JP6062003B1 - Separation and recovery of hydrofluoric acid from glass etching wastewater - Google Patents

Separation and recovery of hydrofluoric acid from glass etching wastewater Download PDF

Info

Publication number
JP6062003B1
JP6062003B1 JP2015159824A JP2015159824A JP6062003B1 JP 6062003 B1 JP6062003 B1 JP 6062003B1 JP 2015159824 A JP2015159824 A JP 2015159824A JP 2015159824 A JP2015159824 A JP 2015159824A JP 6062003 B1 JP6062003 B1 JP 6062003B1
Authority
JP
Japan
Prior art keywords
hydrofluoric acid
waste liquid
concentration
distillate
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015159824A
Other languages
Japanese (ja)
Other versions
JP2017036193A (en
Inventor
直伸 中田
直伸 中田
佳伸 四津
佳伸 四津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IZAX CO., LTD.
Original Assignee
IZAX CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IZAX CO., LTD. filed Critical IZAX CO., LTD.
Priority to JP2015159824A priority Critical patent/JP6062003B1/en
Application granted granted Critical
Publication of JP6062003B1 publication Critical patent/JP6062003B1/en
Publication of JP2017036193A publication Critical patent/JP2017036193A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 高濃度のフッ化水素酸を含むガラスエッチング廃液であっても高効率でフッ化水素酸を分離・回収を行うことの可能な分離回収法を得る。【解決手段】 ガラスエッチング廃液からフッ化水素酸・塩酸を分離回収する方法であって、前記廃液を減圧条件下で加熱して蒸発させ、この蒸発された蒸気を冷却して凝縮させてフッ化水素酸・塩酸を分離回収する方法において、廃液を減圧条件下で加熱する際に、常圧の空気を廃液中に導入するもの。【選択図】 図1PROBLEM TO BE SOLVED: To obtain a separation and recovery method capable of separating and recovering hydrofluoric acid with high efficiency even with a glass etching waste liquid containing high concentration hydrofluoric acid. SOLUTION: A method for separating and recovering hydrofluoric acid / hydrochloric acid from glass etching waste liquid, wherein the waste liquid is heated and evaporated under reduced pressure conditions, and the evaporated vapor is cooled and condensed to be fluorinated. In the method for separating and recovering hydroacid / hydrochloric acid, when the waste liquid is heated under reduced pressure, atmospheric pressure air is introduced into the waste liquid. [Selection] Figure 1

Description

本発明は例えばフッ化水素酸濃度が6%を超える高濃度のフッ化水素酸を含むガラスエッチング廃液であっても高効率でフッ化水素酸を分離・回収を行うことの可能な分離回収法に関するものである。   The present invention is a separation and recovery method capable of separating and recovering hydrofluoric acid with high efficiency even in a glass etching waste solution containing high concentration hydrofluoric acid having a hydrofluoric acid concentration exceeding 6%, for example. It is about.

近年、液晶テレビやスマートフォン、タブレット端末等の急速な普及に伴い、これらのディスプレイ材料であるガラス面のケミカルエッチングに使用されたフッ化水素酸(HF)を含む廃液の発生量が増加している。この廃液中には未反応のフッ化水素酸がいくらか含有しており、これらを分離回収・再利用できれば、貴重資源の循環利用および廃棄物量の削減が可能であり、地球環境保全の観点からもメリットが大きい。   In recent years, with the rapid spread of LCD TVs, smartphones, tablet terminals, etc., the amount of waste liquid containing hydrofluoric acid (HF) used for chemical etching of glass surfaces, which are these display materials, is increasing. . This waste liquid contains some unreacted hydrofluoric acid. If these can be separated, recovered and reused, it is possible to circulate valuable resources and reduce the amount of waste. The benefits are great.

フッ素のリサイクル技術の一つとしては、カルシウム塩を添加してフッ化カルシウムを生成させ、これを回収する方法が提案されている(例えば、特許文献1参照)。しかしながら、不純物が多く含まれる等の理由により、リサイクルが困難であるのが現状である。一方で、蒸留法を用いたフッ化水素酸分離回収技術(例えば、特許文献2参照)も公開されており、比較的純度の高いフッ化水素酸が回収可能である。   As one of the fluorine recycling technologies, a method of adding calcium salt to generate calcium fluoride and recovering the calcium fluoride has been proposed (for example, see Patent Document 1). However, the current situation is that recycling is difficult due to a large amount of impurities. On the other hand, hydrofluoric acid separation and recovery technology using a distillation method (see, for example, Patent Document 2) is also disclosed, and hydrofluoric acid having a relatively high purity can be recovered.

特開2005−296888号公報JP 2005-296888 A 特開2008−189483号公報JP 2008-189483 A

しかしながら、この提案には廃液中のフッ化水素酸含有濃度に対する言及がなく、対象としている廃液のフッ化水素酸含有濃度は概ね6%以下となっている。一方、廃液の中にはフッ化水素酸が6%を超え、更に、ケイフッ化水素酸(HSiF)を10%以上、塩酸(HCl)を2%以上含有する高濃度廃液も発生しているが、これらに対応し、尚且つ、高効率で回収することが可能な回収方法は検証されていない。 However, this proposal does not mention the hydrofluoric acid content concentration in the waste liquid, and the hydrofluoric acid content concentration of the target waste liquid is approximately 6% or less. On the other hand, in the waste liquid, hydrofluoric acid exceeds 6%, and high-concentration waste liquid containing 10% or more of silicofluoric acid (H 2 SiF 6 ) and 2 % or more of hydrochloric acid (HCl) is also generated. However, a recovery method corresponding to these and capable of recovering with high efficiency has not been verified.

本発明は、フッ化水素酸濃度が6%を超える高濃度のフッ化水素酸を含むガラスエッチング廃液であっても高効率でフッ化水素酸を分離・回収を行うことの可能な分離回収法を得ることを目的とする。   The present invention provides a separation and recovery method capable of separating and recovering hydrofluoric acid with high efficiency even in a glass etching waste solution containing hydrofluoric acid having a high concentration exceeding 6%. The purpose is to obtain.

請求項1に記載された発明に係るガラスエッチング廃液からのフッ化水素酸の分離回収法では、ガラスエッチング廃液からフッ化水素酸、塩酸を分離回収する方法であって、前記廃液を減圧条件下で加熱して蒸発させ、この蒸発された蒸気を冷却して凝縮させてフッ化水素酸、塩酸を分離回収する方法において、
前記廃液がフッ化水素酸濃度が6%を超える高濃度フッ化水素酸を含み、
前記廃液を減圧条件下で加熱する際に、常圧の空気を廃液中に導入することを特徴とするものである。
The method for separating and recovering hydrofluoric acid from the glass etching waste liquid according to the invention described in claim 1 is a method for separating and recovering hydrofluoric acid and hydrochloric acid from the glass etching waste liquid, wherein the waste liquid is subjected to reduced pressure conditions. In a method of separating and recovering hydrofluoric acid and hydrochloric acid by evaporating by heating with, cooling and condensing the evaporated vapor,
The waste liquid contains a high concentration hydrofluoric acid having a hydrofluoric acid concentration exceeding 6%,
When the waste liquid is heated under reduced pressure, atmospheric pressure air is introduced into the waste liquid.

請求項2に記載された発明に係るガラスエッチング廃液からのフッ化水素酸の分離回収法では、請求項1に記載の廃液について、予めフッ化水素酸濃度の異なる複数種の廃液を、同じ減圧条件下、加熱温度、導入空気量でフッ化水素酸を回収した際に、最大のフッ化水素酸の留出量を記録した画分のピーク濃度又はピーク重量をプロットしてフッ化水素酸濃度とピーク濃度又はピーク重量との相関図を作成し、
対象廃液のフッ化水素酸濃度と、得られた相関図とから対象廃液の留出液のフッ化水素酸濃度又はフッ化水素酸重量の予測値を得ることを特徴とするものである。
The separation recovery method of hydrofluoric acid from glass etching waste liquid according to the invention described in claim 2, the waste according to claim 1, different plural kinds of waste of advance hydrofluoric acid concentration, the same reduced pressure When the hydrofluoric acid was recovered under the conditions of the heating temperature and the amount of introduced air, the concentration of hydrofluoric acid was plotted by plotting the peak concentration or peak weight of the fraction that recorded the maximum distillate of hydrofluoric acid. And create a correlation diagram between peak concentration and peak weight,
A predicted value of hydrofluoric acid concentration or hydrofluoric acid weight of the distillate of the target waste liquid is obtained from the hydrofluoric acid concentration of the target waste liquid and the obtained correlation diagram.

本発明は、フッ化水素酸濃度が6%を超える高濃度のフッ化水素酸を含むガラスエッチング廃液であっても高効率でフッ化水素酸を分離・回収を行うことの可能な分離回収法を得ることができるという効果がある。   The present invention provides a separation and recovery method capable of separating and recovering hydrofluoric acid with high efficiency even in a glass etching waste solution containing hydrofluoric acid having a high concentration exceeding 6%. There is an effect that can be obtained.

ガラスエッチング廃液からフッ化水素酸および塩酸を分離回収するために作製した試験装置の概略図である。It is the schematic of the test apparatus produced in order to isolate | separate and collect | recover hydrofluoric acid and hydrochloric acid from a glass etching waste liquid. 留出液量の変化(積算)の状態を示す線図である。It is a diagram which shows the state of the change (integration) of the amount of distillate. 各対象液の区間留出液中のフッ素濃度変化(wt%)を示す線図である。It is a diagram which shows the fluorine concentration change (wt%) in the section distillate of each object liquid. 各対象液の区間留出液中のフッ素重量変化(g)を示す線図である。It is a diagram which shows the fluorine weight change (g) in the section distillate of each object liquid. 各対象液の区間留出液中の塩素濃度変化(wt%)を示す線図である。It is a diagram which shows the chlorine concentration change (wt%) in the section distillate of each object liquid. 各対象液の区間留出液中の塩素重量変化(g)を示す線図である。It is a diagram which shows the chlorine weight change (g) in the area distillate of each object liquid. 原液中のHF含有量とピーク濃度・重量との関係を示す線図である。It is a diagram which shows the relationship between HF content in a stock solution, and peak concentration and weight.

ガラスエッチング廃液中には、フッ化水素酸の他に、塩酸、ケイフッ化水素酸、ホウフッ化水素酸(HBF)、硫酸(HSO)、アルミニウム(Al)、ストロンチウム(Sr)などの成分が含まれている。この廃液を減圧条件下で加熱すると、フッ化水素酸および塩酸が比較的低温で蒸発するため、これを回収すれば夾雑成分との分離が可能であることは言うまでもない。回収されたフッ化水素酸や塩酸は洗浄用やすりガラス加工用等に再利用することが可能となる。 In the glass etching waste liquid, in addition to hydrofluoric acid, hydrochloric acid, hydrofluoric acid, borohydrofluoric acid (HBF 4 ), sulfuric acid (H 2 SO 4 ), aluminum (Al), strontium (Sr), etc. Contains ingredients. When this waste liquid is heated under reduced pressure conditions, hydrofluoric acid and hydrochloric acid evaporate at a relatively low temperature. Needless to say, if this is recovered, it can be separated from impurities. The recovered hydrofluoric acid and hydrochloric acid can be reused for processing a filing glass or the like.

本発明においては、ガラスエッチング廃液からフッ化水素酸、塩酸を分離回収する方法であって、前記廃液を減圧条件下で加熱して蒸発させ、この蒸発された蒸気を冷却して凝縮させてフッ化水素酸、塩酸を分離回収する方法において、前記廃液を減圧条件下で加熱する際に、常圧の空気を廃液中に導入する。このため、フッ化水素酸濃度が6%を超える高濃度のフッ化水素酸を含む廃液であっても高効率でフッ化水素酸を分離・回収を行うことの可能な分離回収法を得ることができる。   In the present invention, hydrofluoric acid and hydrochloric acid are separated and recovered from a glass etching waste liquid, the waste liquid is heated and evaporated under reduced pressure conditions, and the evaporated vapor is cooled and condensed to obtain a fluorine. In the method for separating and recovering hydrofluoric acid and hydrochloric acid, when the waste liquid is heated under reduced pressure, atmospheric pressure air is introduced into the waste liquid. Therefore, to obtain a separation and recovery method capable of separating and recovering hydrofluoric acid with high efficiency even if the waste liquid contains a high concentration of hydrofluoric acid exceeding 6%. Can do.

即ち、ガラスエッチング廃液を減圧条件下で加熱して蒸発させる場合に、常圧の空気を廃液中に導入することにより、廃液への曝気により伝熱性能が向上し、撹拌効果(伝熱性の向上)だけでなく、沸騰核の増加や、空気の流れにより蒸発を促進する効果も期待できる。結果的には、空気量が多くなる程、留出速度(液量)および、留出液中のフッ素(F)濃度が高くなることが確認された。   That is, when the glass etching waste liquid is heated and evaporated under reduced pressure conditions, by introducing air at normal pressure into the waste liquid, the heat transfer performance is improved by aeration of the waste liquid, and the stirring effect (improved heat transfer) ) As well as an effect of promoting evaporation by increasing the number of boiling nuclei and the flow of air. As a result, it was confirmed that as the amount of air increased, the distillation rate (liquid amount) and the fluorine (F) concentration in the distillate increased.

本発明での廃液中に導入する空気については、廃液を保持した保持容器が減圧条件下であるため、外気に連通した配管の先端部を廃液中に浸漬しただけで常圧の空気を保持容器内に導入することができる。尚、伝熱性を向上させるため、予め所定の温度に加熱した空気を廃液中に導入してもよい。   As for the air introduced into the waste liquid in the present invention, since the holding container holding the waste liquid is under reduced pressure conditions, the normal pressure air is held by simply immersing the tip of the pipe communicating with the outside air in the waste liquid. Can be introduced in. In order to improve the heat transfer property, air heated to a predetermined temperature in advance may be introduced into the waste liquid.

また、本発明は、ガラスエッチング廃液として、フッ化水素酸濃度が6%を超える高濃度でフッ化水素酸を含んだ廃液であっても、高効率でフッ化水素酸を分離・回収することができる。   Further, the present invention separates and recovers hydrofluoric acid with high efficiency even when the glass etching waste liquid is a waste liquid containing hydrofluoric acid at a high concentration exceeding 6%. Can do.

加えて、本発明のガラスエッチング廃液について、予めフッ化水素酸濃度の異なる複数種の廃液を、同じ減圧条件下、加熱温度、導入空気量でフッ化水素酸を回収した際に、最大のフッ化水素酸の留出量を記録した画分のピーク濃度又はピーク重量をプロットしてフッ化水素酸濃度とピーク濃度又はピーク重量との相関図を作成し、対象廃液のフッ化水素酸濃度と、得られた相関図とから対象廃液の留出液のフッ化水素酸濃度又はフッ化水素酸重量の予測値を得ることで、廃液中のHF含有量をあらかじめ算出することで、留出液中のフッ素(F)最大濃度(または重量)の予測が可能となる。   In addition, with respect to the glass etching waste liquid of the present invention, when a plurality of types of waste liquids having different hydrofluoric acid concentrations are collected in advance under the same reduced pressure conditions and hydrofluoric acid is recovered at the heating temperature and the amount of introduced air, Plot the peak concentration or peak weight of the fraction in which the distillate of hydrofluoric acid was recorded to create a correlation diagram between the hydrofluoric acid concentration and the peak concentration or peak weight. By obtaining the predicted value of the hydrofluoric acid concentration or hydrofluoric acid weight of the target waste liquid distillate from the obtained correlation diagram, by calculating in advance the HF content in the waste liquid, the distillate It is possible to predict the maximum concentration (or weight) of fluorine (F).

1.減圧蒸留条件の検証
図1はガラスエッチング廃液からフッ化水素酸および塩酸を分離回収するために作製した試験装置の概略図である。図に示す通り、減圧蒸留条件の検証には、減圧蒸留試験装置10を用いた。この試験装置10は、蒸留の対象となる廃液を貯留する貯留容器11と、この貯留容器11の周囲を均一に加熱するウォータバス12とを備えた蒸発手段としての蒸発釜13を有する。
1. Verification of vacuum distillation conditions FIG. 1 is a schematic view of a test apparatus prepared for separating and recovering hydrofluoric acid and hydrochloric acid from glass etching waste liquid. As shown in the figure, a vacuum distillation test apparatus 10 was used for verification of vacuum distillation conditions. The test apparatus 10 includes an evaporating pot 13 as an evaporating means including a storage container 11 for storing a waste liquid to be distilled and a water bath 12 for uniformly heating the periphery of the storage container 11.

蒸発釜13は上部蓋部14で密閉され、上部蓋部14には、貯留容器11内の廃液中に外気を供給する外気導入路16が流量計15を介して貫通され、その先端部が貯留容器内に導入されている。また、温度計17の先端部が廃液中に浸されており、廃液の温度が計測可能となっている。更に、上部蓋部14の貫通孔に一端部の開口が連通され、他端部はアスピレータ18によって吸引され、貯留容器11内を減圧状態とする吸引路19を備える。   The evaporation kettle 13 is sealed with an upper lid portion 14, and an outside air introduction path 16 for supplying outside air into the waste liquid in the storage container 11 is penetrated through the flowmeter 15 in the upper lid portion 14, and the tip portion is stored. It is introduced into the container. Further, the tip of the thermometer 17 is immersed in the waste liquid, and the temperature of the waste liquid can be measured. Furthermore, an opening at one end is communicated with the through hole of the upper lid portion 14, and the other end portion is sucked by the aspirator 18 and includes a suction path 19 for reducing the inside of the storage container 11.

吸引路19の途中では、吸引された貯留容器11内の気体を冷却して凝縮する凝縮器20を備え、凝縮された凝縮液は、吸引路19から分岐された第1受器21と第2受器22とから採取することができる。また、吸引路19の途中には圧力計23が設置され、吸引路19内の圧力が計測される。尚、廃液を貯留する貯留容器11及び廃液からの蒸気が触れる上部蓋部14、外気導入路16の先端部、吸引路19、凝縮器20、第1受器21及び第2受器22は何れもフッ化水素酸の腐食に耐えられるようにポリエチレン製やテフロン(登録商標)製のものが採用されている。   In the middle of the suction path 19, a condenser 20 that cools and condenses the sucked gas in the storage container 11 is provided, and the condensed condensate is separated from the first receiver 21 and the second branch branched from the suction path 19. It can be collected from the receiver 22. A pressure gauge 23 is installed in the middle of the suction path 19 to measure the pressure in the suction path 19. Note that the storage container 11 for storing the waste liquid, the upper lid part 14 where the vapor from the waste liquid touches, the tip of the outside air introduction path 16, the suction path 19, the condenser 20, the first receiver 21 and the second receiver 22 are any of them. Also, those made of polyethylene or Teflon (registered trademark) are employed so as to withstand the corrosion of hydrofluoric acid.

この試験装置10で高濃度のフッ化水素酸含有廃液を用いて、加熱温度70℃、操作圧力80Torr(≒10665.24Pa)の条件設定で蒸留試験を行った。その結果、留出速度が非常に遅く、留出液量も非常に少ないことが確認された。前述の通り、高濃度のフッ化水素酸含有廃液をも対象としているため、これに対応した条件設定を改めて検証した。即ち、高濃度フッ化水素酸含有廃液の減圧蒸留で、留出速度の向上、留出液量の増加を目的に最適条件の検討を行った。   Using this test apparatus 10, a distillation test was performed using a high concentration hydrofluoric acid-containing waste liquid under conditions of a heating temperature of 70 ° C. and an operating pressure of 80 Torr (≈10665.24 Pa). As a result, it was confirmed that the distillation rate was very slow and the amount of the distillate was very small. As described above, since the waste liquid containing high concentration hydrofluoric acid is also targeted, the condition setting corresponding to this was verified again. That is, the optimum conditions were investigated for the purpose of improving the distillation rate and increasing the amount of distillate by vacuum distillation of waste liquid containing high concentration hydrofluoric acid.

(1) 加熱温度の検証
留出速度を向上させるためには、熱を効率よく対象液に伝える必要がある。その方法の一つとして、加熱温度の上昇が考えられた。具体的には、加熱温度を上昇させ、対象液の沸点(約50〜60℃)との温度差を大きくすれば、伝熱効率が高くなるため、より効率よく留出することとなる。蒸留試験にて加熱温度を上昇させた結果、加熱温度が高い程、留出速度(液量)が向上(増加)した。ただし、加熱温度が高すぎると容器が軟化し、減圧条件に耐えられないことから、加熱温度は70℃とした。
(1) Verification of heating temperature In order to improve the distillation rate, it is necessary to efficiently transfer heat to the target liquid. As one of the methods, an increase in heating temperature was considered. Specifically, if the heating temperature is increased and the temperature difference from the boiling point (about 50 to 60 ° C.) of the target liquid is increased, the heat transfer efficiency is increased, so that the distillation is performed more efficiently. As a result of increasing the heating temperature in the distillation test, the higher the heating temperature, the higher (increased) the distillation rate (liquid amount). However, if the heating temperature is too high, the container softens and cannot withstand the reduced pressure condition, so the heating temperature was set to 70 ° C.

(2) 操作圧力(真空度)の検証
操作圧力を低くすれば、液体の沸点が低下し、加熱温度との温度差が大きくなるため、留出速度を向上させることができる。蒸留試験にて操作圧力を低下させた結果、操作圧力が低い程、留出速度が向上した。また、留出液中のフッ素濃度の上昇も確認された。最適操作圧力は、蒸留速度と容器の耐圧性を考慮し、50Torr(≒6665.78Pa)と設定した。
(2) Verification of operating pressure (degree of vacuum) Lowering the operating pressure lowers the boiling point of the liquid and increases the temperature difference from the heating temperature, so that the distillation rate can be improved. As a result of lowering the operating pressure in the distillation test, the lower the operating pressure, the better the distillation rate. An increase in fluorine concentration in the distillate was also confirmed. The optimum operating pressure was set to 50 Torr (≈6665.78 Pa) in consideration of the distillation rate and the pressure resistance of the vessel.

(3) 空気導入
対象液全体に熱を効率よく伝えるための方法として、「撹拌」は有効である。撹拌方法はいくつか考えられるが、本件では空気の導入による撹拌方法を適用した。空気を導入することで、対象液の曝気による撹拌効果(伝熱性の向上)だけでなく、沸騰核の増加や、揮発したガスのキャリア効果(空気の流れによる蒸発の促進)も期待できる。
(3) “Stirring” is effective as a method for efficiently transferring heat to the entire air introduction target liquid. There are several possible stirring methods, but in this case, the stirring method by introducing air was applied. By introducing air, not only the agitation effect (improvement of heat transfer) by aeration of the target liquid, but also an increase in boiling nuclei and the carrier effect of volatile gas (enhancement of evaporation by air flow) can be expected.

後述する通り、蒸留試験にて空気を導入させた結果、留出速度が向上し、さらに空気量が多くなる程、留出速度が速くなった。ただし、空気量が多すぎると液温が低下するため、空気量は対象液300mLに対して0.3L/minと設定した。   As will be described later, as a result of introducing air in the distillation test, the distillation rate was improved, and the distillation rate was increased as the amount of air was increased. However, since the liquid temperature decreases when the air amount is too large, the air amount is set to 0.3 L / min with respect to 300 mL of the target liquid.

尚、詳しくは後述するが、空気導入によって、低濃度フッ化水素酸含有廃液の蒸留条件時と比較しておよそ2以上3倍近くの留出速度向上効果が得られ、留液中のフッ素濃度は空気の導入無しの場合と比較して、22倍から33倍以上の向上が見られた。   As will be described in detail later, by introducing air, a distillation rate improvement effect of about 2 to 3 times that of the low-concentration hydrofluoric acid-containing waste liquid can be obtained, and the fluorine concentration in the distillate can be obtained. Compared to the case without air introduction, an improvement of 22 to 33 times or more was observed.

2.留出液の定時回収
前述の「減圧蒸留条件の検証」にて決定した条件にて蒸留試験(定時回収)を行い、留出液の液量、濃度変化を確認した。また、これらに影響を与える要因についても検討した。試験条件は、液量300mL、操作圧力50Torr(≒6665.78Pa)、加熱温度70℃、空気導入0.3L/minとした。留液回収は、留出開始後60min毎に行い、最大8時間行った。
2. Timed recovery of distillate Distillation tests (timed recovery) were performed under the conditions determined in the above-mentioned “Verification of vacuum distillation conditions” to confirm changes in the amount and concentration of the distillate. We also examined the factors that affect these factors. The test conditions were a liquid volume of 300 mL, an operating pressure of 50 Torr (≈6665.78 Pa), a heating temperature of 70 ° C., and air introduction of 0.3 L / min. Distillate collection was performed every 60 minutes after the start of distillation, and was performed for a maximum of 8 hours.

蒸留対象液としては、フッ化水素酸含有廃液(実廃液:A液,B液,C液,D液,E液,F液)、及び試薬調整液(R1液,R2液)を用いた。尚、各フッ化水素酸含有廃液の詳しい組成等は次の表1に示す。   As the liquid to be distilled, hydrofluoric acid-containing waste liquid (actual waste liquid: liquid A, liquid B, liquid C, liquid D, liquid E, liquid F) and reagent adjustment liquid (liquid R1, liquid R2) were used. The detailed composition of each hydrofluoric acid-containing waste liquid is shown in Table 1 below.

Figure 0006062003
Figure 0006062003

(1) 留出液量について
各蒸留対象液の、区間留出液量(wt%)を表2に、留出時間と留出液量変化(積算)を図2に示した。即ち、各蒸留対象液の1時間毎の留出液量を示した。表2及び図2に示す通り、区間留出液量は、すべての対象液で時間と共に減少傾向にあった。対象液のB液、F液、D液、R1液,R2液は留出液量が比較的多いが、対象液のA液、E液、C液は少なくなっている。明確な傾向があるわけではないが、(1) 水分量が多く、(2) 規定度が低い廃液は留出液量が多くなる傾向が確認された。
(1) Distillate Volume The section distillate volume (wt%) of each distillation target liquid is shown in Table 2, and the distillation time and distillate volume change (integrated) are shown in FIG. That is, the amount of distillate for each hour of each distillation target liquid is shown. As shown in Table 2 and FIG. 2, the section distillate amount tended to decrease with time in all target solutions. The liquids B, F, D, R1, and R2 of the target liquid have a relatively large amount of distillate, but the liquids A, E, and C of the target liquid are small. Although there is no clear tendency, it was confirmed that (1) wastewater with a high water content and (2) low normality had a higher distillate volume.

また、フッ化水素酸−塩酸−水系の減圧蒸留では、まず水が初留として回収され、その後フッ化水素酸、塩酸が回収されることから、蒸留対象液中の水分が多くなればその分留出液量は多くなると考えられた。   Further, in the vacuum distillation of hydrofluoric acid-hydrochloric acid-water system, water is first recovered as the first fraction, and then hydrofluoric acid and hydrochloric acid are recovered. The amount of distillate was thought to increase.

Figure 0006062003
Figure 0006062003

(3) 留出成分濃度、留出成分重量について
各対象液の区間留出液中のフッ素濃度変化(wt%)を表3と図3とに示す。各対象液の区間留出液中のフッ素重量変化(g)を表4と図4とに示す。また、各対象液の区間留出液中の塩素濃度変化(wt%)を表5と図5とに示す。各対象液の区間留出液中の塩素重量変化(g)を表6と図6とに示す。尚、各表中の網掛け部分は、対象液ごとの区間最大濃度又は重量を示している。
(3) Regarding the concentration of distillate and the weight of distillate, the change in fluorine concentration (wt%) in the section distillate of each target liquid is shown in Table 3 and FIG. Table 4 and FIG. 4 show the fluorine weight change (g) in the section distillate of each target liquid. In addition, Table 5 and FIG. 5 show the chlorine concentration change (wt%) in the section distillate of each target liquid. Table 6 and FIG. 6 show the chlorine weight change (g) in the section distillate of each target liquid. In addition, the shaded part in each table | surface has shown the area maximum density | concentration or weight for every object liquid.

Figure 0006062003
Figure 0006062003

表3及び図3に示す通り、留出液中フッ素(F)濃度は、対象液のC液、D液で高い傾向であり、同様に、表4及び図4に示す通り、留出液中フッ素(F)重量は、対象液のC液、D液が多い傾向であった。これにより、フッ素の留出については、含有するHF量(濃度)が高い廃液が多くなる傾向であることが判った。   As shown in Table 3 and FIG. 3, the fluorine (F) concentration in the distillate tends to be high in the target liquids C and D. Similarly, as shown in Table 4 and FIG. The fluorine (F) weight tended to be higher in the target liquids C and D. Thereby, about the distillation of fluorine, it turned out that there exists a tendency for the waste liquid with a high amount (concentration) of HF to contain to increase.

表5及び図5に示す通り、留出液中塩素(Cl)濃度は塩素含有量が多い対象液のF液液が高くなり、同様に、表6及び図6に示す通り、留出液中塩素重量も塩素含有量が多い対象液のF液が多くなっている。これにより、塩素の留出についても、含有するHCl量が高い廃液が多くなる傾向であることが判った。   As shown in Table 5 and FIG. 5, the chlorine (Cl) concentration in the distillate is higher in the liquid F of the target liquid having a high chlorine content. Similarly, as shown in Table 6 and FIG. The liquid F of the target liquid with a large chlorine content in the chlorine weight is also increasing. As a result, it was found that the waste liquid containing a high amount of HCl tends to increase in the distillation of chlorine.

Figure 0006062003
Figure 0006062003

Figure 0006062003
Figure 0006062003

Figure 0006062003
Figure 0006062003

(4) ピーク濃度、ピーク重量について
予めどの程度のフッ素量が留出されるかを検証した。即ち、各対象液のピーク濃度、ピーク重量を事前に知ることができれば、蒸留に適した廃液であるかの予測が可能となる。このため、留出液中のフッ素濃度、フッ素重量は、対象液中のフッ化水素酸(HF)含有量が影響している可能性から、これらの相関性を確認した。表7及び図7は原液中のHF含有量とピーク濃度・重量の関係を示している。
(4) the peak concentration was verified whether the fluorine amount how much in advance for peak weight is distilled. That is, if the peak concentration and peak weight of each target liquid can be known in advance, it is possible to predict whether the waste liquid is suitable for distillation. For this reason, the correlation between the fluorine concentration and the fluorine weight in the distillate was confirmed from the possibility that the hydrofluoric acid (HF) content in the target liquid had an effect. Table 7 and FIG. 7 show the relationship between the HF content in the stock solution and the peak concentration / weight.

図7に示す通り、留出液のフッ素ピーク濃度、ピーク重量は、対象液HF含有量と相関性が確認できた。この結果から、対象液中のHF含有量が分かれば、留出液のフッ素濃度、フッ素重量の大まかな予測が可能となった。例えば、対象液中のHF含有量が10wt%の場合、最大13wt%濃度の留液が回収できる(濃度最大区間液のみ回収した場合)。   As shown in FIG. 7, the fluorine peak concentration and peak weight of the distillate were confirmed to correlate with the target liquid HF content. From this result, if the HF content in the target liquid was known, it was possible to roughly predict the fluorine concentration and fluorine weight of the distillate. For example, when the HF content in the target liquid is 10 wt%, a maximum of 13 wt% concentration of distillate can be collected (when only the maximum concentration interval liquid is collected).

Figure 0006062003
Figure 0006062003

3.空気導入手段について
加熱温度、操作圧力条件は統一し、導入空気量を変化(増加)させた場合の留出速度と留出液中のフッ素、塩素濃度変化を計測した。即ち、試料は、R1(試薬調整液)とした。加熱温度は70℃とした。操作圧力は80Torr(≒10665.24Pa)とした。蒸留時間は4時間とした。空気量は対象液300mLに対して、0(なし)、0.15、0.3L/minの3通りを各々検証した。結果を表8に示す。
3. With regard to the air introduction means, the heating temperature and operating pressure conditions were standardized, and the distillation rate and changes in fluorine and chlorine concentrations in the distillate were measured when the amount of introduced air was changed (increased). That is, the sample was R1 (reagent adjustment solution). The heating temperature was 70 ° C. The operating pressure was 80 Torr (≈10665.24 Pa). The distillation time was 4 hours. The amount of air was verified as 0 (none), 0.15, and 0.3 L / min for 300 mL of the target liquid. The results are shown in Table 8.

Figure 0006062003
Figure 0006062003

表8に示す通り、空気量が0L/minと比較して、0.15L/minでは留出速度が倍以上の8.0mL/h、0.3L/minでは3倍近くの11.0mL/hとなった。また、留出中のフッ素濃度は空気量が0L/minと比較して、0.15L/minでは22倍以上の6.5wt%、0.3L/minでは33倍以上の9.7wt%であった。   As shown in Table 8, compared with 0 L / min, the distillation rate is 8.0 mL / h, which is more than double at 0.15 L / min, and nearly 1.0 times 11.0 mL / h at 0.3 L / min. h. In addition, the fluorine concentration in the distillate is 6.5 wt%, which is 22 times or more at 0.15 L / min, and 9.7 wt%, which is 33 times or more at 0.3 L / min, compared with 0 L / min. there were.

前述の通り、空気を導入することで、対象液の曝気による撹拌効果(伝熱性の向上)だけでなく、沸騰核の増加や、揮発したガスのキャリア効果(空気の流れによる蒸発の促進)も期待できる。空気量が多くなる程、留出速度(液量)および、留出液中のフッ素濃度が高くなることが確認された。   As mentioned above, by introducing air, not only the agitation effect (improvement of heat transfer) by aeration of the target liquid, but also the increase of boiling nuclei and the carrier effect of volatile gas (acceleration of evaporation by air flow) I can expect. It was confirmed that the higher the amount of air, the higher the distillation rate (liquid amount) and the fluorine concentration in the distillate.

4.総括
以上の通り、高濃度フッ化水素酸含有廃液の減圧蒸留によるフッ化水素酸、塩酸分離回収方法およびフッ化水素酸回収濃度予測について、高濃度廃液に対しては、操作圧力を50Torr(≒6665.78Pa)と低くすることで蒸留効率を高めることができた。また、撹拌及び沸騰促進のため空気導入を行えば、より効率的な蒸留が可能となった。更に、対象液中のフッ化水素酸含有量をあらかじめ算出することで、留出液中のフッ素最大濃度(または重量)の予測が可能となった。
4). As described above, with regard to hydrofluoric acid, hydrochloric acid separation and recovery method and hydrofluoric acid recovery concentration prediction by vacuum distillation of high concentration hydrofluoric acid-containing waste liquid, the operating pressure is set to 50 Torr (≈ Distillation efficiency could be increased by lowering to 6665.78 Pa). Moreover, if air was introduced for stirring and boiling promotion, more efficient distillation became possible. Furthermore, by calculating the hydrofluoric acid content in the target liquid in advance, it became possible to predict the maximum fluorine concentration (or weight) in the distillate.

10…試験装置、
11…貯留容器、
12…ウォータバス、
13…蒸発釜(蒸発手段)、
14…上部蓋部、
15…流量計、
16…外気導入路、
17…温度計、
18…アスピレータ、
19…吸引路、
20…凝縮器、
21…第1受器、
22…第2受器、
23…圧力計、
10 ... Test equipment,
11 ... Reservoir,
12 ... water bath,
13 ... Evaporation pot (evaporation means),
14 ... upper lid,
15 ... Flow meter,
16 ... outside air introduction path,
17 ... thermometer,
18 ... Aspirator,
19 ... suction path,
20 ... Condenser,
21. First receiver,
22 ... second receiver,
23 ... pressure gauge,

Claims (2)

ガラスエッチング廃液からフッ化水素酸、塩酸を分離回収する方法であって、前記廃液を減圧条件下で加熱して蒸発させ、この蒸発された蒸気を冷却して凝縮させてフッ化水素酸、塩酸を分離回収する方法において、
前記廃液がフッ化水素酸濃度が6%を超える高濃度フッ化水素酸を含み、
前記廃液を減圧条件下で加熱する際に、常圧の空気を廃液中に導入することを特徴とするガラスエッチング廃液からのフッ化水素酸の分離回収法。
A method of separating and recovering hydrofluoric acid and hydrochloric acid from a glass etching waste liquid, wherein the waste liquid is heated and evaporated under reduced pressure conditions, and the evaporated vapor is cooled and condensed to obtain hydrofluoric acid and hydrochloric acid. In the method of separating and recovering
The waste liquid contains a high concentration hydrofluoric acid having a hydrofluoric acid concentration exceeding 6%,
A method for separating and recovering hydrofluoric acid from a glass etching waste liquid, wherein air at normal pressure is introduced into the waste liquid when the waste liquid is heated under reduced pressure.
前記廃液について、予めフッ化水素酸濃度の異なる複数種の廃液を、同じ減圧条件下、加熱温度、導入空気量でフッ化水素酸を回収した際に、最大のフッ化水素酸の留出量を記録した画分のピーク濃度又はピーク重量をプロットしてフッ化水素酸濃度とピーク濃度又はピーク重量との相関図を作成し、
対象廃液のフッ化水素酸濃度と、得られた相関図とから対象廃液の留出液のフッ化水素酸濃度又はフッ化水素酸重量の予測値を得ることを特徴とする請求項1に記載のガラスエッチング廃液からのフッ化水素酸の分離回収法。
When the hydrofluoric acid is recovered from a plurality of types of waste liquids having different hydrofluoric acid concentrations in advance under the same decompression conditions at the heating temperature and the amount of introduced air, the maximum distillate of hydrofluoric acid is collected. Plot the peak concentration or peak weight of the recorded fraction to create a correlation diagram between hydrofluoric acid concentration and peak concentration or peak weight,
According to claim 1, characterized in that to obtain a hydrofluoric acid concentration of the target waste, the predicted value of the concentration of hydrofluoric acid or hydrofluoric acid by weight of the distillate of the subject waste from the correlation diagram obtained Separation and recovery of hydrofluoric acid from glass etching waste liquid.
JP2015159824A 2015-08-13 2015-08-13 Separation and recovery of hydrofluoric acid from glass etching wastewater Active JP6062003B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015159824A JP6062003B1 (en) 2015-08-13 2015-08-13 Separation and recovery of hydrofluoric acid from glass etching wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015159824A JP6062003B1 (en) 2015-08-13 2015-08-13 Separation and recovery of hydrofluoric acid from glass etching wastewater

Publications (2)

Publication Number Publication Date
JP6062003B1 true JP6062003B1 (en) 2017-01-18
JP2017036193A JP2017036193A (en) 2017-02-16

Family

ID=57799984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015159824A Active JP6062003B1 (en) 2015-08-13 2015-08-13 Separation and recovery of hydrofluoric acid from glass etching wastewater

Country Status (1)

Country Link
JP (1) JP6062003B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112456443A (en) * 2020-12-19 2021-03-09 蚌埠学院 Recovery processing method and recovery processing device for glass etching waste liquid
CN113045089A (en) * 2021-03-15 2021-06-29 盛隆资源再生(无锡)有限公司 Method for refining and purifying etching waste liquid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937898A (en) * 1972-08-15 1974-04-08
JP2008189484A (en) * 2007-02-01 2008-08-21 Morita Kagaku Kogyo Kk Method and apparatus for separating/recovering acid component from waste liquid containing hydrofluoric acid and silicofluoric acid
JP2011126720A (en) * 2009-12-15 2011-06-30 Morita Kagaku Kogyo Kk Method for producing valuable material and hydrochloric acid from waste liquid
JP2012055841A (en) * 2010-09-09 2012-03-22 Sasakura Engineering Co Ltd Method for recovering acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937898A (en) * 1972-08-15 1974-04-08
JP2008189484A (en) * 2007-02-01 2008-08-21 Morita Kagaku Kogyo Kk Method and apparatus for separating/recovering acid component from waste liquid containing hydrofluoric acid and silicofluoric acid
JP2011126720A (en) * 2009-12-15 2011-06-30 Morita Kagaku Kogyo Kk Method for producing valuable material and hydrochloric acid from waste liquid
JP2012055841A (en) * 2010-09-09 2012-03-22 Sasakura Engineering Co Ltd Method for recovering acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112456443A (en) * 2020-12-19 2021-03-09 蚌埠学院 Recovery processing method and recovery processing device for glass etching waste liquid
CN112456443B (en) * 2020-12-19 2023-12-05 蚌埠学院 Recovery processing method and recovery processing device for glass etching waste liquid
CN113045089A (en) * 2021-03-15 2021-06-29 盛隆资源再生(无锡)有限公司 Method for refining and purifying etching waste liquid
CN113045089B (en) * 2021-03-15 2023-04-18 盛隆资源再生(无锡)有限公司 Method for refining and purifying etching waste liquid

Also Published As

Publication number Publication date
JP2017036193A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
CN108383085B (en) Device and method for preparing hydrogen chloride gas by full-resolution of hydrochloric acid by continuous method
Taylor et al. High vacuum distillation of ionic liquids and separation of ionic liquid mixtures
US7922876B2 (en) Method for processing an etching mixture which is formed during the production of highly pure silicon
JP6062003B1 (en) Separation and recovery of hydrofluoric acid from glass etching wastewater
JP5087855B2 (en) Heat treatment evaluation wafer, heat treatment evaluation method, and semiconductor wafer manufacturing method
JP2012062300A (en) Method for producing ultra-high purity electronic grade chemical reagent
CN109943728B (en) Method for recovering lead in perovskite solar cell
CN105506309A (en) Three-stage distillation device for purifying alkali metal and method of purifying alkali metal
JP5459053B2 (en) Impurity evaluation method of silicon single crystal
JP6403525B2 (en) Surface cleanliness evaluation method and quality assurance method for polycrystalline silicon
Gannoun et al. High precision osmium elemental and isotope measurements of North Atlantic seawater
KR101469668B1 (en) Method and device for measuring water content in hydrogen fluoride-containing compound
JP4581618B2 (en) Method for recovering hydrofluoric acid
WO2015103366A1 (en) Method for determining a concentration of metal impurities contaminating a silicon product
EP1571447A1 (en) Process for measuring mercury concentration within hydrocarbons
JP6063616B2 (en) Analysis method of silicon sample
CN106395874B (en) A kind of method that sodium chloride and Aluminum Chloride Hexahydrate are extracted from mixed liquor
CN104267092B (en) A kind of method utilizing mass spectrograph test hafnium isotope
CN101028918A (en) Recovery of hydrofluoric acid
EP1930296A1 (en) Method for producing high purity caustic potash
Paulsen et al. Analysis of ultrapure reagents from a large sub-boiling still made of Teflon PFA
CN104787723A (en) Technology for deeply resolving by-product hydrochloric acid to prepare hydrogen chloride
KR101730354B1 (en) Purification apparatus of hydrofluoric acid
JP2006076811A (en) Method for recovering hydrofluoric acid
KR101064657B1 (en) Apparatus and method for processing poly silicon

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161213

R150 Certificate of patent or registration of utility model

Ref document number: 6062003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250