JP6065517B2 - Fluorescence microscope, fluorescence detection method, and fluorescence detection unit - Google Patents

Fluorescence microscope, fluorescence detection method, and fluorescence detection unit Download PDF

Info

Publication number
JP6065517B2
JP6065517B2 JP2012233418A JP2012233418A JP6065517B2 JP 6065517 B2 JP6065517 B2 JP 6065517B2 JP 2012233418 A JP2012233418 A JP 2012233418A JP 2012233418 A JP2012233418 A JP 2012233418A JP 6065517 B2 JP6065517 B2 JP 6065517B2
Authority
JP
Japan
Prior art keywords
fluorescence
phase
signal
unit
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012233418A
Other languages
Japanese (ja)
Other versions
JP2014085455A (en
Inventor
弘 岸本
弘 岸本
大澤 日佐雄
日佐雄 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012233418A priority Critical patent/JP6065517B2/en
Publication of JP2014085455A publication Critical patent/JP2014085455A/en
Application granted granted Critical
Publication of JP6065517B2 publication Critical patent/JP6065517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Description

本発明は、蛍光顕微鏡、蛍光検出方法、及び蛍光検出ユニットに関する。   The present invention relates to a fluorescence microscope, a fluorescence detection method, and a fluorescence detection unit.

蛍光試薬を励起させる励起光を試料に照射し、該蛍光試薬から発光する蛍光に基づいて画像を表示する従来技術としては、例えば特許文献1記載のものがある。このような従来技術において、複数の励起光を試料の蛍光試薬に同時に照射する場合、蛍光試薬から発光する蛍光を検出器で検出する際に光学フィルタで分離して、異なる検出器に導くのが一般的である。   As a conventional technique for irradiating a sample with excitation light that excites a fluorescent reagent and displaying an image based on fluorescence emitted from the fluorescent reagent, there is a technique described in Patent Document 1, for example. In such a conventional technique, when simultaneously irradiating a sample fluorescent reagent with a plurality of excitation lights, the fluorescence emitted from the fluorescent reagent is separated by an optical filter when it is detected by a detector and guided to different detectors. It is common.

国際公開第2005/052668号International Publication No. 2005/052668

複数の蛍光試薬から発光する蛍光を光学フィルタで分離して異なる検出器に導く場合、発生する蛍光の波長帯域が極めて接近、もしくは一部重なっているため、蛍光を完全に分離することは困難である。   When fluorescence emitted from multiple fluorescent reagents is separated by an optical filter and guided to different detectors, it is difficult to completely separate the fluorescence because the wavelength bands of the generated fluorescence are very close or partially overlapping. is there.

本発明の態様は、検出器で受光した複数の蛍光を分離可能な蛍光顕微鏡、蛍光検出方法、及び蛍光検出ユニットを提供することを目的とする。   An aspect of the present invention is to provide a fluorescence microscope, a fluorescence detection method, and a fluorescence detection unit capable of separating a plurality of fluorescence received by a detector.

本発明の第1態様によれば、試料に照射する複数の励起光を基準信号の周波数と同一周波数かつ前記基準信号の位相に対して所定の位相差でそれぞれ強度変調する励起光変調部と、前記複数の励起光により発生した複数の蛍光を検出する蛍光検出部と、前記蛍光検出部による検出信号から抽出された所定の周波数成分における位相と、前記基準信号の位相との関係から位相情報を生成する位相情報生成部と、前記蛍光検出部による検出信号から抽出された所定の周波数成分の振幅から振幅情報を生成する振幅情報生成部と、前記蛍光検出部による検出信号から前記周波数成分を除いた成分から成分情報を生成する成分情報生成部と、前記位相情報、前記振幅情報、及び前記成分情報に基づいて前記複数の蛍光のそれぞれの強度信号を算出する強度信号算出部と、を備える蛍光顕微鏡が提供される。   According to the first aspect of the present invention, an excitation light modulation unit that modulates the intensity of a plurality of excitation lights applied to the sample at the same frequency as the frequency of the reference signal and with a predetermined phase difference with respect to the phase of the reference signal, Phase information is obtained from a relationship between a fluorescence detection unit that detects a plurality of fluorescence generated by the plurality of excitation lights, a phase at a predetermined frequency component extracted from a detection signal by the fluorescence detection unit, and a phase of the reference signal. A phase information generation unit to generate, an amplitude information generation unit for generating amplitude information from the amplitude of a predetermined frequency component extracted from the detection signal by the fluorescence detection unit, and the frequency component is removed from the detection signal by the fluorescence detection unit A component information generation unit that generates component information from the measured components, and calculates an intensity signal of each of the plurality of fluorescences based on the phase information, the amplitude information, and the component information And degree signal calculating section, a fluorescent microscope equipped with is provided.

本発明の第2態様によれば、複数の励起光を基準信号の周波数と同一周波数かつ前記基準信号の位相と同一位相で試料に照射する第1照射状態と、前記複数の励起光のうち少なくとも一つを除いて照射する第2照射状態とを指示する照射制御部と、前記第1及び第2照射状態での前記励起光により発生した蛍光をそれぞれ検出する蛍光検出部と、前記第1照射状態での前記蛍光検出部による第1検出信号と、前記第2照射状態での前記蛍光検出部による第2検出信号とに基づいて、前記第1検出信号から前記複数の蛍光のそれぞれの強度信号を算出する強度信号算出部と、を備える蛍光顕微鏡が提供される。   According to the second aspect of the present invention, the first irradiation state in which the sample is irradiated with the plurality of excitation lights at the same frequency as the reference signal and at the same phase as the reference signal, and at least one of the plurality of excitation lights An irradiation control unit for instructing a second irradiation state to be irradiated except for one; a fluorescence detection unit for detecting fluorescence generated by the excitation light in the first and second irradiation states; and the first irradiation. Based on the first detection signal from the fluorescence detection unit in the state and the second detection signal from the fluorescence detection unit in the second irradiation state, each intensity signal of the plurality of fluorescences from the first detection signal An intensity signal calculation unit that calculates

本発明の第3態様によれば、試料に照射する複数の励起光を基準信号の周波数と同一周波数かつ前記基準信号の位相に対して所定の位相差でそれぞれ強度変調し、前記複数の励起光により発生した複数の蛍光を検出し、前記検出された信号から抽出された所定の周波数成分における位相と、前記基準信号の位相との関係から位相情報を生成し、前記検出された信号から抽出された所定の周波数成分の振幅から振幅情報を生成し、前記検出された信号から前記周波数成分を除いた成分から成分情報を生成し、前記位相情報、前記振幅情報、及び前記成分情報に基づき前記複数の蛍光のそれぞれの強度信号を算出する蛍光検出方法が提供される。   According to the third aspect of the present invention, the plurality of excitation lights to be irradiated onto the sample are respectively modulated in intensity with the same frequency as the frequency of the reference signal and with a predetermined phase difference with respect to the phase of the reference signal. Detecting a plurality of fluorescence generated by the step, and generating phase information from a relationship between a phase of a predetermined frequency component extracted from the detected signal and a phase of the reference signal, and extracting the phase information from the detected signal. Amplitude information is generated from the amplitude of the predetermined frequency component, component information is generated from a component obtained by removing the frequency component from the detected signal, and the plurality of the plurality of information are generated based on the phase information, the amplitude information, and the component information. There is provided a fluorescence detection method for calculating the intensity signals of the respective fluorescences.

本発明の第4態様によれば、基準信号の周波数と同一周波数かつ前記基準信号の位相に対して所定の位相差で強度変調された複数の励起光により発生した複数の蛍光を検出する蛍光検出部と、前記蛍光検出部による検出信号から抽出された所定の周波数成分における位相と、前記検出信号の位相との関係から位相情報を生成する位相情報生成部と、前記蛍光検出部による検出信号から抽出された所定の周波数成分の振幅から振幅情報を生成する振幅情報生成部と、前記蛍光検出部による検出信号から前記周波数成分を除いた成分から成分情報を生成する成分情報生成部と、前記位相情報、前記振幅情報、及び前記成分情報に基づき前記複数の蛍光のそれぞれの強度信号を算出する強度信号算出部と、を備える蛍光検出ユニットが提供される。   According to the fourth aspect of the present invention, fluorescence detection for detecting a plurality of fluorescence generated by a plurality of excitation lights having the same frequency as the frequency of the reference signal and intensity-modulated with a predetermined phase difference with respect to the phase of the reference signal. A phase information generation unit that generates phase information from a relationship between a phase in a predetermined frequency component extracted from a detection signal by the fluorescence detection unit and a phase of the detection signal, and a detection signal by the fluorescence detection unit An amplitude information generation unit that generates amplitude information from the extracted amplitude of a predetermined frequency component, a component information generation unit that generates component information from a component obtained by removing the frequency component from a detection signal by the fluorescence detection unit, and the phase There is provided a fluorescence detection unit comprising: an intensity signal calculation unit that calculates an intensity signal of each of the plurality of fluorescences based on the information, the amplitude information, and the component information.

本発明の態様によれば、蛍光検出部で受光した複数の蛍光を演算により分離することができる。   According to the aspect of the present invention, it is possible to separate a plurality of fluorescence received by the fluorescence detection unit by calculation.

第1実施形態に係る蛍光顕微鏡の一例を示す図である。It is a figure which shows an example of the fluorescence microscope which concerns on 1st Embodiment. 第1実施形態に係る蛍光顕微鏡を説明する図である。It is a figure explaining the fluorescence microscope which concerns on 1st Embodiment. 第1実施形態に係る蛍光顕微鏡に用いる光学系の一例を示す図である。It is a figure which shows an example of the optical system used for the fluorescence microscope which concerns on 1st Embodiment. 検出信号と蛍光の強度信号とを示す図である。It is a figure which shows a detection signal and the fluorescence intensity signal. 検出信号と蛍光の強度信号とを示す図である。It is a figure which shows a detection signal and the fluorescence intensity signal. 検出信号と蛍光の強度信号とを示す図である。It is a figure which shows a detection signal and the fluorescence intensity signal. 検出信号と蛍光の強度信号とを示す図である。It is a figure which shows a detection signal and the fluorescence intensity signal. 励起光の励起スペクトルおよび前記励起光により発生する蛍光の蛍光スペクトルの一例を示す図である。It is a figure which shows an example of the excitation spectrum of excitation light, and the fluorescence spectrum of the fluorescence which generate | occur | produces with the said excitation light. 第2実施形態を説明する図である。It is a figure explaining 2nd Embodiment. 実施形態に係る蛍光受光ユニットの一例を示す図である。It is a figure which shows an example of the fluorescence light-receiving unit which concerns on embodiment.

以下、実施形態について図面を参照しながら説明するが、この実施形態に限定されるものではない。
<第1実施形態>
第1実施形態について説明する。図1は、第1実施形態に係る蛍光顕微鏡を含む顕微鏡システムの一例を示している。顕微鏡システム100は、試料SPに照射される励起光により生じる蛍光の画像を取得する蛍光顕微鏡1と、蛍光顕微鏡1を制御するパーソナルコンピュータ101とを備えている。パーソナルコンピュータ101には、マウスやキーボードからなる入力装置102と、LCD(Liquid Crystal Display)などからなる表示装置103とが接続される。パーソナルコンピュータ101は、内蔵するCPU(Central Processing Unit)がアプリケーションソフトウエア104を実行することにより、蛍光顕微鏡1によって取得された画像や、蛍光顕微鏡1の設定値をユーザに入力させるためのGUI(Graphical User Interface)などを表示装置103に表示させる。また、パーソナルコンピュータ101は、ユーザが入力装置102を操作することにより入力される設定値などに基づいて蛍光顕微鏡1を制御する。
Hereinafter, although an embodiment is described, referring to drawings, it is not limited to this embodiment.
<First Embodiment>
A first embodiment will be described. FIG. 1 shows an example of a microscope system including a fluorescence microscope according to the first embodiment. The microscope system 100 includes a fluorescence microscope 1 that acquires an image of fluorescence generated by excitation light applied to the sample SP, and a personal computer 101 that controls the fluorescence microscope 1. Connected to the personal computer 101 are an input device 102 such as a mouse and a keyboard and a display device 103 such as an LCD (Liquid Crystal Display). The personal computer 101 includes a GUI (Graphical) for allowing a user to input an image acquired by the fluorescence microscope 1 and a setting value of the fluorescence microscope 1 when a built-in CPU (Central Processing Unit) executes the application software 104. User Interface) is displayed on the display device 103. In addition, the personal computer 101 controls the fluorescence microscope 1 based on setting values input by the user operating the input device 102.

蛍光顕微鏡1は、励起光変調部10と、蛍光検出部20と、位相情報生成部30と、振幅情報生成部40と、成分情報生成部50と、強度信号算出部60と、光源70とを備える。   The fluorescence microscope 1 includes an excitation light modulation unit 10, a fluorescence detection unit 20, a phase information generation unit 30, an amplitude information generation unit 40, a component information generation unit 50, an intensity signal calculation unit 60, and a light source 70. Prepare.

励起光変調部10は、所定周波数の信号を出力する発振器11と、複数の励起光(励起光EX1,励起光EX2,・・,励起光EXn)の位相差を調整する位相差調整部12と、変調回路13−1,13−2,・・,13−nと、駆動回路14−1,14−2,・・,14−nとを備える。励起光変調部10は、後述する光源L1,光源L2,・・・,光源Lnから試料SPに照射する複数の励起光を同一周波数かつ所定の位相差で強度変調する。発振器11は、基本正弦波を生成して位相差調整部12に出力する。位相差調整部12は、発振器11からの基本正弦波の位相を励起光ごとに調整して、それぞれ変調回路13−1等へ出力する。   The excitation light modulation unit 10 includes an oscillator 11 that outputs a signal having a predetermined frequency, a phase difference adjustment unit 12 that adjusts a phase difference between a plurality of excitation lights (excitation light EX1, excitation light EX2,..., Excitation light EXn), , 13-n and drive circuits 14-1, 14-2,..., 14-n. The excitation light modulation unit 10 modulates the intensity of a plurality of excitation lights irradiated from the light source L1, the light sources L2,... The oscillator 11 generates a basic sine wave and outputs it to the phase difference adjustment unit 12. The phase difference adjusting unit 12 adjusts the phase of the fundamental sine wave from the oscillator 11 for each excitation light, and outputs the adjusted sine wave to the modulation circuit 13-1 or the like.

なお、位相差調整部12による調整は、複数の励起光のうちの1つの励起光に対して他の励起光の位相を調整することにより行う。例えば、発振器11からの基本正弦波信号を用いて、励起光EX1はそのまま基本正弦波信号を用い、励起光EX2は180°位相回路等によって位相をπ遅らせる(進ませる)ように調整してもよい。また、励起光変調部10は、光源70の駆動を制御することに限定されない。例えば、光源70から出射される励起光をそれぞれ光ファイバで試料SPまで導き、この光ファイバの光路長を調整することにより励起光に位相差を与えるような励起光変調部であってもよい。   The adjustment by the phase difference adjusting unit 12 is performed by adjusting the phase of other excitation light with respect to one excitation light among the plurality of excitation lights. For example, the basic sine wave signal from the oscillator 11 is used, the excitation light EX1 is used as it is, and the excitation light EX2 is adjusted so as to delay (advance) the phase by π by a 180 ° phase circuit or the like. Good. Further, the excitation light modulation unit 10 is not limited to controlling the driving of the light source 70. For example, the pumping light modulator may be such that the pumping light emitted from the light source 70 is guided to the sample SP by an optical fiber and the optical path length of the optical fiber is adjusted to give a phase difference to the pumping light.

また、位相差調整部12は、各励起光の位相の基準となる基本正弦波(以下、基準信号bという)を復調回路23および位相情報生成部30に出力する。
ここで、基準信号bをより高精度に生成するためには、基準信号bの周波数よりもより高い周波数の信号を元に生成するに必要がある。
変調回路13−1等は、位相差調整部12からの出力(強度変調信号c1、c2、・・・、cn)に基づいて所定の位相に強度変調を行い、駆動回路14−1等へそれぞれ出力する。駆動回路14−1等は、励起光EX1等が変調回路13−1等で強度変調された位相で出射するように、それぞれ光源L1等を駆動する。なお、位相差調整部12は、後述する第2実施形態および第3実施形態に用いる場合には、位相遅延量を記憶するための記憶部12aを備える。
In addition, the phase difference adjustment unit 12 outputs a basic sine wave (hereinafter referred to as a reference signal b) that serves as a reference for the phase of each excitation light to the demodulation circuit 23 and the phase information generation unit 30.
Here, in order to generate the reference signal b with higher accuracy, it is necessary to generate the reference signal b based on a signal having a frequency higher than that of the reference signal b.
The modulation circuit 13-1 or the like modulates the intensity to a predetermined phase based on the output (intensity modulation signals c1, c2,..., Cn) from the phase difference adjustment unit 12, and sends them to the drive circuit 14-1 and the like. Output. The drive circuit 14-1 and the like drive the light source L1 and the like so that the excitation light EX1 and the like are emitted with a phase whose intensity is modulated by the modulation circuit 13-1 and the like. Note that the phase difference adjustment unit 12 includes a storage unit 12a for storing the phase delay amount when used in the second and third embodiments described later.

蛍光検出部20は、励起光により発生した蛍光を検出する光検出器21と、光検出器21からの出力を電流・電圧変換する電流・電圧変換回路22と、電流・電圧変換回路22を経た光検出器21の出力を復調して検出信号を出力する復調回路23とを備える。光検出器21は、例えば光電子増倍管が用いられる。図1では、光検出器21として単一の光検出器を用いているが、複数(例えば光源の数と等しいN個)の光検出器を用いてもよい。なお、光源70として2個の光源(光源L1、光源L2)を用いる場合、光検出器21は、それらの光源から照射された励起光EX1、励起光EX2により発生する2つの蛍光(蛍光EM1、蛍光EM2)を合わせた光強度を検出する。従って、蛍光検出部20からの出力信号である検出信号は、蛍光EM1及び蛍光EM2の強度信号の合成出力となる。   The fluorescence detection unit 20 has passed through a photodetector 21 that detects fluorescence generated by excitation light, a current / voltage conversion circuit 22 that converts the output from the photodetector 21 into current / voltage, and a current / voltage conversion circuit 22. And a demodulation circuit 23 that demodulates the output of the photodetector 21 and outputs a detection signal. As the photodetector 21, for example, a photomultiplier tube is used. In FIG. 1, a single photodetector is used as the photodetector 21, but a plurality of (for example, N equal to the number of light sources) photodetectors may be used. When two light sources (light source L1 and light source L2) are used as the light source 70, the light detector 21 emits two fluorescences (fluorescence EM1, EM1,... Generated by the excitation light EX1 and the excitation light EX2 emitted from these light sources. The light intensity combined with the fluorescence EM2) is detected. Therefore, the detection signal that is an output signal from the fluorescence detection unit 20 is a combined output of the intensity signals of the fluorescence EM1 and the fluorescence EM2.

位相情報生成部30は、後述する電圧増幅回路42から入力される蛍光検出部20による検出信号から抽出された周波数成分(基準信号bと同一周波数成分)の位相と、励起光変調部10の位相差調整部12から入力される基準信号bの位相とに基づいて位相情報を生成する。この位相情報は強度信号算出部60に入力される。例えば、基準信号bの位相と検出信号から抽出された周波数成分の位相との位相差(位相差0、位相差π等)が生成される。
ただし、位相差は位相角(π、2π等)で表す以外に、時間(0μs、30μs等)で表してもよい。
また、基準信号bの位相と複数の励起光のうちのいずれか1つの位相を一致させた場合(位相差0)には、その励起光の位相を基準にして、他の励起光の位相を設定してもよいので、基準信号bの位相には、基準となる励起光の位相も含まれる。
The phase information generation unit 30 outputs the phase of the frequency component (the same frequency component as the reference signal b) extracted from the detection signal by the fluorescence detection unit 20 input from the voltage amplification circuit 42 described later, and the level of the excitation light modulation unit 10. Phase information is generated based on the phase of the reference signal b input from the phase difference adjustment unit 12. This phase information is input to the intensity signal calculation unit 60. For example, a phase difference (phase difference 0, phase difference π, etc.) between the phase of the reference signal b and the phase of the frequency component extracted from the detection signal is generated.
However, the phase difference may be represented by time (0 μs, 30 μs, etc.) in addition to the phase angle (π, 2π, etc.).
Further, when the phase of the reference signal b and any one of the plurality of pump lights are matched (phase difference 0), the phases of the other pump lights are set with reference to the phase of the pump light. Since the phase may be set, the phase of the reference signal b includes the phase of the excitation light serving as a reference.

図2は図1に示す第1実施形態の蛍光顕微鏡において、2個の光源を用いた場合を説明する図であり、図1と同一または同等の構成部分については同一符号を付けて説明を省略または簡略する。図2に示すように、励起光EX1および励起光EX2を試料SPに照射したときに蛍光EM1および蛍光EM2が発生した場合、位相情報生成部30によって生成される位相情報の一例を挙げると、「位相情報:基準信号bの位相と蛍光検出部20による検出信号の位相とは同位相(位相差=0)、基準信号bの位相と蛍光検出部20による検出信号の位相とは逆位相(位相差=π)」である。   FIG. 2 is a diagram for explaining a case where two light sources are used in the fluorescence microscope of the first embodiment shown in FIG. 1, and the same or equivalent components as in FIG. Or simplify. As shown in FIG. 2, when fluorescence EM1 and fluorescence EM2 are generated when the sample SP is irradiated with the excitation light EX1 and the excitation light EX2, an example of phase information generated by the phase information generation unit 30 is “ Phase information: The phase of the reference signal b and the phase of the detection signal by the fluorescence detection unit 20 are the same phase (phase difference = 0), and the phase of the reference signal b and the phase of the detection signal by the fluorescence detection unit 20 are opposite (phase) Phase difference = π) ”.

振幅情報生成部40は、ハイパスフィルタ41と、電圧増幅回路42と、AD変換回路43とを備える。ハイパスフィルタ41は、蛍光検出部20から出力された検出信号から周波数成分(基準信号bと同一の周波数成分)を抽出する。電圧増幅回路42は、ハイパスフィルタ41で抽出された周波数成分に対して電圧増幅した後にAD変換回路43および位相情報生成部30へ出力する。AD変換回路43は、電圧増幅された周波数成分をデジタル化し、蛍光検出部20による検出信号の振幅情報(周波数成分における振幅の情報)として強度信号算出部60へ出力する。なお、この振幅情報は、画素クロック生成回路120が生成した画素クロックに基づくタイミングで強度信号算出部60に入力される。   The amplitude information generation unit 40 includes a high pass filter 41, a voltage amplification circuit 42, and an AD conversion circuit 43. The high pass filter 41 extracts a frequency component (the same frequency component as the reference signal b) from the detection signal output from the fluorescence detection unit 20. The voltage amplification circuit 42 amplifies the voltage of the frequency component extracted by the high pass filter 41 and then outputs the amplified voltage component to the AD conversion circuit 43 and the phase information generation unit 30. The AD conversion circuit 43 digitizes the frequency component that has undergone voltage amplification, and outputs it to the intensity signal calculation unit 60 as amplitude information of the detection signal (amplitude information in the frequency component) by the fluorescence detection unit 20. The amplitude information is input to the intensity signal calculation unit 60 at a timing based on the pixel clock generated by the pixel clock generation circuit 120.

成分情報生成部50は、ローパスフィルタ51と、電圧増幅回路52と、AD変換回路53とを備える。ローパスフィルタ51は、蛍光検出部20から出力された検出信号から周波数成分を除いた成分(主として直流成分であり、以下、直流成分という。)を抽出する。電圧増幅回路52は、ローパスフィルタ51で抽出された直流成分に対して電圧増幅した後にAD変換回路53へ出力する。AD変換回路53は、電圧増幅された直流成分をデジタル化し、蛍光検出部20による検出信号の成分情報(検出信号から周波数成分を除いた成分の情報は、主として直流成分の情報である。光源L1,光源L2,・・・,光源Lnからの出力を100%変調する場合であっても直流成分は検出信号に含まれる。)として強度信号算出部60へ出力する。なお、この成分情報は、振幅情報と同様に、画素クロック生成回路120が生成した画素クロックに基づくタイミングで強度信号算出部60に入力される。   The component information generation unit 50 includes a low-pass filter 51, a voltage amplification circuit 52, and an AD conversion circuit 53. The low pass filter 51 extracts a component (mainly a direct current component, hereinafter referred to as a direct current component) obtained by removing a frequency component from the detection signal output from the fluorescence detection unit 20. The voltage amplification circuit 52 amplifies the voltage of the direct current component extracted by the low pass filter 51 and then outputs the amplified voltage to the AD conversion circuit 53. The AD conversion circuit 53 digitizes the voltage-amplified DC component, and component information of the detection signal from the fluorescence detection unit 20 (information on the component obtained by removing the frequency component from the detection signal is mainly DC component information. The light source L1. , Light source L2,..., Even if the output from light source Ln is 100% modulated, the DC component is included in the detection signal. This component information is input to the intensity signal calculation unit 60 at a timing based on the pixel clock generated by the pixel clock generation circuit 120, similarly to the amplitude information.

強度信号算出部60は、位相情報生成部30から入力された位相情報と、振幅情報生成部40から入力された振幅情報(交流成分)と、成分情報生成部50から入力された成分情報(直流成分)とに基づいて、複数の蛍光のそれぞれの強度信号を算出する。なお、強度信号算出部60により複数の蛍光のそれぞれの強度信号を算出する基本原理については後述する。
また、基準信号bの位相を基準として、複数の光源L1等からの複数の励起光EX1等の位相を調整する際に、予備的な試料観察、直前の試料観察で取得した検出信号を用いて強度信号算出部60で算出された複数の蛍光EM1等のそれぞれの強度信号に基づいて、位相補正信号aを算出し、その位相補正信号aを補正値として光源の強度変調を行う位相をさらに精密に調整してもよい。
このような位相補正信号aは、標本等の観察対象が変化しなければ同じ値が使用できるので、一旦算出した後は、強度信号算出部60に備える不図示の記憶部や、位相差調整部12の記憶部12aに格納しておいて、光源L1等を駆動する際に適宜用いてもよい。
The intensity signal calculation unit 60 includes phase information input from the phase information generation unit 30, amplitude information (AC component) input from the amplitude information generation unit 40, and component information (DC direct current) input from the component information generation unit 50. And an intensity signal of each of the plurality of fluorescences. The basic principle for calculating the intensity signals of the plurality of fluorescences by the intensity signal calculation unit 60 will be described later.
Further, when adjusting the phases of the plurality of excitation lights EX1 and the like from the plurality of light sources L1 and the like on the basis of the phase of the reference signal b, the detection signals acquired in the preliminary sample observation and the immediately preceding sample observation are used. The phase correction signal a is calculated based on the intensity signals of the plurality of fluorescence EM1 and the like calculated by the intensity signal calculation unit 60, and the phase for performing the intensity modulation of the light source with the phase correction signal a as a correction value is more precise. You may adjust it.
Since the same value can be used for such a phase correction signal a as long as the observation target such as a sample does not change, once calculated, a storage unit (not shown) provided in the intensity signal calculation unit 60 or a phase difference adjustment unit 12 may be used as appropriate when driving the light source L1 or the like.

光源70は、複数の励起光(励起光EX1,励起光EX2,・・,励起光EXn)を出力するものであり、複数の励起光ごとに出力するようにN個の光源L1,光源L2,・・・,光源Lnを備える。各光源L1等は、それぞれの駆動回路14−1等により駆動して励起光EX1を出射する。このとき、各励起光EX1等の位相は、それぞれの変調回路13−1等により設定されている。なお、光源70は複数の光源に限定されるものではなく、単一の光源を用いてもよい。例えば、広帯域の単一光源から出力される励起光を強度変調可能な素子(例えば、AOTF:Acousto-Optic Tunable Filter)を用いて、波長の異なる複数の励起光に分割して所定の位相差で出力してもよい。なお、本実施形態では、光源70として変調回路および駆動回路を含まないものを用いているが、駆動回路および変調回路を含むものを用いてもよい。光源70が変調回路等を備える場合は、励起光変調部10は、変調回路13−1等や駆動回路14−1等を備える必要がない。   The light source 70 outputs a plurality of excitation lights (excitation light EX1, excitation light EX2,..., Excitation light EXn), and N light sources L1, L2, L2, and so on are output for each of the plurality of excitation lights. ..., a light source Ln is provided. Each light source L1 etc. is driven by the respective drive circuit 14-1 etc. and emits excitation light EX1. At this time, the phase of each excitation light EX1 is set by each modulation circuit 13-1. The light source 70 is not limited to a plurality of light sources, and a single light source may be used. For example, excitation light output from a single broadband light source is divided into a plurality of excitation lights having different wavelengths by using an element capable of intensity modulation (for example, AOTF: Acousto-Optic Tunable Filter), and with a predetermined phase difference. It may be output. In the present embodiment, a light source 70 that does not include a modulation circuit and a drive circuit is used. However, a light source that includes a drive circuit and a modulation circuit may be used. When the light source 70 includes a modulation circuit or the like, the excitation light modulation unit 10 does not need to include the modulation circuit 13-1 or the drive circuit 14-1 or the like.

蛍光顕微鏡1は、光学系110を備える。光学系110は、光路分割、光路合成および走査を行うことにより、光源L1等から出射された同一周波数の複数の励起光EX1等を所定の位相差で試料SPに照射するとともに、照射された励起光EX1等に応じて生じた蛍光EM1等を蛍光検出部20に導く。光学系110としては、例えば特開平11−183806号公報に開示されているコンフォーカル顕微鏡(図3参照)の構成要素の一部を用いることができる。   The fluorescence microscope 1 includes an optical system 110. The optical system 110 irradiates the sample SP with a predetermined phase difference and irradiates the sample SP with a plurality of excitation lights EX1 and the like having the same frequency emitted from the light source L1 and the like by performing optical path division, optical path synthesis, and scanning. The fluorescence EM1 and the like generated according to the light EX1 and the like are guided to the fluorescence detection unit 20. As the optical system 110, for example, a part of components of a confocal microscope (see FIG. 3) disclosed in Japanese Patent Laid-Open No. 11-183806 can be used.

図3は、光学系110の具体的な構成を示している。この光学系110は、光分割装置111と、スキャナモジュール112と、リレーレンズ113と、対物光学系114と、ステージ115と、蛍光選択装置116と、集光レンズ117と、ピンホールモジュール118などを備える。光分割装置111は、光源70から試料SPに照射する励起光EX1等と試料SPから発生する蛍光EM1等とを分離する。スキャナモジュール112は、励起光EX1等を試料SPに対して2次元的に走査するための走査装置である。リレーレンズ113は、励起光EX1等を試料SPに導く。対物光学系114は、励起光EX1等を試料SP位置に集光する。ステージ115は、試料SPを支持して3次元に移動させる。蛍光選択装置116は、光分割装置111を透過した蛍光EM1等からノイズ光を除去する。集光レンズ117は、蛍光選択装置116を通過した蛍光EM1等を集光する。ピンホールモジュール118は、共焦点効果を生じさせるための開口部材である。   FIG. 3 shows a specific configuration of the optical system 110. The optical system 110 includes a light splitting device 111, a scanner module 112, a relay lens 113, an objective optical system 114, a stage 115, a fluorescence selection device 116, a condensing lens 117, a pinhole module 118, and the like. Prepare. The light splitting device 111 separates the excitation light EX1 and the like irradiated from the light source 70 onto the sample SP and the fluorescence EM1 and the like generated from the sample SP. The scanner module 112 is a scanning device for two-dimensionally scanning the sample SP with the excitation light EX1 and the like. The relay lens 113 guides the excitation light EX1 and the like to the sample SP. The objective optical system 114 condenses the excitation light EX1 and the like at the sample SP position. The stage 115 supports the sample SP and moves it in three dimensions. The fluorescence selection device 116 removes noise light from the fluorescence EM1 transmitted through the light splitting device 111 and the like. The condensing lens 117 condenses the fluorescence EM1 and the like that have passed through the fluorescence selection device 116. The pinhole module 118 is an opening member for generating a confocal effect.

光源70から出射された励起光EX1等は、光分割装置111により試料SPへ向けて反射され、スキャナモジュール112及びリレーレンズ113、対物光学系114を介して試料SPに照射される。なお、励起光EX1等は、スキャナモジュール112により試料SPの全部または一部に対して走査される。励起光EX1等により試料SPから生じた蛍光EM1等は、対物光学系114及びリレーレンズ113、スキャナモジュール112を通り、光分割装置111を透過する。そして、蛍光EM1等は、蛍光選択装置116によってノイズ光を除去された後に、集光レンズ117によって集光されてスキャナモジュール112を通過し、蛍光検出部20に入射する。なお、光学系110において、光分割装置111及びスキャナモジュール112、対物光学系114、蛍光選択装置116等は、それぞれ図示しない制御装置によって制御される。この制御装置は、図1に示すパーソナルコンピュータ101を用いてもよい。   The excitation light EX1 and the like emitted from the light source 70 are reflected toward the sample SP by the light splitting device 111, and are irradiated to the sample SP via the scanner module 112, the relay lens 113, and the objective optical system 114. The excitation light EX1 and the like are scanned by the scanner module 112 over all or part of the sample SP. The fluorescence EM1 and the like generated from the sample SP by the excitation light EX1 and the like pass through the light splitting device 111 through the objective optical system 114, the relay lens 113, and the scanner module 112. Then, after the noise light is removed by the fluorescence selection device 116, the fluorescence EM 1 and the like are collected by the condenser lens 117, pass through the scanner module 112, and enter the fluorescence detection unit 20. In the optical system 110, the light splitting device 111, the scanner module 112, the objective optical system 114, the fluorescence selection device 116, and the like are controlled by control devices (not shown). This control device may use the personal computer 101 shown in FIG.

また、蛍光顕微鏡1としては、レーザ走査共焦点蛍光顕微鏡として構成されているが、これに限定されるものではない。また、共焦点蛍光顕微鏡に限定されるものでもない。また、蛍光顕微鏡1として光源70を備えたものとしているが、これに限定されず、光源70を搭載していない蛍光顕微鏡であってもよい。光源70を搭載しない蛍光顕微鏡にあっては、励起光変調部10が変調回路13−1等や駆動回路14−1等を備えるか否かは任意であり、使用する光源において変調回路等の有無によって適宜変更される。   In addition, the fluorescence microscope 1 is configured as a laser scanning confocal fluorescence microscope, but is not limited thereto. Moreover, it is not limited to a confocal fluorescence microscope. Moreover, although the light source 70 is provided as the fluorescence microscope 1, it is not limited to this, The fluorescence microscope which does not mount the light source 70 may be sufficient. In the fluorescence microscope not equipped with the light source 70, whether the excitation light modulation unit 10 includes the modulation circuit 13-1, etc., the drive circuit 14-1, etc. is arbitrary. As appropriate.

続いて、蛍光の強度信号を算出する基本原理について説明する。説明の単純化のため、複数の蛍光は、対応する励起光の照射に対して位相遅れが無いと仮定して、複数の蛍光が基準信号bに対してそれぞれ位相差0、πで発生するように、複数の励起光は、基準信号bに対してそれぞれ位相差0、πに設定されるとともに、蛍光効率(すなわち、励起光の強度に対する蛍光強度の比率)が同一の場合を例に説明を行う。すなわち、図4〜図7は、試料SPに照射する2つの励起光EX1,EX2を基準信号bと同一周波数、同一強度、位相差π(基準信号bに対する励起光EX1の位相差を0、基準信号bに対する励起光EX2の位相差をπとする)で強度変調した場合、励起光EX1,EX2によって生じた蛍光EM1,EM2のそれぞれ(基準信号bに対する蛍光EM1の位相差0、基準信号bに対する蛍光EM2の位相差π)と、蛍光検出部20により検出された合成出力を示すグラフ図である。なお、図4〜図7において、縦軸は信号強度を示し、横軸は時間を示す。図4は、蛍光EM1,EM2が、平均強度及び振幅が同一で逆位相の場合を示しており、この場合は蛍光検出部20からの合成出力(検出信号)として直流成分のみが検出される。従って、この検出信号から蛍光EM1の強度信号と、蛍光EM2の強度信号とが、逆位相の同一波形であることが分かるため、蛍光EM1及び蛍光EM2の強度信号が同一であったことが分かる。また、蛍光EM1及び蛍光EM2の強度信号は、検出信号の半分である。   Next, the basic principle for calculating the fluorescence intensity signal will be described. For simplification of explanation, it is assumed that the plurality of fluorescences are generated with a phase difference of 0 and π with respect to the reference signal b on the assumption that there is no phase lag with respect to the irradiation of the corresponding excitation light. In addition, the plurality of excitation lights are described with an example in which the phase differences are set to 0 and π with respect to the reference signal b and the fluorescence efficiency (that is, the ratio of the fluorescence intensity to the excitation light intensity) is the same. Do. That is, FIGS. 4 to 7 show that the two excitation lights EX1 and EX2 irradiated to the sample SP have the same frequency, the same intensity, and the phase difference π as the reference signal b (the phase difference of the excitation light EX1 with respect to the reference signal b is 0, the reference When intensity modulation is performed with the phase difference of the excitation light EX2 with respect to the signal b as π, each of the fluorescence EM1 and EM2 generated by the excitation light EX1 and EX2 (the phase difference 0 of the fluorescence EM1 with respect to the reference signal b and the reference signal b) 6 is a graph showing the phase difference π) of fluorescence EM2 and the combined output detected by the fluorescence detection unit 20. FIG. 4 to 7, the vertical axis indicates signal intensity, and the horizontal axis indicates time. FIG. 4 shows a case where the fluorescence EM1 and EM2 have the same average intensity and amplitude and are in opposite phases. In this case, only a direct current component is detected as a combined output (detection signal) from the fluorescence detection unit 20. Therefore, it can be seen from this detection signal that the intensity signal of the fluorescence EM1 and the intensity signal of the fluorescence EM2 have the same waveform in opposite phases, and thus the intensity signals of the fluorescence EM1 and the fluorescence EM2 are the same. The intensity signals of the fluorescence EM1 and the fluorescence EM2 are half of the detection signal.

図5は、蛍光EM1,EM2におけるそれぞれの強度信号の平均値(平均強度)が同一であり、逆位相(基準信号bに対する蛍光EM1の位相差0、基準信号bに対する蛍光EM2の位相差π)でかつ振幅が異なる場合を示しており、この場合は蛍光検出部20からの合成出力(検出信号)として図5に示すような交流成分が検出される。この交流成分を見ると、その位相が蛍光EM1と同相(蛍光EM2と逆相、基準信号bと同相)になっている。これは、蛍光EM1の強度信号の周波数成分における振幅が蛍光EM2のそれよりも大きいことを表している。従って、この合成出力(検出信号)から蛍光EM1の強度信号(正弦信号の最大値)が蛍光EM2の強度信号(正弦信号の最大値)より大きく、かつその差(強度差)が蛍光EM1と蛍光EM2の検出信号の振幅であることが分かる。合成出力(検出信号)の直流成分(すなわち、正弦波信号の中心位置)の大きさは、蛍光EM1、EM2の直流成分の和を表している。   FIG. 5 shows that the average values (average intensities) of the respective intensity signals in the fluorescence EM1 and EM2 are the same, and the opposite phases (the phase difference 0 of the fluorescence EM1 with respect to the reference signal b and the phase difference π of the fluorescence EM2 with respect to the reference signal b). In this case, an alternating current component as shown in FIG. 5 is detected as a combined output (detection signal) from the fluorescence detection unit 20. Looking at this alternating current component, the phase thereof is in phase with the fluorescence EM1 (the phase opposite to that of the fluorescence EM2 and the phase of the reference signal b). This indicates that the amplitude in the frequency component of the intensity signal of the fluorescence EM1 is larger than that of the fluorescence EM2. Therefore, from this combined output (detection signal), the intensity signal (maximum value of the sine signal) of the fluorescence EM1 is larger than the intensity signal (maximum value of the sine signal) of the fluorescence EM2, and the difference (intensity difference) between the fluorescence EM1 and the fluorescence. It can be seen that the amplitude of the detection signal of EM2. The magnitude of the DC component of the combined output (detection signal) (that is, the center position of the sine wave signal) represents the sum of the DC components of the fluorescences EM1 and EM2.

図6は、図5と同様に、蛍光EM1,EM2におけるそれぞれの信号強度の平均値(平均強度)が同一であり、逆位相(基準信号bに対する蛍光EM1の位相差0、基準信号bに対する蛍光EM2の位相差π)でかつ振幅が異なる場合を示しており、この場合は蛍光検出部20からの合成出力として図6に示すような交流成分が検出される。この交流成分を見ると、その位相が蛍光EM1と逆相(蛍光EM2と同相、基準信号bと逆相)になっている。これは、蛍光EM2の強度信号の周波数成分における振幅が蛍光EM1のそれよりも大きいことを表している。従って、この合成出力(検出信号)から蛍光EM2の強度信号(正弦信号の最大値)が蛍光EM1の強度信号(正弦信号の最大値)より大きく、かつその差(強度差)が蛍光EM1と蛍光EM2の合成出力(検出信号)の振幅であることが分かる。合成出力(検出信号)の直流成分(すなわち、正弦波信号の中心位置)の大きさは、蛍光EM1、EM2の直流成分の和を表している。
6, as in FIG. 5, the average values (average intensities) of the respective signal intensities in the fluorescences EM <b> 1 and EM <b> 2 are the same, and the opposite phases (the phase difference 0 of the fluorescence EM <b> 1 with respect to the reference signal b and the fluorescence with respect to the reference signal b) 6 shows a case where the amplitude is different from the phase difference π of EM2, and in this case, an alternating current component as shown in FIG. 6 is detected as a combined output from the fluorescence detection unit 20. Looking at this AC component, the phase is opposite to that of the fluorescence EM1 (in phase with the fluorescence EM2 and opposite to the reference signal b). This represents that the amplitude in the frequency component of the intensity signal of the fluorescence EM2 is larger than that of the fluorescence EM1. Therefore, from this combined output (detection signal), the intensity signal (maximum value of the sine signal) of the fluorescence EM2 is larger than the intensity signal (maximum value of the sine signal) of the fluorescence EM1, and the difference (intensity difference) between the fluorescence EM1 and the fluorescence. It can be seen that this is the amplitude of the combined output (detection signal) of EM2. The magnitude of the DC component of the combined output (detection signal) (that is, the center position of the sine wave signal) represents the sum of the DC components of the fluorescences EM1 and EM2.

図7は、蛍光EM1,EM2におけるそれぞれの信号強度の平均値(平均強度)が異なり、逆位相(基準信号bに対する蛍光EM1の位相差0、基準信号bに対する蛍光EM2の位相差π)でかつ振幅が異なる場合を示しており、この場合は蛍光検出部20からの合成出力として図7に示すような交流成分が検出される。この交流成分を見ると、その位相が蛍光EM1と同相(蛍光EM2と逆相、基準信号bと同相)になっている。これは、蛍光EM1の強度信号の周波数成分における振幅が蛍光EM2のそれよりも大きいことを表している。従って、この合成出力(検出信号)から蛍光EM1の強度信号(正弦信号の最大値)が蛍光EM2の強度信号(正弦信号の最大値)より大きく、かつ、その差(強度差)が蛍光EM1と蛍光EM2の検出信号の振幅であることが分かる。合成出力(検出信号)の直流成分(すなわち、正弦波信号の中心位置)の大きさは、蛍光EM1、EM2の直流成分の和を表している。

以上より、複数の励起光のそれぞれの位相差を基準信号bに対して0、πに設定することにより、予め、複数の蛍光は、基準信号bに対してそれぞれ位相差0、πで発生するようにしているので、検出信号の位相と基準信号bの位相とが同相か、逆相か(合成出力(検出信号)の位相と基準信号bの位相との位相差)で、蛍光EM1、EM2のどちらの振幅が大きいかが分かり、さらに検出信号の振幅が蛍光EM1、EM2の振幅の差を表し、合成出力(検出信号)の強度の平均値(平均強度)が蛍光EM1、EM2の直流成分の和を表すことが分かる。
In FIG. 7, the average values (average intensities) of the respective signal intensities of the fluorescence EM1 and EM2 are different, and have opposite phases (the phase difference 0 of the fluorescence EM1 with respect to the reference signal b, the phase difference π of the fluorescence EM2 with respect to the reference signal b), 7 shows a case where the amplitudes are different. In this case, an alternating current component as shown in FIG. 7 is detected as a combined output from the fluorescence detection unit 20. Looking at this alternating current component, the phase thereof is in phase with the fluorescence EM1 (the phase opposite to that of the fluorescence EM2 and the phase of the reference signal b). This indicates that the amplitude in the frequency component of the intensity signal of the fluorescence EM1 is larger than that of the fluorescence EM2. Therefore, from this combined output (detection signal), the intensity signal (maximum value of the sine signal) of the fluorescence EM1 is larger than the intensity signal (maximum value of the sine signal) of the fluorescence EM2, and the difference (intensity difference) is different from that of the fluorescence EM1. It turns out that it is the amplitude of the detection signal of fluorescence EM2. The magnitude of the DC component of the combined output (detection signal) (that is, the center position of the sine wave signal) represents the sum of the DC components of the fluorescences EM1 and EM2.

As described above, by setting the phase differences of the plurality of excitation lights to 0 and π with respect to the reference signal b, a plurality of fluorescences are generated in advance with phase differences of 0 and π with respect to the reference signal b, respectively. Thus, the fluorescence signals EM1, EM2 depending on whether the phase of the detection signal and the phase of the reference signal b are the same phase or opposite phase (the phase difference between the phase of the combined output (detection signal) and the phase of the reference signal b). The amplitude of the detection signal represents the difference between the amplitudes of the fluorescence EM1 and EM2, and the average value (average intensity) of the combined output (detection signal) is the DC component of the fluorescence EM1 and EM2. You can see that it represents the sum.

次に、蛍光の強度信号の算出原理を数式に基づいて説明する。
[2つの励起光を用いる場合]
2つの励起光(励起光EX1、励起光EX2)の発光波長をそれぞれλa、λbとし、励起光EX1および励起光EX2を基準信号bと同一周波数かつ基準信号bに対してそれぞれ所定の位相差(例えば、励起光EX1との位相差を0、励起光EX2との位相差をπとする)であって、互いに所定の位相差(例えば、励起光EX1に対する励起光EX2の位相差をπとする)で強度変調すると、励起光EX1および励起光EX2によりそれぞれ発生する蛍光EM1および蛍光EM2が蛍光検出部20に入力される。蛍光検出部20において電気信号に変換された後の蛍光EM1、蛍光EM2の強度信号の強度をそれぞれSa、Sbとし、蛍光EM1、蛍光EM2は励起光の照射に対し位相遅れが無いものと仮定すると、Sa、Sbは、基準信号bに対してそれぞれ所定の位相差(蛍光EM1との位相差を0、蛍光EM2との位相差をπとする)を持ち、蛍光検出部20の合成出力(検出信号)に対し0およびπの位相差を持つ。また、合成出力(検出信号)は、基準信号bに対して所定の位相差(0またはπ)を持つ。すなわち、Sa、Sbはそれぞれ、式(1)、(2)で表すことができる。
Sa=Ja・{1+Ka・cos(θ)}……(1)
Sb=Jb・{1+Kb・cos(θ+π)}……(2)
ただし、Ja、Jbは蛍光検出部20の蛍光波長による感度係数および蛍光強度により決定される信号強度を表し、Ka、Kbは変調度(変調度1は100%変調に対応する)を表す。
Next, the calculation principle of the fluorescence intensity signal will be described based on mathematical expressions.
[When using two excitation lights]
The emission wavelengths of the two excitation lights (excitation light EX1, excitation light EX2) are λa and λb, respectively, and the excitation light EX1 and the excitation light EX2 have the same frequency as the reference signal b and a predetermined phase difference with respect to the reference signal b ( For example, the phase difference from the excitation light EX1 is 0 and the phase difference from the excitation light EX2 is π, and a predetermined phase difference (for example, the phase difference of the excitation light EX2 with respect to the excitation light EX1 is π). ), The fluorescence EM1 and the fluorescence EM2 generated by the excitation light EX1 and the excitation light EX2, respectively, are input to the fluorescence detection unit 20. Assume that the intensity signals of the fluorescence EM1 and fluorescence EM2 after being converted into electrical signals in the fluorescence detection unit 20 are Sa and Sb, respectively, and that the fluorescence EM1 and fluorescence EM2 have no phase delay with respect to the excitation light irradiation. , Sa, and Sb each have a predetermined phase difference with respect to the reference signal b (the phase difference with the fluorescence EM1 is 0 and the phase difference with the fluorescence EM2 is π), and the combined output (detection) of the fluorescence detection unit 20 Signal) has a phase difference of 0 and π. The combined output (detection signal) has a predetermined phase difference (0 or π) with respect to the reference signal b. That is, Sa and Sb can be expressed by the expressions (1) and (2), respectively.
Sa = Ja · {1 + Ka · cos (θ)} (1)
Sb = Jb · {1 + Kb · cos (θ + π)} (2)
However, Ja and Jb represent the signal intensity determined by the sensitivity coefficient and the fluorescence intensity depending on the fluorescence wavelength of the fluorescence detection unit 20, and Ka and Kb represent the modulation degree (modulation degree 1 corresponds to 100% modulation).

蛍光検出部20において検出される蛍光EM1、蛍光EM2の強度信号の強度Sa、Sbは合成されて出力されるため、蛍光検出部20の合成出力(検出信号)の値をSとすると、Sは式(3)で表すことができる。
S=Sa+Sb=Ja+Ja・Ka・cos(θ)
+Jb+Jb・Kb・cos(θ+π)……(3)
cos(θ+π)=−cos(θ)より、式(3)は式(4)となる。
S=Ja+Jb+(Ja・Ka−
Jb・Kb)・cos(θ)……(4)
式(4)において、(Ja+Jb)はSの直流成分の大きさを表し、(Ja・Ka−
Jb・Kb)はSの交流成分の振幅を表す。
このとき、(Ja+Jb)および(Ja・Ka−
Jb・Kb)はそれぞれ、AD変換回路53およびAD変換回路43において生成される成分情報および振幅情報であるため、それぞれをα、βとおくと、α、βはそれぞれ式(5)、(6)で表すことができる。
Ja+Jb=α……(5)
Ja・Ka−
Jb・Kb=β……(6)
式(6)において、変調度Ka、Kbは既知であるため、式(5)、(6)は2変数の一次式であることから、式(5)、(6)の2変数の一次式を解くことにより、Ja、Jbを決定することができる。したがって、AD変換回路53およびAD変換回路43においてそれぞれ成分情報αおよび振幅情報βを生成して強度信号算出部60に出力することにより、強度信号算出部60において、励起光EX1により発生する蛍光EM1の強度信号および励起光EX2により発生する蛍光EM2の強度信号を算出することができる。
Since the intensity Sa and Sb of the intensity signals of the fluorescence EM1 and fluorescence EM2 detected by the fluorescence detection unit 20 are synthesized and output, if the value of the synthesis output (detection signal) of the fluorescence detection unit 20 is S, S is It can be expressed by equation (3).
S = Sa + Sb = Ja + Ja · Ka · cos (θ)
+ Jb + Jb · Kb · cos (θ + π) (3)
From cos (θ + π) = − cos (θ), equation (3) becomes equation (4).
S = Ja + Jb + (Ja · Ka−
Jb / Kb) / cos (θ) (4)
In equation (4), (Ja + Jb) represents the magnitude of the direct current component of S, and (Ja · Ka−
Jb · Kb) represents the amplitude of the AC component of S.
At this time, (Ja + Jb) and (Ja · Ka−
Jb · Kb) is component information and amplitude information generated in the AD conversion circuit 53 and the AD conversion circuit 43, respectively. When α and β are respectively set, α and β are the expressions (5) and (6), respectively. ).
Ja + Jb = α (5)
Ja ・ Ka-
Jb · Kb = β …… (6)
In Expression (6), since the modulation degrees Ka and Kb are known, Expressions (5) and (6) are linear expressions of two variables. Therefore, the linear expressions of the two variables of Expressions (5) and (6) are used. By solving, Ja and Jb can be determined. Therefore, by generating component information α and amplitude information β in the AD conversion circuit 53 and the AD conversion circuit 43 and outputting them to the intensity signal calculation unit 60, the fluorescence signal EM1 generated by the excitation light EX1 in the intensity signal calculation unit 60. And the intensity signal of the fluorescence EM2 generated by the excitation light EX2.

[3つの励起光を用いる場合]
3つの励起光(励起光EX1、励起光EX2、励起光EX3)の発光波長をそれぞれλ1、λ2、λ3とし、励起光EX1、励起光EX2、励起光EX3を基準信号bと同一周波数かつ基準信号bに対してそれぞれ所定の位相差(例えば、励起光EX1との位相差を0、励起光EX2との位相差を2π/3、励起光EX3との位相差を4π/3とする)であって、互いに所定の位相差(例えば、励起光EX1に対する励起光EX2、励起光EX3の位相差をそれぞれ2π/3、4π/3とする)で強度変調すると、励起光EX1、励起光EX2、励起光EX3によりそれぞれ発生する蛍光EM1、蛍光EM2、蛍光EM3が蛍光検出部20に入力される。蛍光検出部20において電気信号に変換された後の蛍光EM1、蛍光EM2、蛍光EM3の強度信号の強度をそれぞれSa、Sb、Scとし、蛍光EM1、蛍光EM2、蛍光EM3は励起光の照射に対し位相遅れが無いものと仮定すると、Sa、Sb、Scは、基準信号bに対してそれぞれ所定の位相差(蛍光EM1との位相差を0、蛍光EM2との位相差を2π/3、蛍光EM3との位相差を4π/3とする)を持ち、それぞれ、蛍光検出部20の合成出力(検出信号)に対し0、2π/3、4π/3の位相差を持つ。また、合成出力(検出信号)は、基準信号bに対して所定の位相差(0、2π/3、4π/3のいずれか1つ)を持つ。すなわち、Sa、Sb、Scはそれぞれ、式(7)、(8)、(9)で表すことができる。
Sa=Ja・{1+Ka・cos(θ)}……(7)
Sb=Jb・{1+Kb・cos(θ+2π/3)}……(8)
Sc=Jc・{1+Kc・cos(θ+4π/3)}……(9)
ただし、Ja、Jb、Jcは蛍光検出部27の蛍光波長による感度係数および蛍光強度により決定される信号強度を表し、Ka、Kb、Kcは変調度(変調度1は100%変調に対応する)を表す。
[When using three excitation lights]
The emission wavelengths of the three excitation lights (excitation light EX1, excitation light EX2, and excitation light EX3) are λ1, λ2, and λ3, respectively. The excitation light EX1, the excitation light EX2, and the excitation light EX3 have the same frequency and the reference signal as the reference signal b. Each of b is a predetermined phase difference (for example, the phase difference with the excitation light EX1 is 0, the phase difference with the excitation light EX2 is 2π / 3, and the phase difference with the excitation light EX3 is 4π / 3). Then, when intensity modulation is performed with a predetermined phase difference (for example, the phase differences of the excitation light EX2 and the excitation light EX3 with respect to the excitation light EX1 are 2π / 3 and 4π / 3, respectively), the excitation light EX1, the excitation light EX2, and the excitation light Fluorescence EM1, fluorescence EM2, and fluorescence EM3 generated by the light EX3 are input to the fluorescence detection unit 20. The intensity of the intensity signals of the fluorescence EM1, fluorescence EM2, and fluorescence EM3 after being converted into electrical signals in the fluorescence detection unit 20 is Sa, Sb, and Sc, respectively, and the fluorescence EM1, fluorescence EM2, and fluorescence EM3 are subjected to excitation light irradiation. Assuming that there is no phase lag, Sa, Sb, and Sc each have a predetermined phase difference with respect to the reference signal b (the phase difference with the fluorescence EM1 is 0, the phase difference with the fluorescence EM2 is 2π / 3, and the fluorescence EM3 And a phase difference of 0, 2π / 3, and 4π / 3 with respect to the combined output (detection signal) of the fluorescence detection unit 20, respectively. Further, the combined output (detection signal) has a predetermined phase difference (any one of 0, 2π / 3, 4π / 3) with respect to the reference signal b. That is, Sa, Sb, and Sc can be expressed by equations (7), (8), and (9), respectively.
Sa = Ja · {1 + Ka · cos (θ)} (7)
Sb = Jb · {1 + Kb · cos (θ + 2π / 3)} (8)
Sc = Jc · {1 + Kc · cos (θ + 4π / 3)} (9)
However, Ja, Jb, and Jc represent the signal intensity determined by the sensitivity coefficient and the fluorescence intensity depending on the fluorescence wavelength of the fluorescence detection unit 27, and Ka, Kb, and Kc are modulation degrees (modulation degree 1 corresponds to 100% modulation). Represents.

蛍光検出部20において検出される蛍光EM1、蛍光EM2、蛍光EM3の信号強度Sa、Sb、Scは合成されて出力されるため、蛍光検出部27の合成出力(検出信号)の値をSとすると、Sは式(10)で表すことができる。
S=Sa+Sb+Sc
=Ja・{1+Ka・cos(θ)}
+Jb・{1+Kb・cos(θ+2π/3)}
+Jc・{1+Kc・cos(θ+4π/3)}
=Ja+Jb+Jc
+Ja・Ka・cos(θ)
+Jb・Kb・cos(θ)・cos(2π/3)
−sin(θ)・sin(2π/3)
+Jc・Kc・cos(θ)・cos(4π/3)
−sin(θ)・sin(4π/3)
=Ja+Jb+Jc
+Ja・Ka・cos(θ)
+Jb・Kb・{−(1/2)cos(θ)
−(√3/2)sin(θ)}
+Jc・Kc・{−(1/2)cos(θ)
−(−√3/2)sin(θ)}
=Ja+Jb+Jc
+{Ja・Ka−(1/2)Jb・Kb
−(1/2)Jc・Kc}・cos(θ)
−(√3/2)・(Jb・Kb−Jc・Kc)・sin(θ)
=Ja+Jb+Jc+Jp・cos(θ+δ)……(10)
ここで、Jp、tanδは、それぞれ式(11)、(12)で表すことができる。
Jp=√[{Ja・Ka−(1/2)Jb・Kb−(1/2)Jc・Kc}2
+{(√3/2)・(Jb・Kb−Jc・Kc)}2]……(11)
tanδ={(√3/2)・(Jb・Kb−Jc・Kc)/
{Ja・Ka−(1/2)Jb・Kb−(1/2)Jc・Kc}……(12)
一方、蛍光検出部20の合成出力(検出信号)Sは、単一周波数成分の信号を合成したものなので、式(13)で表すことができる。
S=Acos(θ+δ)+B……(13)
ここで、A、Bは式(14)、(15)で表すことができる。
A=√[{Ja・Ka−(1/2)Jb・Kb−(1/2)Jc・Kc}2
+{(√3/2)・(Jb・Kb−Jc・Kc)}2]……(14)
B=Ja+Jb+Jc……(15)
式(12)〜式(15)において、変調度Ka、Kb、Kcは既知であり、A、Bはそれぞれ、AD変換回路43およびAD変換回路43において生成される振幅情報および成分情報であり、δは位相情報生成部30において生成される位相情報であるため、AD変換回路53、AD変換回路43および位相情報生成部30においてそれぞれ成分情報B、振幅情報Aおよび位相情報βを生成して強度信号算出部60に出力することにより、強度信号算出部60において、蛍光EM1〜EM3の信号強度Ja,Jb,Jcを算出することができる。
Since the signal intensities Sa, Sb, and Sc of the fluorescence EM1, fluorescence EM2, and fluorescence EM3 detected by the fluorescence detection unit 20 are synthesized and output, assuming that the value of the synthesized output (detection signal) of the fluorescence detection unit 27 is S. , S can be represented by the formula (10).
S = Sa + Sb + Sc
= Ja · {1 + Ka · cos (θ)}
+ Jb · {1 + Kb · cos (θ + 2π / 3)}
+ Jc · {1 + Kc · cos (θ + 4π / 3)}
= Ja + Jb + Jc
+ Ja · Ka · cos (θ)
+ Jb · Kb · cos (θ) · cos (2π / 3)
-Sin (θ) · sin (2π / 3)
+ Jc · Kc · cos (θ) · cos (4π / 3)
-Sin (θ) · sin (4π / 3)
= Ja + Jb + Jc
+ Ja · Ka · cos (θ)
+ Jb · Kb · {-(1/2) cos (θ)
-(√3 / 2) sin (θ)}
+ Jc · Kc · {-(1/2) cos (θ)
-(-√3 / 2) sin (θ)}
= Ja + Jb + Jc
+ {Ja · Ka- (1/2) Jb · Kb
− (1/2) Jc · Kc} · cos (θ)
-(√3 / 2) · (Jb · Kb-Jc · Kc) · sin (θ)
= Ja + Jb + Jc + Jp.cos (θ + δ) (10)
Here, Jp and tan δ can be expressed by equations (11) and (12), respectively.
Jp = √ [{Ja · Ka− (1/2) Jb · Kb− (1/2) Jc · Kc} 2
+ {(√3 / 2) · (Jb · Kb−Jc · Kc)} 2] (11)
tan δ = {(√3 / 2) · (Jb · Kb−Jc · Kc) /
{Ja · Ka- (1/2) Jb · Kb- (1/2) Jc · Kc} (12)
On the other hand, the combined output (detection signal) S of the fluorescence detection unit 20 is a composite of signals of a single frequency component, and can be expressed by Expression (13).
S = Acos (θ + δ) + B (13)
Here, A and B can be expressed by equations (14) and (15).
A = √ [{Ja · Ka− (1/2) Jb · Kb− (1/2) Jc · Kc} 2
+ {(√3 / 2) · (Jb · Kb−Jc · Kc)} 2] (14)
B = Ja + Jb + Jc (15)
In Expressions (12) to (15), the modulation degrees Ka, Kb, and Kc are known, and A and B are amplitude information and component information generated in the AD conversion circuit 43 and the AD conversion circuit 43, respectively. Since δ is phase information generated by the phase information generation unit 30, the component information B, amplitude information A, and phase information β are generated by the AD conversion circuit 53, the AD conversion circuit 43, and the phase information generation unit 30, respectively. By outputting to the signal calculation unit 60, the intensity signal calculation unit 60 can calculate the signal intensities Ja, Jb, and Jc of the fluorescences EM1 to EM3.

[4つの励起光を用いる場合]
まず、4つのうちの2つの励起光EX1,EX2を試料SPに照射して、蛍光EM1,EM2の信号強度Ja,Jbを、上述した「2つの励起光を用いる場合」の手法により算出する。次いで、4つのうちの残りの2つの励起光EX3,EX4を試料SPに照射して、同様に「2つの励起光を用いる場合」の手法により、蛍光EM3,EM4の強度信号Jc,Jdを算出する。これにより、4つの蛍光EX1〜EX4のそれぞれの強度信号Ja〜Jdを算出することができる。なお、この手法に代えて、次の方法により算出可能である。まず、4つのうちの3つの励起光EX1〜EX3を試料SPに照射して、蛍光EM1〜EM3の信号強度Ja,Jb,Jcを、上述した「3つの励起光を用いる場合」の手法により算出する。次いで、4つのうちの残りの1つの励起光EX4を試料SPに照射して、蛍光EM4の強度信号Jdを算出してもよい。
[When using four excitation lights]
First, the sample SP is irradiated with two of the four excitation lights EX1 and EX2, and the signal intensities Ja and Jb of the fluorescence EM1 and EM2 are calculated by the above-described method of “when two excitation lights are used”. Next, the remaining two of the four excitation lights EX3 and EX4 are irradiated onto the sample SP, and similarly, the intensity signals Jc and Jd of the fluorescence EM3 and EM4 are calculated by the method of “when two excitation lights are used”. To do. Thereby, each intensity signal Ja-Jd of four fluorescence EX1-EX4 is computable. Instead of this method, calculation can be performed by the following method. First, the sample SP is irradiated with three of the four excitation lights EX1 to EX3, and the signal intensities Ja, Jb, and Jc of the fluorescences EM1 to EM3 are calculated by the above-described method of “when using three excitation lights”. To do. Next, the intensity signal Jd of the fluorescence EM4 may be calculated by irradiating the sample SP with the remaining one of the four excitation lights EX4.

[5つ以上の励起光を用いる場合]
上述した「2つの励起光を用いる場合」および「3つの励起光を用いる場合」を組み合わせて、2つの励起光ごとまたは3つの励起光ごとに蛍光の強度信号を算出すれば、5つ以上の励起光を用いた場合であっても、各励起光により発生する蛍光の強度信号をそれぞれ算出することができる。
[When using 5 or more excitation lights]
If the fluorescence intensity signal is calculated for each of the two excitation lights or for each of the three excitation lights by combining the above-mentioned “when using two excitation lights” and “when using three excitation lights”, five or more Even when excitation light is used, the intensity signal of the fluorescence generated by each excitation light can be calculated.

以上説明したように、本実施形態の蛍光顕微鏡によれば、位相情報生成部30による位相情報と、振幅情報生成部40による振幅情報と、成分情報生成部50による成分情報に基づいて、強度信号算出部60が複数の蛍光EM1等のそれぞれの強度信号を算出するので、蛍光検出部20で受光した複数の蛍光を容易に分離することができる。従って、蛍光EM1等ごとの画像を容易かつ確実に取得することができる。なお、強度信号算出部60によって算出されたそれぞれの蛍光EM1等の強度信号は、強度信号算出部60からパーソナルコンピュータ101に出力される。パーソナルコンピュータ101は、アプリケーションソフトウエア104を実行することにより、蛍光顕微鏡1によって取得されたそれぞれの蛍光EM1等の画像(二次元画像)を表示装置103に個別に表示させる。   As described above, according to the fluorescence microscope of the present embodiment, the intensity signal is based on the phase information by the phase information generation unit 30, the amplitude information by the amplitude information generation unit 40, and the component information by the component information generation unit 50. Since the calculation unit 60 calculates the intensity signals of the plurality of fluorescence EM1 and the like, the plurality of fluorescence received by the fluorescence detection unit 20 can be easily separated. Therefore, it is possible to easily and reliably acquire an image for each fluorescence EM1 or the like. The intensity signals such as the respective fluorescence EM1 calculated by the intensity signal calculation unit 60 are output from the intensity signal calculation unit 60 to the personal computer 101. The personal computer 101 executes the application software 104 to cause the display device 103 to individually display images (two-dimensional images) of the respective fluorescence EM1 acquired by the fluorescence microscope 1.

図8は、励起光の励起スペクトル、及びこの励起光により発生する蛍光の蛍光スペクトルの一例を示す図である。図8において、YFP(EX)は黄色蛍光タンパク質の励起スペクトルを示し、YFP(EM)は黄色蛍光タンパク質の蛍光スペクトルを示し、eGFP(EX)は緑色蛍光タンパク質の励起スペクトルを示し、eGFP(EM)は緑色蛍光タンパク質の蛍光スペクトルを示している。なお、図8では、横軸は波長(nm)、縦軸は蛍光強度である。一般的に、蛍光スペクトルは励起スペクトルに対し高波長側にシフトする傾向がある。また、図8の2つの蛍光スペクトルは波長500nm近傍で重複部分が生じている。従って、このような蛍光スペクトルになる2つの蛍光を、例えば従来技術のような、光学フィルタで分離して異なる検出器に導く方式の場合、それぞれの検出器に他の蛍光を取り込むことになり、各検出器の検出信号に誤差を多く含んだものとなる。   FIG. 8 is a diagram illustrating an example of an excitation spectrum of excitation light and a fluorescence spectrum of fluorescence generated by the excitation light. In FIG. 8, YFP (EX) indicates the excitation spectrum of yellow fluorescent protein, YFP (EM) indicates the fluorescence spectrum of yellow fluorescent protein, eGFP (EX) indicates the excitation spectrum of green fluorescent protein, and eGFP (EM) Indicates the fluorescence spectrum of the green fluorescent protein. In FIG. 8, the horizontal axis represents wavelength (nm) and the vertical axis represents fluorescence intensity. In general, the fluorescence spectrum tends to shift to the higher wavelength side with respect to the excitation spectrum. In addition, the two fluorescent spectra in FIG. 8 have overlapping portions near the wavelength of 500 nm. Therefore, in the case of a system in which two fluorescences having such a fluorescence spectrum are separated by an optical filter and led to different detectors, as in the prior art, for example, other fluorescence is taken into each detector, The detection signal of each detector includes a lot of errors.

第1実施形態に係る蛍光顕微鏡1は、蛍光検出部20によって複数の蛍光EM1等をまとめて受光し、その検出信号から計算式を用いてそれぞれの蛍光の強度信号Ja等を算出するため、強度信号に含まれる誤差を小さくすることができる。また、第1実施形態の蛍光顕微鏡1によれば、1つの光検出器を用いているため、蛍光顕微鏡の製造コストを低減するとともに、蛍光顕微鏡の構成を簡略化することができる。また、第1実施形態の蛍光顕微鏡1によれば、複数の蛍光を光学的に分離するための高価な分光器を用いる必要がないので、低コストで蛍光顕微鏡を製造することができる。   The fluorescence microscope 1 according to the first embodiment receives a plurality of fluorescence EM1 and the like collectively by the fluorescence detection unit 20, and calculates the intensity signal Ja and the like of each fluorescence from the detection signal using a calculation formula. The error included in the signal can be reduced. Further, according to the fluorescence microscope 1 of the first embodiment, since one photo detector is used, the manufacturing cost of the fluorescence microscope can be reduced and the configuration of the fluorescence microscope can be simplified. In addition, according to the fluorescence microscope 1 of the first embodiment, it is not necessary to use an expensive spectroscope for optically separating a plurality of fluorescence, so that a fluorescence microscope can be manufactured at a low cost.

<第2実施形態>
次に、第2実施形態について説明する。以下の説明において、第1実施形態と同一または同等の構成部分については同一符号を付けて、説明を省略または簡略化する。第1実施形態において、それぞれの蛍光EM1等の強度信号Ja等を算出する基本原理を成立させるためには、複数の励起光EX1等を所定の位相差(例えば位相差π)で強度変調して試料SPに照射したときに、複数の励起光により発生するそれぞれの蛍光EM1等が励起光EX1等と同様の位相差になることが前提となる。ところが、実際には、蛍光試薬と蛍光試薬が標識されている生物標本(細胞)に依存して、励起光を試料に照射してから蛍光が発生するまでには遅延が生じ、この遅延量は励起光ごとに異なる(励起光を試料に照射してから蛍光発光が生じるまでの時間に違いがある)。その結果、複数の励起光を所定の位相差で強度変調して試料に照射したとしても、これら励起光によって発生する蛍光は、励起光と異なる位相差となってしまう。さらに、光検出器21やその後の信号伝達系が蛍光波長による感度差を有している場合も、検出信号に含まれている複数の蛍光の強度信号の位相差は、複数の励起光における位相差からずれた状態となっている。このような状態では、第1実施形態で説明したように、検出信号から複数の蛍光の強度信号を分離することが算出できない。
Second Embodiment
Next, a second embodiment will be described. In the following description, the same or equivalent components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified. In the first embodiment, in order to establish the basic principle of calculating the intensity signal Ja of each fluorescence EM1, etc., the plurality of excitation lights EX1 etc. are intensity-modulated with a predetermined phase difference (for example, phase difference π). It is assumed that when the sample SP is irradiated, the respective fluorescence EM1 and the like generated by a plurality of excitation lights have the same phase difference as the excitation light EX1 and the like. However, in reality, depending on the fluorescent reagent and the biological specimen (cell) on which the fluorescent reagent is labeled, there is a delay from when the sample is irradiated with excitation light until fluorescence is generated. Different for each excitation light (there is a difference in time from when the sample is irradiated with the excitation light until fluorescence emission occurs). As a result, even if a plurality of excitation lights are intensity-modulated with a predetermined phase difference and the sample is irradiated, the fluorescence generated by these excitation lights has a phase difference different from that of the excitation light. Furthermore, even when the photodetector 21 and the subsequent signal transmission system have a sensitivity difference depending on the fluorescence wavelength, the phase difference of the plurality of fluorescence intensity signals included in the detection signal is the level of the plurality of excitation lights. It is out of phase. In such a state, as described in the first embodiment, it is not possible to calculate separation of a plurality of fluorescence intensity signals from the detection signal.

第2実施形態では、複数の励起光により発生するそれぞれの蛍光が、互いの位相差が所望の値であって、基準信号bに対する位相差が所望の値となるように、励起光変調部10の位相差調整部12において、複数の励起光の位相差を任意に調整するものである。これにより、第1実施形態で説明した基本原理を適用可能となり、それぞれの蛍光の信号強度が算出可能となる。   In the second embodiment, the respective excitations generated by the plurality of excitation lights have the desired phase difference and the desired phase difference with respect to the reference signal b. The phase difference adjusting unit 12 arbitrarily adjusts the phase difference between the plurality of excitation lights. As a result, the basic principle described in the first embodiment can be applied, and the signal intensity of each fluorescence can be calculated.

複数の励起光EX1等の位相差の調整は、図1に示す位相差調整部12の記憶部12aに記憶された位相遅延量に基づいて行われる。記憶部12aに記憶された位相遅延量は、励起光EX1等の位相に対して、この励起光EX1等を照射したときに試薬から発生する蛍光の位相遅延量のデータが励起光ごとに格納される。ただし、格納されるデータは、これに限定されない。例えば、基準となる蛍光の位相に対して、それぞれの蛍光がどの程度位相が遅れるかといった位相遅延量のデータを用いてもよい。また、光検出器21やその後の信号伝達系が蛍光波長による感度差を有している場合は、基準となる蛍光の位相に対して、それぞれの蛍光がどの程度位相が遅れるかといった位相遅延量のデータも記憶部12aに格納される。すなわち、特定の蛍光に対しては、蛍光発生に基づく位相遅延量と蛍光検出に基づく位相遅延量との双方が加算されて励起光の位相が調整される。   The adjustment of the phase difference of the plurality of excitation lights EX1 and the like is performed based on the phase delay amount stored in the storage unit 12a of the phase difference adjustment unit 12 illustrated in FIG. The phase delay amount stored in the storage unit 12a stores the data of the phase delay amount of the fluorescence generated from the reagent for each excitation light when the excitation light EX1 or the like is irradiated with respect to the phase of the excitation light EX1 or the like. The However, the data to be stored is not limited to this. For example, phase delay amount data such as how much the phase of each fluorescence is delayed with respect to the reference fluorescence phase may be used. In addition, when the photodetector 21 and the subsequent signal transmission system have a sensitivity difference depending on the fluorescence wavelength, the phase delay amount such as how much the respective phases are delayed with respect to the reference fluorescence phase. Are also stored in the storage unit 12a. That is, for specific fluorescence, both the phase delay amount based on the fluorescence generation and the phase delay amount based on the fluorescence detection are added to adjust the phase of the excitation light.

このような蛍光発生に基づく位相遅延量や蛍光検出に基づく位相遅延量は、既知の場合はそれぞれのデータを記憶部12aに格納することで特定の励起光に対しての位相調整が行われる。蛍光発生に基づく位相遅延量等が未知の場合は、次のようにして位相遅延量のデータを取得する。先ず、複数の励起光EX1〜EXnのうちの1つ(例えば励起光EX1)のみを出力して、蛍光検出部20による検出信号と励起光EX1との位相差から位相遅延量を算出する。次に、励起光EX2のみを出力して、同様に蛍光検出部20による検出信号と励起光EX2との位相差から位相遅延量を算出する。この作業を繰り返すことにより、励起光EX1〜EXnのそれぞれに関する位相遅延量が算出され、記憶部12aに格納される。このように算出された位相遅延量には、蛍光発生に基づく位相遅延量と蛍光検出に基づく位相遅延量とが合算されたデータとなっている。   When the phase delay amount based on the generation of fluorescence and the phase delay amount based on fluorescence detection are already known, the respective data are stored in the storage unit 12a to adjust the phase with respect to specific excitation light. When the phase delay amount based on the generation of fluorescence is unknown, phase delay amount data is acquired as follows. First, only one of the plurality of excitation lights EX1 to EXn (for example, excitation light EX1) is output, and the phase delay amount is calculated from the phase difference between the detection signal from the fluorescence detection unit 20 and the excitation light EX1. Next, only the excitation light EX2 is output, and similarly, the phase delay amount is calculated from the phase difference between the detection signal from the fluorescence detection unit 20 and the excitation light EX2. By repeating this operation, the phase delay amount for each of the excitation lights EX1 to EXn is calculated and stored in the storage unit 12a. The phase delay amount calculated in this way is data in which the phase delay amount based on the fluorescence generation and the phase delay amount based on the fluorescence detection are added together.

このとき、励起光EX1等の波形の変動や、蛍光検出部20による検出信号の波形の変動が生じると位相差の算出値が変動してデータ取得が難しいことも考えられる。このような場合は、蛍光検出部20による検出信号と励起光EX1等との位相差を算出する際、所定範囲の信号を用いて両者の位相差を算出してもよい。所定範囲としては、検出信号や励起光を特定の時間範囲で切り取って比較する場合や、それぞれ数個分の波長を切り取って比較する場合などがある。これにより、位相差の算出を容易にして位相遅延量の精度を向上できる。また、励起光EX1等と検出信号との位相差が波長ごとに(時間の経過とともに)変動する場合があり、複数の波長をサンプリングしてそれぞれの位相差から平均位相差を求めてもよい。これにより、位相差変動の誤差が平均化されるので位相遅延量の精度を向上できる。   At this time, if the fluctuation of the waveform of the excitation light EX1 or the like or the fluctuation of the waveform of the detection signal by the fluorescence detection unit 20 occurs, the calculated value of the phase difference may fluctuate and it may be difficult to acquire data. In such a case, when calculating the phase difference between the detection signal from the fluorescence detection unit 20 and the excitation light EX1 or the like, the phase difference between them may be calculated using a signal within a predetermined range. Examples of the predetermined range include a case where the detection signal and the excitation light are cut out for comparison in a specific time range, and a case where several wavelengths are cut out for comparison. This facilitates calculation of the phase difference and improves the accuracy of the phase delay amount. In addition, the phase difference between the excitation light EX1 and the detection signal may fluctuate for each wavelength (with time), and a plurality of wavelengths may be sampled to obtain the average phase difference from each phase difference. Thereby, the error of the phase difference fluctuation is averaged, so that the accuracy of the phase delay amount can be improved.

また、蛍光検出部20による検出信号の出力が変動する場合がある。例えば微弱な信号を用いても正確な波形を捉えることが難しく、位相差の算出値に誤差を多く含んでしまう。従って。検出信号のうち、所定の信号強度を持った波形を用いて位相差を算出してもよい。所定の信号強度としては、例えば、他の蛍光を検出したときの平均の信号強度などが用いられる。   Moreover, the output of the detection signal by the fluorescence detection unit 20 may fluctuate. For example, even if a weak signal is used, it is difficult to capture an accurate waveform, and the calculated value of the phase difference includes many errors. Therefore. Of the detection signals, the phase difference may be calculated using a waveform having a predetermined signal intensity. As the predetermined signal intensity, for example, an average signal intensity when other fluorescence is detected is used.

なお、励起光EX1等の位相差を調整するため、記憶部12aには位相遅延量のデータを格納しているが、これに代えて、位相差自体を補正量のデータとして用いてもよい。この場合、記憶部12aには、励起光EX1等ごとにπに関する補正量のデータが格納される。なお、補正量のデータが未知の場合は、位相遅延量のデータと同様に上述の方法により取得される。   In order to adjust the phase difference of the excitation light EX1, etc., the phase delay amount data is stored in the storage unit 12a, but instead, the phase difference itself may be used as the correction amount data. In this case, correction amount data regarding π is stored in the storage unit 12a for each excitation light EX1 and the like. When the correction amount data is unknown, the correction amount data is acquired by the above-described method in the same manner as the phase delay amount data.

また、補正量としては、励起光によって発生する蛍光に対する補正量としてもよい。そのような補正量が記憶部12aに格納されている場合、励起光変調部10の位相差調整部12では、各励起光EX1等の位相を次のように調整して所定の位相差を実現する。先ず、複数の光源を第1光源から第n光源とするとき、基準信号bの位相を基準として、第1光源L1からの励起光EX1の位相を(0+δ1)とし、第2光源L2からの励起光EX2の位相を(2π/N+δ2)とし、第3光源L3からの励起光EX3の位相を(4π/N+δ1)とし、以下同様にして、第n光源Lnからの励起光EXnの位相を{(n−1)・2π/N+δn}とする。ただし、δ1、δ2、・・、δnは光源L1,L2,L3,・・,Lnの波長に対応した蛍光試薬からの蛍光信号の位相遅延に関する補正量であり、Nは、光源L1、L2、L3、・・・、Lnの総数である。   The correction amount may be a correction amount for the fluorescence generated by the excitation light. When such a correction amount is stored in the storage unit 12a, the phase difference adjustment unit 12 of the excitation light modulation unit 10 adjusts the phase of each excitation light EX1 and the like as follows to realize a predetermined phase difference To do. First, when a plurality of light sources are used from the first light source to the nth light source, the phase of the excitation light EX1 from the first light source L1 is set to (0 + δ1) on the basis of the phase of the reference signal b, and the excitation from the second light source L2 is performed. The phase of the light EX2 is set to (2π / N + δ2), the phase of the excitation light EX3 from the third light source L3 is set to (4π / N + δ1), and similarly, the phase of the excitation light EXn from the nth light source Ln is {( n-1) · 2π / N + δn}. Here, δ1, δ2,..., Δn are correction amounts related to the phase delay of the fluorescent signal from the fluorescent reagent corresponding to the wavelengths of the light sources L1, L2, L3,. L3 is the total number of Ln.

このように調整された励起光EX1〜EXnを試料SPに照射すると、蛍光検出部20による検出信号における各蛍光EM1〜EMnの位相は次のようになる。2つの光源L1、L2を用いる場合、基準信号bの位相を基準として、第1光源L1からの励起光EX1により発生した蛍光EM1の位相は、補正量δ1によって補正されて0となり、第2光源L2からの励起光EX2により発生した蛍光EM2の位相は、補正量δ2によって補正されて2π/2=πとなり、蛍光EM1と蛍光EM2との位相差はπとなる。また、3つの光源L1〜L3を用いる場合、基準信号bの位相を基準として、第1光源L1からの励起光EX1により発生した蛍光EM1の位相は、補正量δ1によって補正されて0となり、第2光源L2からの励起光EX2により発生した蛍光EM2の位相は補正量δ2によって補正されて2π/3となり、第3光源L3からの励起光EX3により発生した蛍光EM3の位相は補正量δ3によって補正されて4π/3となる。   When the sample SP is irradiated with the excitation light EX1 to EXn adjusted in this way, the phases of the respective fluorescences EM1 to EMn in the detection signal by the fluorescence detection unit 20 are as follows. When two light sources L1 and L2 are used, the phase of the fluorescence EM1 generated by the excitation light EX1 from the first light source L1 is corrected to 0 by the correction amount δ1 with the phase of the reference signal b as a reference, and the second light source The phase of the fluorescence EM2 generated by the excitation light EX2 from L2 is corrected by the correction amount δ2 to be 2π / 2 = π, and the phase difference between the fluorescence EM1 and the fluorescence EM2 is π. When using the three light sources L1 to L3, the phase of the fluorescence EM1 generated by the excitation light EX1 from the first light source L1 is corrected to 0 by the correction amount δ1 with the phase of the reference signal b as a reference, The phase of the fluorescence EM2 generated by the excitation light EX2 from the two light sources L2 is corrected to 2π / 3 by the correction amount δ2, and the phase of the fluorescence EM3 generated by the excitation light EX3 from the third light source L3 is corrected by the correction amount δ3. To 4π / 3.

また、4つの光源L1〜L4を用いる場合、基準信号bの位相を基準として、第1光源L1からの励起光EX1により発生した蛍光EM1の位相は、補正量δ1によって補正されて0となり、第2光源L2からの励起光EX2により発生した蛍光EM2の位相は補正量δ2によって補正されて2π/4=π/2となり、第3光源L3からの励起光EX3により発生した蛍光EM3の位相は補正量δ3によって補正されて4π/4=π/となり、第4光源L4からの励起光EX4により発生した蛍光EM4の位相は補正量δ4によって補正されて6π/4=3π/2となるため、基準信号bに対する蛍光EM1,蛍光EM2,EM3,EM4の位相差は0、π/2、π、3π/2となる。このように、複数の励起光に補正量が加えられることにより、試料SPから発生する蛍光信号の位相遅延が解消される。従って、複数(N個)の蛍光の位相差は2π/Nとなるから、強度信号算出部60において蛍光の強度信号を容易に算出できる。   When using the four light sources L1 to L4, the phase of the fluorescence EM1 generated by the excitation light EX1 from the first light source L1 is corrected to 0 by the correction amount δ1 with the phase of the reference signal b as a reference. The phase of the fluorescence EM2 generated by the excitation light EX2 from the two light sources L2 is corrected by the correction amount δ2 to 2π / 4 = π / 2, and the phase of the fluorescence EM3 generated by the excitation light EX3 from the third light source L3 is corrected. 4π / 4 = π / corrected by the amount δ3 and the phase of the fluorescence EM4 generated by the excitation light EX4 from the fourth light source L4 is corrected to 6π / 4 = 3π / 2 by the correction amount δ4. The phase differences of the fluorescence EM1, fluorescence EM2, EM3, and EM4 with respect to the signal b are 0, π / 2, π, and 3π / 2. Thus, the phase delay of the fluorescence signal generated from the sample SP is eliminated by adding the correction amount to the plurality of excitation lights. Therefore, since the phase difference of a plurality (N) of fluorescence is 2π / N, the intensity signal calculation unit 60 can easily calculate the intensity signal of the fluorescence.

図9は、複数の励起光EX1,EX2,・・・,EXnの基準信号bに対する位相差を、強度信号算出部60にて生成された位相補正信号a(位相補正信号aは光源毎に異なる値となるため、図9中では、光源別にa1,a2,・・・,anと分けて記述している)に基づいて、微調整制御する振幅変調器の一例を示す図である。振幅変調器140は、例えば図1に示す蛍光顕微鏡1の励起光変調部10の位相差調整部12に含まれて構成されている。図9に示す振幅変調器140は、基準信号bを異なる出力比率で分配する信号分配器142−1,142−2,・・・,142−nと、90°位相回路143−1,143−2,・・・,143−nと加算器144−1,144−2,・・・,144−nと、可変ゲインアンプ145−1,145−2,・・・,145−nと、位相差微調整信号生成部141−1,141−2,・・・,141−nとを備える。   9 shows the phase difference of the plurality of excitation lights EX1, EX2,..., EXn with respect to the reference signal b, the phase correction signal a generated by the intensity signal calculation unit 60 (the phase correction signal a is different for each light source). FIG. 9 is a diagram showing an example of an amplitude modulator that performs fine adjustment control based on a light source and a1, a2,... For example, the amplitude modulator 140 is configured to be included in the phase difference adjustment unit 12 of the excitation light modulation unit 10 of the fluorescence microscope 1 illustrated in FIG. The amplitude modulator 140 shown in FIG. 9 includes signal distributors 142-1, 142-2,..., 142-n that distribute the reference signal b at different output ratios, and 90 ° phase circuits 143-1 and 143-143. , 143-n, adders 144-1, 144-2,..., 144-n, variable gain amplifiers 145-1, 145-2,. Phase difference fine adjustment signal generation units 141-1, 141-2,.

光源が2つの場合について説明する。振幅変調器140は、位相差調整部12内の固定位相回路140−1、140−2において、基準信号bに対する設定値(位相差0、π)と位相遅延に関する補正量(δ1、δ2)に基づいて、所定の位相差を付与して作成された信号b1(基準信号bに対する位相差0+δ1)、信号b2(基準信号bに対する位相差π+δ2)が入力される。
信号b1は、位相補正信号a1に基づいて位相差微調整信号生成部141−1から出力される信号によって、信号分配器142−1において、所定の振幅比で分配され、90°位相回路143−1,加算器144−1に入力される。
信号b2は、位相補正信号a2に基づいて位相差微調整信号生成部141−2から出力される信号によって、信号分配器142−2において、所定の振幅比で分配され、90°位相回路143−2、加算器144−2に入力される。
加算器144−1は、信号b1と同相の信号と、90°位相回路143−1を経由した信号を加算するため、90°位相回路を経由した信号と位相回路を経由しない信号の強度比率に応じて、出力位相が、信号b1から更に微調整された位相の信号c1となる。
同様に、加算器144−2は、信号b2と同相の信号と、90°位相回路143−2を経由した信号を加算するため、90°位相回路を経由した信号と位相回路を経由しない信号の強度比率に応じて、出力位相が、信号b2から更に微調整された位相の信号c2となる。信号c1、c2は具体的には、前述した励起光の強度変調信号である。
可変ゲインアンプ145−1,145−2は、最終出力を所定の値に調整するためのものであり、位相差微調整信号生成部141−1,141−2からの出力に基づいて制御される。
A case where there are two light sources will be described. In the fixed phase circuits 140-1 and 140-2 in the phase difference adjustment unit 12, the amplitude modulator 140 sets the set value (phase difference 0, π) for the reference signal b and the correction amount (δ1, δ2) related to the phase delay. Based on this, a signal b1 (phase difference 0 + δ1 with respect to the reference signal b) and a signal b2 (phase difference π + δ2 with respect to the reference signal b) created by giving a predetermined phase difference are input.
The signal b1 is distributed at a predetermined amplitude ratio in the signal distributor 142-1, by a signal output from the phase difference fine adjustment signal generator 141-1 based on the phase correction signal a1, and the 90 ° phase circuit 143- 1 is input to the adder 144-1.
The signal b2 is distributed at a predetermined amplitude ratio in the signal distributor 142-2 by a signal output from the phase difference fine adjustment signal generation unit 141-2 based on the phase correction signal a2, and the 90 ° phase circuit 143- 2. Input to adder 144-2.
The adder 144-1 adds the signal in phase with the signal b 1 and the signal that has passed through the 90 ° phase circuit 143-1, so that the intensity ratio of the signal that has passed through the 90 ° phase circuit and the signal that has not passed through the phase circuit is increased. Accordingly, the output phase becomes a signal c1 having a phase further finely adjusted from the signal b1.
Similarly, the adder 144-2 adds the signal having the same phase as the signal b2 and the signal that has passed through the 90 ° phase circuit 143-2, so that the signal that has passed through the 90 ° phase circuit and the signal that has not passed through the phase circuit are added. Depending on the intensity ratio, the output phase becomes a signal c2 having a phase further finely adjusted from the signal b2. Specifically, the signals c1 and c2 are the above-described intensity modulation signals of the excitation light.
The variable gain amplifiers 145-1 and 145-2 are for adjusting the final output to a predetermined value, and are controlled based on the outputs from the phase difference fine adjustment signal generation units 141-1 and 141-2. .

光源が3つ以上の場合も、光源が2つの場合と同様である。なお、以下の説明では光源がn個の場合としているが、n個は2個も含む意味で用いている。
光源がn個の場合について説明する。光源ごとに位相補正信号a1〜anが強度信号算出部60にて生成される。振幅変調器140は、固定位相回路140−1〜140−nにおいて、基準信号bに対する設定値(位相差)と位相遅延に関する補正量に基づいて、所定の位相差を付与して作成された信号b1〜bnが入力される。例えば、光源が3つの場合、基準信号bに対する設定値(位相差0、2π/3、4π/3)と位相遅延に関する補正量(δ1、δ2、δ3)に基づいて、基準信号bに対して位相差0+δ1とした信号b1、基準信号bに対して位相差2π/3+δ2とした信号b2、及び基準信号bに対して位相差4π/3+δ3とした信号b3が入力される。
信号b1〜bnは、位相補正信号a1〜anに基づいて位相差微調整信号生成部141−1〜141−nから出力される信号によって、信号分配器142−1〜142−nにおいて、所定の振幅比で分配され、90°位相回路143−1〜143−n、加算器144−1〜144−nにそれぞれ入力される。加算器144−1〜144−nは、信号b1〜bnと同相の信号と、90°位相回路143−1〜143−nを経由した信号をそれぞれの強度比率に応じて加算する。従って、それぞれの出力位相は、信号b1〜bnから更に微調整された位相の強度変調信号c1〜cnとなる。
可変ゲインアンプ145−1〜145−nは、最終出力を所定の値に調整するためのものであり、位相差微調整信号生成部141−1〜141−nからの出力に基づいて制御される。
なお、90°位相回路143−1〜143−nは便宜上90°としたが、0、180°の倍数、これら以外の任意の位相のものが使用できる。
The case where there are three or more light sources is the same as the case where there are two light sources. In the following description, the number of light sources is n, but n is used to include two light sources.
A case where there are n light sources will be described. Phase correction signals a1 to an are generated by the intensity signal calculation unit 60 for each light source. The amplitude modulator 140 is a signal generated by giving a predetermined phase difference in the fixed phase circuits 140-1 to 140-n based on a set value (phase difference) with respect to the reference signal b and a correction amount related to the phase delay. b1 to bn are input. For example, when there are three light sources, based on the set values (phase difference 0, 2π / 3, 4π / 3) with respect to the reference signal b and the correction amounts (δ1, δ2, δ3) regarding the phase delay, A signal b1 having a phase difference of 0 + δ1, a signal b2 having a phase difference of 2π / 3 + δ2 with respect to the reference signal b, and a signal b3 having a phase difference of 4π / 3 + δ3 with respect to the reference signal b are input.
The signals b1 to bn are output from the phase difference fine adjustment signal generators 141-1 to 141-n based on the phase correction signals a1 to an in the signal distributors 142-1 to 142-n according to predetermined signals. The signals are distributed at the amplitude ratio and input to the 90 ° phase circuits 143-1 to 143-n and adders 144-1 to 144-n, respectively. The adders 144-1 to 144-n add the signals in phase with the signals b1 to bn and the signals that have passed through the 90 ° phase circuits 143-1 to 143-n according to their intensity ratios. Accordingly, the respective output phases become intensity modulation signals c1 to cn having phases further finely adjusted from the signals b1 to bn.
The variable gain amplifiers 145-1 to 145-n are for adjusting the final output to a predetermined value, and are controlled based on the outputs from the phase difference fine adjustment signal generation units 141-1 to 141-n. .
Note that the 90 ° phase circuits 143-1 to 143-n are set to 90 ° for convenience, but multiples of 0 and 180 ° and circuits having any other phase can be used.

<第3実施形態>
次に、第3実施形態について説明する。以下の説明において、上述の実施形態と同一または同等の構成部分については同一符号を付けて、説明を省略または簡略化する。第3実施形態では、図1に示すように、強度信号算出部60に備える照射制御部60aからの指示に基づいて、位相差調整部12は、複数の光源L1に対して基準信号bの周波数と同一周波数かつ基準信号bの位相と同一位相で励起光EX1〜EXnの全てを試料SPに照射する第1照射状態と、励起光EX1〜EXnのうち少なくとも一つを除いて照射する第2照射状態とを行う。蛍光検出部20は、第1照射状態および第2照射状態での励起光EX1等により発生した蛍光EM1等をそれぞれ検出し、第1照射状態で検出した第1検出信号と、第2照射状態で検出した第2検出信号とを出力する。これら第1検出信号及び第2検出信号に基づいて、強度信号算出部60は、特定の蛍光の強度信号を算出する。
<Third Embodiment>
Next, a third embodiment will be described. In the following description, the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified. In the third embodiment, as shown in FIG. 1, based on an instruction from the irradiation control unit 60a included in the intensity signal calculation unit 60, the phase difference adjustment unit 12 uses the frequency of the reference signal b for a plurality of light sources L1. The first irradiation state in which the sample SP is irradiated with all of the excitation lights EX1 to EXn at the same frequency and the same phase as the reference signal b, and the second irradiation to be irradiated except at least one of the excitation lights EX1 to EXn. State and do. The fluorescence detection unit 20 detects the fluorescence EM1 and the like generated by the excitation light EX1 and the like in the first irradiation state and the second irradiation state, respectively, and the first detection signal detected in the first irradiation state and the second irradiation state The detected second detection signal is output. Based on the first detection signal and the second detection signal, the intensity signal calculation unit 60 calculates an intensity signal of specific fluorescence.

例えば、3つの励起光EX1,EX2,EX3を用いる場合、第1照射状態として全ての励起光EX1〜EX3を試料SPに照射したときの蛍光検出部20の合成出力(第1検出信号)をSとし、蛍光EM1,EM2,EM3の信号成分をS1,S2,S3とすると、S=S1+S2+S3で表される。一方、第2照射状態として、励起光EX1を除外して励起光EX2,EX3を試料SPに照射したときの蛍光検出部20の合成出力(第2検出信号)をS(2,3)とすると、S(2,3)=S2+S3であるため、S1=S−S(2,3)の演算を行うことにより、蛍光EM1の信号成分S1が算出される。   For example, when three excitation lights EX1, EX2, and EX3 are used, the combined output (first detection signal) of the fluorescence detector 20 when the sample SP is irradiated with all the excitation lights EX1 to EX3 as the first irradiation state is S. Assuming that the signal components of the fluorescence EM1, EM2, and EM3 are S1, S2, and S3, S = S1 + S2 + S3. On the other hand, when the excitation light EX1 is excluded and the sample SP is irradiated with the excitation light EX2 and EX3 as the second irradiation state, the combined output (second detection signal) of the fluorescence detection unit 20 is S (2, 3). Since S (2,3) = S2 + S3, the signal component S1 of the fluorescence EM1 is calculated by calculating S1 = S−S (2,3).

また、第2照射状態として励起光EX2を除外して励起光EX1,EX3を試料SPに照射したときの蛍光検出部20の合成出力(第2検出信号)をS(1,3)とすると、S(1,3)=S1+S3であるため、S2=S−S(1,3)の演算を行うことにより、蛍光EM2の信号成分S2が算出される。同様に、第2照射状態として励起光EX1,EX2を試料SPに照射したときの合成出力(第2検出信号)S(1,2)から、S3=S−S(1,2)の演算により、蛍光EM3の信号成分S3が算出される。なお、第2照射状態として、1つの励起光を除外することに代えて、複数の励起光(励起光EX1及びEX2)を除外して照射してもよい。このように、第1及び第2検出信号に基づいて演算を行うことにより、特定の蛍光の強度信号を容易に算出でき、蛍光検出部20で受光した複数の蛍光を分離することができる。   Further, when the excitation light EX2 is excluded as the second irradiation state and the sample SP is irradiated with the excitation light EX1 and EX3, the combined output (second detection signal) of the fluorescence detection unit 20 is S (1,3). Since S (1,3) = S1 + S3, the signal component S2 of the fluorescence EM2 is calculated by calculating S2 = S−S (1,3). Similarly, S3 = S−S (1,2) is calculated from the combined output (second detection signal) S (1,2) when the sample SP is irradiated with the excitation light EX1, EX2 as the second irradiation state. The signal component S3 of the fluorescence EM3 is calculated. As the second irradiation state, instead of excluding one excitation light, a plurality of excitation lights (excitation light EX1 and EX2) may be excluded and irradiated. As described above, by calculating based on the first and second detection signals, the intensity signal of the specific fluorescence can be easily calculated, and a plurality of fluorescence received by the fluorescence detection unit 20 can be separated.

<蛍光受光ユニット>
次に、実施形態に係る蛍光受光ユニットについて説明する。以下の説明において、上述の実施形態と同一または同等の構成部分については同一符号を付けて、説明を省略または簡略化する。図10に示すように、蛍光受光ユニット200は、蛍光検出部20と、位相情報生成部30と、振幅情報生成部40と、成分情報生成部50と、強度信号算出部60とを備える。この蛍光受光ユニット200は、蛍光検出部20等を単一または複数の筐体に収容したものであり、蛍光顕微鏡を構成する光学系110や光源ユニット(光源70及び励起光変調部10)から分離可能なユニットである。なお、蛍光検出部20は、光学系110の蛍光受光部分(図2参照)に配置できるように、ユニットの筐体から取り外し可能とすることができる。
<Fluorescent light receiving unit>
Next, the fluorescence light receiving unit according to the embodiment will be described. In the following description, the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified. As shown in FIG. 10, the fluorescence light receiving unit 200 includes a fluorescence detection unit 20, a phase information generation unit 30, an amplitude information generation unit 40, a component information generation unit 50, and an intensity signal calculation unit 60. The fluorescence light receiving unit 200 is a unit in which the fluorescence detection unit 20 or the like is housed in a single or a plurality of cases, and is separated from the optical system 110 and the light source unit (the light source 70 and the excitation light modulation unit 10) constituting the fluorescence microscope. It is a possible unit. In addition, the fluorescence detection part 20 can be made removable from the housing | casing of a unit so that it can arrange | position to the fluorescence light-receiving part (refer FIG. 2) of the optical system 110. FIG.

また、蛍光受光ユニット200は、励起光変調部10から送られる基準信号bを蛍光検出部20へ入力するための入力部や、同じく基準信号bを位相情報生成部30へ入力するための入力部、さらには強度信号算出部60から励起光変調部10へ位相補正信号aを出力するための出力部を備えている。なお、強度信号算出部60は、外部のパーソナルコンピュータ101に接続するための接続端子等を備える点は、第1実施形態の蛍光顕微鏡1と同様である。   Further, the fluorescence light receiving unit 200 has an input unit for inputting the reference signal b sent from the excitation light modulation unit 10 to the fluorescence detection unit 20, and an input unit for inputting the reference signal b to the phase information generation unit 30. Further, an output unit for outputting the phase correction signal a from the intensity signal calculation unit 60 to the excitation light modulation unit 10 is provided. The intensity signal calculation unit 60 is the same as the fluorescence microscope 1 of the first embodiment in that it includes a connection terminal for connecting to an external personal computer 101.

なお、この蛍光受光ユニット200において、複数の蛍光EM1等を蛍光検出部20により検出し、蛍光EM1等ごとの強度信号を算出する手順は、上述した第1〜第3実施形態と同様である。また、蛍光受光ユニットとして、励起光変調部10及び光源70の一方または双方を備えてもよい。このように、本実施形態に係る蛍光受光ユニット200によれば、複数の蛍光EM1等を蛍光ごとの信号強度に容易に分離することができる。さらに、蛍光受光ユニット200は、既存の蛍光顕微鏡に対して、蛍光検出部20を光学系に配置するとともに、光源ユニットを制御することで容易に利用可能となり、汎用性の高めることができる。   In this fluorescence light receiving unit 200, a procedure for detecting a plurality of fluorescence EM1 and the like by the fluorescence detection unit 20 and calculating an intensity signal for each fluorescence EM1 and the like is the same as in the first to third embodiments described above. Moreover, you may provide one or both of the excitation light modulation part 10 and the light source 70 as a fluorescence light-receiving unit. Thus, according to the fluorescence light receiving unit 200 according to the present embodiment, a plurality of fluorescence EM1 and the like can be easily separated into signal intensity for each fluorescence. Further, the fluorescence light receiving unit 200 can be easily used by arranging the fluorescence detection unit 20 in the optical system and controlling the light source unit with respect to the existing fluorescence microscope, and can increase versatility.

以上の実施形態は、上述した説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。また、上述した実施形態では、励起光変調部10により試料に照射する複数の励起光として正弦波の励起光EX1等を例示したが、これに限定されるものではなく、矩形波など他の波形の励起光を用いてもよい。   The above embodiment is not limited to the above description, and various modifications can be made without departing from the gist of the present invention. In the above-described embodiment, the sine wave excitation light EX1 and the like are exemplified as the plurality of excitation lights irradiated onto the sample by the excitation light modulation unit 10, but the present invention is not limited to this, and other waveforms such as a rectangular wave are used. The excitation light may be used.

EM1,EM2〜EMn…蛍光、EX1,EX2〜EXn…励起光、L1,L2〜Ln…光源、SP…試料、1…蛍光顕微鏡、10…励起光変調部、12…位相差調整部、12a…記憶部、20…蛍光検出部、30…位相情報生成部、40…振幅情報生成部、50…成分情報生成部、60…強度信号算出部、60a…照射制御部、200…蛍光検出ユニット EM1, EM2-EMn ... fluorescence, EX1, EX2-EXn ... excitation light, L1, L2-Ln ... light source, SP ... sample, 1 ... fluorescence microscope, 10 ... excitation light modulation unit, 12 ... phase difference adjustment unit, 12a ... Storage unit, 20 ... fluorescence detection unit, 30 ... phase information generation unit, 40 ... amplitude information generation unit, 50 ... component information generation unit, 60 ... intensity signal calculation unit, 60a ... irradiation control unit, 200 ... fluorescence detection unit

Claims (17)

試料に照射する複数の励起光を基準信号の周波数と同一周波数かつ前記基準信号の位相に対して所定の位相差でそれぞれ強度変調する励起光変調部と、
前記複数の励起光により発生した複数の蛍光を検出する蛍光検出部と、
前記蛍光検出部による検出信号から抽出された所定の周波数成分における位相と、前記基準信号の位相との関係から位相情報を生成する位相情報生成部と、
前記蛍光検出部による検出信号から抽出された所定の周波数成分の振幅から振幅情報を生成する振幅情報生成部と、
前記蛍光検出部による検出信号から前記周波数成分を除いた成分から成分情報を生成する成分情報生成部と、
前記位相情報、前記振幅情報、及び前記成分情報に基づいて前記複数の蛍光のそれぞれの強度信号を算出する強度信号算出部と、
を備える蛍光顕微鏡。
An excitation light modulator that modulates the intensity of a plurality of excitation lights irradiated on the sample at the same frequency as the frequency of the reference signal and with a predetermined phase difference with respect to the phase of the reference signal;
A fluorescence detection unit for detecting a plurality of fluorescence generated by the plurality of excitation lights;
A phase information generation unit that generates phase information from a relationship between a phase in a predetermined frequency component extracted from a detection signal by the fluorescence detection unit and a phase of the reference signal;
An amplitude information generation unit that generates amplitude information from the amplitude of a predetermined frequency component extracted from the detection signal by the fluorescence detection unit;
A component information generation unit that generates component information from a component obtained by removing the frequency component from the detection signal by the fluorescence detection unit;
An intensity signal calculation unit that calculates an intensity signal of each of the plurality of fluorescences based on the phase information, the amplitude information, and the component information;
A fluorescence microscope.
前記複数の励起光を出力する光源を備える請求項1記載の蛍光顕微鏡。   The fluorescence microscope according to claim 1, further comprising a light source that outputs the plurality of excitation lights. 前記光源は、前記複数の励起光ごとに出力するように複数設けられる請求項2記載の蛍光顕微鏡。   The fluorescence microscope according to claim 2, wherein a plurality of the light sources are provided so as to output each of the plurality of excitation lights. 前記位相情報は、前記蛍光検出部による検出信号から抽出された所定の周波数成分における位相と前記基準信号の位相との位相差である請求項1〜請求項3のいずれか1項に記載の蛍光顕微鏡。   The fluorescence according to any one of claims 1 to 3, wherein the phase information is a phase difference between a phase in a predetermined frequency component extracted from a detection signal by the fluorescence detection unit and a phase of the reference signal. microscope. 前記励起光変調部は、前記複数の励起光の位相を調整する位相差調整部を備える請求項1〜4のいずれか1項に記載の蛍光顕微鏡。   The fluorescence microscope according to claim 1, wherein the excitation light modulation unit includes a phase difference adjustment unit that adjusts phases of the plurality of excitation lights. 前記位相差調整部は、前記基準信号に対して前記複数の励起光の位相を調整する請求項5記載の蛍光顕微鏡。   The fluorescence microscope according to claim 5, wherein the phase difference adjustment unit adjusts phases of the plurality of excitation lights with respect to the reference signal. 前記位相調整部は、前記複数の蛍光の位相が、互いに所定の位相差を有し、かつ前記基準信号の位相に対してそれぞれ所定の位相差になるように、前記複数の励起光の位相を調整する請求項6記載の蛍光顕微鏡。 The phase difference adjustment unit includes a plurality of phases of the excitation light such that phases of the plurality of fluorescence have a predetermined phase difference from each other and a predetermined phase difference with respect to the phase of the reference signal. The fluorescence microscope of Claim 6 which adjusts. 前記位相差調整部は、前記励起光の直流成分の強度及び交流成分の変調度をそれぞれ変化させることにより前記励起光の位相を調整する請求項6記載の蛍光顕微鏡。   The fluorescence microscope according to claim 6, wherein the phase difference adjusting unit adjusts the phase of the excitation light by changing the intensity of the direct current component of the excitation light and the modulation degree of the alternating current component. 前記位相差調整部は、前記蛍光の発生及び検出の少なくとも一方に起因する位相遅延量に基づいて前記複数の励起光の位相を調整する請求項5〜請求項8のいずれか1項に記載の蛍光顕微鏡。   9. The phase difference adjusting unit according to claim 5, wherein the phase difference adjustment unit adjusts the phases of the plurality of excitation lights based on a phase delay amount caused by at least one of the generation and detection of the fluorescence. Fluorescence microscope. 前記位相差調整部は、前記位相遅延量を記憶するための記憶部を備え、前記記憶部に記憶された前記位相遅延量に基づいて前記複数の励起光の位相差を調整する請求項9記載の蛍光顕微鏡。   The said phase difference adjustment part is provided with the memory | storage part for memorize | storing the said phase delay amount, and adjusts the phase difference of these excitation light based on the said phase delay amount memorize | stored in the said memory | storage part. Fluorescent microscope. 前記記憶部は、前記複数の励起光を個別に出力したときの前記蛍光検出部による検出信号と前記励起光との位相差から算出された位相遅延量が記憶される請求項10記載の蛍光顕微鏡。   The fluorescence microscope according to claim 10, wherein the storage unit stores a phase delay amount calculated from a phase difference between a detection signal from the fluorescence detection unit and the excitation light when the plurality of excitation lights are individually output. . 前記蛍光検出部による検出信号として、前記検出信号における所定範囲の信号が用いられる請求項11記載の蛍光顕微鏡。   The fluorescence microscope according to claim 11, wherein a signal in a predetermined range in the detection signal is used as a detection signal by the fluorescence detection unit. 前記蛍光検出部による検出信号と前記励起光との位相差として、平均位相差が用いられる請求項11記載の蛍光顕微鏡。   The fluorescence microscope according to claim 11, wherein an average phase difference is used as a phase difference between a detection signal from the fluorescence detection unit and the excitation light. 前記蛍光検出部による検出信号として、前記検出信号における所定の信号強度の範囲の信号が用いられる請求項11記載の蛍光顕微鏡。   The fluorescence microscope according to claim 11, wherein a signal having a predetermined signal intensity in the detection signal is used as a detection signal by the fluorescence detection unit. 前記励起光変調部は、前記複数の光源を第1光源から第n光源とするとき、前記基準信号の位相を基準として、第1光源からの励起光の位相をδ1とし、第2光源からの励起光の位相を(2π/N+δ2)とし、第3光源からの励起光の位相を(4π/N+δ3)とし、第N光源からの励起光の位相を{(n−1)・2π/N+δn}(ただし、δ1、δ2、δ3,・・,δnは光源の波長に対応した蛍光試薬からの蛍光信号の位相遅延に関する補正量)とする請求項3記載の蛍光顕微鏡。   When the plurality of light sources are from the first light source to the n-th light source, the excitation light modulation unit sets the phase of the excitation light from the first light source to δ1 with the phase of the reference signal as a reference, and outputs from the second light source The phase of the excitation light is (2π / N + δ2), the phase of the excitation light from the third light source is (4π / N + δ3), and the phase of the excitation light from the Nth light source is {(n-1) · 2π / N + δn} 4. The fluorescence microscope according to claim 3, wherein δ1, δ2, δ3,..., Δn are correction amounts relating to the phase delay of the fluorescence signal from the fluorescence reagent corresponding to the wavelength of the light source. 試料に照射する複数の励起光を基準信号の周波数と同一周波数かつ前記基準信号の位相に対して所定の位相差でそれぞれ強度変調し、
前記複数の励起光により発生した複数の蛍光を検出し、
前記検出された信号から抽出された所定の周波数成分における位相と、前記基準信号の位相との関係から位相情報を生成し、
前記検出された信号から抽出された所定の周波数成分の振幅から振幅情報を生成し、
前記検出された信号から前記周波数成分を除いた成分から成分情報を生成し、
前記位相情報、前記振幅情報、及び前記成分情報に基づき前記複数の蛍光のそれぞれの強度信号を算出する蛍光検出方法。
Intensity modulation of each of a plurality of excitation lights irradiating the sample with the same frequency as the frequency of the reference signal and a predetermined phase difference with respect to the phase of the reference signal,
Detecting a plurality of fluorescence generated by the plurality of excitation lights;
Generating phase information from the relationship between the phase of the predetermined frequency component extracted from the detected signal and the phase of the reference signal;
Amplitude information is generated from the amplitude of a predetermined frequency component extracted from the detected signal,
Generating component information from a component obtained by removing the frequency component from the detected signal;
A fluorescence detection method for calculating an intensity signal of each of the plurality of fluorescences based on the phase information, the amplitude information, and the component information.
基準信号の周波数と同一周波数かつ前記基準信号の位相に対して所定の位相差で強度変調された複数の励起光により発生した複数の蛍光を検出する蛍光検出部と、
前記蛍光検出部による検出信号から抽出された所定の周波数成分における位相と、前記検出信号の位相との関係から位相情報を生成する位相情報生成部と、
前記蛍光検出部による検出信号から抽出された所定の周波数成分の振幅から振幅情報を生成する振幅情報生成部と、
前記蛍光検出部による検出信号から前記周波数成分を除いた成分から成分情報を生成する成分情報生成部と、
前記位相情報、前記振幅情報、及び前記成分情報に基づき前記複数の蛍光のそれぞれの強度信号を算出する強度信号算出部と、
を備える蛍光検出ユニット。
A fluorescence detection unit for detecting a plurality of fluorescence generated by a plurality of excitation lights having the same frequency as the frequency of the reference signal and intensity-modulated with a predetermined phase difference with respect to the phase of the reference signal;
A phase information generation unit that generates phase information from a relationship between a phase in a predetermined frequency component extracted from a detection signal by the fluorescence detection unit and a phase of the detection signal;
An amplitude information generation unit that generates amplitude information from the amplitude of a predetermined frequency component extracted from the detection signal by the fluorescence detection unit;
A component information generation unit that generates component information from a component obtained by removing the frequency component from the detection signal by the fluorescence detection unit;
An intensity signal calculation unit that calculates an intensity signal of each of the plurality of fluorescences based on the phase information, the amplitude information, and the component information;
A fluorescence detection unit comprising:
JP2012233418A 2012-10-23 2012-10-23 Fluorescence microscope, fluorescence detection method, and fluorescence detection unit Active JP6065517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012233418A JP6065517B2 (en) 2012-10-23 2012-10-23 Fluorescence microscope, fluorescence detection method, and fluorescence detection unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233418A JP6065517B2 (en) 2012-10-23 2012-10-23 Fluorescence microscope, fluorescence detection method, and fluorescence detection unit

Publications (2)

Publication Number Publication Date
JP2014085455A JP2014085455A (en) 2014-05-12
JP6065517B2 true JP6065517B2 (en) 2017-01-25

Family

ID=50788573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233418A Active JP6065517B2 (en) 2012-10-23 2012-10-23 Fluorescence microscope, fluorescence detection method, and fluorescence detection unit

Country Status (1)

Country Link
JP (1) JP6065517B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597079B (en) * 2016-12-29 2020-02-04 福建奥通迈胜电力科技有限公司 Method for evaluating amplitude of sine wave of fault indicator
CN108844934B (en) * 2018-06-19 2024-03-08 华南理工大学 Fluorescence detection system suitable for anaphylactic reaction tester and measurement method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965229A (en) * 1982-10-06 1984-04-13 Matsushita Electric Ind Co Ltd Method for measuring time division multiple spectral emissions
US5102625A (en) * 1990-02-16 1992-04-07 Boc Health Care, Inc. Apparatus for monitoring a chemical concentration
JP2005091895A (en) * 2003-09-18 2005-04-07 Institute Of Physical & Chemical Research Scan type confocal microscope device
JP4224640B2 (en) * 2004-03-29 2009-02-18 オリンパス株式会社 Fluorescence spectrometer

Also Published As

Publication number Publication date
JP2014085455A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
US20200256784A1 (en) Multi-Modal Fluorescence Imaging Flow Cytometry System
JP5649828B2 (en) Laser microscope equipment
US9207183B2 (en) Stimulated raman scattering measurement apparatus
US20110278471A1 (en) Fluorescence detecting device and fluorescence detecting method
JP2012032183A (en) Sample observation device and sample observation method
JP2013113623A5 (en) Stimulated Raman scattering measurement apparatus and stimulated Raman scattering measurement method
KR101152614B1 (en) Fret detection method and device
CN108885360B (en) Pulse light generating device, light irradiating device, light processing device, optical response measuring device, microscope device, and pulse light generating method
US11041760B2 (en) Optical measurement device and optical measurement method
JP4540751B1 (en) Fluorescence detection apparatus and fluorescence detection method
JP4224640B2 (en) Fluorescence spectrometer
JP2013015515A (en) Raman microscope and raman spectroscopic measurement method
JP6065517B2 (en) Fluorescence microscope, fluorescence detection method, and fluorescence detection unit
JP2007114764A (en) Apparatus and method for detection with scanning microscope
WO2018084271A1 (en) Fluorescence observation device
JP6720051B2 (en) Optical image measuring device and optical image measuring method
JP2014170105A (en) Microscope device
WO2014208349A1 (en) Optical measurement device and optical measurement method
JP2018112611A (en) Laser microscope device and flow cytometer
JP5137026B2 (en) Two-photon excitation fluorescence observation method and apparatus
JP5394893B2 (en) Laser scanning microscope
WO2018083772A1 (en) Microscope system
JP2004325099A (en) Laser light source and laser spectroscopic analyzer using the same
JP5892410B2 (en) Scanning microscope
JP2010078559A (en) Fluorescence analyzer and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R150 Certificate of patent or registration of utility model

Ref document number: 6065517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250