来から、リチウムイオン二次電池の活物質として、種々の材料が用いられている。特に、層状岩塩構造のリチウム複合酸化物である一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表される材料はリチウムイオン二次電池用活物質として汎用されている。そして、より優れたリチウムイオン二次電池用活物質を提供するべく、上記材料に関する検討がさかんに行われている。例えば、特許文献1には、粉末X線回折測定において、(104)面に由来するピーク強度I(104)に対する(003)面に由来するピーク強度I(003)の強度比I(003)/I(104)が0.8以上であるリチウム複合酸化物が記載され、当該リチウム複合酸化物を種々の方法で製造することが記載されている。その他、特許文献2〜3に開示されるように、リチウム複合酸化物の粉末X線回折測定における強度比I(003)/I(104)に着目した多くの研究がおこなわれている。 Conventionally, various materials have been used as active materials for lithium ion secondary batteries. In particular, a lithium complex oxide having a layered rock salt structure is represented by the general formula: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1, b + c + d + e = 1, 0 ≦ e <1, D is Li, A material represented by at least one element selected from Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, and Al, 1.7 ≦ f ≦ 2.1) is a lithium ion secondary battery Widely used as an active material. And in order to provide the active material for lithium ion secondary batteries more excellent, the examination regarding the said material is performed extensively. For example, in Patent Document 1, in the powder X-ray diffraction measurement, the intensity ratio I (003) / of the peak intensity I (003) derived from the (003) plane to the peak intensity I (104) derived from the (104) plane. A lithium composite oxide having I (104) of 0.8 or more is described, and it is described that the lithium composite oxide is produced by various methods. In addition, as disclosed in Patent Documents 2 to 3, many studies have been conducted focusing on the intensity ratio I (003) / I (104) in the powder X-ray diffraction measurement of lithium composite oxide.

特開平11−25957号公報Japanese Patent Laid-Open No. 11-25957 特開2013−073833号公報JP 2013-073833 A 特開2013−069583号公報JP 2013-069583 A

リチウムイオン二次電池用活物質に求められる要求は依然として高く、より優れた性能の活物質となり得る材料が切望されている。   The demand for active materials for lithium ion secondary batteries is still high, and materials that can become active materials with higher performance are eagerly desired.

本発明は、このような事情に鑑みて為されたものであり、活物質となり得る材料を原料とする優れた性能の活物質の製造方法、及び、かかる製造方法で製造される活物質を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a method for producing an active material having excellent performance using a material that can be an active material as a raw material, and an active material produced by such a production method. The purpose is to do.

本発明者が鋭意検討した結果、層状岩塩構造のリチウム複合酸化物である一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表される材料に対し、特定の処理を行うと、粉末X線回折測定における(104)面に由来するピーク強度I(104)に対する(003)面に由来するピーク強度I(003)の強度比I(003)/I(104)が向上することを知見した。しかも、当該強度比が向上した材料をリチウムイオン二次電池の活物質として用いると、当該電池の初期容量が増加することを知見し、本発明を完成させるに至った。 As a result of intensive studies by the present inventors, a general formula: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1, b + c + d + e = 1, 0 ≦ e) which is a lithium composite oxide having a layered rock salt structure <1, D is represented by at least one element selected from Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, and Al, 1.7 ≦ f ≦ 2.1) When a specific treatment is performed on the material, the intensity ratio I (003) of the peak intensity I (003) derived from the (003) plane to the peak intensity I (104) derived from the (104) plane in powder X-ray diffraction measurement. ) / I (104) was found to be improved. In addition, when a material having an improved strength ratio is used as an active material for a lithium ion secondary battery, it has been found that the initial capacity of the battery is increased, and the present invention has been completed.

本発明の活物質の製造方法は、VOSO及びMPO(MはH、Li、Na、K、NHからそれぞれ独立に選択される。)を含む活物質改質用水溶液を調製する水溶液調製工程と、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表される材料を前記活物質改質用水溶液に浸漬する浸漬工程と、を含むことを特徴とする。 The method for producing an active material of the present invention prepares an aqueous solution for active material modification containing VOSO 4 and M 3 PO 4 (M is independently selected from H, Li, Na, K, and NH 4 ). Aqueous solution preparation process and general formula of layered rock salt structure: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, Cr And at least one element selected from Cu, Zn, Ca, Mg, S, Si, Na, K, and Al, 1.7 ≦ f ≦ 2.1). A dipping step of dipping.

ここで、本発明の製造方法で得られる層状岩塩構造の活物質は一般式:Lia’Nib’Coc’Mnd’e’f’(0.2≦a’≦1、b’+c’+d’+e’=1、0≦e’<1、D’はLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、P、Vから選ばれる少なくとも1の元素、1.7≦f’≦2.1) で表される。 Here, the active material having a layered rock salt structure obtained by the production method of the present invention has a general formula: Li a ′ Ni b ′ Co c ′ Mnd d De ′ O f ′ (0.2 ≦ a ′ ≦ 1, b '+ C' + d '+ e' = 1, 0 ≦ e ′ <1, D ′ is selected from Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, P, V It is represented by at least one element, 1.7 ≦ f ′ ≦ 2.1).

本発明の活物質の製造方法により得られた活物質は、該活物質を用いたリチウムイオン二次電池の初期容量を向上させることができる。   The active material obtained by the method for producing an active material of the present invention can improve the initial capacity of a lithium ion secondary battery using the active material.

以下に、本発明の活物質の製造方法を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x〜y」は、下限xおよび上限yをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。   Below, the best form for implementing the manufacturing method of the active material of this invention is demonstrated. Unless otherwise specified, the numerical range “x to y” described in this specification includes the lower limit x and the upper limit y. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.

本発明の活物質の製造方法は、VOSO及びMPO(MはH、Li、Na、K、NHからそれぞれ独立に選択される。)を含む活物質改質用水溶液を調製する水溶液調製工程と、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表される材料を前記活物質改質用水溶液に浸漬する浸漬工程と、を含むことを特徴とする。 The method for producing an active material of the present invention prepares an aqueous solution for active material modification containing VOSO 4 and M 3 PO 4 (M is independently selected from H, Li, Na, K, and NH 4 ). Aqueous solution preparation process and general formula of layered rock salt structure: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, Cr And at least one element selected from Cu, Zn, Ca, Mg, S, Si, Na, K, and Al, 1.7 ≦ f ≦ 2.1). A dipping step of dipping.

ここで、本発明の製造方法で得られる層状岩塩構造の活物質は一般式:Lia’Nib’Coc’Mnd’e’f’(0.2≦a’≦1、b’+c’+d’+e’=1、0≦e’<1、D’はLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、P、Vから選ばれる少なくとも1の元素、1.7≦f’≦2.1) で表される。 Here, the active material having a layered rock salt structure obtained by the production method of the present invention has a general formula: Li a ′ Ni b ′ Co c ′ Mnd d De ′ O f ′ (0.2 ≦ a ′ ≦ 1, b '+ C' + d '+ e' = 1, 0 ≦ e ′ <1, D ′ is selected from Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, P, V It is represented by at least one element, 1.7 ≦ f ′ ≦ 2.1).

水溶液調製工程は、VOSO及びMPO(MはH、Li、Na、K、NHからそれぞれ独立に選択される。)を含む活物質改質用水溶液を調製する工程である。MPOとしては、HPO、(NH)HPO、(NHHPO、(NHPO、LiHPO、LiHPO、LiPO、NaHPO、NaHPO、NaPO、KHPO、KHPO、KPOを具体的に例示することができる。MPOとしては、HPO、(NH)HPO、(NHHPO、(NHPO、LiHPO、LiHPO、LiPOが好ましく、(NH)HPO、(NHHPO、(NHPO、LiHPO、LiHPOが特に好ましい。水溶液調製工程のMPOとしては、上記の単独の化合物を採用しても良いし、複数の化合物を併用しても良い。また、MPOの無水物を採用しても良いし、各水和物を採用しても良い。水溶液調製工程のVOSOについても同様に、VOSOの無水物を採用しても良いし、各水和物を採用しても良い。 The aqueous solution preparation step is a step of preparing an aqueous solution for active material modification containing VOSO 4 and M 3 PO 4 (M is independently selected from H, Li, Na, K, and NH 4 ). As M 3 PO 4 , H 3 PO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 3 PO 4 , LiH 2 PO 4 , Li 2 HPO 4 , Li 3 PO 4 , NaH 2 PO 4 , Na 2 HPO 4 , Na 3 PO 4 , KH 2 PO 4 , K 2 HPO 4 , K 3 PO 4 can be specifically exemplified. As M 3 PO 4 , H 3 PO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 3 PO 4 , LiH 2 PO 4 , Li 2 HPO 4 , Li 3 PO 4 is preferable, and (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 3 PO 4 , LiH 2 PO 4 , and Li 2 HPO 4 are particularly preferable. As M 3 PO 4 in the aqueous solution preparation step, the above single compound may be employed, or a plurality of compounds may be used in combination. Also, may be employed anhydride M 3 PO 4, it may be adopted each hydrates. Similarly, the VOSO 4 aqueous solution preparation step, may be employed anhydride VOSO 4, may be adopted each hydrates.

水溶液調製工程で用いられるVOSO及びMPOのモル比は特に限定されない。好ましいモル比を例示すると、VOSO:MPO=1:10〜10:1の範囲内が好ましく、1:5〜5:1の範囲内がより好ましく、1:2〜2:1の範囲内が特に好ましい。 The molar ratio of VOSO 4 and M 3 PO 4 used in the aqueous solution preparation step is not particularly limited. Illustrating a preferred molar ratio, VOSO 4 : M 3 PO 4 = 1: 10 to 10: 1 is preferable, 1: 5 to 5: 1 is more preferable, and 1: 2 to 2: 1 Within the range is particularly preferred.

活物質改質用水溶液におけるVOSO又はMPOの濃度は特に限定されない。VOSO又はMPOの好ましいモル濃度を例示すると、0.1mmol/L〜1mol/Lの範囲内が好ましく、0.5mmol/L〜0.5mol/Lの範囲内がより好ましく、1mmol/L〜100mmol/Lの範囲内が特に好ましい。 The concentration of VOSO 4 or M 3 PO 4 in the aqueous solution for active material modification is not particularly limited. When the preferable molar concentration of VOSO 4 or M 3 PO 4 is exemplified, it is preferably within the range of 0.1 mmol / L to 1 mol / L, more preferably within the range of 0.5 mmol / L to 0.5 mol / L. A range of L to 100 mmol / L is particularly preferable.

浸漬工程は、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表される材料を水溶液調製工程で調製された活物質改質用水溶液に浸漬する工程である。浸漬工程においては、撹拌を伴うことが好ましい。 The dipping step is a general formula of a layered rock salt structure: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, Cr, An active material prepared by an aqueous solution preparation step of a material represented by at least one element selected from Cu, Zn, Ca, Mg, S, Si, Na, K, and Al, 1.7 ≦ f ≦ 2.1) It is a step of immersing in the aqueous solution for reforming. The dipping process is preferably accompanied by stirring.

上記層状岩塩構造について説明する。一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1)で表されるリチウム複合金属酸化物の結晶構造は、菱面体晶系であって反転対称のある3回軸と鏡映面を有するものであり、空間群R−3mで表される。なお、「R−3m」において、「−3」は上線を付した3を表したものである。そして、上記一般式の層状岩塩構造は、Liを有する層(面)の3aサイト、NiCoMnを有する層(面)の3bサイト、Oを有する層(面)の6cサイトが、6cサイト、3bサイト、6cサイト、3aサイトの順に繰り返されてなる。ここで、3aサイト、3bサイト、6cサイトとは、Wyckoff記号に従って表した記載である。 The layered rock salt structure will be described. General formula: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, Cr, Cu, Zn, Ca, Mg, The crystal structure of the lithium composite metal oxide represented by at least one element selected from S, Si, Na, K, and Al, 1.7 ≦ f ≦ 2.1) is rhombohedral and inversion symmetric. It has a three-fold axis and a mirror surface, and is represented by a space group R-3m. In “R-3m”, “−3” represents 3 with an overline. Then, the layered rock salt structure of the general formula is a layer having a 3a site, Ni b Co c Mn d D 3b site, O f layers with e (face) of the layer (surface) having a Li a the (surface) The 6c site is repeated in the order of the 6c site, 3b site, 6c site, and 3a site. Here, the 3a site, 3b site, and 6c site are descriptions expressed in accordance with the Wyckoff symbol.

一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1)において、a、b、c、d、e及びfの値は、上記条件を満足するものであれば特に制限はないが、b、c、dの少なくともいずれか一つが0<b<80/100、0<c<50/100、10/100<d<1の範囲であることが好ましく、30/100<b<70/100、10/100<c<30/100、20/100<d<40/100の範囲であることがより好ましく、b=50/100、c=20/100、d=30/100が特に好ましい。層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表される材料は、市販のものを用いても良いし、公知の製造方法で適宜製造したものを用いても良い。 General formula: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, Cr, Cu, Zn, Ca, Mg, In at least one element selected from S, Si, Na, K, and Al, 1.7 ≦ f ≦ 2.1), the values of a, b, c, d, e, and f satisfy the above conditions If there is no particular limitation, at least one of b, c, d is preferably in the range of 0 <b <80/100, 0 <c <50/100, 10/100 <d <1. 30/100 <b <70/100, 10/100 <c <30/100, 20/100 <d <40/100, and more preferably b = 50/100, c = 20/100. , D = 30/100 is particularly preferred. General formula of layered rock salt structure: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, Cr, Cu, Zn, As the material represented by at least one element selected from Ca, Mg, S, Si, Na, K, and Al, 1.7 ≦ f ≦ 2.1), a commercially available material may be used. You may use what was suitably manufactured with the manufacturing method.

活物質改質用水溶液に浸漬する層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表される材料の量は、当該材料が活物質改質用水溶液に浸漬できる範囲内であれば特に制限は無い。活物質改質用水溶液100質量部に対する前記材料の量を例示すると、1〜500質量部の範囲内が好ましく、10〜300質量部の範囲内がより好ましく、50〜150質量部の範囲内が特に好ましい。 General formula of the layered rock salt structure immersed in the aqueous solution for active material modification: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1, b + c + d + e = 1, 0 ≦ e <1, D is Li , Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, the amount of the material represented by 1.7 ≦ f ≦ 2.1) There is no particular limitation as long as the material can be immersed in the active material modification aqueous solution. If the quantity of the said material with respect to 100 mass parts of aqueous solution for active material modification | reformation is illustrated, the inside of the range of 1-500 mass parts is preferable, The inside of the range of 10-300 mass parts is more preferable, The inside of the range of 50-150 mass parts is preferable. Particularly preferred.

前記材料が活物質改質用水溶液に浸漬される時間は、特に制限が無い。好ましい浸漬時間を例示すると、1〜200分の範囲内が好ましく、10〜150分の範囲内がより好ましく、30〜100分の範囲内が特に好ましい。   The time for which the material is immersed in the aqueous solution for active material modification is not particularly limited. When the preferable soaking time is exemplified, it is preferably in the range of 1 to 200 minutes, more preferably in the range of 10 to 150 minutes, and particularly preferably in the range of 30 to 100 minutes.

所定の浸漬時間経過後に、活物質改質用水溶液から固形物が取り出されて浸漬工程は終了する。活物質改質用水溶液から固形物を取り出す工程としては、濾過工程を採用するのが好ましい。濾過は常圧条件下で行われても良いが、減圧条件下による濾過、すなわち吸引濾過が好ましい。濾過工程後に得られる固形物を乾燥炉にて100〜140℃の条件で乾燥し、固形物に付着した水分を除去する乾燥工程を採用するのが好ましい。乾燥工程の乾燥時間は水分の除去の程度を確認しながら適宜決定すればよい。乾燥後の固形物は粉砕工程にて粉砕されることが好ましい。粉砕工程においては、乳鉢や各種のミキサーを用いて固形物を粉砕する。   After a predetermined dipping time has elapsed, the solid material is taken out from the active material modifying aqueous solution, and the dipping process ends. As the step of taking out the solid from the aqueous solution for active material modification, it is preferable to employ a filtration step. Filtration may be performed under normal pressure conditions, but filtration under reduced pressure conditions, that is, suction filtration is preferred. It is preferable to employ a drying step in which the solid obtained after the filtration step is dried at 100 to 140 ° C. in a drying furnace to remove water adhering to the solid. What is necessary is just to determine the drying time of a drying process suitably, confirming the grade of the removal of a water | moisture content. The dried solid is preferably pulverized in the pulverization step. In the pulverization step, the solid material is pulverized using a mortar and various mixers.

次いで前記固形物は焼成工程にて焼成され、本発明の製造方法で製造された活物質となる。焼成温度は300〜1000℃の範囲内が好ましく、350〜800℃の範囲内がより好ましい。焼成時間は1〜10時間程度でよい。焼成工程後に上記粉砕工程と同様の方法で活物質の粉砕処理を行い、活物質を所望の粒径にしても良い。   Next, the solid matter is fired in a firing step to become an active material produced by the production method of the present invention. The firing temperature is preferably in the range of 300 to 1000 ° C, more preferably in the range of 350 to 800 ° C. The firing time may be about 1 to 10 hours. The active material may be pulverized by the same method as in the pulverization step after the firing step so that the active material has a desired particle size.

浸漬工程、焼成工程を経ることで前記材料の一般式は、Lia’Nib’Coc’Mnd’e’f’(0.2≦a’≦1、b’+c’+d’+e’=1、0≦e’<1、D’はLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、P、Vから選ばれる少なくとも1の元素、1.7≦f’≦2.1) で表されるものとなる。ただし、浸漬工程前の材料の組成と、焼成工程後の活物質の組成には、実質的な変化が観察されない。 Through the dipping process and the firing process, the general formula of the material is Li a ′ Ni b ′ Co c ′ Mn d ′ D e ′ O f ′ (0.2 ≦ a ′ ≦ 1, b ′ + c ′ + d ′ + E ′ = 1, 0 ≦ e ′ <1, D ′ is at least one element selected from Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, P, V, 1.7 ≦ f ′ ≦ 2.1). However, no substantial change is observed in the composition of the material before the dipping process and the composition of the active material after the baking process.

ここで、浸漬工程前の材料及び焼成工程後の本発明の活物質の両者を粉末X線回折装置で測定し、(104)面に由来するピーク強度I(104)に対する(003)面に由来するピーク強度I(003)の強度比I(003)/I(104)を比較すると、焼成工程後の本発明の活物質の方が向上していることが確認できた。上述した特許文献などの記載によると、リチウム複合酸化物の層状岩塩構造における各サイト、すなわち、3aサイト、3bサイト、6cサイトのいずれか又はそれぞれにおける含有元素の均一性が高いほど、強度比I(003)/I(104)が向上するといえる。そうすると、本発明の浸漬工程、焼成工程を経ることで、リチウム複合酸化物の層状岩塩構造におけるサイト含有元素の均一性が高くなったと考えられる。なお、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表される材料を粉末X線回折装置で測定した際に、(003)面に由来するピークは2θ=18°付近に観察され、(104)面に由来するピークは2θ=44°付近に観察される。 Here, both the material before the dipping process and the active material of the present invention after the baking process were measured with a powder X-ray diffractometer, and derived from the (003) plane with respect to the peak intensity I (104) derived from the (104) plane. When comparing the intensity ratio I (003) / I (104) of the peak intensity I (003), it was confirmed that the active material of the present invention after the firing step was improved. According to the description of the above-mentioned patent document and the like, the strength ratio I increases as the uniformity of the contained elements at each site in the layered rock salt structure of the lithium composite oxide, that is, any one of the 3a site, 3b site, and 6c site, or each of them. It can be said that (003) / I (104) is improved. Then, it is considered that the uniformity of the site-containing elements in the layered rock salt structure of the lithium composite oxide is increased through the immersion process and the firing process of the present invention. In general formula of the layered rock salt structure: Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 1, b + c + d + e = 1,0 ≦ e <1, D is Li, Fe, Cr, Cu, When a material represented by at least one element selected from Zn, Ca, Mg, S, Si, Na, K, and Al, 1.7 ≦ f ≦ 2.1) is measured by a powder X-ray diffractometer, The peak derived from the (003) plane is observed near 2θ = 18 °, and the peak derived from the (104) plane is observed near 2θ = 44 °.

本発明の活物質の製造方法は、活物質の改質方法、及び、活物質の粉末X線回折測定における(104)面に由来するピーク強度I(104)に対する(003)面に由来するピーク強度I(003)の強度比I(003)/I(104)向上方法と把握することもできる。   The method for producing an active material according to the present invention includes a peak derived from the (003) plane relative to the peak intensity I (104) derived from the (104) plane in the active material modification method and powder X-ray diffraction measurement of the active material. It can also be grasped as a method of improving the intensity ratio I (003) / I (104) of the intensity I (003).

本発明の活物質の改質方法は、VOSO及びMPO(MはH、Li、Na、K、NHからそれぞれ独立に選択される。)を含む活物質改質用水溶液を調製する水溶液調製工程と、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表される活物質を前記活物質改質用水溶液に浸漬する浸漬工程と、を含むことを特徴とする。 The method for modifying an active material of the present invention is to prepare an aqueous solution for modifying an active material containing VOSO 4 and M 3 PO 4 (M is independently selected from H, Li, Na, K, and NH 4 ). And a general formula of a layered rock salt structure: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, An active material represented by at least one element selected from Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, and Al, 1.7 ≦ f ≦ 2.1) A dipping step of dipping in an aqueous solution.

本発明の、粉末X線回折測定における、活物質の(104)面に由来するピーク強度I(104)に対する(003)面に由来するピーク強度I(003)の強度比I(003)/I(104)向上方法は、VOSO及びMPO(MはH、Li、Na、K、NHからそれぞれ独立に選択される。)を含む活物質改質用水溶液を調製する水溶液調製工程と、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表される活物質を前記活物質改質用水溶液に浸漬する浸漬工程と、を含むことを特徴とする。 In the powder X-ray diffraction measurement of the present invention, the intensity ratio I (003) / I of the peak intensity I (003) derived from the (003) plane to the peak intensity I (104) derived from the (104) plane of the active material. (104) The improvement method is an aqueous solution preparation step of preparing an aqueous solution for active material modification containing VOSO 4 and M 3 PO 4 (M is independently selected from H, Li, Na, K, and NH 4 ). And a general formula of a layered rock salt structure: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, Cr, Cu, An active material represented by at least one element selected from Zn, Ca, Mg, S, Si, Na, K, and Al, 1.7 ≦ f ≦ 2.1) is immersed in the aqueous solution for active material modification. An immersion step.

例えば、強度比I(003)/I(104)が1.20未満の層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表される活物質に対し、本発明の改質方法を適用することで、強度比I(003)/I(104)が1.20以上の活物質を得ることができる。強度比I(003)/I(104)が1.20以上の層状岩塩構造の一般式:Lia’Nib’Coc’Mnd’e’f’(0.2≦a’≦1、b’+c’+d’+e’=1、0≦e’<1、D’はLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、P、Vから選ばれる少なくとも1の元素、1.7≦f’≦2.1)で表される活物質を用いたリチウムイオン二次電池は、初期容量の向上を示す。強度比I(003)/I(104)の上限値には特に制限は無いが、上記の特許文献1−3の記載や以下に示す実施例の値から、上限値として2.0、1.5、1.3を示すことができる。 For example, the intensity ratio I (003) / I (104 ) is the general formula of the layered rock salt structure of less than 1.20: Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 1, b + c + d + e = 1 , 0 ≦ e <1, D is at least one element selected from Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, 1.7 ≦ f ≦ 2.1) By applying the modification method of the present invention to the active material represented by the following formula, an active material having an intensity ratio I (003) / I (104) of 1.20 or more can be obtained. General formula of a layered rock salt structure with an intensity ratio I (003) / I (104) of 1.20 or more: Li a ′ Ni b ′ Co c ′ Mnd d De ′ O f ′ (0.2 ≦ a ′ ≦ 1, b ′ + c ′ + d ′ + e ′ = 1, 0 ≦ e ′ <1, D ′ is Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, P, V A lithium ion secondary battery using an active material represented by at least one element selected from: 1.7 ≦ f ′ ≦ 2.1) exhibits improved initial capacity. Although there is no restriction | limiting in particular in the upper limit of intensity ratio I (003) / I (104), 2.0 and 1. 5, 1.3 can be shown.

本発明の活物質を用いて、リチウムイオン二次電池を製造できる。上記リチウムイオン二次電池は、電池構成要素として、本発明の活物質を有する電極(例えば正極)に加えて、負極、セパレータ及び電解液を含む。   A lithium ion secondary battery can be manufactured using the active material of the present invention. The lithium ion secondary battery includes a negative electrode, a separator, and an electrolyte solution as a battery component in addition to an electrode (for example, a positive electrode) having the active material of the present invention.

正極は、集電体と、本発明の活物質を含む活物質層で構成される。   The positive electrode includes a current collector and an active material layer containing the active material of the present invention.

集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体としては、銀、銅、金、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。   The current collector refers to a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery. As the current collector, at least one selected from silver, copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel Examples of such a metal material can be given. The current collector may be covered with a known protective layer.

集電体は箔、シート、フィルム、線状、棒状などの形態をとることができる。そのため、集電体として、例えば銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが10μm〜100μmの範囲内であることが好ましい。   The current collector can take the form of a foil, a sheet, a film, a line, a bar, and the like. Therefore, metal foils, such as copper foil, nickel foil, aluminum foil, stainless steel foil, can be used suitably as a collector. When the current collector is in the form of foil, sheet or film, the thickness is preferably in the range of 10 μm to 100 μm.

集電体の表面に活物質層を形成することで正極とすることができる。   A positive electrode can be obtained by forming an active material layer on the surface of the current collector.

活物質層は導電助剤を含んでもよい。導電助剤は、電極の導電性を高めるために添加される。導電助剤としては、炭素質微粒子であるカーボンブラック、天然黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)が例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。導電助剤の使用量については特に制限はないが、例えば、本発明の活物質100質量部に対して0.5〜30質量部とすることができる。   The active material layer may contain a conductive additive. The conductive assistant is added to increase the conductivity of the electrode. Examples of the conductive assistant include carbon black, natural graphite, acetylene black, ketjen black (registered trademark), and vapor grown carbon fiber (VGCF) which are carbonaceous fine particles. These conductive assistants can be added to the active material layer alone or in combination of two or more. Although there is no restriction | limiting in particular about the usage-amount of a conductive support agent, For example, it can be set as 0.5-30 mass parts with respect to 100 mass parts of active materials of this invention.

活物質層は結着剤を含んでもよい。結着剤は本発明の活物質及び導電助剤を集電体の表面に繋ぎ止める役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、スチレンーブタジエンゴム等の共重合体、カルボキシメチルセルロース等のセルロース誘導体を例示することができる。これらの結着剤を単独または二種以上組み合わせて活物質層に添加することができる。結着剤の使用量については特に制限はないが、例えば、活物質100質量部に対して0.5〜30質量部とすることができる。   The active material layer may contain a binder. The binder serves to bind the active material and the conductive additive of the present invention to the surface of the current collector. Binders include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins, and styrene. Examples thereof include copolymers such as butadiene rubber and cellulose derivatives such as carboxymethylcellulose. These binders can be added to the active material layer alone or in combination of two or more. Although there is no restriction | limiting in particular about the usage-amount of a binder, For example, it can be set as 0.5-30 mass parts with respect to 100 mass parts of active materials.

集電体の表面に活物質層を形成させる方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に本発明の活物質を塗布すればよい。具体的には、本発明の活物質、並びに必要に応じて結着剤及び導電助剤を含む活物質層形成用組成物を調製し、この組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥する。必要に応じて電極密度を高めるべく、乾燥後のものを圧縮しても良い。溶剤としては、N−メチル−2−ピロリドン、メタノール、エタノール、メチルイソブチルケトン、水を例示できる。   As a method of forming an active material layer on the surface of the current collector, a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method is used. What is necessary is just to apply | coat the active material of this invention to the surface. Specifically, an active material layer-forming composition containing the active material of the present invention and, if necessary, a binder and a conductive aid is prepared, and an appropriate solvent is added to the composition to make a paste. Then, after applying to the surface of the current collector, it is dried. If necessary, the dried product may be compressed to increase the electrode density. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, ethanol, methyl isobutyl ketone, and water.

負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。負極活物質層は負極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。集電体、結着剤及び導電助剤は正極で説明したものと同様である。   The negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector. The negative electrode active material layer includes a negative electrode active material and, if necessary, a binder and / or a conductive aid. The current collector, binder and conductive additive are the same as those described for the positive electrode.

負極活物質としては、リチウムを吸蔵及び放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する元素化合物、あるいは高分子材料などを例示することができる。   Examples of the negative electrode active material include a carbon-based material capable of inserting and extracting lithium, an element capable of being alloyed with lithium, an elemental compound having an element capable of being alloyed with lithium, or a polymer material.

炭素系材料としては、難黒鉛化性炭素、人造黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が例示できる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。   Examples of the carbon-based material include non-graphitizable carbon, artificial graphite, coke, graphite, glassy carbon, organic polymer compound fired body, carbon fiber, activated carbon, or carbon black. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.

リチウムと合金化可能な元素としては、具体的にNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが例示でき、特に、珪素(Si)または錫(Sn)が好ましい。   Specifically, elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si. Ge, Sn, Pb, Sb, Bi can be exemplified, and silicon (Si) or tin (Sn) is particularly preferable.

リチウムと合金化可能な元素を有する元素化合物としては、具体的にZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、 CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiO あるいはLiSnOを例示でき、特に、SiO(0.5≦x≦1.5)が好ましい。また、リチウムと合金化反応可能な元素を有する元素化合物として、スズ合金(Cu−Sn合金、Co−Sn合金等)などの錫化合物を例示できる。 Specific examples of elemental compounds having elements that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , and NiSi 2. , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 < v ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO 2 or LiSnO can be exemplified, and SiO x (0.5 ≦ x ≦ 1.5) is particularly preferable. In addition, as an elemental compound having an element capable of alloying with lithium, a tin compound such as a tin alloy (Cu—Sn alloy, Co—Sn alloy, etc.) can be exemplified.

高分子材料としては、具体的にポリアセチレン、ポリピロールを例示できる。   Specific examples of the polymer material include polyacetylene and polypyrrole.

セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、例えばポリテトラフルオロエチレン、ポリプロピレン若しくはポリエチレンなどの合成樹脂を1種又は複数用いた多孔質膜、またはセラミックス製の多孔質膜が例示できる。   The separator separates the positive electrode and the negative electrode and allows lithium ions to pass while preventing a short circuit of current due to contact between the two electrodes. Examples of the separator include a porous film using one or more synthetic resins such as polytetrafluoroethylene, polypropylene, and polyethylene, or a ceramic porous film.

電解液は、溶媒とこの溶媒に溶解された電解質とを含んでいる。   The electrolytic solution includes a solvent and an electrolyte dissolved in the solvent.

溶媒としては、環状エステル類、鎖状エステル類、エーテル類等を使用することができる。環状エステル類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンを例示できる。これらの溶媒は、単独で用いても良いし、複数を混合して用いても良い。   As the solvent, cyclic esters, chain esters, ethers and the like can be used. Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. These solvents may be used alone or in combination.

電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を例示できる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .

電解液としては、エチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの溶媒に、LiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を例示できる。 As an electrolytic solution, a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 or the like in a solvent such as ethylene carbonate, diethyl carbonate, propylene carbonate, dimethyl carbonate or the like is used in an amount of 0.5 mol / l to 1.7 mol / l. A solution dissolved at a concentration of about can be exemplified.

リチウムイオン二次電池の製造方法は以下のとおりである。正極および負極でセパレータを挟持し電極体とする。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等で接続した後に、電極体に電解液を加えてリチウムイオン二次電池とする。リチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、積層型、コイン型、ラミネート型等、種々の形状を採用することができる。   The manufacturing method of the lithium ion secondary battery is as follows. A separator is sandwiched between the positive electrode and the negative electrode to form an electrode body. After connecting the current collector of the positive electrode and the current collector of the negative electrode to the positive electrode terminal and the negative electrode terminal connected to the outside with a current collecting lead or the like, an electrolyte is added to the electrode body to obtain a lithium ion secondary battery. . The shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, a coin shape, and a laminated shape can be employed.

本発明の活物質を用いたリチウムイオン二次電池は初期容量の改善を示す。   The lithium ion secondary battery using the active material of the present invention shows an improvement in initial capacity.

以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に、実施例および比較例を示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。以下において、特に断らない限り、「部」とは質量部を意味し、「%」とは質量%を意味する。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited by these Examples. In the following, unless otherwise specified, “part” means part by mass, and “%” means mass%.

(実施例1)
VOSO2水和物0.06g及び(NHHPO無水物0.04gを50mLの純水に溶解させ、活物質改質用水溶液とした。市販の層状岩塩構造のLiNi5/10Co2/10Mn3/10で表される材料50gを前記活物質改質用水溶液に加えて浸漬させ、1時間撹拌した。撹拌後、液を吸引濾過し、固形物を分離した。固形物を乾燥炉にて120℃の条件で乾燥し、固形物の水分を除去した。ミキサーを用いて、乾燥後の固形物を粉砕した。次いで、粉砕後の固形物を400℃で5時間焼成し、活物質を得た。ミキサーを用いて、焼成後の活物質の粉砕処理を行い、実施例1の活物質とした。
Example 1
VOSO 4 dihydrate 0.06 g and (NH 4 ) 2 HPO 4 anhydrous 0.04 g were dissolved in 50 mL of pure water to obtain an aqueous solution for active material modification. 50 g of a material represented by a commercially available layered rock salt structure LiNi 5/10 Co 2/10 Mn 3/10 O 2 was added to the aqueous solution for active material modification, and immersed for 1 hour. After stirring, the liquid was filtered with suction to separate a solid. The solid was dried at 120 ° C. in a drying furnace to remove moisture from the solid. The solid matter after drying was pulverized using a mixer. Next, the pulverized solid was fired at 400 ° C. for 5 hours to obtain an active material. The active material after firing was pulverized using a mixer to obtain an active material of Example 1.

実施例1の活物質を用いて、以下のとおり、リチウムイオン二次電池を作製した。   Using the active material of Example 1, a lithium ion secondary battery was produced as follows.

実施例1の活物質88質量部と、導電助剤であるアセチレンブラック6質量部と、結着剤であるポリフッ化ビニリデン6質量部とを混合し、次いで、この混合物をN−メチル−2−ピロリドンに分散させて、スラリーを作製した。集電体である厚み20μmのアルミニウム箔にスラリーをのせ、ドクターブレードを用いてスラリーが膜状になるように集電体に塗布しシートとした。得られたシートにつき80℃で20分間乾燥し、N−メチル−2−ピロリドンを除去した。その後、ロ−ルプレス機を用いて、電極密度が2.3g/cmとなるように集電体と塗布物を強固に接合させた。真空乾燥機を用いた減圧条件下、120℃にて、6時間、接合物を加熱し、その後、接合物を25mm×30mmの矩形状に切り取り、厚さ50μm程度の正極とした。 88 parts by mass of the active material of Example 1, 6 parts by mass of acetylene black as a conductive auxiliary agent, and 6 parts by mass of polyvinylidene fluoride as a binder were mixed, and this mixture was then mixed with N-methyl-2- A slurry was prepared by dispersing in pyrrolidone. The slurry was placed on an aluminum foil having a thickness of 20 μm, which was a current collector, and applied to the current collector using a doctor blade so that the slurry became a film shape to obtain a sheet. The obtained sheet was dried at 80 ° C. for 20 minutes to remove N-methyl-2-pyrrolidone. Thereafter, using a roll press machine, the current collector and the coated material were firmly bonded so that the electrode density was 2.3 g / cm 2 . The bonded article was heated at 120 ° C. for 6 hours under reduced pressure using a vacuum dryer, and then the bonded article was cut into a 25 mm × 30 mm rectangular shape to obtain a positive electrode having a thickness of about 50 μm.

負極は以下のように作製した。活物質である黒鉛粉末97質量部と、導電助剤であるアセチレンブラック1質量部と、結着剤であるスチレン−ブタジエンゴム1質量部及びカルボキシメチルセルロース1質量部とを混合し、この混合物をイオン交換水に分散させてスラリーを作製した。負極用集電体である厚み20μmの銅箔にスラリーをのせ、ドクターブレードを用いてスラリーが膜状になるように集電体に塗布しシートとした。得られたシートにつき乾燥し、水分を除去した。その後、ロ−ルプレス機を用いて、集電体と塗布物を強固に接合させた。真空乾燥機を用いた減圧条件下、120℃にて、6時間、接合物を加熱し、その後、接合物を25mm×30mmの矩形状に切り取り、厚さ45μm程度の負極とした。   The negative electrode was produced as follows. 97 parts by mass of graphite powder as an active material, 1 part by mass of acetylene black as a conductive additive, 1 part by mass of styrene-butadiene rubber as a binder and 1 part by mass of carboxymethylcellulose are mixed, and this mixture is ionized. A slurry was prepared by dispersing in exchange water. The slurry was placed on a copper foil having a thickness of 20 μm, which is a negative electrode current collector, and applied to the current collector using a doctor blade so that the slurry was formed into a film, to obtain a sheet. The obtained sheet was dried to remove moisture. Thereafter, the current collector and the coated material were firmly bonded using a roll press. The joined product was heated at 120 ° C. for 6 hours under reduced pressure using a vacuum dryer, and then the joined product was cut into a 25 mm × 30 mm rectangular shape to obtain a negative electrode having a thickness of about 45 μm.

上記の正極および負極を用いて、以下のとおり、ラミネート型リチウムイオン二次電池を製作した。正極および負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(27×32mm、厚さ25μm)を挟持させ電極体とした。この電極体をラミネートフィルムで覆い、次いで、ラミネートフィルムの三辺をシールして袋状とした。袋状のラミネートフィルムに電解液を注入した。電解液としては、エチレンカーボネート3体積部及びジエチルカーボネート7体積部の混合溶媒にLiBFを1mol/Lの濃度で溶解した溶液を用いた。電解液注入後、袋状のラミネートフィルムの残りの一辺をシールし、ラミネート型リチウムイオン二次電池とした。なお、当該ラミネート型リチウムイオン二次電池の各集電体は外部と電気的に接続可能なタブを備え、これらタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。 Using the above positive electrode and negative electrode, a laminate type lithium ion secondary battery was manufactured as follows. A rectangular sheet (27 × 32 mm, thickness 25 μm) made of polypropylene resin was sandwiched between the positive electrode and the negative electrode to form an electrode body. This electrode body was covered with a laminate film, and then the three sides of the laminate film were sealed to form a bag. An electrolyte solution was injected into the bag-shaped laminate film. As the electrolytic solution, a solution in which LiBF 4 was dissolved at a concentration of 1 mol / L in a mixed solvent of 3 parts by volume of ethylene carbonate and 7 parts by volume of diethyl carbonate was used. After injecting the electrolyte, the remaining one side of the bag-like laminate film was sealed to obtain a laminated lithium ion secondary battery. Each of the current collectors of the laminated lithium ion secondary battery includes a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery.

(実施例2)
VOSO2水和物を0.301gに及び(NHHPO無水物を0.2gにそれぞれ変更した以外は、実施例1と同様の方法で、実施例2の活物質及びリチウムイオン二次電池を作製した。
(Example 2)
The active material and lithium ion of Example 2 were the same as Example 1 except that VOSO 4 dihydrate was changed to 0.301 g and (NH 4 ) 2 HPO 4 anhydride was changed to 0.2 g. A secondary battery was produced.

(実施例3)
VOSO2水和物を0.603gに及び(NHHPO無水物を0.4gにそれぞれ変更した以外は、実施例1と同様の方法で、実施例3の活物質及びリチウムイオン二次電池を作製した。
(Example 3)
The active material and lithium ion of Example 3 were the same as Example 1 except that VOSO 4 dihydrate was changed to 0.603 g and (NH 4 ) 2 HPO 4 anhydride was changed to 0.4 g. A secondary battery was produced.

(比較例1)
市販の層状岩塩構造のLiNi5/10Co2/10Mn3/10で表される材料を比較例1の活物質とした。それ以外は実施例1と同様の方法で、リチウムイオン二次電池を作製した。
(Comparative Example 1)
A commercially available material represented by LiNi 5/10 Co 2/10 Mn 3/10 O 2 having a layered rock salt structure was used as the active material of Comparative Example 1. Otherwise, a lithium ion secondary battery was produced in the same manner as in Example 1.

<粉末X線回折測定>
実施例1、実施例2、実施例3、比較例1の活物質につき、以下の条件で粉末X線回折測定を行った。
X線:CuKα線、管電圧:45kV、管電流:200mA、
走査軸:2θ/θ、走査モード:連続、スキャンステップ:0.01°
2θ=18°付近に観察される(003)面由来のピーク強度I(003)と、2θ=44°付近に観察される(104)面由来のピーク強度I(104)と、強度比I(003)/I(104)を算出した。結果を表1に示す。
<Powder X-ray diffraction measurement>
For the active materials of Example 1, Example 2, Example 3, and Comparative Example 1, powder X-ray diffraction measurement was performed under the following conditions.
X-ray: CuKα ray, tube voltage: 45 kV, tube current: 200 mA,
Scanning axis: 2θ / θ, scanning mode: continuous, scanning step: 0.01 °
A peak intensity I (003) derived from the (003) plane observed near 2θ = 18 °, a peak intensity I (104) derived from the (104) plane observed near 2θ = 44 °, and an intensity ratio I ( 003) / I (104). The results are shown in Table 1.

<初期容量測定>
実施例1、実施例2、実施例3、比較例1の活物質を用いたリチウムイオン二次電池の初期容量を測定した。まず、電池に対し、25℃、1Cレート、電圧4.5VでCCCV充電(定電流定電圧充電)をした。そして、電圧を一時間保持させた。次いで、電池から電圧3.0V、1CレートでCCCV放電(定電流定電圧放電)を行った。CCCV放電における容量を測定し、これを初期容量とした。結果を表1に示す。
<Initial capacity measurement>
The initial capacities of lithium ion secondary batteries using the active materials of Example 1, Example 2, Example 3, and Comparative Example 1 were measured. First, CCCV charge (constant current constant voltage charge) was performed on the battery at 25 ° C., a 1C rate, and a voltage of 4.5V. The voltage was held for 1 hour. Subsequently, CCCV discharge (constant current constant voltage discharge) was performed from the battery at a voltage of 3.0 V and a 1 C rate. The capacity in CCCV discharge was measured and used as the initial capacity. The results are shown in Table 1.

Figure 0006065746
Figure 0006065746

表1のI(003)/I(104)の結果から、比較例1の活物質と比較して、実施例1〜3の活物質はいずれも強度比I(003)/I(104)が高くなった。また、実施例1〜3においては、浸漬工程で用いられた活物質改質用水溶液におけるVOSO及び(NHHPOの濃度が異なるにも関わらず、いずれの活物質も一様に強度比I(003)/I(104)が高くなったことがわかる。そして、表1の初期容量の結果から、比較例1の活物質を用いた電池と比較して、実施例1〜3の活物質を用いた電池は、いずれも初期容量の向上を示したことがわかる。 From the results of I (003) / I (104) in Table 1, compared with the active material of Comparative Example 1, all of the active materials of Examples 1 to 3 have the intensity ratio I (003) / I (104). It became high. In Examples 1 to 3, VOSO 4 and (NH 4) in the active material for modification solution used in the immersing step 2 despite the concentration of HPO 4 are different, one of the active substances uniformly It can be seen that the intensity ratio I (003) / I (104) has increased. And from the result of the initial capacity of Table 1, compared with the battery using the active material of Comparative Example 1, all the batteries using the active material of Examples 1 to 3 showed the improvement of the initial capacity. I understand.

Claims (1)

VOSO及びMPO(MはH、Li、Na、K、NHからそれぞれ独立に選択される。)を含む活物質改質用水溶液を調製する水溶液調製工程と、
層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表される材料を前記活物質改質用水溶液に浸漬する浸漬工程と、
前記浸漬工程を経た前記材料を焼成する焼成工程と、
を含むことを特徴とする層状岩塩構造の一般式:Lia’Nib’Coc’Mnd’e’f’(0.2≦a’≦1、b’+c’+d’+e’=1、0≦e’<1、D’はLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、P、Vから選ばれる少なくとも1の元素、1.7≦f’≦2.1) で表される活物質の製造方法。
An aqueous solution preparation step of preparing an aqueous solution for active material modification containing VOSO 4 and M 3 PO 4 (M is independently selected from H, Li, Na, K, and NH 4 );
General formula of layered rock salt structure: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, Cr, Cu, Zn, An immersion step of immersing a material represented by at least one element selected from Ca, Mg, S, Si, Na, K, and Al, 1.7 ≦ f ≦ 2.1) in the aqueous solution for active material modification; ,
A firing step of firing the material that has undergone the immersion step;
General formula of layered rock salt structure characterized by containing: Li a ′ Ni b ′ Co c ′ Mn d ′ D e ′ O f ′ (0.2 ≦ a ′ ≦ 1, b ′ + c ′ + d ′ + e ′ = 1, 0 ≦ e ′ <1, D ′ is at least one element selected from Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, P, V. The manufacturing method of the active material represented by 7 <= f '<= 2.1).
JP2013107773A 2013-05-22 2013-05-22 Layered rock salt structure active material manufacturing method, layered rock salt structure active material Expired - Fee Related JP6065746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013107773A JP6065746B2 (en) 2013-05-22 2013-05-22 Layered rock salt structure active material manufacturing method, layered rock salt structure active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107773A JP6065746B2 (en) 2013-05-22 2013-05-22 Layered rock salt structure active material manufacturing method, layered rock salt structure active material

Publications (2)

Publication Number Publication Date
JP2014229465A JP2014229465A (en) 2014-12-08
JP6065746B2 true JP6065746B2 (en) 2017-01-25

Family

ID=52129143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107773A Expired - Fee Related JP6065746B2 (en) 2013-05-22 2013-05-22 Layered rock salt structure active material manufacturing method, layered rock salt structure active material

Country Status (1)

Country Link
JP (1) JP6065746B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790319B2 (en) * 2006-04-21 2010-09-07 Valence Technology, Inc. Method for making electrode active material
JP4317571B2 (en) * 2007-04-27 2009-08-19 Tdk株式会社 Active material, electrode, battery, and method for producing active material
JP5625028B2 (en) * 2012-11-01 2014-11-12 株式会社日立製作所 Non-aqueous secondary battery

Also Published As

Publication number Publication date
JP2014229465A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP6692559B2 (en) Precursor for producing positive electrode active material containing multi-layered metal oxide and positive electrode active material for lithium secondary battery produced using the same
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP7020118B2 (en) Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries, and non-aqueous secondary batteries
WO2017169616A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries
JP6673331B2 (en) Positive electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP6296156B2 (en) Material having lithium composite metal oxide part and boron-containing part and method for producing the same
WO2017183653A1 (en) Material for positive electrodes
CN112313817A (en) Positive electrode material and secondary battery
JP2018037372A (en) Lithium ion secondary battery
JP5534377B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery having the same
CN116936806A (en) Binder composition for electrode for nonaqueous secondary battery containing electrolyte, slurry composition, electrode, battery, and method for producing same
JP6519796B2 (en) Material having lithium composite metal oxide part and boron-containing part and method for producing the same
CN114788063A (en) Non-aqueous electrolyte secondary battery
JP7135773B2 (en) Cathode material containing a metal oxide with an aluminum-containing coating formed on the surface and an aluminum-containing needle-like substance, and a method for producing the same
JP6056685B2 (en) Method for treating positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5557067B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2017004770A (en) Positive electrode active material for magnesium secondary battery, positive electrode for magnesium secondary battery, and magnesium secondary battery
JP6065746B2 (en) Layered rock salt structure active material manufacturing method, layered rock salt structure active material
JP6338091B2 (en) Lithium composite metal oxide and method for producing the same
JP6136869B2 (en) Method of treating lithium nickel-containing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery having the same
JP6094372B2 (en) Composite metal oxide, positive electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP5999430B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery having the same
JP2019003907A (en) Positive electrode material
JP6998176B2 (en) Positive electrode active material, positive electrode and lithium secondary battery
JP5862622B2 (en) Method for producing active material for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R151 Written notification of patent or utility model registration

Ref document number: 6065746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees