JP6065450B2 - Positive electrode and secondary battery containing sulfur composite - Google Patents

Positive electrode and secondary battery containing sulfur composite Download PDF

Info

Publication number
JP6065450B2
JP6065450B2 JP2012177454A JP2012177454A JP6065450B2 JP 6065450 B2 JP6065450 B2 JP 6065450B2 JP 2012177454 A JP2012177454 A JP 2012177454A JP 2012177454 A JP2012177454 A JP 2012177454A JP 6065450 B2 JP6065450 B2 JP 6065450B2
Authority
JP
Japan
Prior art keywords
sulfur
positive electrode
composite
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012177454A
Other languages
Japanese (ja)
Other versions
JP2014035944A (en
Inventor
宏守 堤
宏守 堤
大俊 中本
大俊 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2012177454A priority Critical patent/JP6065450B2/en
Publication of JP2014035944A publication Critical patent/JP2014035944A/en
Application granted granted Critical
Publication of JP6065450B2 publication Critical patent/JP6065450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、硫黄表面が金属層又は金属硫化物層で被覆されている硫黄複合体や、該硫黄複合体を含む正極や二次電池に関する。   The present invention relates to a sulfur composite whose sulfur surface is coated with a metal layer or a metal sulfide layer, and a positive electrode and a secondary battery including the sulfur composite.

近年、急速な携帯電子機器や電気自動車の普及に伴い、高容量で繰り返し充放電可能な二次電池が要求され、開発が盛んに行われている。なかでもリチウム電池が、軽量で高出力が期待されることから、特に注目されている。現在、リチウム電池としては、正極にはLiCoO、LiMn、LiFePO等が、負極にはカーボン、リチウム等が用いられているケースが多い。負極がカーボンの場合は容量が300−370Ah/kg、リチウムの場合は3830Ah/kgであるのに対して、正極のLiCoOやLiMnの容量は110〜140Ah/kg程度、LiFePOの容量は150〜170Ah/kg程度であるため、高容量の正極材料の開発が望まれている。 In recent years, with the rapid spread of portable electronic devices and electric vehicles, secondary batteries that can be repeatedly charged and discharged with high capacity are required and are actively developed. Among them, lithium batteries are particularly attracting attention because they are expected to be lightweight and have high output. Currently, as lithium batteries, LiCoO 2 , LiMn 2 O 4 , LiFePO 4 or the like is used for the positive electrode, and carbon, lithium, or the like is used for the negative electrode. When the negative electrode is carbon, the capacity is 300 to 370 Ah / kg, and when lithium is 3830 Ah / kg, the capacity of the positive electrode LiCoO 2 or LiMn 2 O 4 is about 110 to 140 Ah / kg, LiFePO 4 Since the capacity is about 150 to 170 Ah / kg, development of a high capacity positive electrode material is desired.

一方、高エネルギー密度の正極材料として、硫黄が着目されている。硫黄はLiSまでリチウムと完全に反応すると仮定した場合、2600Wh/kgの理論エネルギー密度と1672Ah/kgの理論的に高い容量を有している。さらに硫黄は毒性が低く、資源も豊富であるため、安価であるという利点もある。 On the other hand, sulfur is attracting attention as a positive electrode material having a high energy density. Assuming that sulfur reacts completely with lithium up to Li 2 S, it has a theoretical energy density of 2600 Wh / kg and a theoretically high capacity of 1672 Ah / kg. Furthermore, sulfur has the advantage of being inexpensive because it has low toxicity and is rich in resources.

しかしながら、硫黄は反応性に乏しく、また絶縁体であるため、正極材料に用いるためには、硫黄の活性を高め、さらに導電性を付与する必要がある。そこで、これらの問題点を補うための開発がなされている。例えば、金属ナトリウムを負極材料とし、硫黄を正極材料とする二次電池として、硫黄の活性を高めるために、作動温度を300℃以上とする提案がなされている。また、このような高温下での作動を改良するナトリウム/硫黄電池として、50〜70重量%の硫黄、導電剤である15〜30重量%の炭素、15〜20重量%のポリエチレンオキサイドからなる混合物を正極に用い、ナトリウム、ナトリウム含有炭素又はナトリウム酸化物を負極に用い、ナトリウム塩を含むグリミド(grymid)溶液を電解液に用いることで、常温作動のナトリウム/硫黄電池が提案されている(特許文献1)。   However, since sulfur is poor in reactivity and is an insulator, in order to be used for a positive electrode material, it is necessary to increase the activity of sulfur and further impart conductivity. Therefore, developments have been made to compensate for these problems. For example, as a secondary battery using metallic sodium as a negative electrode material and sulfur as a positive electrode material, a proposal has been made to increase the operating temperature to 300 ° C. or higher in order to increase the activity of sulfur. Further, as a sodium / sulfur battery for improving the operation at such a high temperature, a mixture comprising 50 to 70% by weight of sulfur, 15 to 30% by weight of carbon as a conductive agent, and 15 to 20% by weight of polyethylene oxide. A sodium / sulfur battery operating at room temperature has been proposed by using sodium as a positive electrode, using sodium, sodium-containing carbon or sodium oxide as a negative electrode, and using a glymid solution containing a sodium salt as an electrolyte. Reference 1).

また、硫黄と炭素を単に混合する代わりに、硫黄粒子の表面に炭素粒子を機械的に付着させる方法が提案され、この硫黄粒子を正極に、リチウムを負極に用いたリチウム/硫黄電池が提案されている(特許文献2)。   Also, instead of simply mixing sulfur and carbon, a method of mechanically attaching carbon particles to the surface of the sulfur particles was proposed, and a lithium / sulfur battery using this sulfur particle as the positive electrode and lithium as the negative electrode was proposed. (Patent Document 2).

しかしながら、300℃もの高温下で作動する電池では、装置の大型化や安定性に欠けるなどの問題点があった。また、電池を常温で作動させるために、硫黄と炭素を混合したり硫黄に炭素を機械的に付着させたりしても、硫黄への導電性や反応性の付与は十分ではなかった。さらに、硫黄と炭素を用いる上記方法では、硫黄への導電性や反応性の付与のために多量の炭素の添加が必要となり、正極中で活物質として作用する硫黄の含有量が低下するという問題点があった。   However, a battery that operates at a high temperature of 300 ° C. has problems such as an increase in size of the device and lack of stability. Further, in order to operate the battery at room temperature, even if sulfur and carbon are mixed or carbon is mechanically attached to sulfur, conductivity and reactivity are not sufficiently imparted to sulfur. Furthermore, in the above method using sulfur and carbon, it is necessary to add a large amount of carbon for imparting conductivity and reactivity to sulfur, and the content of sulfur acting as an active material in the positive electrode is reduced. There was a point.

これらの問題点を改善するために、本発明者らは、繊維状の硫黄に導電性ポリマーを被覆した複合体を開発し、これを正極材料として用いる提案を行っている(特許文献3)。   In order to improve these problems, the present inventors have developed a composite in which fibrous sulfur is coated with a conductive polymer, and have proposed to use this as a positive electrode material (Patent Document 3).

