JP6063307B2 - Sludge combustion apparatus and sludge combustion method - Google Patents

Sludge combustion apparatus and sludge combustion method Download PDF

Info

Publication number
JP6063307B2
JP6063307B2 JP2013049385A JP2013049385A JP6063307B2 JP 6063307 B2 JP6063307 B2 JP 6063307B2 JP 2013049385 A JP2013049385 A JP 2013049385A JP 2013049385 A JP2013049385 A JP 2013049385A JP 6063307 B2 JP6063307 B2 JP 6063307B2
Authority
JP
Japan
Prior art keywords
combustion
sludge
product
unit
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013049385A
Other languages
Japanese (ja)
Other versions
JP2014172020A (en
Inventor
山本 昌幸
昌幸 山本
知志 竹下
知志 竹下
修策 服部
修策 服部
陽一朗 水野
陽一朗 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2013049385A priority Critical patent/JP6063307B2/en
Publication of JP2014172020A publication Critical patent/JP2014172020A/en
Application granted granted Critical
Publication of JP6063307B2 publication Critical patent/JP6063307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、汚泥燃焼装置及び汚泥燃焼方法に関し、特に、汚泥を脱水して得られた脱水汚泥を焼却する汚泥燃焼装置及び汚泥燃焼方法に関するものである。   The present invention relates to a sludge combustion apparatus and a sludge combustion method, and more particularly to a sludge combustion apparatus and a sludge combustion method for incinerating dewatered sludge obtained by dewatering sludge.

下水処理場、し尿処理場、廃水処理設備等から排出される脱水汚泥を焼却する際に生じる排気ガスにはNOなどの窒素酸化物(NOx)等の大気汚染物質が含まれている。これらの大気汚染物質は排出を抑制することが望まれている。 Exhaust gas generated when incinerating dewatered sludge discharged from sewage treatment plants, human waste treatment plants, wastewater treatment facilities, and the like contains air pollutants such as nitrogen oxides (NOx) such as N 2 O. These air pollutants are desired to be suppressed.

そこで、従来、排気ガス中の窒素酸化物を低減するために、燃焼用空気を複数段階に分けて炉に供給することで、脱水汚泥中に含まれる窒素が窒素酸化物に転化することを抑制することができる、燃焼装置が開発されてきた(例えば、特許文献1参照)。このような燃焼装置においては、まず、最初の段階で完全燃焼に必要な空気量である理論空気量よりも少ない量の空気を供給して脱水汚泥を不完全燃焼させることで脱水汚泥中に含まれる窒素が窒素化合物に転化することを抑制する。その後、さらに一以上の段階に分けて空気を供給して、未燃物を完全に燃焼させる。   Therefore, conventionally, in order to reduce nitrogen oxides in exhaust gas, combustion air is divided into multiple stages and supplied to the furnace to prevent nitrogen contained in dewatered sludge from being converted to nitrogen oxides. Combustion devices that can be developed have been developed (see, for example, Patent Document 1). In such a combustion device, first, the dehydrated sludge is included in the dehydrated sludge by supplying the air less than the theoretical air amount, which is the amount of air required for complete combustion, in the first stage to incompletely burn the dehydrated sludge. Nitrogen is prevented from being converted to nitrogen compounds. Thereafter, air is supplied in one or more stages to completely burn the unburned material.

さらに、特許文献1に記載の燃焼装置は、脱水汚泥の燃焼するための炉内で砂のような流動媒体を循環させることにより、炉内の温度を高温に保ち脱水汚泥を迅速且つ完全に乾燥及び焼却させることができる循環型燃焼装置でもある。特に、特許文献1による燃焼装置は、燃焼炉外に排出された燃焼灰及び流動媒体(砂)を含む排気ガスから、粒子径が大きいものを除去して燃焼炉内に戻すことにより、排気ガスから熱を回収する熱回収室の磨耗を防止することができる。   Furthermore, the combustion apparatus described in Patent Document 1 circulates a fluid medium such as sand in a furnace for burning dehydrated sludge, thereby maintaining the temperature in the furnace at a high temperature and drying dehydrated sludge quickly and completely. It is also a circulating combustion device that can be incinerated. In particular, the combustion apparatus according to Patent Document 1 removes exhaust gas having a large particle diameter from exhaust gas containing combustion ash and fluid medium (sand) discharged outside the combustion furnace, and returns the exhaust gas to the combustion furnace. It is possible to prevent the heat recovery chamber from recovering heat from wear.

特許第2651769号明細書Japanese Patent No. 2651769

ここで、特許文献1に記載の燃焼装置は、窒素酸化物の低減という観点からすると、脱水汚泥中の窒素と結合可能な燃焼空気中の酸素量を減らして(空気比(=供給空気量/理論空気量)を低くして)脱水汚泥の燃焼により生じる窒素酸化物の量を低減させるという思想に基づくものであった。しかし、空気比を下げれば下げるほど、脱水汚泥の燃焼量が減少して燃焼装置内の温度が十分に上がらず、燃焼装置を安定的に運転することが難しくなってしまう。このため、特許文献1に記載の燃焼装置による窒素酸化物の発生量の低減効果には限界があった。
そこで、本発明は、流動媒体を循環させて燃焼する循環型燃焼方式を採用し、脱水汚泥の焼却により生じる窒素酸化物の発生量を効率的に低減することができる汚泥燃焼装置及び汚泥燃焼方法を提供することを目的とする。
Here, from the viewpoint of reducing nitrogen oxides, the combustion apparatus described in Patent Document 1 reduces the amount of oxygen in combustion air that can be combined with nitrogen in dewatered sludge (air ratio (= supply air amount / It was based on the idea of reducing the amount of nitrogen oxides generated by burning dehydrated sludge by lowering the theoretical air amount). However, as the air ratio is lowered, the amount of dehydrated sludge burned decreases, the temperature in the combustion device does not rise sufficiently, and it becomes difficult to operate the combustion device stably. For this reason, there was a limit to the effect of reducing the amount of nitrogen oxide generated by the combustion apparatus described in Patent Document 1.
Therefore, the present invention employs a circulation type combustion method in which a fluid medium is circulated and burned, and a sludge combustion apparatus and a sludge combustion method capable of efficiently reducing the amount of nitrogen oxide generated by incineration of dewatered sludge. The purpose is to provide.

本発明者らは、上記目的を達成するために鋭意検討を行った。そして、本発明者らは、鉄系無機凝集剤を使用して脱水処理を行った脱水汚泥を還元雰囲気下で燃焼した場合、脱水汚泥中に含まれる鉄系無機凝集剤由来の鉄成分により窒素酸化物の発生量を低減することができることを見出して、この発明を完成した。   The present inventors have intensively studied to achieve the above object. And when the present inventors burned dehydrated sludge that has been dehydrated using an iron-based inorganic flocculant in a reducing atmosphere, the iron component derived from the iron-based inorganic flocculant contained in the dehydrated sludge is nitrogenated. The present invention was completed by finding that the amount of oxide generated can be reduced.

この発明は、上記課題を有利に解決することを目的とするものであり、本発明の汚泥燃焼装置は、鉄系無機凝集剤を混合した汚泥を脱水し、脱水汚泥を生成する脱水部と、前記脱水汚泥を流動媒体と共に還元状態で燃焼して、燃焼ガス、固形燃焼生成物、未燃物、及び流動媒体を含む生成物を生成する燃焼部と、前記生成物から前記流動媒体を回収し、前記燃焼部に供給する循環部と、前記燃焼部に対して前記脱水汚泥を供給する汚泥供給手段と、前記生成物から前記固形燃焼生成物を回収する燃焼生成物回収部と、前記燃焼生成物回収部で回収された前記固形燃焼生成物を前記燃焼部に供給する燃焼生成物供給部と、を備えることを特徴とする。このように、鉄系無機凝集剤を用いて得た脱水汚泥を流動媒体と共に還元状態で燃焼することで、燃焼時に脱水汚泥中の窒素と酸素とが結合して生じる窒素酸化物の生成量を効率的に低減することができる。 This invention aims to solve the above-mentioned problem advantageously, and the sludge combustion apparatus of the present invention dehydrates sludge mixed with an iron-based inorganic flocculant, and generates a dewatered sludge. Combusting the dehydrated sludge in a reduced state together with a fluid medium to produce a product containing combustion gas, solid combustion products, unburned material, and fluid medium, and recovering the fluid medium from the products A circulation unit that supplies the combustion unit; a sludge supply unit that supplies the dehydrated sludge to the combustion unit; a combustion product recovery unit that recovers the solid combustion product from the product; and the combustion generation A combustion product supply unit that supplies the solid combustion product recovered by the product recovery unit to the combustion unit . In this way, the dehydrated sludge obtained using the iron-based inorganic flocculant is burned in a reduced state together with the fluid medium, thereby reducing the amount of nitrogen oxide produced by combining nitrogen and oxygen in the dehydrated sludge during combustion. It can be reduced efficiently.

また、本発明の汚泥燃焼装置では、前記燃焼生成物供給部は、前記汚泥供給手段を介して前記固形燃焼生成物を前記燃焼部に供給し、前記汚泥供給手段は、混合手段を備え、該混合手段により前記固形燃焼生成物と前記脱水汚泥とを混合してから前記燃焼部に対して供給することが好ましい。固形燃焼生成物を燃焼部に戻す際に、脱水汚泥中に分散させて汚泥と共に燃焼部に供給することで、脱水汚泥の燃焼にあたり、脱水汚泥中の窒素と酸素との結合を効率的に阻害し、窒素酸化物の生成量を更に低減することが可能となる。   In the sludge combustion apparatus of the present invention, the combustion product supply unit supplies the solid combustion product to the combustion unit via the sludge supply unit, and the sludge supply unit includes a mixing unit, It is preferable that the solid combustion product and the dewatered sludge are mixed by a mixing means and then supplied to the combustion section. When returning the solid combustion product to the combustion section, it is dispersed in the dehydrated sludge and supplied to the combustion section together with the sludge, effectively inhibiting the binding of nitrogen and oxygen in the dehydrated sludge when burning the dehydrated sludge. In addition, the amount of nitrogen oxide produced can be further reduced.

また、本発明の汚泥燃焼装置では、前記燃焼生成物供給部は、酸素を含有しないガスにより前記固形燃焼生成物を搬送することが好ましい。かかる構成を採用することにより、窒素酸化物発生抑制効果を更に向上させることができる。   Moreover, in the sludge combustion apparatus of this invention, it is preferable that the said combustion product supply part conveys the said solid combustion product with the gas which does not contain oxygen. By adopting such a configuration, the nitrogen oxide generation suppressing effect can be further improved.

更に、本発明の汚泥燃焼装置では、前記燃焼生成物回収部は、前記循環部を経た生成物から前記固形燃焼生成物を回収することが好ましい。流動媒体と固形燃焼生成物とを別々に回収して燃焼部に供給することにより、燃焼部において脱水汚泥を安定的に燃焼させることができるからである。また、固形燃焼生成物と脱水汚泥とを混合して燃焼部へと供給する場合には、混合手段が流動媒体により摩耗するのを抑制することができるからである。   Furthermore, in the sludge combustion apparatus of the present invention, it is preferable that the combustion product recovery unit recovers the solid combustion product from the product that has passed through the circulation unit. This is because the fluidized medium and the solid combustion product are separately collected and supplied to the combustion section, so that the dewatered sludge can be stably burned in the combustion section. Further, when the solid combustion product and the dewatered sludge are mixed and supplied to the combustion section, the mixing means can be prevented from being worn by the fluid medium.

また、この発明は、上記課題を有利に解決することを目的とするものであり、鉄系無機凝集剤を使用して脱水処理を行った脱水汚泥を流動媒体と共に還元状態で燃焼して、燃焼ガス、固形燃焼生成物、未燃物、及び流動媒体を含む生成物を生成し、前記生成物から前記流動媒体を回収し、前記燃焼のために循環させ、さらに、前記生成物から前記固形燃焼生成物を回収し、回収された前記固形燃焼生成物を前記還元状態における前記脱水汚泥の燃焼時に供給する、ことを特徴とする。これにより、燃焼時に脱水汚泥中の窒素と酸素とが結合して生じる窒素酸化物の生成量を効率的に低減することができる。 Moreover, this invention aims at solving the said subject advantageously, burns the dehydrated sludge which performed the dehydration process using the iron-type inorganic flocculant with a fluid medium in a reduced state, and burns Producing a product comprising gas, solid combustion product, unburned material, and fluidized medium, recovering the fluidized medium from the product, circulating for the combustion , and further producing the solid combustion from the product; A product is recovered, and the recovered solid combustion product is supplied during combustion of the dewatered sludge in the reduced state . Thereby, the amount of nitrogen oxides produced by combining nitrogen and oxygen in the dewatered sludge during combustion can be efficiently reduced.

また、本発明の汚泥燃焼方法は、前記固形燃焼生成物の供給を、前記脱水汚泥と混合した状態で行うことが好ましい。これにより、脱水汚泥の燃焼にあたり、脱水汚泥中の窒素と酸素との結合を効率的に阻害し、窒素酸化物の生成量を更に低減すること可能となるからである。   Moreover, it is preferable that the sludge combustion method of this invention performs the supply of the said solid combustion product in the state mixed with the said dehydrated sludge. This is because when dehydrated sludge is burned, the binding of nitrogen and oxygen in the dehydrated sludge can be effectively inhibited, and the amount of nitrogen oxide produced can be further reduced.

また、本発明の汚泥燃焼方法は、前記固形燃焼生成物を前記還元状態における燃焼時に供給するにあたり、酸素を含有しないガスにより前記固形燃焼生成物を搬送することが好ましい。これにより、窒素酸化物発生抑制効果を更に向上させることができるからである。   In the sludge combustion method of the present invention, when supplying the solid combustion product during combustion in the reduced state, the solid combustion product is preferably conveyed by a gas not containing oxygen. This is because the nitrogen oxide generation suppressing effect can be further improved.

更に、本発明の汚泥燃焼方法は、前記流動媒体を回収した後の生成物から前記固形燃焼生成物を回収することが好ましい。流動媒体と固形燃焼生成物とを別々に回収して燃焼に供することにより、脱水汚泥を安定的に燃焼させることができるからである。また、固形燃焼生成物と脱水汚泥とを混合して燃焼に供する場合には、固形燃焼生成物と脱水汚泥との混合に用いる混合手段が流動媒体により摩耗するのを抑制することができるからである。   Furthermore, the sludge combustion method of the present invention preferably recovers the solid combustion product from the product after recovering the fluid medium. This is because the dewatered sludge can be stably burned by separately collecting the fluidized medium and the solid combustion product and subjecting them to combustion. In addition, when the solid combustion product and the dewatered sludge are mixed and used for combustion, the mixing means used for mixing the solid combustion product and the dehydrated sludge can be prevented from being worn by the fluid medium. is there.

本発明の汚泥燃焼装置及び汚泥燃焼方法によれば、循環型燃焼方式を採用し、脱水汚泥の焼却により生じる窒素酸化物の発生量を効率的に低減する汚泥燃焼装置及び汚泥燃焼方法を提供することができる。   According to the sludge combustion apparatus and the sludge combustion method of the present invention, there is provided a sludge combustion apparatus and a sludge combustion method that adopts a circulation combustion method and efficiently reduces the amount of nitrogen oxide generated by incineration of dewatered sludge. be able to.

本発明に従う代表的な汚泥燃焼装置の概略構成を示す図である。It is a figure which shows schematic structure of the typical sludge combustion apparatus according to this invention. 図1に示す汚泥燃焼装置について、後燃焼部内の最高温度と一酸化二窒素(NO)排出量との関係を示すグラフである。For sludge combustion apparatus shown in FIG. 1 is a graph showing the relationship between the maximum temperature and the nitrous oxide (N 2 O) emissions in the post combustion unit.

以下、本発明の汚泥燃焼装置を、図面に基づき詳細に説明する。なお、本発明の汚泥燃焼方法は、本発明の汚泥燃焼装置の説明から明らかになる。   Hereinafter, the sludge combustion apparatus of this invention is demonstrated in detail based on drawing. In addition, the sludge combustion method of this invention becomes clear from description of the sludge combustion apparatus of this invention.

<汚泥燃焼装置>
図1に示す汚泥燃焼装置100は、循環燃焼部10及び後燃焼部20を備える。汚泥燃焼装置100は、循環燃焼部10にて還元雰囲気下で脱水汚泥を不完全燃焼し、その後、後燃焼部20にて、酸化雰囲気下で不完全燃焼により生じた未燃ガスを完全燃焼させる多層燃焼装置である。図1には示さないが、汚泥燃焼装置100は、後燃焼部20の後に、後燃焼部20から排出される排気ガスを冷却するための冷却塔と、排気ガス中のダスト成分等を捕集するバグフィルタ、スクラバー等とを備えても良い。なお、還元雰囲気とは、供給された脱水汚泥の完全燃焼に必要な酸素量である理論酸素量よりも少ない量の酸素を供給した雰囲気を指し、酸化雰囲気とは、理論酸素量以上の酸素を供給した雰囲気を指す。因みに、理論酸素量は、脱水汚泥中に含まれている燃焼時に酸素と結合可能な元素(C、H、N、O、S、Cl等)の量、及び図示しない補助燃料取込部から取り込まれる補助燃料の量に基づいて、化学量論を用いて算出することができる。具体的には、炭素(C)、水素(H)、及び窒素(N)量はCHN元素分析装置により測定し、酸素(O)、全硫黄(S)、可燃性硫黄、全塩素(Cl)、及び可燃性塩素量は、JISM8813に従って測定し、不燃性硫黄及び不燃性塩素は、それぞれ、全硫黄(S)及び可燃性硫黄、全塩素(Cl)及び可燃性塩素から計算により算出した。また、補助燃料の量は、JISM8814に従って算出した総発熱量に基づいて決定した。
<Sludge combustion equipment>
A sludge combustion apparatus 100 shown in FIG. 1 includes a circulating combustion unit 10 and a post-combustion unit 20. The sludge combustion apparatus 100 incompletely burns dehydrated sludge in a reducing atmosphere in the circulating combustion unit 10, and then completely burns unburned gas generated by the incomplete combustion in an oxidizing atmosphere in the post-combustion unit 20. It is a multilayer combustion device. Although not shown in FIG. 1, the sludge combustion apparatus 100 collects dust components and the like in the exhaust gas after cooling the exhaust gas discharged from the post-combustion unit 20 after the post-combustion unit 20. A bug filter, a scrubber, etc. may be provided. Note that the reducing atmosphere refers to an atmosphere supplied with a smaller amount of oxygen than the theoretical amount of oxygen necessary for complete combustion of the supplied dehydrated sludge, and the oxidizing atmosphere refers to oxygen that exceeds the theoretical amount of oxygen. Refers to the supplied atmosphere. Incidentally, the theoretical oxygen amount is taken in from the amount of elements (C, H, N, O, S, Cl, etc.) that can be combined with oxygen at the time of combustion contained in the dewatered sludge, and the auxiliary fuel take-in section (not shown). It can be calculated using stoichiometry based on the amount of auxiliary fuel that is produced. Specifically, the amounts of carbon (C), hydrogen (H), and nitrogen (N) are measured by a CHN element analyzer, and oxygen (O), total sulfur (S), combustible sulfur, total chlorine (Cl) The amount of flammable chlorine was measured according to JISM8813, and the nonflammable sulfur and the nonflammable chlorine were calculated from total sulfur (S) and flammable sulfur, total chlorine (Cl) and flammable chlorine, respectively. The amount of auxiliary fuel was determined based on the total calorific value calculated according to JISM8814.

ところで、汚泥燃焼装置では、通常、汚泥の焼却を効率化する観点から、汚泥を脱水して得られる脱水汚泥を焼却する。汚泥の脱水方法には、脱水助剤を添加した汚泥をスクリュープレス等の機械プレス手段により圧搾する方法がある。脱水助剤としては、高分子凝集剤のような有機凝集剤や、ポリ硫酸第2鉄及びポリ塩化第2鉄のような無機凝集剤がある。有機凝集剤及び無機凝集剤は、それぞれ単独で使用されることもあるし、併用されることもある。有機凝集剤及び無機凝集剤を併用する場合は、有機凝集剤である高分子凝集剤を汚泥に加えることでフロックを生成してから無機凝集剤を加えることが好ましい。なお、脱水対象の汚泥の固形物質に対して20〜30質量%の無機凝集剤を投入することが一般的である。   By the way, in a sludge combustion apparatus, the dewatered sludge obtained by dehydrating sludge is normally incinerated from a viewpoint of making sludge incineration efficient. As a method for dewatering sludge, there is a method in which sludge to which a dewatering aid has been added is squeezed by a mechanical press means such as a screw press. Examples of the dehydration aid include organic flocculants such as polymer flocculants and inorganic flocculants such as polyferric sulfate and polyferric chloride. The organic flocculant and the inorganic flocculant may be used alone or in combination. When an organic flocculant and an inorganic flocculant are used in combination, it is preferable to add a floc to the sludge by adding a polymer flocculant that is an organic flocculant to the sludge, and then add the inorganic flocculant. In general, 20 to 30% by mass of an inorganic flocculant is added to the solid material of the sludge to be dehydrated.

ここで、本発明の汚泥燃焼装置及び汚泥燃焼方法では、燃焼させる脱水汚泥を得る際に、少なくとも所定の無機凝集剤を使用することを特徴とする。即ち、無機凝集剤には、ポリ塩化アルミニウムなどのアルミニウム系無機凝集剤や、ポリ硫酸第2鉄及びポリ塩化第2鉄のような鉄系無機凝集剤など、様々な種類の無機凝集剤が存在するが、本発明の汚泥燃焼装置及び汚泥燃焼方法では、鉄系無機凝集剤を用いて得た脱水汚泥を燃焼させることを特徴とする。鉄系無機凝集剤を用いて得た脱水汚泥を燃焼させることで、脱水汚泥の燃焼時に脱水汚泥中の窒素と酸素とが結合して生じる窒素酸化物の生成量を効率的に低減することができるからである。   Here, in the sludge combustion apparatus and the sludge combustion method of the present invention, when obtaining the dewatered sludge to be burned, at least a predetermined inorganic flocculant is used. That is, there are various types of inorganic flocculants such as aluminum-based inorganic flocculants such as polyaluminum chloride and iron-based inorganic flocculants such as polyferric sulfate and ferric chloride. However, the sludge combustion apparatus and the sludge combustion method of the present invention are characterized in that dehydrated sludge obtained using an iron-based inorganic flocculant is burned. By burning dewatered sludge obtained using an iron-based inorganic flocculant, it is possible to efficiently reduce the amount of nitrogen oxide produced by the combination of nitrogen and oxygen in the dewatered sludge during combustion of the dewatered sludge. Because it can.

ここで、鉄系無機凝集剤を用いて得た脱水汚泥を燃焼させることで窒素酸化物の生成量を効率的に低減することができるメカニズムは、明らかではないが、以下のようなものであると推測される。
即ち、鉄系無機凝集剤を用いて得た脱水汚泥は、鉄系無機凝集剤由来の鉄成分を含む。そして、脱水汚泥中の当該鉄成分は、還元雰囲気下で燃焼させると、燃焼の際に酸素と反応して2価の鉄(Fe2+)である酸化第1鉄(FeO)となる。ここで、窒素酸化物は、汚泥中に含まれる窒素成分と、燃焼空気中の酸素とが結合することにより生成されるが、鉄系無機凝集剤由来の鉄成分が存在する場合、当該鉄成分が燃焼中に酸素と結合して酸化第1鉄(FeO)となることにより、汚泥中に含まれる窒素成分と燃焼雰囲気中の酸素とが結合して窒素酸化物を生成するのを妨げる。また、酸化第1鉄(FeO)が形成した場合、当該酸化第1鉄(FeO)が燃焼中に酸素と結合して酸化第2鉄(Fe)となることにより、汚泥中に含まれる窒素成分と燃焼雰囲気中の酸素とが結合して窒素酸化物を生成するのを妨げる。
Here, the mechanism that can efficiently reduce the amount of nitrogen oxides produced by burning dehydrated sludge obtained using an iron-based inorganic flocculant is not clear, but is as follows. It is guessed.
That is, the dewatered sludge obtained using the iron-based inorganic flocculant contains an iron component derived from the iron-based inorganic flocculant. When the iron component in the dewatered sludge is burned in a reducing atmosphere, it reacts with oxygen during the burning to become ferrous oxide (FeO) which is divalent iron (Fe 2+ ). Here, the nitrogen oxide is generated by combining the nitrogen component contained in the sludge and the oxygen in the combustion air. When an iron component derived from an iron-based inorganic flocculant is present, the iron component Is combined with oxygen during combustion to become ferrous oxide (FeO), thereby preventing the nitrogen component contained in the sludge from combining with oxygen in the combustion atmosphere to form nitrogen oxides. In addition, when ferrous oxide (FeO) is formed, the ferrous oxide (FeO) is combined with oxygen during combustion to become ferric oxide (Fe 2 O 3 ), thereby being contained in the sludge. This prevents the nitrogen component to be combined with oxygen in the combustion atmosphere to form nitrogen oxides.

なお、鉄系無機凝集剤を用いて得た脱水汚泥を燃焼させることで窒素酸化物の生成量を効率的に低減し得ることは、図1に示す汚泥燃焼装置を用いて種々の条件下で脱水汚泥を燃焼させた際の後燃焼部内の最高温度と一酸化二窒素(NO)排出量との関係からも明らかである。
具体的には、図2は、有機系高分子凝集剤のような有機凝集剤のみを用いて脱水処理して得た脱水汚泥(1液脱水汚泥)と、有機凝集剤及び鉄系無機凝集剤(ポリ硫酸第2鉄)を併用して得た脱水汚泥(2液脱水汚泥)とについて、後燃焼部内最高温度を変化させて燃焼した場合の、窒素酸化物である一酸化ニ窒素(NO)の排出量(Kg-NO/t−DS:脱水汚泥固形分1トン当りのNO排出量をKg表示した値)を示すグラフである。有機凝集剤による1液脱水汚泥は鉄系無機凝集剤(ここでは、ポリ硫酸第2鉄)を使用しないため、脱水汚泥中に凝集剤由来の鉄成分が含まれていない。そのため、凝集助剤由来の鉄成分を含有しない1液脱水汚泥を焼却した場合の一酸化ニ窒素の排出量は、2液脱水汚泥よりも多い。図中、常に2液脱水汚泥の方が一酸化ニ窒素(NO)の排出量が少ないが、特に、後燃焼部最高温度が低い場合において、一酸化ニ窒素(NO)の排出量の差が顕著であった。
Note that the amount of nitrogen oxides produced can be efficiently reduced by burning dehydrated sludge obtained using an iron-based inorganic flocculant under various conditions using the sludge combustion apparatus shown in FIG. It is also clear from the relationship between the maximum temperature in the post-combustion part when dewatered sludge is burned and the amount of nitrous oxide (N 2 O) emission.
Specifically, FIG. 2 shows a dehydrated sludge (one-liquid dehydrated sludge) obtained by dehydration treatment using only an organic flocculant such as an organic polymer flocculant, an organic flocculant, and an iron-based inorganic flocculant. Nitrogen monoxide (N 2 ) which is a nitrogen oxide when dehydrated sludge (two-component dehydrated sludge) obtained by using (polysulfuric ferric acid) in combination is burned while changing the maximum temperature in the post-combustion part. emissions O) (Kg-N 2 O / t-DS: is a graph showing the Kg displayed value) of N 2 O emissions dewatered sludge solids per ton. Since one-liquid dewatered sludge with an organic flocculant does not use an iron-based inorganic flocculant (here, polyferric sulfate), the dewatered sludge does not contain an iron component derived from the flocculant. Therefore, the discharge amount of nitric oxide when one-liquid dewatered sludge not containing the iron component derived from the coagulation assistant is incinerated is larger than that of the two-liquid dewatered sludge. In the figure, two-liquid dewatered sludge always emits less nitric oxide (N 2 O), but especially when the maximum temperature of the post-combustion part is low, the emission of nitric oxide (N 2 O). The difference in amount was significant.

以下、有機凝集剤及び鉄系無機凝集剤(ポリ硫酸第2鉄:[Fe(OH)n(SO3−n/2]m 但し、〇<n≦2m=f(n))を併用して得た2液脱水汚泥を燃焼させる汚泥燃焼装置100の構成について更に詳述する。 Hereinafter, an organic flocculant and an iron-based inorganic flocculant (polyferric sulfate: [Fe 2 (OH) n (SO 4 ) 3−n / 2 ] m, where O <n ≦ 2m = f (n)) The configuration of the sludge combustion apparatus 100 that combusts the two-liquid dewatered sludge obtained in combination will be described in detail.

汚泥燃焼装置100は、鉄系無機凝集剤を混合した汚泥を脱水し、脱水汚泥を生成する脱水部(図示せず)を備えている。また、汚泥燃焼装置100は、脱水部で得られた脱水汚泥を流動媒体と共に還元状態で燃焼して、燃焼ガス、固形燃焼生成物、未燃物、及び流動媒体を含む生成物を生成する燃焼部11、及び、生成物から流動媒体を回収し、燃焼部に供給する循環部12を有する循環燃焼部10と、当該循環燃焼部10の燃焼部11に対して、鉄系無機凝集剤由来の鉄成分を含む汚泥を供給する汚泥供給手段13とを備える。燃焼部11は、空気を燃焼部11内に取り込む空気取込部16を備えると共に、ダクト24及びダウンカマー17を備える循環部12と連通される。具体的には、燃焼部11は、流動媒体として砂を利用する流動層燃焼炉であり、高温の砂が流動することにより、汚泥を粉砕・攪拌し燃焼させるものである。また、循環部12は、ダクト24と、ダクト24を介して燃焼部11から排出された燃焼ガス、固形燃焼生成物、未燃物、及び流動媒体を含む生成物から流動媒体を回収する回収装置(例えば、サイクロン)と、回収装置で回収した流動媒体を燃焼部11内に戻すダウンカマー17とを備えている。   The sludge combustion apparatus 100 includes a dehydrating unit (not shown) that dehydrates sludge mixed with an iron-based inorganic flocculant to generate dehydrated sludge. The sludge combustion apparatus 100 combusts the dehydrated sludge obtained in the dehydration unit in a reduced state together with the fluidized medium to produce a product containing combustion gas, solid combustion product, unburned matter, and fluidized medium. Part 11 and a circulating combustion part 10 having a circulation part 12 for recovering a fluid medium from the product and supplying it to the combustion part, and a combustion part 11 of the circulation combustion part 10 derived from an iron-based inorganic flocculant And a sludge supply means 13 for supplying sludge containing an iron component. The combustion unit 11 includes an air intake unit 16 that takes air into the combustion unit 11 and communicates with a circulation unit 12 that includes a duct 24 and a downcomer 17. Specifically, the combustion unit 11 is a fluidized bed combustion furnace that uses sand as a fluid medium, and pulverizes, agitates, and burns sludge as high-temperature sand flows. In addition, the circulation unit 12 collects the fluid medium from the product including the duct 24 and the combustion gas, the solid combustion product, the unburned material, and the fluid medium discharged from the combustion unit 11 through the duct 24. (For example, a cyclone) and a downcomer 17 for returning the fluid medium recovered by the recovery device into the combustion section 11.

さらに、汚泥燃焼装置100は、循環燃焼部10の循環部12を経た生成物(流動媒体を回収された生成物)から固形燃焼生成物を回収する燃焼生成物回収部14と、当該燃焼生成物回収部14で回収された固形燃焼生成物を燃焼部11に供給する燃焼生成物供給部15とを備えることが好ましい。燃焼生成物回収部14はダクト25により循環部12の回収装置と連通され、さらにダクト18を備える。具体的には、燃焼生成物回収部14は、遠心力により粉体を回収するサイクロンにより構成されうる。燃焼生成物回収部14は、固形燃焼生成物である灰等を回収し、ダクト18を通じて固形燃焼生成物を落下させる。なお、ダクト18から燃焼生成物供給部15が分岐する位置において切替装置26を設けて、ダクト18を通じて落下する固形燃焼生成物の一部を、燃焼生成物供給部15へ供給することができる。燃焼生成物供給部15へ供給されなかった固形燃焼生成物は、最終的に産業廃棄物として廃棄される。
ここで、上記構成からも明らかなように、この汚泥燃焼装置100では、循環部12では流動媒体を回収し、燃焼生成物回収部14では流動媒体よりも比重の小さい固形燃焼生成物を回収する。従って、燃焼生成物回収部14としてのサイクロンでは、回収装置としてのサイクロンよりも大きな遠心力を負荷する。即ち、回収装置において負荷する遠心力は、流動媒体は回収されるが燃焼生成物の大部分(例えば、95質量%以上)は回収されない大きさの遠心力とし、燃焼生成物回収部14のサイクロンで負荷する遠心力は、燃焼生成物を回収し得る大きさ以上とする。
Furthermore, the sludge combustion apparatus 100 includes a combustion product recovery unit 14 that recovers a solid combustion product from a product (product obtained by recovering the fluid medium) that has passed through the circulation unit 12 of the circulation combustion unit 10, and the combustion product. It is preferable to include a combustion product supply unit 15 that supplies the solid combustion product recovered by the recovery unit 14 to the combustion unit 11. The combustion product recovery unit 14 communicates with the recovery device of the circulation unit 12 by a duct 25, and further includes a duct 18. Specifically, the combustion product recovery unit 14 can be configured by a cyclone that recovers powder by centrifugal force. The combustion product recovery unit 14 recovers ash or the like that is a solid combustion product, and drops the solid combustion product through the duct 18. A switching device 26 is provided at a position where the combustion product supply unit 15 branches from the duct 18, and a part of the solid combustion product falling through the duct 18 can be supplied to the combustion product supply unit 15. The solid combustion product that has not been supplied to the combustion product supply unit 15 is finally discarded as industrial waste.
Here, as is clear from the above configuration, in the sludge combustion apparatus 100, the circulating medium 12 collects the fluidized medium, and the combustion product collecting part 14 collects the solid combustion product having a specific gravity smaller than that of the fluidized medium. . Therefore, the cyclone as the combustion product recovery unit 14 loads a larger centrifugal force than the cyclone as the recovery device. That is, the centrifugal force applied in the recovery device is a centrifugal force with a magnitude such that the fluid medium is recovered but most of the combustion products (for example, 95% by mass or more) are not recovered, and the cyclone of the combustion product recovery unit 14 is used. The centrifugal force to be loaded at is set to a magnitude that can recover the combustion products.

燃焼生成物供給部15は、燃焼生成物回収部14において分離された、燃焼部11における固形燃焼生成物である灰を、汚泥供給手段13を介して燃焼部11へと供給する。固形燃焼生成物の搬送は、例えば、図示しない誘引ファン等の手段により実施する。固形燃焼生成物は、燃焼部11にて汚泥中の鉄成分と燃焼空気中の酸素とが結合して生成された酸化第1鉄(FeO)を含んでいる。酸化第1鉄(FeO)は、燃焼により3価の鉄(Fe3+)である酸化第2鉄(Fe)を生じて、燃焼時に汚泥中の窒素と酸素とが結合するのを妨げることができる。このため、酸化第1鉄を含む固形燃焼生成物の一部を循環させ、燃焼部11における汚泥の燃焼に再利用することで、窒素酸化物の生成を効率的に阻害することができる。なお、窒素酸化物とならなかった汚泥中の窒素は、窒素(N)となって、汚泥燃焼装置100の外に排出される。因みに、酸化第2鉄は非常に安定な物質であり、その後還元されて酸化第1鉄に戻ることはない。好ましくは、燃焼生成物回収部14のサイクロンで負荷する遠心力は、酸化第1鉄を含む固形燃焼生成物の比重以上の物質が回収される大きさとする。このようにして、酸化第1鉄又は酸化第2鉄を含まない不要な物質が燃焼部11に返送されることを防ぎ、汚泥燃焼装置100の運転を効率化することができる。 The combustion product supply unit 15 supplies the ash which is the solid combustion product in the combustion unit 11 separated in the combustion product recovery unit 14 to the combustion unit 11 via the sludge supply means 13. The conveyance of the solid combustion product is performed by means such as an attracting fan (not shown), for example. The solid combustion product contains ferrous oxide (FeO) generated by combining the iron component in the sludge and the oxygen in the combustion air in the combustion unit 11. Ferrous oxide (FeO) generates ferric oxide (Fe 2 O 3 ), which is trivalent iron (Fe 3+ ), by combustion, preventing the binding of nitrogen and oxygen in sludge during combustion. be able to. For this reason, the production | generation of nitrogen oxide can be inhibited efficiently by circulating a part of solid combustion product containing ferrous oxide, and reusing it for combustion of the sludge in the combustion part 11. FIG. Note that the nitrogen in the sludge that has not become nitrogen oxides becomes nitrogen (N 2 ) and is discharged out of the sludge combustion apparatus 100. Incidentally, ferric oxide is a very stable substance, and is not subsequently reduced back to ferrous oxide. Preferably, the centrifugal force applied by the cyclone of the combustion product recovery unit 14 is set to a magnitude that allows a substance having a specific gravity or higher of the solid combustion product including ferrous oxide to be recovered. In this way, unnecessary substances that do not contain ferrous oxide or ferric oxide can be prevented from being returned to the combustion unit 11, and the operation of the sludge combustion apparatus 100 can be made more efficient.

ここで、燃焼生成物供給部15は、固形燃焼生成物を燃焼部11に直接戻すのではなく、固形燃焼生成物を汚泥供給手段13に供給し、汚泥供給手段13が、固形燃焼生成物と汚泥とを混合してから燃焼部11に供給している。例えば、汚泥供給手段13は、混合手段としてスクリュー手段を備え、当該スクリュー手段により固形燃焼生成物と汚泥とを混合することができる。固形燃焼生成物中に含まれる酸化第1鉄を汚泥に予め練りこんでから燃焼部11に供給することで、脱水汚泥中に2価の鉄(Fe2+)を分散させることができ、燃焼部11における脱水汚泥の燃焼にあたり、脱水汚泥中の窒素と、燃焼空気中の酸素との結合を効率的に阻害することが可能となる。 Here, the combustion product supply unit 15 does not directly return the solid combustion product to the combustion unit 11, but supplies the solid combustion product to the sludge supply unit 13, and the sludge supply unit 13 is connected to the solid combustion product. The sludge is mixed and then supplied to the combustion unit 11. For example, the sludge supply means 13 includes screw means as mixing means, and the solid combustion product and sludge can be mixed by the screw means. By previously kneading ferrous oxide contained in the solid combustion product into sludge and supplying it to the combustion section 11, divalent iron (Fe 2+ ) can be dispersed in the dewatered sludge, and the combustion section In combustion of the dewatered sludge in 11, it becomes possible to efficiently inhibit the binding of nitrogen in the dewatered sludge and oxygen in the combustion air.

このように、循環部12及び燃焼生成物回収部14で、流動媒体及び固形燃焼生成物を別個に回収し、流動媒体はそのまま、固形燃焼生成物は汚泥供給手段13を介してから燃焼部11に戻すという構成を採用することで、循環燃焼部10の燃焼部11内の温度低下を防ぐとともに、汚泥供給手段の混合手段の劣化を防ぐという効果が生じる。仮に、流動媒体及び固形燃焼生成物を同時に回収して、これらの混合物を汚泥供給手段13に戻した場合には、流動媒体である砂の粒子により汚泥供給手段13に備えられた混合手段が磨耗する虞がある。さらに、この場合、燃焼生成物供給部15へ供給されなかった固形燃焼生成物を廃棄する際に加熱された流動媒体の一部も廃棄されることになるため、燃焼部11内の温度が下がる虞がある。   As described above, the circulation unit 12 and the combustion product recovery unit 14 separately collect the fluidized medium and the solid combustion product. The fluidized medium remains as it is, and the solid combustion product passes through the sludge supply means 13 before the combustion unit 11. By adopting the configuration of returning to, the effect of preventing the temperature drop in the combustion section 11 of the circulating combustion section 10 and the deterioration of the mixing means of the sludge supply means is produced. If the fluid medium and the solid combustion product are collected at the same time and the mixture is returned to the sludge supply means 13, the mixing means provided in the sludge supply means 13 is worn by the sand particles as the fluid medium. There is a risk of doing. Further, in this case, a part of the fluidized medium heated when the solid combustion product that has not been supplied to the combustion product supply unit 15 is discarded is also discarded, so that the temperature in the combustion unit 11 decreases. There is a fear.

さらに、燃焼部11の空気取込部16は、燃焼部11内の空気比が0.8以上1.0未満、好ましくは、0.9以上1.0未満となるように、燃焼部11内に空気を取込む。空気比が0.8を下回ると、酸素不足により燃焼部11内の温度が上がらず、循環燃焼部10が十分に機能しない。また、空気比が1.0以上となると、燃焼部11内が還元雰囲気とならず、燃焼部11において生成される窒素酸化物の量が増加してしまう。   Further, the air intake unit 16 of the combustion unit 11 has an air ratio in the combustion unit 11 of 0.8 or more and less than 1.0, preferably 0.9 or more and less than 1.0. Intake air. If the air ratio is less than 0.8, the temperature in the combustion section 11 does not rise due to insufficient oxygen, and the circulating combustion section 10 does not function sufficiently. Further, when the air ratio is 1.0 or more, the inside of the combustion part 11 does not become a reducing atmosphere, and the amount of nitrogen oxides generated in the combustion part 11 increases.

さらに、本発明による燃焼生成物供給部15は、酸素を含有しないガスにより固形燃焼生成物を汚泥供給手段13に搬送することが好ましい。固形燃焼生成物が燃焼部11に投入される前に、固形燃焼生成物中に含まれる酸化第1鉄(FeO)が酸化されて、酸化第2鉄(Fe)となることを防ぐためである。これにより、窒素酸化物抑制効果を更に向上させることができる。 Furthermore, it is preferable that the combustion product supply unit 15 according to the present invention conveys the solid combustion product to the sludge supply means 13 by a gas not containing oxygen. Before the solid combustion product is introduced into the combustion unit 11, ferrous oxide (FeO) contained in the solid combustion product is prevented from being oxidized to become ferric oxide (Fe 2 O 3 ). Because. Thereby, the nitrogen oxide suppression effect can be further improved.

なお、後燃焼部20は、第1空気取込部21、第2空気取込部22、及びダクト23を備える。第1空気取込部21及び第2空気取込部22は、それぞれ、異なる空気比で後燃焼部20内へ空気を取り込む。第1空気取込部21は、燃焼部11よりも高い空気比で循環燃焼部10を経た生成物を燃焼する燃焼場を後燃焼部20の上層部(上流側に位置する部分)において提供するような空気比で空気を取り込む。第2空気取込部22は、第1空気取込部21よりも低く、好ましくは、燃焼部11よりも高い空気比で後燃焼部20の上層部の燃焼場を経た生成物を燃焼する燃焼場を提供するような空気比で空気を取り込む。
このようにして、本発明による汚泥燃焼装置100は、後燃焼部20の上層部の空気比を最適化して燃焼場を完全燃焼状態として、汚泥燃焼装置100内における最高温度場を提供する。汚泥燃焼装置100は、かかる燃焼場にて、ダクト19を通じて燃焼生成物回収部14から提供される未燃物(不燃ガス等)を含む生成物を完全燃焼させる。そして、汚泥燃焼装置100は、後燃焼部20の下層部(下流側に位置する部分)において最高温度場に次ぐ温度の燃焼場を提供して、上層部で燃え残った不燃ガスを完全燃焼させる。後燃焼部20の上層部及び下層部における各燃焼場の温度をこのように設定することで、不燃ガスの燃え残りを確実に燃焼させることができる。
The post-combustion unit 20 includes a first air intake unit 21, a second air intake unit 22, and a duct 23. The 1st air intake part 21 and the 2nd air intake part 22 each take in air in the back combustion part 20 by different air ratio. The first air intake unit 21 provides a combustion field for burning the product that has passed through the circulating combustion unit 10 at an air ratio higher than that of the combustion unit 11 in the upper layer portion (portion located on the upstream side) of the rear combustion unit 20. Take in air at such an air ratio. The second air intake unit 22 is lower than the first air intake unit 21, and preferably burns the product that has passed through the combustion field in the upper layer of the rear combustion unit 20 at a higher air ratio than the combustion unit 11. Air is taken in at an air ratio that provides a field.
In this manner, the sludge combustion apparatus 100 according to the present invention provides the maximum temperature field in the sludge combustion apparatus 100 by optimizing the air ratio of the upper layer portion of the post-combustion unit 20 to bring the combustion field into a complete combustion state. The sludge combustion apparatus 100 completely burns a product including unburned matter (incombustible gas or the like) provided from the combustion product recovery unit 14 through the duct 19 in such a combustion field. And the sludge combustion apparatus 100 provides the combustion field of the temperature next to the highest temperature field in the lower layer part (portion located in the downstream side) of the post-combustion part 20, and completely burns the non-combustible gas remaining in the upper layer part. . By setting the temperature of each combustion field in the upper layer part and the lower layer part of the post-combustion unit 20 in this way, the unburned gas unburned residue can be reliably burned.

<汚泥燃焼装置の動作>
以下、汚泥燃焼装置100の動作について説明する。
まず、汚泥供給手段13を通じて燃焼部11に供給された脱水汚泥は、燃焼部11において、高温に熱せられた砂と激しく混合されつつ燃焼される。燃焼部11は、図示しない補助燃料取込部から取り込まれる補助燃料及び脱水汚泥中の炭素等の元素の量との関係で燃焼部11内の空気比が0.9以上1.0未満となるように空気取込部16から空気を取り込み、脱水汚泥を燃焼する。空気取込部16からの空気は、例えば、650℃〜700℃に熱せられた熱風であり、燃焼部11内の温度は、例えば、燃焼部11の下層部である、流動媒体の粒子密度が高い濃厚層部で750℃〜800℃である。さらに、後燃焼部20の中層における温度は、850℃〜890℃であることが好ましい。燃焼部11内における温度を後燃焼部20における完全燃焼状態の燃焼場の温度よりも低温とすることで、鉄成分が溶解することを抑制し、流動媒体である砂に溶解した鉄成分が付着して砂の粒子径が大きくなることを防ぐとともに、酸化第1鉄又は酸化第2鉄を含む燃焼生成物の回収を効率化することができる。
<Operation of sludge combustion device>
Hereinafter, the operation of the sludge combustion apparatus 100 will be described.
First, the dewatered sludge supplied to the combustion unit 11 through the sludge supply means 13 is burned in the combustion unit 11 while being vigorously mixed with sand heated to a high temperature. In the combustion unit 11, the air ratio in the combustion unit 11 is 0.9 or more and less than 1.0 in relation to the amount of the element such as carbon in the dehydrated sludge and the auxiliary fuel taken from the auxiliary fuel intake unit (not shown). As described above, air is taken in from the air intake unit 16 to burn dehydrated sludge. The air from the air intake unit 16 is, for example, hot air heated to 650 ° C. to 700 ° C., and the temperature in the combustion unit 11 is, for example, the lower layer of the combustion unit 11 and the particle density of the fluid medium is It is 750-800 degreeC in a high dense layer part. Furthermore, the temperature in the middle layer of the post-combustion unit 20 is preferably 850 ° C to 890 ° C. By making the temperature in the combustion part 11 lower than the temperature of the combustion field in the complete combustion state in the post-combustion part 20, it is possible to suppress the dissolution of the iron component, and the iron component dissolved in the sand that is the fluid medium adheres. Thus, it is possible to prevent the sand particle size from increasing, and to improve the efficiency of recovery of combustion products containing ferrous oxide or ferric oxide.

燃焼部11において生成された生成物は循環部12に供給され、循環部12において、例えば、下降旋回流により生成物から流動媒体である砂が分離される。分離された砂は、ダウンカマー17を通じて燃焼部11に戻り、再び流動床を構成する。他の成分を含む生成物は、ダクト25を経て燃焼生成物回収部14に供給され、燃焼生成物回収部14は、例えば、下降旋回により生成物から固形燃焼生成物を分離する。分離された固形燃焼生成物は、ダクト18を下降し、一部は産業廃棄物として廃棄され、一部は燃焼生成物供給部15を経て汚泥供給手段13に供給される。   The product produced | generated in the combustion part 11 is supplied to the circulation part 12, and the sand which is a fluid medium is isolate | separated from a product by the downward swirl flow in the circulation part 12, for example. The separated sand returns to the combustion unit 11 through the downcomer 17 and forms a fluidized bed again. The product containing other components is supplied to the combustion product recovery unit 14 via the duct 25, and the combustion product recovery unit 14 separates the solid combustion product from the product by, for example, descending swirl. The separated solid combustion product descends through the duct 18, a part is discarded as industrial waste, and a part is supplied to the sludge supply means 13 through the combustion product supply unit 15.

そして、汚泥供給手段13において、図示しない混合手段により脱水汚泥と固形燃焼生成物とが混合された混合物が生成され、燃焼部11に供給される。燃焼部11に供給された混合物は、固形燃焼生成物由来の酸化第1鉄(FeO)及び鉄系無機凝集剤由来の鉄成分は、燃焼空気中の酸素と反応することにより、脱水汚泥中の窒素と燃焼空気中の酸素とが反応して窒素酸化物を生成することを阻害する。上述の通り、燃焼部11内は不完全燃焼状態となるように空気取込量が制御されているので、鉄分による窒素酸化物生成の抑制効果との相乗効果により、燃焼部11において生成される窒素酸化物量を効率的に低減することができる。   In the sludge supply means 13, a mixture in which dehydrated sludge and solid combustion products are mixed is generated by a mixing means (not shown) and supplied to the combustion unit 11. The mixture supplied to the combustion unit 11 is composed of ferrous oxide (FeO) derived from solid combustion products and iron components derived from iron-based inorganic flocculants, which react with oxygen in the combustion air, thereby dehydrating sludge. Nitrogen and oxygen in the combustion air react with each other to prevent generation of nitrogen oxides. As described above, since the amount of air intake is controlled so that the combustion section 11 is in an incomplete combustion state, it is generated in the combustion section 11 due to a synergistic effect with the effect of suppressing the generation of nitrogen oxides by iron. The amount of nitrogen oxides can be reduced efficiently.

一方、燃焼生成物回収部14を経た未燃物を含む生成物は、ダクト19を通じて後燃焼部20へ供給される。第1空気取込部21及び第2空気取込部22は、それぞれ、後燃焼部20の上層部の空気比が、下層部の空気比より低くなるように、後燃焼部20内へ空気を取り込む。例えば、後燃焼部20の上層部の空気比は、1.0以上1.1未満であり、下層部の空気比は、1.1以上1.3未満である。このとき、後燃焼部20内の温度は、上層部で約900℃、下層部で約850℃である。後燃焼部20における燃焼により生成された排気ガスは、ダクト23を通じて後燃焼部20より排出される。その後、汚泥燃焼装置100は、図示しない冷却塔、バグフィルタ、及びスクラバー等を経て、排気ガスを装置外に排出する。   On the other hand, the product including unburned material that has passed through the combustion product recovery unit 14 is supplied to the rear combustion unit 20 through the duct 19. The first air intake unit 21 and the second air intake unit 22 respectively supply air into the post-combustion unit 20 so that the air ratio of the upper layer portion of the post-combustion unit 20 is lower than the air ratio of the lower layer unit. take in. For example, the air ratio of the upper layer part of the post-combustion part 20 is 1.0 or more and less than 1.1, and the air ratio of the lower layer part is 1.1 or more and less than 1.3. At this time, the temperature in the post-combustion unit 20 is about 900 ° C. in the upper layer part and about 850 ° C. in the lower layer part. Exhaust gas generated by combustion in the post-combustion unit 20 is discharged from the post-combustion unit 20 through the duct 23. Thereafter, the sludge combustion apparatus 100 discharges exhaust gas outside the apparatus through a cooling tower, a bag filter, a scrubber, and the like (not shown).

以上、一例を用いて本発明の汚泥燃焼装置及び汚泥燃焼方法について説明したが、本発明の汚泥燃焼装置及び汚泥燃焼方法は、上記一例に限定されることはなく、本発明の汚泥燃焼装置及び汚泥燃焼方法には、適宜変更を加えることができる。
また、本発明の汚泥燃焼方法においては、有機凝集剤を使用することなく、ポリ硫酸第2鉄及びポリ塩化第2鉄のような鉄系無機凝集剤を使用して得た脱水汚泥を燃焼させることももちろん可能である。この場合、有機凝集剤の使用にかかる工程及び費用がかからないため、汚泥処理のコストを低減することができる。
As described above, the sludge combustion apparatus and the sludge combustion method of the present invention have been described using an example, but the sludge combustion apparatus and the sludge combustion method of the present invention are not limited to the above example, and the sludge combustion apparatus of the present invention and A change can be suitably added to the sludge combustion method.
Further, in the sludge combustion method of the present invention, dehydrated sludge obtained using an iron-based inorganic flocculant such as polyferric sulfate and ferric chloride is burned without using an organic flocculant. Of course it is also possible. In this case, since the process and expense concerning use of an organic flocculant are not required, the cost of sludge treatment can be reduced.

以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all.

(実施例1)
燃焼生成物回収部14、ダクト18、及び燃焼生成物供給部15を備えないこと以外は図1に示した汚泥燃焼装置100と同様の構成を有する汚泥燃焼装置を用いて脱水汚泥を燃焼した結果を表1に示す。表1は、循環燃焼部10の燃焼部11内における空気比と、後燃焼部20から排出される一酸化ニ窒素(NO)の濃度及び循環燃焼部10及び後燃焼部20の操炉安定性との関係を示す。操炉安定性は、燃焼部11の下層部の温度(以下、濃厚層部温度Tとする。)により評価した。空気比mが1.1以上1.2未満と比較的高いほど完全燃焼状態に近づくため、操炉安定性にとっては好ましい一方で、燃焼部11における一酸化ニ窒素(NO)の生成量が増加し、多層燃焼装置を用いたことによる窒素酸化物の抑制効果(以下、多層燃焼効果という)が低減する傾向がある。
Example 1
The result of burning dewatered sludge using a sludge combustion apparatus having the same configuration as the sludge combustion apparatus 100 shown in FIG. 1 except that the combustion product recovery section 14, the duct 18, and the combustion product supply section 15 are not provided. Is shown in Table 1. Table 1 shows the air ratio in the combustion section 11 of the circulation combustion section 10, the concentration of nitric oxide (N 2 O) discharged from the rear combustion section 20, and the operation of the circulation combustion section 10 and the rear combustion section 20. The relationship with stability is shown. The operation stability was evaluated by the temperature of the lower layer portion of the combustion section 11 (hereinafter referred to as the thick layer temperature T). A relatively high air ratio m of 1.1 or more and less than 1.2 approaches a complete combustion state, which is preferable for the stability of the furnace, but the amount of nitric oxide (N 2 O) produced in the combustion section 11 The nitrogen oxide suppression effect (hereinafter referred to as the multilayer combustion effect) due to the use of the multilayer combustion apparatus tends to decrease.

Figure 0006063307
Figure 0006063307

ここで、後燃焼部出口NO濃度[ppm]については、評価は以下に従った。
A:40ppm未満で、多層燃焼効果が大きい
B:40ppm以上90ppm未満で、やや多層燃焼効果あり
C:90ppm以上で、通常焼却相当
また、操炉安定性については、評価は以下に従った。
A:操炉安定(濃厚層部温度Tが750℃≦T<800℃)
B:操炉不安定(濃厚層部温度Tが700℃≦T<750℃)
C:操炉不可能(濃厚層部温度TがT<700℃)
Here, for the post-combustion section outlet N 2 O concentration [ppm], the evaluation was as follows.
A: Less than 40 ppm, large multi-layer combustion effect B: 40 ppm or more and less than 90 ppm, somewhat multi-layer combustion effect C: 90 ppm or more, equivalent to normal incineration In addition, the operation stability was evaluated as follows.
A: Stabilization of the furnace (rich layer temperature T is 750 ° C. ≦ T <800 ° C.)
B: Operation unstable (rich layer temperature T is 700 ° C. ≦ T <750 ° C.)
C: Unable to operate (rich layer temperature T is T <700 ° C)

表1より明らかな通り、循環燃焼部10における空気比mが0.9以上1.0未満の場合に、後燃焼部出口NO濃度の値の評価はBであり、操炉安定性がAであり、多層燃焼効果及び操炉安定性のバランスがとれているといえる。 As is clear from Table 1, when the air ratio m in the circulating combustion section 10 is 0.9 or more and less than 1.0, the evaluation of the value of the post-combustion section outlet N 2 O concentration is B, and the operation stability is A, and it can be said that the multilayer combustion effect and the stability of the operation of the furnace are balanced.

(実施例2)
図1に示す汚泥燃焼装置100により脱水汚泥を燃焼した。燃焼部11に対して、燃焼生成物回収部14で回収された固形燃焼生成物を供給することにより、循環燃焼部10における空気比が0.9〜1.0の場合における後燃焼部出口NO濃度の値の評価をA(20ppm)とすることができる。このようにして、本発明による汚泥燃焼装置100において、燃焼部11に対して、燃焼生成物回収部14で回収された固形燃焼生成物を供給する構成を採用した場合には、多層燃焼効果をより一層向上させることができる。
(Example 2)
The dewatered sludge was burned by the sludge combustion apparatus 100 shown in FIG. By supplying the solid combustion product recovered by the combustion product recovery unit 14 to the combustion unit 11, the post-combustion unit outlet N when the air ratio in the circulating combustion unit 10 is 0.9 to 1.0 The evaluation of the value of 2 O concentration can be A (20 ppm). As described above, in the sludge combustion apparatus 100 according to the present invention, when the configuration in which the solid combustion product recovered by the combustion product recovery unit 14 is supplied to the combustion unit 11, the multilayer combustion effect is obtained. This can be further improved.

本発明の汚泥燃焼装置及び汚泥燃焼方法によれば、循環型燃焼方式を採用し、汚泥の焼却により生じる窒素酸化物の発生量を効率的に低減することができる汚泥燃焼装置及び汚泥燃焼方法を提供することができる。   According to the sludge combustion apparatus and the sludge combustion method of the present invention, a sludge combustion apparatus and a sludge combustion method that adopts a circulation combustion method and can efficiently reduce the amount of nitrogen oxide generated by incineration of sludge. Can be provided.

10 :循環燃焼部
11 :燃焼部
12 :循環部
13 :汚泥供給手段
14 :燃焼生成物回収部
15 :燃焼生成物供給部
16 :空気取込部
17 :ダウンカマー
18,19,23〜25 :ダクト
20 :後燃焼部
21 :第1空気取込部
22 :第2空気取込部
26 :切替装置
100 :汚泥燃焼装置
DESCRIPTION OF SYMBOLS 10: Circulation combustion part 11: Combustion part 12: Circulation part 13: Sludge supply means 14: Combustion product collection | recovery part 15: Combustion product supply part 16: Air intake part 17: Downcomers 18, 19, 23-25: Duct 20: Rear combustion section 21: First air intake section 22: Second air intake section 26: Switching device 100: Sludge combustion apparatus

Claims (8)

鉄系無機凝集剤を混合した汚泥を脱水し、脱水汚泥を生成する脱水部と、
前記脱水汚泥を流動媒体と共に還元状態で燃焼して、燃焼ガス、固形燃焼生成物、未燃物、及び流動媒体を含む生成物を生成する燃焼部と、
前記生成物から前記流動媒体を回収し、前記燃焼部に供給する循環部と、
前記燃焼部に対して前記脱水汚泥を供給する汚泥供給手段と、
前記生成物から前記固形燃焼生成物を回収する燃焼生成物回収部と、
前記燃焼生成物回収部で回収された前記固形燃焼生成物を前記燃焼部に供給する燃焼生成物供給部と、
を備える、汚泥燃焼装置。
Dewatering sludge mixed with iron-based inorganic flocculant, dewatering part to generate dehydrated sludge,
Combusting the dehydrated sludge in a reduced state together with a fluid medium to produce a product containing combustion gas, solid combustion product, unburned material, and fluid medium;
A circulating unit that recovers the fluid medium from the product and supplies the fluidized medium to the combustion unit;
Sludge supply means for supplying the dewatered sludge to the combustion section;
A combustion product recovery unit for recovering the solid combustion product from the product;
A combustion product supply unit for supplying the solid combustion product recovered by the combustion product recovery unit to the combustion unit;
A sludge combustion apparatus.
前記燃焼生成物供給部は、前記汚泥供給手段を介して前記固形燃焼生成物を前記燃焼部に供給し、
前記汚泥供給手段は、混合手段を備え、該混合手段により前記固形燃焼生成物と前記脱水汚泥とを混合してから前記燃焼部に対して供給する、請求項に記載の汚泥燃焼装置。
The combustion product supply unit supplies the solid combustion product to the combustion unit via the sludge supply means,
The sludge combustion apparatus according to claim 1 , wherein the sludge supply means includes a mixing means, and the solid combustion product and the dewatered sludge are mixed by the mixing means and then supplied to the combustion unit.
前記燃焼生成物供給部は、酸素を含有しないガスにより前記固形燃焼生成物を搬送する、請求項1又は2に記載の汚泥燃焼装置。 The sludge combustion apparatus according to claim 1 or 2 , wherein the combustion product supply unit conveys the solid combustion product by a gas not containing oxygen. 前記燃焼生成物回収部は、前記循環部を経た生成物から前記固形燃焼生成物を回収する、請求項の何れかに記載の汚泥燃焼装置。 The sludge combustion apparatus according to any one of claims 1 to 3 , wherein the combustion product recovery unit recovers the solid combustion product from a product that has passed through the circulation unit. 鉄系無機凝集剤を使用して脱水処理を行った脱水汚泥を流動媒体と共に還元状態で燃焼して、燃焼ガス、固形燃焼生成物、未燃物、及び流動媒体を含む生成物を生成し、
前記生成物から前記流動媒体を回収し、前記燃焼のために循環させ、さらに、
前記生成物から前記固形燃焼生成物を回収し、回収された前記固形燃焼生成物を前記還元状態における前記脱水汚泥の燃焼時に供給する、
汚泥燃焼方法。
Combusting dehydrated sludge dehydrated using an iron-based inorganic flocculant in a reduced state together with a fluid medium to produce a product containing combustion gas, solid combustion product, unburned material, and fluid medium,
Recovering the fluid medium from the product and circulating for the combustion ;
Recovering the solid combustion product from the product and supplying the recovered solid combustion product during combustion of the dewatered sludge in the reduced state;
Sludge combustion method.
前記固形燃焼生成物の供給を、前記脱水汚泥と混合した状態で行うことを更に含む、請求項に記載の汚泥燃焼方法。 The sludge combustion method according to claim 5 , further comprising supplying the solid combustion product in a state of being mixed with the dewatered sludge. 前記固形燃焼生成物を前記還元状態における燃焼時に供給するにあたり、酸素を含有しないガスにより前記固形燃焼生成物を搬送することを更に含む、請求項又はに記載の汚泥燃焼方法。 The sludge combustion method according to claim 5 or 6 , further comprising conveying the solid combustion product by a gas not containing oxygen when supplying the solid combustion product during combustion in the reduced state. 前記流動媒体を回収した後の生成物から前記固形燃焼生成物を回収する、請求項の何れかに記載の汚泥燃焼方法。 The sludge combustion method according to any one of claims 5 to 7 , wherein the solid combustion product is recovered from a product after recovering the fluid medium.
JP2013049385A 2013-03-12 2013-03-12 Sludge combustion apparatus and sludge combustion method Active JP6063307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013049385A JP6063307B2 (en) 2013-03-12 2013-03-12 Sludge combustion apparatus and sludge combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013049385A JP6063307B2 (en) 2013-03-12 2013-03-12 Sludge combustion apparatus and sludge combustion method

Publications (2)

Publication Number Publication Date
JP2014172020A JP2014172020A (en) 2014-09-22
JP6063307B2 true JP6063307B2 (en) 2017-01-18

Family

ID=51693860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013049385A Active JP6063307B2 (en) 2013-03-12 2013-03-12 Sludge combustion apparatus and sludge combustion method

Country Status (1)

Country Link
JP (1) JP6063307B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227467B2 (en) * 1973-11-21 1977-07-20
JPS58193798A (en) * 1982-05-10 1983-11-11 Ebara Infilco Co Ltd Treatment of night soil and purification tank sludge
JPH01277107A (en) * 1988-04-27 1989-11-07 Kobe Steel Ltd Method and apparatus for control of combustion in fluidized-bed type incinerator
US5055029A (en) * 1990-01-22 1991-10-08 Mobil Oil Corporation Reducing NOx emissions from a circulating fluid bed combustor
JP2651769B2 (en) * 1992-06-19 1997-09-10 株式会社荏原製作所 Heat recovery combustion equipment
DE4235412A1 (en) * 1992-10-21 1994-04-28 Metallgesellschaft Ag Process for gasifying waste materials containing combustible components
JPH09150192A (en) * 1995-11-28 1997-06-10 Ebara Corp Treatment of organic sewage
JP3790431B2 (en) * 2001-02-14 2006-06-28 三菱重工業株式会社 Waste incineration method and apparatus using circulating fluidized bed furnace
JP2002310418A (en) * 2001-04-09 2002-10-23 Ngk Insulators Ltd Method for treating waste
JP2004073932A (en) * 2002-08-12 2004-03-11 Sanki Eng Co Ltd Sludge incineration system
JP2007252992A (en) * 2006-03-20 2007-10-04 Nippon Steel Corp Inflammable gas from sludge, recovery process of slag, and gasification melting furnace of sludge

Also Published As

Publication number Publication date
JP2014172020A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
US20110002839A1 (en) Carbon Heat-Treatment Process
CN102607043B (en) Method and device for synergetic stable incineration of sludge and solid waste and dioxin emission suppression
JP2009082861A (en) Effluent suppressing method for heavy metal containing hexavalent chromium in ash
WO2013012941A1 (en) Operational conditions and method for production of high quality activated carbon
JP6224903B2 (en) Method for removing sulfur in pulverized coal combustion equipment
JP2006035189A (en) Method for treating organic sludge utilizing cement production process
US20110048231A1 (en) Composition and Method for Reducing Mercury Emitted into the Atmosphere
JP4909655B2 (en) Fluidized bed combustion device using chromium-containing organic matter as fuel, and method for detoxifying fly ash from fluidized bed combustion device
JP6063307B2 (en) Sludge combustion apparatus and sludge combustion method
JP5880835B2 (en) Method for incineration of combustible materials containing radioactive cesium
JP2005199157A (en) Method and apparatus for carbonization treatment of sludge, and power generation method
EP2387545B1 (en) Coal heat-treatment process and system
JP5582554B2 (en) Cement baking equipment
JP4958485B2 (en) A combustion control method for a fluidized bed combustion furnace using a chromium-containing organic substance whose production is controlled as hexavalent chromium as a fuel.
JP6021603B2 (en) Incineration equipment
JP6074255B2 (en) Radioactive waste processing apparatus and processing method
Botha et al. Sewage-sludge incineration in South Africa using a fluidized-bed reactor
JP2009102205A (en) Method for manufacturing regenerated gypsum and regenerated gypsum
DE3733831A1 (en) Process for burning organic substances such as domestic waste, industrial waste and the like, using a fluidised-bed furnace
JP5950001B2 (en) Incineration equipment for waste containing combustible materials containing radioactive cesium
US9109801B2 (en) Coal heat-treatment process and system
JP2005319372A (en) Method and apparatus for carbonizing sludge, and method for generating electric power
JP2018200150A (en) Combustion furnace for organic waste and processing system for organic waste using the combustion furnace
JP6602822B2 (en) Radiocesium removal method and treatment facility
JP2015188855A (en) Exhaust gas treatment method and treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161216

R150 Certificate of patent or registration of utility model

Ref document number: 6063307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250