特表2007−522633号公報Special table 2007-522633 特開2006−92885号公報Japanese Patent Laid-Open No. 2006-92985 特開2011−222389号公報JP 2011-222389 A

硫黄は、理論的には高い電気容量を得られるため、正極材料としての開発が望まれている。しかしながら、硫黄を用いた高容量で、かつ長期間安定的に常温で作用する正極材料は未だ開発されていない。硫黄と炭素を用いる従来の技術では、絶縁体であり反応性の低い硫黄に十分な導電性や反応性を付与することができなかった。また、充放電時に生じる正極からの硫黄化合物の電解液中への溶出を防止することはできなかった。さらに、電池の容量は、正極に含まれる活物質の量が多いほど大きくなるため、硫黄高含有の正極が望まれていたが、絶縁性の硫黄を用いるには炭素等の導電剤を多量に配合する必要があり、正極中の硫黄の含有量を高めることができなかった。   Since sulfur can theoretically obtain a high electric capacity, development as a positive electrode material is desired. However, a positive electrode material that has a high capacity and uses sulfur at a normal temperature for a long period of time has not yet been developed. In the conventional technique using sulfur and carbon, sufficient conductivity and reactivity cannot be imparted to sulfur which is an insulator and has low reactivity. Moreover, elution of the sulfur compound from the positive electrode during charging / discharging into the electrolyte solution could not be prevented. Further, since the capacity of the battery increases as the amount of the active material contained in the positive electrode increases, a positive electrode containing a high amount of sulfur has been desired. However, in order to use insulating sulfur, a large amount of conductive agent such as carbon is used. It was necessary to mix, and the content of sulfur in the positive electrode could not be increased.

本発明の課題は、これらの問題点を解決し、正極材料として導電性や反応性の高い硫黄材料であって、充放電時に生じる硫黄化合物の電解液中への溶出を防止することができ、また、正極中の硫黄の含有量を増加させることのできる硫黄材料や、該硫黄材料を用いた高容量で充放電による容量低下の少ない正極や二次電池を提供することにある。   The problem of the present invention is to solve these problems, and as a positive electrode material is a highly conductive and reactive sulfur material, which can prevent elution of sulfur compounds that occur during charging and discharging into the electrolyte, Another object of the present invention is to provide a sulfur material capable of increasing the sulfur content in the positive electrode, and a positive electrode and a secondary battery that use the sulfur material and have a high capacity and a small capacity decrease due to charge / discharge.

本発明者らは、高容量、かつ長期間安定的に常温で作用する正極材料として、硫黄を用いる方法を見いだすために、まずは正極材料として従来から知られている硫黄と炭素を混合して用いる方法、硫黄粒子の表面に炭素粒子を機械的に付着させる方法等の検討を行った。しかし、これらの方法では、ある程度導電性の向上は見られるものの、まだ導電性や反応性は十分ではなかった。さらに、使用時に出力の低下がみられたため、その原因を調べたところ、硫黄の還元反応時に生成する硫黄化合物が電解液中へ溶出することがわかった。硫黄と炭素を単に混合する方法では、硫黄表面の改質はできず、また硫黄粒子の表面に炭素粒子を付着させても、付着した炭素粒子と炭素粒子の間に間隙が存在し、硫黄化合物の電解液への溶出を防止することができないことがわかった。そこで、硫黄の表面を被覆することに着目し、被覆に用いる物質、被覆方法の検討を開始した。そして、硫黄の表面でモノマーを重合させて導電性ポリマーとすることにより、硫黄を導電性ポリマーで被覆した複合体を開発した(特許文献3)ところ、硫黄表面の被覆層が硫黄化合物の電解液中への溶出に影響を与えることがわかってきた。そこで、本発明者らは、更に検討を進めた結果、硫黄の表面を金属層や金属硫化物層で被覆することにより、従来に比べ高い導電性や反応性を硫黄に付与することができ、さらに、導電性ポリマーで被覆するよりも硫黄化合物の電解液中への溶出防止効果が改善できることを見いだした。また、硫黄の形状を繊維状とすることで、更に電子の移動性が向上すること、硫黄の活性を高めることができることを見いだした。以上の知見に基づき、本発明は完成するに至ったものである。   In order to find a method using sulfur as a positive electrode material that operates stably at room temperature for a long period of time with a high capacity, the present inventors first use a mixture of sulfur and carbon, which are conventionally known as a positive electrode material. A method, a method of mechanically attaching carbon particles to the surface of sulfur particles, and the like were examined. However, in these methods, although the conductivity is improved to some extent, the conductivity and reactivity are still not sufficient. Furthermore, since the output decreased during use, the cause was investigated, and it was found that the sulfur compound produced during the sulfur reduction reaction elutes into the electrolyte. In the method of simply mixing sulfur and carbon, the sulfur surface cannot be modified, and even if carbon particles are attached to the surface of the sulfur particles, there is a gap between the adhering carbon particles and the sulfur compound. It was found that elution into the electrolyte could not be prevented. Therefore, paying attention to covering the surface of sulfur, we started studying the materials and coating methods used for coating. And the composite body which coat | covered sulfur with the conductive polymer was developed by polymerizing a monomer on the surface of sulfur (patent document 3), and the coating layer of the sulfur surface is an electrolyte solution of a sulfur compound. It has been found to affect elution into the inside. Therefore, as a result of further investigation, the present inventors can impart high conductivity and reactivity to sulfur compared to the conventional case by covering the surface of sulfur with a metal layer or metal sulfide layer, Furthermore, it has been found that the effect of preventing the elution of sulfur compounds into the electrolyte can be improved as compared with coating with a conductive polymer. Moreover, it discovered that the mobility of an electron further improved and the activity of sulfur can be improved by making the shape of sulfur into a fibrous form. Based on the above findings, the present invention has been completed.

すなわち本発明は、(1)硫黄表面が金属層又は金属硫化物層で被覆されていることを特徴とする硫黄複合体や、(2)繊維形状である上記(1)記載の硫黄複合体や、(3)金属層がビスマス層である上記(1)又は(2)記載の硫黄複合体や、(4)金属硫化物層が硫化銅層である上記(1)又は(2)記載の硫黄複合体や、(5)上記(1)〜(4)のいずれか記載の硫黄複合体が含まれている正極活物質層と、集電体とを備えた正極や、(6)上記(5)記載の正極と電解質、負極を備えたことを特徴とする二次電池に関する。   That is, the present invention includes (1) a sulfur composite characterized in that the sulfur surface is coated with a metal layer or a metal sulfide layer, and (2) a sulfur composite according to the above (1) having a fiber shape, (3) The sulfur composite described in (1) or (2) above, wherein the metal layer is a bismuth layer, and (4) the sulfur described in (1) or (2) above, wherein the metal sulfide layer is a copper sulfide layer. A positive electrode comprising a composite, (5) a positive electrode active material layer containing the sulfur composite according to any one of (1) to (4), and a current collector; (6) above (5 And a positive electrode, an electrolyte, and a negative electrode.

本発明によると、正極材料として用いることができ、導電性や反応性が高く、充放電時に生じる硫黄化合物の電解液中への溶出が抑えられた硫黄複合体を提供することができる。また、正極中の硫黄の含有量を高めることのできる硫黄複合体を提供することができる。さらに、前記硫黄複合体を用いた、高容量で充放電による容量低下の少ない正極や二次電池を提供することができる。   According to the present invention, it is possible to provide a sulfur composite that can be used as a positive electrode material, has high conductivity and reactivity, and suppresses elution of a sulfur compound that occurs during charge and discharge into an electrolytic solution. Moreover, the sulfur composite which can raise content of sulfur in a positive electrode can be provided. Furthermore, the positive electrode and secondary battery which use the said sulfur composite_body | complex and with few capacity | capacitance fall by charging / discharging can be provided.

実施例1の硫黄表面が硫化銅層で被覆された本発明の硫黄複合体を電極に用いた場合及び比較例1の表面が被覆されていない硫黄を電極に用いた場合のサイクリックボルタンメトリを示すグラフである。Cyclic voltammetry in the case where the sulfur composite of the present invention in which the sulfur surface of Example 1 was coated with a copper sulfide layer was used for an electrode and in the case where sulfur whose surface was not coated in Comparative Example 1 was used for an electrode It is a graph which shows.

本発明の硫黄複合体は、硫黄表面が金属層又は金属硫化物層で被覆されていることを特徴とする。本発明の硫黄複合体は、硫黄と硫黄表面に被覆された金属層及び/又は金属硫化物層との複合体である。上記金属層としては、特に限定されるものではないが、例えば、コバルト、ニッケル、銅、ルテニウム、ロジウム、パラジウム、銀、インジウム、錫、アンチモン、白金、金、鉛、ビスマス、バナジウム、クロム、マンガン、鉄、亜鉛、モリブデン、タングステン、レニウム等から選ばれる1種又は2種以上の金属や、これらの合金からなる層を挙げることができる。これらの中でも、ビスマス層を好適に例示することができる。ビスマスは導電性、安定性が高く、硫黄−ビスマス複合体を正極に用いた場合に導電性や反応性がより向上し、生成する硫黄化合物の溶出防止効果が高い。上記のように、本発明の硫黄複合体は、1種類の金属や合金で被覆されていてもよく、複数の種類の金属や合金で被覆されていてもよい。   The sulfur composite of the present invention is characterized in that the sulfur surface is coated with a metal layer or a metal sulfide layer. The sulfur composite of the present invention is a composite of sulfur and a metal layer and / or metal sulfide layer coated on the sulfur surface. The metal layer is not particularly limited. For example, cobalt, nickel, copper, ruthenium, rhodium, palladium, silver, indium, tin, antimony, platinum, gold, lead, bismuth, vanadium, chromium, manganese And a layer made of one or more metals selected from iron, zinc, molybdenum, tungsten, rhenium and the like, and alloys thereof. Among these, a bismuth layer can be preferably exemplified. Bismuth has high conductivity and stability. When a sulfur-bismuth composite is used for the positive electrode, the conductivity and reactivity are further improved, and the resulting sulfur compound is highly effective in preventing elution. As described above, the sulfur composite of the present invention may be coated with one type of metal or alloy, or may be coated with a plurality of types of metal or alloy.

上記金属硫化物層としては、特に限定されるものではないが、例えば、コバルト、ニッケル、銅、ルテニウム、ロジウム、パラジウム、銀、インジウム、錫、アンチモン、白金、金、鉛、ビスマス、バナジウム、クロム、マンガン、鉄、亜鉛、モリブデン、タングステン、レニウム等から選ばれる1種又は2種以上の金属や、これらの合金の硫化物から選ばれる1種又は2種以上の金属硫化物の層を挙げることができる。これらの中でも、硫化銅層を好適に例示することができる。硫化銅は金属硫化物としての安定性、導電性が高く、硫黄−硫化銅複合体を正極に用いた場合に導電性や反応性が向上し、生成する硫黄化合物の溶出防止効果が高い。上記のように、本発明の硫黄複合体は、1種類の金属硫化物で被覆されていてもよく、複数の種類の金属硫化物で被覆されていてもよい。   The metal sulfide layer is not particularly limited. For example, cobalt, nickel, copper, ruthenium, rhodium, palladium, silver, indium, tin, antimony, platinum, gold, lead, bismuth, vanadium, chromium List one or more metals selected from manganese, iron, zinc, molybdenum, tungsten, rhenium, etc., and one or more metal sulfide layers selected from sulfides of these alloys. Can do. Among these, a copper sulfide layer can be preferably exemplified. Copper sulfide has high stability and conductivity as a metal sulfide, and when the sulfur-copper sulfide composite is used for the positive electrode, the conductivity and reactivity are improved, and the elution prevention effect of the generated sulfur compound is high. As described above, the sulfur composite of the present invention may be coated with one type of metal sulfide or may be coated with a plurality of types of metal sulfides.

このように、本発明の硫黄複合体は、硫黄の表面が金属層及び/又は金属硫化物層で被覆されているため、導電性や反応性が高く、更に充放電時に生じる硫黄化合物の電解液中への溶出が抑えられるので、正極材料に好適に用いることができる。被覆されている金属層や金属硫化物層は、導電性が高いため、充放電時の電子の移動性を向上させることができ、また、硫黄の反応性を高めることができるため、正極での硫黄の酸化還元反応の反応効率を向上させることができる。硫黄を正極に、リチウムを負極に用いる場合、放電反応時には正極の硫黄表面でリチウムイオンが硫黄と反応し、硫黄が還元されてLi、Li、LiS等の硫黄化合物が生成する。充電反応時には、これらの硫黄化合物からリチウムイオンが放出される。ここで、LiSは電解液に溶け難いが、Li、Li等の多硫化物は、電解液に可溶であり、電解液中に溶出する。溶出した多硫化物は負極に達し、負極で難溶性のLiSを生成して正極と負極間の充放電反応を阻害するため、従来は充放電を繰り返すと容量の低下を引きおこしていた。これに対し、本発明の硫黄複合体では、硫黄の表面が金属層や金属硫化物層で被覆されているため、リチウムイオンは金属層や金属硫化物層を通過して硫黄表面に達することができ、また、金属層や金属硫化物層を通過して電解液中に出て行くことができるが、Li、Li、LiS等の硫黄化合物やS 2−、S 2−等の多硫化物イオンは金属層や金属硫化物層を容易には通過することができない。このため、正極でのリチウムと硫黄との反応を阻害することなく、生成する硫黄化合物の電解液中への溶出を防止できる。 Thus, in the sulfur composite of the present invention, the sulfur surface is coated with the metal layer and / or the metal sulfide layer, so that the conductivity and reactivity are high, and the electrolyte solution of the sulfur compound generated during charge / discharge Since elution into the inside is suppressed, it can be suitably used as a positive electrode material. Since the coated metal layer and metal sulfide layer have high conductivity, the mobility of electrons during charge / discharge can be improved, and the reactivity of sulfur can be increased. The reaction efficiency of the sulfur redox reaction can be improved. When sulfur is used for the positive electrode and lithium is used for the negative electrode, lithium ions react with sulfur on the sulfur surface of the positive electrode during the discharge reaction, and the sulfur is reduced to form sulfur compounds such as Li 2 S 4 , Li 2 S 2 and Li 2 S. Produces. During the charging reaction, lithium ions are released from these sulfur compounds. Here, Li 2 S is difficult to dissolve in the electrolytic solution, but polysulfides such as Li 2 S 4 and Li 2 S 2 are soluble in the electrolytic solution and are eluted into the electrolytic solution. The eluted polysulfide reaches the negative electrode, and generates slightly soluble Li 2 S at the negative electrode to inhibit the charge / discharge reaction between the positive electrode and the negative electrode. . On the other hand, in the sulfur composite of the present invention, the surface of sulfur is covered with a metal layer or metal sulfide layer, so that lithium ions can reach the sulfur surface through the metal layer or metal sulfide layer. It can pass through the metal layer and the metal sulfide layer and exit into the electrolyte solution. However, sulfur compounds such as Li 2 S 4 , Li 2 S 2 , Li 2 S, S 4 2− , Polysulfide ions such as S 2 2− cannot easily pass through a metal layer or a metal sulfide layer. For this reason, the elution into the electrolyte of the sulfur compound to produce | generate can be prevented, without inhibiting reaction with lithium and sulfur in a positive electrode.

本発明の硫黄複合体における金属層や金属硫化物層の厚みは、特に限定されるものではないが、0.01〜5μmが好ましく、さらに0.1〜3μmが好ましい。かかる金属層や金属硫化物層は、厚みが場所により異なっても構わないが、均一な厚みを有することが好ましい。金属層や金属硫化物層の厚みが0.01〜5μmであると、硫黄に導電性や反応性を付与する効果と、硫黄化合物が電解液中に溶出するのを防止する効果がより高まる。また、硫黄への導電性の付与のために炭素を用いる従来の方法では、正極活物質層中の硫黄の含有量は、通常50〜60質量%、硫黄粒子の表面に炭素粒子を機械的に付着させても70質量%程度であるが、本発明の硫黄複合体を用いると含有量を高めることができる。これは、硫黄の表面に上記程度の厚みの金属層又は金属硫化物層を形成することで、硫黄に十分な導電性や反応性を付与することができるため、炭素(導電剤)の量を低下させることができ、硫黄の配合割合を80質量%以上に高めることができるからである。   The thickness of the metal layer or metal sulfide layer in the sulfur composite of the present invention is not particularly limited, but is preferably 0.01 to 5 μm, more preferably 0.1 to 3 μm. Such metal layers and metal sulfide layers may have different thicknesses depending on locations, but preferably have a uniform thickness. When the thickness of the metal layer or metal sulfide layer is 0.01 to 5 μm, the effect of imparting conductivity or reactivity to sulfur and the effect of preventing the sulfur compound from eluting into the electrolyte are further increased. In the conventional method using carbon for imparting conductivity to sulfur, the content of sulfur in the positive electrode active material layer is usually 50 to 60% by mass, and the carbon particles are mechanically attached to the surface of the sulfur particles. Even if it adheres, it is about 70% by mass, but the content can be increased by using the sulfur composite of the present invention. This is because by forming a metal layer or metal sulfide layer with the above thickness on the surface of sulfur, it is possible to impart sufficient conductivity and reactivity to sulfur, so the amount of carbon (conductive agent) is reduced. It is because it can reduce, and the compounding ratio of sulfur can be raised to 80 mass% or more.

本発明の硫黄複合体は、硫黄の表面全体が金属層及び/又は金属硫化物層で被覆されていても、表面の一部が金属層及び/又は金属硫化物層で被覆されていてもよいが、電気化学的活性を損なわない程度、また硫黄化合物の電解液中への溶出防止効果を損なわない程度に、硫黄の表面が金属層及び/又は金属硫化物層で被覆されていることが好ましい。   In the sulfur composite of the present invention, the entire sulfur surface may be covered with a metal layer and / or a metal sulfide layer, or a part of the surface may be covered with a metal layer and / or a metal sulfide layer. However, it is preferable that the surface of sulfur is coated with a metal layer and / or a metal sulfide layer to such an extent that the electrochemical activity is not impaired and the effect of preventing the elution of the sulfur compound into the electrolyte is not impaired. .

本発明の硫黄複合体の形状としては特に限定されるものではないが、例えば、球状、板状、柱状、不定形、繊維状等を挙げることができる。球状、板状、柱状、不定形等の粒子状の硫黄複合体の場合、その大きさは特に限定されるものではないが、一次粒子の直径又は最長の辺の長さが500μm以下が好ましく、さらに300μm以下が好ましい。電極での反応に主に寄与するのは硫黄の表面又は表面近傍であるため、硫黄複合体粒子の大きさが上記範囲にあると単位質量あたり又は単位体積あたりの表面積が大きくなり、電極での反応に寄与する表面部分の面積が増大するからである。また、一次粒子の直径又は最長の辺の長さの下限値は、特に限定されるものではないが、正極に用いる場合の作業性の観点からは、5μm以上が好ましく、さらに10μm以上が好ましい。以上のことから、球状、板状、柱状、不定形等の粒子状の硫黄複合体の一次粒子の直径又は最長の辺の長さは、5〜500μmが好ましく、10〜300μmがより好ましい。   Although it does not specifically limit as a shape of the sulfur composite_body | complex of this invention, For example, spherical shape, plate shape, columnar shape, indefinite shape, fibrous shape etc. can be mentioned. In the case of a particulate sulfur composite such as a spherical shape, a plate shape, a columnar shape, an irregular shape, the size is not particularly limited, but the diameter of the primary particle or the length of the longest side is preferably 500 μm or less, Furthermore, 300 micrometers or less are preferable. Since it is the surface of sulfur or the vicinity of the surface that mainly contributes to the reaction at the electrode, when the size of the sulfur composite particles is in the above range, the surface area per unit mass or unit volume increases, This is because the area of the surface portion contributing to the reaction increases. Further, the lower limit of the diameter of the primary particles or the length of the longest side is not particularly limited, but is preferably 5 μm or more, and more preferably 10 μm or more from the viewpoint of workability when used for the positive electrode. From the above, the diameter or the length of the longest side of the primary particles of the particulate sulfur composite such as spherical shape, plate shape, columnar shape, and irregular shape is preferably 5 to 500 μm, and more preferably 10 to 300 μm.

本発明の硫黄複合体の形状としては、繊維形状が好ましい。繊維形状の硫黄複合体を用いると、単位質量あたり又は単位体積あたりの表面積が大きくなる結果、電極での反応に寄与する表面部分の面積が増大し、また硫黄の活性が高まるため、硫黄複合体の反応効率が向上する。さらに、金属や金属硫化物の担持量も増加するため導電性も向上する。加えて、粒子状の硫黄複合体では、硫黄複合体粒子同士が接する界面で、電子の移動が制限される場合があるが、繊維形状の硫黄複合体では、一本の繊維の表面に金属層や金属硫化物層が連続的に形成されているため、この影響が少なく電子の移動性が更に向上する。   The shape of the sulfur composite of the present invention is preferably a fiber shape. When a fiber-shaped sulfur composite is used, the surface area per unit mass or unit volume increases, resulting in an increase in the area of the surface portion that contributes to the reaction at the electrode, and the sulfur activity is increased. The reaction efficiency is improved. In addition, the amount of metal and metal sulfide supported increases, so the conductivity is improved. In addition, in the particulate sulfur composite, the movement of electrons may be restricted at the interface where the sulfur composite particles are in contact with each other, but in the fiber-shaped sulfur composite, a metal layer is formed on the surface of one fiber. In addition, since the metal sulfide layer is continuously formed, the influence of this is small and the electron mobility is further improved.

上記繊維状の形状は特に限定されないが、繊維の長さ(L)と直径(d)との比(L/d)は50以上が好ましく、200以上がより好ましく、500以上が更に好ましい。また、繊維の直径は特に限定されるものではないが、繊維状の場合、直径が小さいほど単位質量あたり又は単位体積あたりの表面積が大きくなり、絶縁体で反応性が低い硫黄の電子の移動性や活性を向上させる効果が高まる。この観点から繊維の直径は60μm以下が好ましく、50μm以下がより好ましい。また、繊維の直径の下限は、実質的に使用できる程度であれば特に限定されないが、繊維としての強度を強くする観点から、繊維の直径は5μm以上が好ましく、10μm以上がより好ましい。以上のことから、繊維の直径は、5〜60μm、好ましくは10〜50μm、より好ましくは20〜40μmとすることが望ましい。また、繊維の長さは特に限定されるものではないが、不織布のマット状として用いる場合には、不織布をマット状に容易に形成できるという観点から、繊維の長さは1〜40cmが好ましく、5〜30cmがより好ましく、5〜20cmが更に好ましい。   The fibrous shape is not particularly limited, but the ratio (L / d) between the length (L) and the diameter (d) of the fiber is preferably 50 or more, more preferably 200 or more, and still more preferably 500 or more. Also, the fiber diameter is not particularly limited, but in the case of a fiber, the smaller the diameter, the larger the surface area per unit mass or unit volume, and the mobility of sulfur electrons, which is an insulator and is less reactive And the effect of improving activity increases. From this viewpoint, the diameter of the fiber is preferably 60 μm or less, and more preferably 50 μm or less. Further, the lower limit of the fiber diameter is not particularly limited as long as it can be practically used, but from the viewpoint of increasing the strength of the fiber, the fiber diameter is preferably 5 μm or more, and more preferably 10 μm or more. From the above, it is desirable that the fiber has a diameter of 5 to 60 μm, preferably 10 to 50 μm, and more preferably 20 to 40 μm. Further, the length of the fiber is not particularly limited, but when used as a nonwoven mat, the length of the fiber is preferably 1 to 40 cm from the viewpoint that the nonwoven can be easily formed into a mat. 5-30 cm is more preferable, and 5-20 cm is still more preferable.

本発明の硫黄複合体の製造方法として、例えば以下の方法を挙げることができる。まず、硫黄の粒子や繊維を用意する。そして、金属で被覆する場合、被覆する金属を含有した無電解めっき浴を準備し、この無電解めっき浴に硫黄の粒子や繊維を所定の時間浸漬する。かかる無電解めっきを行うことにより硫黄の表面に金属を析出させ、金属の被覆層を形成することができる。無電解めっきは、通常用いられる方法を用いることができ、必要に応じてパラジウム等の触媒、ホルムアルデヒド等の還元剤を用いることができる。無電解めっきによると、硫黄の形状にかかわらず様々な形状の硫黄の表面に均一で間隙のない金属層を被覆することができ、また強度の強い金属層を被覆することができる。   Examples of the method for producing the sulfur composite of the present invention include the following methods. First, sulfur particles and fibers are prepared. And when coat | covering with a metal, the electroless-plating bath containing the metal to coat | cover is prepared, and sulfur particle | grains and a fiber are immersed in this electroless-plating bath for predetermined time. By performing such electroless plating, a metal can be deposited on the surface of sulfur to form a metal coating layer. For electroless plating, a commonly used method can be used, and a catalyst such as palladium and a reducing agent such as formaldehyde can be used as necessary. According to electroless plating, a uniform and void-free metal layer can be coated on the surface of sulfur of various shapes regardless of the shape of sulfur, and a strong metal layer can be coated.

金属硫化物で被覆する場合、硫黄の表面に金属を接触・被覆させ、これを硫化することにより金属硫化物の被覆層を形成することができる。例えば、硫黄の粒子や繊維の表面に無電解めっきで金属を析出させ、析出した金属を表面部分で硫化することにより金属硫化物の被覆層を形成することができる。この無電解めっきを利用した方法によると、硫黄の形状にかかわらず様々な形状の硫黄の表面に均一で間隙のない金属硫化物層を被覆することができ、また強度の強い金属硫化物層を被覆することができる。無電解めっきに代えて、スパッタや蒸着等の気相による成膜法を用いて、硫黄の表面に金属や金属硫化物を被覆することもできる。また、本発明の硫黄複合体は、硫黄の表面に金属層又は金属硫化物層を後から被覆した形態だけではなく、硫黄の表面自体を改質して金属層や金属硫化物層を形成した形態も含まれる。   In the case of coating with a metal sulfide, a metal sulfide coating layer can be formed by contacting and coating a metal on the surface of sulfur and sulfiding the metal. For example, a metal sulfide coating layer can be formed by depositing a metal on the surface of sulfur particles or fibers by electroless plating and sulfiding the deposited metal at the surface portion. According to this method using electroless plating, regardless of the shape of the sulfur, it is possible to coat the surface of various shapes of sulfur with a uniform and void-free metal sulfide layer, and to form a strong metal sulfide layer. Can be coated. Instead of electroless plating, the surface of sulfur can be coated with a metal or metal sulfide by using a film forming method by a gas phase such as sputtering or vapor deposition. In addition, the sulfur composite of the present invention is not only in a form in which a metal layer or a metal sulfide layer is subsequently coated on the sulfur surface, but also the sulfur surface itself is modified to form a metal layer or a metal sulfide layer. Forms are also included.

本発明の硫黄複合体の製造に用いる硫黄繊維は、例えば、以下の方法で作製することができる。硫黄の融点は112.8℃(α硫黄)〜119.6℃(γ硫黄)であるが、195℃までは粘度が増加し、更に高温では再び減少する。そこで、180〜250℃、好ましくは190〜220℃程度で硫黄を溶融し、ノズルから押し出すことにより硫黄繊維を作製することができる。   The sulfur fiber used for production of the sulfur composite of the present invention can be produced, for example, by the following method. The melting point of sulfur is 112.8 ° C. (α sulfur) to 119.6 ° C. (γ sulfur), but the viscosity increases up to 195 ° C. and decreases again at higher temperatures. Therefore, sulfur fibers can be produced by melting sulfur at about 180 to 250 ° C., preferably about 190 to 220 ° C., and extruding it from a nozzle.

他の方法としては、ニードル(針)の付いたシリンジを用意し、シリンジ中に硫黄を入れ加熱して、ニードル(針)とコレクター(集電体)の間に電圧を印加する。電圧がしきい値を超えると、電荷の反発力が溶融硫黄の表面張力に打ち勝って電荷を帯びた噴流が発生する。電場内で噴流は伸長して非常に細いファイバーを形成し、コレクター上に堆積する。このようにして、直径がナノサイズからミクロンサイズの硫黄繊維を作製することができる(溶融電界紡糸法)。この場合、硫黄繊維の直径は、溶融硫黄の粘度、印加する電圧及びニードルとコレクター間の距離により決めることができる。ニードルとコレクター間の距離は、過度に短い場合にはニードルとコレクター間で放電が起こり、過度に長い場合にはファイバーを引っ張る静電引力が小さくなることがあるため、4cm〜10cmとするのが好ましい。また、印加電圧は、過度に低い場合には静電引力が小さくなり、過度に高い場合にはニードルとコレクター間で放電が起こることがあるため、8kV〜20kVとすることが好ましい。この方法によると、装置が単純で短時間に微細化が可能であり、直径の小さい硫黄繊維を得ることができる。このようにして得た硫黄繊維を使用し、硫黄繊維の表面に上記の方法で金属層又は金属硫化物層を形成することにより、本発明の繊維形状の硫黄複合体が得られる。   As another method, a syringe with a needle (needle) is prepared, sulfur is put into the syringe and heated, and a voltage is applied between the needle (needle) and a collector (current collector). When the voltage exceeds the threshold value, the charge repulsive force overcomes the surface tension of the molten sulfur to generate a charged jet. In the electric field, the jet stretches to form very thin fibers and deposits on the collector. In this way, sulfur fibers having a diameter of nano to micron can be produced (melt electrospinning method). In this case, the diameter of the sulfur fiber can be determined by the viscosity of the molten sulfur, the applied voltage, and the distance between the needle and the collector. When the distance between the needle and the collector is excessively short, a discharge occurs between the needle and the collector, and when it is excessively long, the electrostatic attractive force that pulls the fiber may be small. preferable. The applied voltage is preferably 8 kV to 20 kV because the electrostatic attractive force is small when the voltage is excessively low and discharge may occur between the needle and the collector when the voltage is excessively high. According to this method, the apparatus is simple and can be miniaturized in a short time, and sulfur fibers having a small diameter can be obtained. By using the sulfur fiber thus obtained and forming a metal layer or metal sulfide layer on the surface of the sulfur fiber by the above method, the fiber-shaped sulfur composite of the present invention is obtained.

本発明の正極は、集電体の表面に正極活物質層を備えた正極であって、本発明の硫黄複合体が正極活物質層に含まれているものである。本発明の正極に用いられる集電体としては、特に限定されるものではないが、例えば、アルミニウム箔、ステンレススチール箔、カーボン等を挙げることができる。本発明の正極の正極活物質層は、本発明の硫黄複合体と、必要に応じてバインダーや導電助剤を含む。バインダーとしては、特に限定されるものではないが、例えば、ポリフッ化ビニリデン、ポリ四フッ化エチレン、ポリイミド、ポリアミド、ポリアクリロニトリル、ポルエチレン、ポリプロピレン等を挙げることができる。導電助剤としては、特に限定されるものではないが、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛、炭素繊維等を挙げることができる。正極活物質層中における本発明の硫黄複合体の含有量は、特に限定されるものではないが、本発明の硫黄複合体の特性を発揮し、高容量で充放電による容量低下の少ない二次電池を得る観点から、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。また、正極活物質層は、本発明の硫黄複合体以外の正極活物質を含んでもよい。   The positive electrode of the present invention is a positive electrode provided with a positive electrode active material layer on the surface of a current collector, and the sulfur composite of the present invention is contained in the positive electrode active material layer. Although it does not specifically limit as a collector used for the positive electrode of this invention, For example, aluminum foil, stainless steel foil, carbon, etc. can be mentioned. The positive electrode active material layer of the positive electrode of the present invention contains the sulfur composite of the present invention and, if necessary, a binder and a conductive additive. The binder is not particularly limited, and examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyimide, polyamide, polyacrylonitrile, porethylene, and polypropylene. Although it does not specifically limit as a conductive support agent, For example, carbon black, acetylene black, ketjen black, graphite, carbon fiber etc. can be mentioned. The content of the sulfur composite of the present invention in the positive electrode active material layer is not particularly limited, but it exhibits the characteristics of the sulfur composite of the present invention, and is a secondary battery that has a high capacity and a small capacity decrease due to charge / discharge. From the viewpoint of obtaining a battery, 50% by mass or more is preferable, 70% by mass or more is more preferable, and 80% by mass or more is further preferable. The positive electrode active material layer may contain a positive electrode active material other than the sulfur composite of the present invention.

本発明の正極の製造方法として、例えば以下の方法を挙げることができる。本発明の硫黄複合体と、必要に応じて溶媒、上記のバインダーや導電助剤等を混合する。この混合物を集電体上に塗布し、乾燥して集電体上に正極活物質層を形成する。溶媒としては、特に限定されるものではないが、例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアルデヒド、キシレン、トルエン等を挙げることができる。繊維形状の硫黄複合体の場合、繊維長を長くしてマット状にすることもでき、この場合は、集電体上にマット状の硫黄複合体を設置してバインダーで固定し、正極活物質層を形成することもできる。   Examples of the method for producing the positive electrode of the present invention include the following methods. The sulfur composite of the present invention is mixed with a solvent, the binder, the conductive auxiliary agent, and the like as necessary. This mixture is applied onto a current collector and dried to form a positive electrode active material layer on the current collector. Although it does not specifically limit as a solvent, For example, N-methyl-2- pyrrolidone, N, N- dimethylformaldehyde, xylene, toluene etc. can be mentioned. In the case of a fiber-shaped sulfur composite, the fiber length can be increased to form a mat. In this case, the mat-shaped sulfur composite is placed on the current collector and fixed with a binder, and the positive electrode active material Layers can also be formed.

本発明の二次電池は、本発明の正極の他、電解質及び負極を備えるものである。その他にセパレータ等を備えてもよい。電解質としては、特に限定されるものではないが、例えば、LiPF、LiBF、LiAsF、LiI、LiTFSI等を挙げることができる。電解質は、例えば、プロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ジオキソラン、ジメトキシエタン等の非水系の溶媒に溶解して用いることができる。負極としては、特に限定されるものではないが、例えば、金属リチウム、リチウム合金等のリチウムを含む物質や黒鉛等のリチウムを吸蔵放出する物質を挙げることができる。本発明の二次電池では、例えば、負極に金属リチウムを用いる場合、リチウムイオンが、本発明の硫黄複合体の金属層や金属硫化物層を通って硫黄表面に達し、硫黄と反応する。また、この硫黄の還元反応時には、電解液に可溶なリチウムポリスルフィド等の硫黄化合物が生成するが、金属層や金属硫化物層により電解液中への溶出は抑制される。そのため、充放電の繰り返しによる容量低下の少ない二次電池を得ることができる。さらに、導電性の高い金属層や金属硫化物層を通して電子が移動し、集電体との間の電子の授受を行うため、高容量の二次電池を得ることができる。本発明の二次電池は、本発明の正極、上記電解質及び負極を組み合わせて製造することができ、二次電池の形状としては、特に限定されるものではないが、コイン型、積層型、円筒型等を挙げることができる。 The secondary battery of the present invention includes an electrolyte and a negative electrode in addition to the positive electrode of the present invention. In addition, a separator or the like may be provided. As the electrolyte, but are not particularly limited, examples thereof include LiPF 6, LiBF 4, LiAsF 6 , LiI, and LiTFSI like. The electrolyte can be used by dissolving in a non-aqueous solvent such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate, diethyl carbonate, dioxolane, dimethoxyethane, and the like. Although it does not specifically limit as a negative electrode, For example, the substance which occludes and discharges lithium, such as substances containing lithium, such as metallic lithium and a lithium alloy, and graphite can be mentioned. In the secondary battery of the present invention, for example, when metal lithium is used for the negative electrode, lithium ions reach the sulfur surface through the metal layer or metal sulfide layer of the sulfur composite of the present invention and react with sulfur. Further, during this sulfur reduction reaction, a sulfur compound such as lithium polysulfide soluble in the electrolytic solution is generated, but elution into the electrolytic solution is suppressed by the metal layer or metal sulfide layer. Therefore, it is possible to obtain a secondary battery with little capacity reduction due to repeated charge and discharge. Furthermore, since electrons move through a metal layer or metal sulfide layer with high conductivity and exchange electrons with the current collector, a high-capacity secondary battery can be obtained. The secondary battery of the present invention can be produced by combining the positive electrode of the present invention, the electrolyte and the negative electrode, and the shape of the secondary battery is not particularly limited, but is a coin type, a stacked type, a cylinder Examples include molds.

以下、本発明の実施例を挙げて、本発明を具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。   EXAMPLES Hereinafter, although an Example of this invention is given and this invention is demonstrated concretely, the technical scope of this invention is not limited to these illustrations.

(繊維状形状の硫黄の作製)
ステンレス針(内径0.7mm)を装着した3mlガラスシリンジ[MITSUBA株式会社製]へ、変圧器[YAMABISHI株式会社製 TYPE S−130−10]に接続したシリコンコードヒータ(1.5m)[相互理化学硝子製作所株式会社製 SKH−0151]を巻きつけた。収集板としてステンレス板(9×9cm)を用いた。電圧を印加した際にステンレス針が正に、収集板が負に帯電するよう高圧電源装置[松定プレシジョン株式会社製]を接続した。コードヒータの温度は、被接触温度センサ[タスコジャパン株式会社製 THI−303F]およびセンサ電源付ディジタルメータリレー[タスコジャパン株式会社製 TAT−806A]によって測定、制御した。ステンレス針の先と収集板の距離を6cmとした。硫黄粉末をガラスシリンジへ加えた後、シリコンコードヒータによってガラスシリンジを200℃まで加熱した。その後、ステンレス針および収集板へ15KVの電圧を印加し、収集板上に硫黄の溶融電界紡糸を行い、実施例1に用いる繊維状形状の硫黄を作製した。
(Production of fibrous sulfur)
Silicon cord heater (1.5 m) connected to a transformer [TYPE S-130-10 made by YAMABISHI Corporation] to a 3 ml glass syringe [made by MITSUBA Corporation] equipped with a stainless needle (inner diameter 0.7 mm) [mutual chemistry Glass Manufacturing Co., Ltd. SKH-0151] was wound. A stainless steel plate (9 × 9 cm) was used as a collecting plate. A high voltage power supply [Matsusada Precision Co., Ltd.] was connected so that the stainless needle was positively charged and the collector plate was negatively charged when voltage was applied. The temperature of the code heater was measured and controlled by a contact temperature sensor [THI-303F manufactured by TASCO JAPAN Co., Ltd.] and a digital meter relay with sensor power supply [TAT-806A manufactured by TASCO JAPAN CO., LTD.]. The distance between the tip of the stainless needle and the collecting plate was 6 cm. After the sulfur powder was added to the glass syringe, the glass syringe was heated to 200 ° C. with a silicon cord heater. Thereafter, a voltage of 15 KV was applied to the stainless needle and the collecting plate, and melted electrospinning of sulfur was performed on the collecting plate to produce fibrous sulfur used in Example 1.

(硫黄表面への被覆)
作製した繊維状形状の硫黄を、硫酸銅を0.05mol/L、ホルムアルデヒドを10mL/L、水酸化ナトリウムを1.25mol/L、EDTA(ethylenediaminetetraacetic acid)を0.10mol/L配合した無電解めっき浴に2時間浸漬した。硫黄表面にはまず銅が析出するが、この銅は硫化銅に変化し最終的には硫化銅として硫黄の表面に析出した。こうして硫黄表面が硫化銅層で被覆された硫黄複合体を得た。得られた硫黄複合体を、走査型電子顕微鏡(SEM)で観察したところ、長さが5cmから10cm、直径が30μmから40μmであった。また、硫黄複合体の断面を走査型電子顕微鏡(SEM)で観察し、硫化銅層の厚みを測定したところ、1μmから2μmであった。また、表面のほぼ全体に均一に硫化銅層が被覆されていた。
(Surface coating)
Electroless plating containing 0.05 mol / L of copper sulfate, 10 mL / L of formaldehyde, 1.25 mol / L of sodium hydroxide, and 0.10 mol / L of EDTA (ethylenediaminetetraacetic acid), in the form of fibrous sulfur produced. Immerse in the bath for 2 hours. Copper was first deposited on the sulfur surface, but this copper changed to copper sulfide and finally deposited on the sulfur surface as copper sulfide. Thus, a sulfur composite having a sulfur surface coated with a copper sulfide layer was obtained. When the obtained sulfur composite was observed with a scanning electron microscope (SEM), the length was 5 to 10 cm, and the diameter was 30 to 40 μm. Moreover, when the cross section of the sulfur composite was observed with a scanning electron microscope (SEM) and the thickness of the copper sulfide layer was measured, it was 1 μm to 2 μm. Further, the copper sulfide layer was uniformly coated on almost the entire surface.

(放電容量の測定)
得られた硫黄複合体をグラッシーカーボン上に設置し、得られた硫黄複合体をセパレータ[Celgard社製「セルガード(登録商標)2500」]で覆うことにより、硫黄複合体を集電体上に固定して正極活物質層とし、正極を作製した。この正極を三極式セルに組み込み二次電池を作製した。負極には、金属リチウムを用い、電解液には、1モルLiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)/DOX(ジオキソラン):DME(ジメトキシエタン)(容積比1:1)を用いた。こうして作製した二次電池を用いて、0.05Cでの放電容量を測定した。その結果を表1に示す。
(Measurement of discharge capacity)
The obtained sulfur composite is placed on a glassy carbon, and the obtained sulfur composite is covered with a separator [Celgard "Celgard (registered trademark) 2500"] to fix the sulfur composite on the current collector. As a positive electrode active material layer, a positive electrode was produced. This positive electrode was incorporated into a tripolar cell to produce a secondary battery. Metal lithium was used for the negative electrode, and 1 mol LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) / DOX (dioxolane): DME (dimethoxyethane) (volume ratio 1: 1) was used for the electrolyte. Using the secondary battery thus produced, the discharge capacity at 0.05 C was measured. The results are shown in Table 1.

実施例1で用いたものと同じ繊維形状の硫黄を、エチレンジアミン四酢酸を0.10mol/L、クエン酸三ナトリウム二水和物を0.17mol/L、ニトリロ三酢酸を0.10mol/L、三塩化ビスマスを0.06mol/L、塩化第一スズ20%塩酸溶液を0.03mol/L配合した無電解めっき浴に2時間浸漬した。硫黄表面にはビスマスが析出し、硫黄表面がビスマス層で被覆された硫黄複合体を得た。得られた硫黄複合体を、走査型電子顕微鏡(SEM)で観察したところ、長さが5cmから10cm、直径が30μmから40μmであった。また、硫黄複合体の断面を走査型電子顕微鏡(SEM)で観察し、ビスマス層の厚みを測定したところ、1μmから2μmであった。また、表面のほぼ全体に均一にビスマス層が被覆されていた。得られた硫黄複合体を用いて実施例1と同様に正極と二次電池を作製し放電容量を測定した。測定結果を表1に示す。
[比較例1]
The same fiber shape sulfur used in Example 1, ethylenediaminetetraacetic acid 0.10 mol / L, trisodium citrate dihydrate 0.17 mol / L, nitrilotriacetic acid 0.10 mol / L, It was immersed in an electroless plating bath containing 0.06 mol / L of bismuth trichloride and 0.03 mol / L of a stannous chloride 20% hydrochloric acid solution for 2 hours. Bismuth was deposited on the sulfur surface, and a sulfur composite in which the sulfur surface was coated with a bismuth layer was obtained. When the obtained sulfur composite was observed with a scanning electron microscope (SEM), the length was 5 to 10 cm, and the diameter was 30 to 40 μm. Moreover, when the cross section of the sulfur composite was observed with a scanning electron microscope (SEM) and the thickness of the bismuth layer was measured, it was 1 μm to 2 μm. Further, the bismuth layer was uniformly coated on almost the entire surface. Using the obtained sulfur composite, a positive electrode and a secondary battery were produced in the same manner as in Example 1, and the discharge capacity was measured. The measurement results are shown in Table 1.
[Comparative Example 1]

実施例1で用いたものと同じ繊維形状の硫黄を被覆せずにそのまま用いて、実施例1と同様に正極と二次電池を作製し放電容量を測定した。測定結果を表1に示す。   Using the same fiber-shaped sulfur as used in Example 1 without coating, a positive electrode and a secondary battery were produced in the same manner as in Example 1, and the discharge capacity was measured. The measurement results are shown in Table 1.

Figure 0006065450
Figure 0006065450

(サイクリックボルタンメトリ(CV)測定)
実施例1の硫黄複合体、比較例1の硫黄を用いて、電極の電気化学的挙動を調査するためにCV測定を行った。測定には電気化学システム[北斗電工株式会社製 HZ−5000]を使用した。全ての電極に対して電位走査範囲1.8V−3.2V、走査速度0.5mVs−1とし、恒温槽[東京理科器械株式会社製 EYELA MG−2300]中でセルの温度を30℃で一定に保ち測定を行った。なお、これらの操作は全てアルゴン雰囲気下、グローブボックス中で行った。また、電解質は1モルLiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)/DOX(ジオキソラン):DME(ジメトキシエタン)(容積比1:1)とする。測定結果を図1に示す。
(Cyclic voltammetry (CV) measurement)
Using the sulfur composite of Example 1 and the sulfur of Comparative Example 1, CV measurement was performed to investigate the electrochemical behavior of the electrode. For the measurement, an electrochemical system [HZ-5000 manufactured by Hokuto Denko Co., Ltd.] was used. The potential scanning range is 1.8 V to 3.2 V for all the electrodes, the scanning speed is 0.5 mVs −1, and the cell temperature is constant at 30 ° C. in a thermostatic bath [EYELA MG-2300 manufactured by Tokyo Science Instruments Co., Ltd.]. The measurement was carried out. All these operations were performed in a glove box under an argon atmosphere. The electrolyte is 1 mol LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) / DOX (dioxolane): DME (dimethoxyethane) (volume ratio 1: 1). The measurement results are shown in FIG.

硫黄表面が硫化銅層で被覆された硫黄複合体を用いた実施例1、硫黄表面がビスマス層で被覆された硫黄複合体を用いた実施例2は、表面に被覆のない硫黄を用いた比較例1よりも、高い放電容量が得られた。これにより、硫黄表面を硫化銅層やビスマス層で被覆することにより、正極材料として導電性や反応性の高い硫黄材料が得られることがわかった。また、サイクリックボルタンメトリ(CV)測定の結果から、実施例1の硫黄複合体は比較例1のものより酸化電流値が増加した。このことから、硫黄表面を硫化銅層で被覆することにより、硫黄の還元反応時に生成されるリチウムポリスルフィドが再酸化されており、硫黄化合物の電解液中への溶出が抑制されていることがわかった。
Example 1 using a sulfur composite having a sulfur surface coated with a copper sulfide layer and Example 2 using a sulfur composite having a sulfur surface coated with a bismuth layer were compared using sulfur with no coating on the surface. A higher discharge capacity was obtained than in Example 1. Thereby, it turned out that a highly conductive and reactive sulfur material is obtained as a positive electrode material by covering the sulfur surface with a copper sulfide layer or a bismuth layer. Moreover, from the result of the cyclic voltammetry (CV) measurement, the oxidation current value of the sulfur composite of Example 1 increased from that of Comparative Example 1. From this, it can be seen that by covering the sulfur surface with a copper sulfide layer, the lithium polysulfide produced during the sulfur reduction reaction is reoxidized, and the elution of sulfur compounds into the electrolyte is suppressed. It was.

Claims (4)

硫黄表面がビスマス層で被覆され、繊維形状であることを特徴とする、被覆されていない硫黄に比べて導電性及びリチウムとの反応性を高めた硫黄複合体。 A sulfur composite having enhanced conductivity and reactivity with lithium compared to uncoated sulfur, wherein the sulfur surface is coated with a bismuth layer and is in the form of a fiber . 硫黄表面が硫化銅層で被覆され、繊維形状であることを特徴とする、被覆されていない硫黄に比べて導電性及びリチウムとの反応性を高めた硫黄複合体。 A sulfur composite having enhanced conductivity and reactivity with lithium compared to uncoated sulfur, wherein the sulfur surface is coated with a copper sulfide layer and is in the form of a fiber . 請求項1又は2記載の硫黄複合体が含まれている正極活物質層と、集電体とを備えたことを特徴とする正極。 Cathode, wherein the cathode active material layer that contains the sulfur composite according to claim 1 or 2, further comprising a current collector. 請求項記載の正極、電解質及び負極を備えたことを特徴とする二次電池。 A secondary battery comprising the positive electrode according to claim 3 , an electrolyte, and a negative electrode.
JP2012177454A 2012-08-09 2012-08-09 Positive electrode and secondary battery containing sulfur composite Expired - Fee Related JP6065450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012177454A JP6065450B2 (en) 2012-08-09 2012-08-09 Positive electrode and secondary battery containing sulfur composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012177454A JP6065450B2 (en) 2012-08-09 2012-08-09 Positive electrode and secondary battery containing sulfur composite

Publications (2)

Publication Number Publication Date
JP2014035944A JP2014035944A (en) 2014-02-24
JP6065450B2 true JP6065450B2 (en) 2017-01-25

Family

ID=50284808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012177454A Expired - Fee Related JP6065450B2 (en) 2012-08-09 2012-08-09 Positive electrode and secondary battery containing sulfur composite

Country Status (1)

Country Link
JP (1) JP6065450B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150131652A (en) * 2014-05-15 2015-11-25 현대자동차주식회사 A structure of complexed cathode using Li2S
KR101923861B1 (en) * 2018-06-20 2018-11-29 고려대학교 산학협력단 Slurry for cathode of Li battery and Li battery including the same
JP7429417B2 (en) * 2019-12-11 2024-02-08 国立大学法人東北大学 Non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511342A (en) * 1996-05-22 2000-08-29 モルテック コーポレイション Composite cathodes, chemical cells containing novel composite cathodes, and processes for making them
JP2002319400A (en) * 2001-04-23 2002-10-31 Matsushita Electric Ind Co Ltd Electrode, manufacturing method therefor, and lithium battery using the same
KR100484642B1 (en) * 2002-09-23 2005-04-20 삼성에스디아이 주식회사 Positive active material for lithium-sulfur battery and method for preparing the same
JP4351605B2 (en) * 2004-09-22 2009-10-28 アオイ電子株式会社 Composite material containing sulfur and / or sulfur compound and method for producing the same
JP4456449B2 (en) * 2004-09-22 2010-04-28 アオイ電子株式会社 Battery positive electrode material containing sulfur and / or sulfur compound having S—S bond and method for producing the same
JP5679260B2 (en) * 2010-04-13 2015-03-04 国立大学法人山口大学 Composite composed of sulfur and conductive polymer
KR102096193B1 (en) * 2010-10-22 2020-04-02 암프리우스, 인코포레이티드 Composite structures containing high capacity porous active materials constrained in shells

Also Published As

Publication number Publication date
JP2014035944A (en) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5809897B2 (en) Porous silicon particles, production method thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101400994B1 (en) High Capacity Electrode for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
JP5124975B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
KR101103841B1 (en) Metal ions-assisted electroless etching method for the bundle type silicon nano-rod composite and its application as anode materials for lithium secondary batteries
JP6183361B2 (en) Negative electrode active material, method for producing the same, negative electrode for lithium secondary battery, and lithium secondary battery
WO2013140941A1 (en) Metal three-dimensional, mesh-like porous body for collectors, electrode, and non-aqueous electrolyte secondary battery
CN109244355B (en) Method for producing lithium-supplemented negative electrode, and lithium ion secondary battery
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2016506055A (en) Cathode active material for lithium-sulfur battery and method for producing the same
KR20150137888A (en) Composite cathode active material, preparation method thereof, and lithium battery comprising the same
US8877385B2 (en) Non-aqueous secondary battery
US20230088683A1 (en) Battery and method of manufacturing battery
JP2019075391A (en) Electrode for lithium secondary batteries, and lithium secondary battery including the same
KR102152883B1 (en) Negative active material, negative electrode and lithium battery including the negative active material, and method for manufacturing the negative active material
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
JP2021534563A (en) Lithium-sulfur secondary battery
JP2012174577A (en) Negative electrode plate of lithium secondary battery, negative electrode, and lithium secondary battery
JP2021523534A (en) Functional separation membrane, its manufacturing method and lithium secondary battery containing it
JP2015133320A (en) Negative electrode material for secondary battery, and secondary battery using the same
JP5679260B2 (en) Composite composed of sulfur and conductive polymer
JP6065450B2 (en) Positive electrode and secondary battery containing sulfur composite
CN111699575A (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
Elumalai et al. Three-Dimensional Octahedral Nanocrystals of Cu2O/CuF2 Grown on Porous Cu Foam Act as a Lithophilic Skeleton for Dendrite-Free Lithium Metal Anode
JP7096184B2 (en) Lithium-ion secondary battery and its manufacturing method
JP2012109246A (en) Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R150 Certificate of patent or registration of utility model

Ref document number: 6065450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees