JP6061872B2 - Titanium oxide mesocrystal - Google Patents

Titanium oxide mesocrystal Download PDF

Info

Publication number
JP6061872B2
JP6061872B2 JP2013556429A JP2013556429A JP6061872B2 JP 6061872 B2 JP6061872 B2 JP 6061872B2 JP 2013556429 A JP2013556429 A JP 2013556429A JP 2013556429 A JP2013556429 A JP 2013556429A JP 6061872 B2 JP6061872 B2 JP 6061872B2
Authority
JP
Japan
Prior art keywords
titanium oxide
crystal
average
tif
mesocrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013556429A
Other languages
Japanese (ja)
Other versions
JPWO2013115213A1 (en
Inventor
哲朗 真嶋
哲朗 真嶋
貴士 立川
貴士 立川
ジンフン ビエン
ジンフン ビエン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Publication of JPWO2013115213A1 publication Critical patent/JPWO2013115213A1/en
Application granted granted Critical
Publication of JP6061872B2 publication Critical patent/JP6061872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/30
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/02Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by evaporation of the solvent
    • C30B7/04Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by evaporation of the solvent using aqueous solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Description

本発明は、酸化チタンメソ結晶に関する。  The present invention relates to a titanium oxide mesocrystal.

酸化チタン、特に化学的に安定で高活性なアナターゼ酸化チタン(TiO)ナノ粒子は、これまで、光水分解、環境浄化光触媒、色素増感型太陽電池等様々な用途に幅広く用いられてきた。しかしながら、酸化チタンナノ粒子は無秩序に凝集しやすく、そのために生じる表面積の低下、界面の不整合等により、光活性(光触媒活性等)、光エネルギー変換効率等を低下させる一因となっている。Titanium oxide, particularly chemically stable and highly active anatase titanium oxide (TiO 2 ) nanoparticles, has been widely used in various applications such as photo-water decomposition, environmental purification photocatalysts, and dye-sensitized solar cells. . However, titanium oxide nanoparticles tend to aggregate randomly, and this contributes to a decrease in photoactivity (photocatalytic activity, etc.), photoenergy conversion efficiency, and the like due to a reduction in surface area and interface mismatch.

この問題を解決するため、酸化チタンナノ粒子を高密度且つ規則的に集積させた酸化チタンメソ結晶の開発が進められている(例えば、非特許文献1〜2参照)。しかしながら、そのサイズが1μm以上にも及ぶ酸化チタンメソ結晶においては、比表面積が一般的な酸化チタンナノ粒子(代表的な光触媒である酸化チタンナノ粒子P25は約50m/g程度)と比較して非常に低下し、10m/gにも満たない。そのため、充分な光触媒活性等を得られていないのが現状である。In order to solve this problem, development of titanium oxide mesocrystals in which titanium oxide nanoparticles are regularly and densely integrated is underway (see, for example, Non-Patent Documents 1 and 2). However, in a titanium oxide mesocrystal whose size is 1 μm or more, the specific surface area is much larger than that of a general titanium oxide nanoparticle (the typical photocatalyst titanium oxide nanoparticle P25 is about 50 m 2 / g). Lower than 10 m 2 / g. Therefore, at present, sufficient photocatalytic activity and the like are not obtained.

一方、比表面積の大きな酸化チタン結晶も知られている(非特許文献3)が、そのサイズ(長さ)は450nm以下と非常に小さい。このように小さい結晶を使用すると、酸化チタンナノ粒子と同様に、無秩序に凝集しやすく、やはり光触媒活性等が低下するため、根本的な解決には至っていない。  On the other hand, a titanium oxide crystal having a large specific surface area is also known (Non-patent Document 3), but its size (length) is as small as 450 nm or less. When such a small crystal is used, it tends to aggregate randomly and the photocatalytic activity or the like is lowered as in the case of the titanium oxide nanoparticles, and thus a fundamental solution has not been reached.

L. Zhou et al., J. Am. Chem. Soc. 2008, 130, 1309-1320L. Zhou et al., J. Am. Chem. Soc. 2008, 130, 1309-1320 J. Feng et al., CrystEngComm, 2010, 12, 3425-3429J. Feng et al., CrystEngComm, 2010, 12, 3425-3429 J. Ye et al., J. Am. Chem. Soc. 2011, 133, 933-940J. Ye et al., J. Am. Chem. Soc. 2011, 133, 933-940 L. Zhou et al., Small 2008, 4, 1566-1574L. Zhou et al., Small 2008, 4, 1566-1574 G. Liu et al., Chem. Commun. 2011, 47, 6763-6783G. Liu et al., Chem. Commun. 2011, 47, 6763-6783 J. Zhu et al., CrystEngComm, 2010, 12, 2219-2224J. Zhu et al., CrystEngComm, 2010, 12, 2219-2224 T. Tachikawa et al., J. Am. Chem. Soc. 2011, 133, 7197-7204T. Tachikawa et al., J. Am. Chem. Soc. 2011, 133, 7197-7204

本発明は、サイズ及び比表面積の大きい酸化チタンメソ結晶を提供することを目的とする。また、本発明は、光触媒活性、フォトルミネッセンス特性、光誘起電荷分離特性等に優れた酸化チタンメソ結晶を提供することも目的とする。  An object of the present invention is to provide a titanium oxide mesocrystal having a large size and specific surface area. Another object of the present invention is to provide a titanium oxide mesocrystal having excellent photocatalytic activity, photoluminescence characteristics, photoinduced charge separation characteristics, and the like.

上記目的を鑑み、鋭意検討した結果、TiF、NHNO、NHF及び水を所定量含む前駆体水溶液を、空気雰囲気下で焼成した後に、酸素雰囲気下でより高温で焼成することで、サイズ及び比表面積の大きい酸化チタンメソ結晶を提供することを見出した。本発明は、さらに研究を重ね、完成させたものである。すなわち、本発明は以下の構成を包含する。
項1.平均幅の平均厚みに対する比(平均幅/平均厚み)が10〜100であり、比表面積が10m/g以上である、酸化チタンメソ結晶。
項2.平均幅が3〜5μmである、項1に記載の酸化チタンメソ結晶。
項3.平均厚みが50〜300nmである、項1又は2に記載の酸化チタンメソ結晶。
項4.アナターゼ型酸化チタンナノ結晶の集合体である、項1〜3のいずれかに記載の酸化チタンメソ結晶。
項5.単結晶である、項1〜4のいずれかに記載の酸化チタンメソ結晶。
項6.板状である項1〜5のいずれかに記載の酸化チタンメソ結晶。
項7.TiF、NHNO、NHF及び水を含み、且つ、TiFとNHNOとの含有比率が1:4〜15(モル比)であり、TiFとNHFとの含有比率が1:1〜9(モル比)である前駆体水溶液を、酸素雰囲気下400〜700℃の条件下に焼成する工程を備える、項1〜6のいずれかに記載の酸化チタンメソ結晶の製造方法。
項8.TiF、NHNO、NHF及び水を含み、且つ、TiFとNHNOとの含有比率が1:4〜15(モル比)であり、TiFとNHFとの含有比率が1:1〜9(モル比)である前駆体水溶液を、空気雰囲気又は酸素雰囲気下250〜700℃の条件下に焼成した後に、酸素雰囲気下400〜700℃の条件下に焼成する工程を備える、項1〜6のいずれかに記載の酸化チタンメソ結晶の製造方法。
項9.機能性材料の表面に、項1〜6のいずれかに記載の酸化チタンメソ結晶からなる層が形成された複合材料。
項10.平均幅の平均厚みに対する比(平均幅/平均厚み)が10〜100である、NH TiOF結晶。
項11.TiF、NHNO、NHF及び水を含み、且つ、TiFとNHNO との含有比率が1:4〜15(モル比)であり、TiFとNHFとの含有比率が1:1〜9(モル比)である前駆体水溶液を、空気雰囲気下250〜300℃の条件下に焼成する工程を備える、項10に記載のNHTiOF結晶の製造方法。
  As a result of intensive studies in view of the above-mentioned purpose, TiF4, NH4NO3, NH4It has been found that a precursor aqueous solution containing a predetermined amount of F and water is fired in an air atmosphere and then fired at a higher temperature in an oxygen atmosphere to provide a titanium oxide mesocrystal having a large size and specific surface area. The present invention has been further researched and completed. That is, the present invention includes the following configurations.
Item 1. The ratio of the average width to the average thickness (average width / average thickness) is 10 to 100, and the specific surface area is 10 m.2/ G or more of titanium oxide mesocrystal.
Item 2. Item 2. The titanium oxide mesocrystal according to Item 1, having an average width of 3 to 5 µm.
Item 3. Item 3. The titanium oxide mesocrystal according to Item 1 or 2, wherein the average thickness is 50 to 300 nm.
Item 4. Item 4. The titanium oxide mesocrystal according to any one of Items 1 to 3, which is an aggregate of anatase-type titanium oxide nanocrystals.
Item 5. Item 5. The titanium oxide mesocrystal according to any one of Items 1 to 4, which is a single crystal.
Item 6. Item 6. The titanium oxide mesocrystal according to any one of Items 1 to 5, which is plate-shaped.
Item 7. TiF4, NH4NO3, NH4Contains F and water, and TiF4And NH4NO3And the content ratio is 1: 4 to 15 (molar ratio), and TiF4And NH4Item 6. The oxidation according to any one of Items 1 to 6, comprising a step of firing an aqueous precursor solution having a content ratio with F of 1: 1 to 9 (molar ratio) in an oxygen atmosphere at 400 to 700 ° C. Method for producing titanium mesocrystal.
Item 8. TiF4, NH4NO3, NH4Contains F and water, and TiF4And NH4NO3And the content ratio is 1: 4 to 15 (molar ratio), and TiF4And NH4An aqueous precursor solution having a content ratio with F of 1: 1 to 9 (molar ratio) is calcined under a condition of 250 to 700 ° C. in an air atmosphere or an oxygen atmosphere, and is then subjected to a condition of 400 to 700 ° C. in an oxygen atmosphere. Item 7. A method for producing a titanium oxide mesocrystal according to any one of Items 1 to 6, further comprising a step of firing.
Item 9. Item 7. A composite material in which a layer made of the titanium oxide mesocrystal according to any one of Items 1 to 6 is formed on the surface of the functional material.
Item 10. The ratio of average width to average thickness (average width / average thickness) is 10 to 100, NH 4TiOF3crystal.
Item 11. TiF4, NH4NO3, NH4Contains F and water, and TiF4And NH4NO 3And the content ratio is 1: 4 to 15 (molar ratio), and TiF4And NH4Item 11. The NH according to Item 10, comprising a step of calcining a precursor aqueous solution having a content ratio with F of 1: 1 to 9 (molar ratio) in an air atmosphere at 250 to 300 ° C.4TiOF3Crystal production method.

本発明によれば、サイズ及び比表面積の大きい酸化チタンメソ結晶を提供することが可能である。特に比表面積については、代表的な光触媒である酸化チタンナノ粒子P25の50m/gより大きくすることも可能である。また、この本発明の酸化チタンメソ結晶は、光触媒活性、フォトルミネッセンス特性、光誘起電荷分離特性等に優れている。According to the present invention, it is possible to provide a titanium oxide mesocrystal having a large size and specific surface area. In particular, the specific surface area can be larger than 50 m 2 / g of titanium oxide nanoparticles P25, which is a typical photocatalyst. The titanium oxide mesocrystal of the present invention is excellent in photocatalytic activity, photoluminescence characteristics, photoinduced charge separation characteristics, and the like.

メソ結晶について説明する概念図である。N-I、N-II及びN-IIIは、酸化チタンナノ粒子が規則的に配列した様々な酸化チタンナノ結晶を表している。そして、M-I、M-II及びM-IIIが、これらが規則的に配列した酸化チタンメソ結晶を表している。It is a conceptual diagram explaining a mesocrystal. N-I, N-II and N-III represent various titanium oxide nanocrystals in which titanium oxide nanoparticles are regularly arranged. M-I, M-II, and M-III represent titanium oxide mesocrystals in which these are regularly arranged. 従来のナノ粒子系と本発明の酸化チタンメソ結晶における酸化チタンナノ結晶の配列を説明する概念図である。It is a conceptual diagram explaining the arrangement | sequence of the titanium oxide nanocrystal in the conventional nanoparticle type | system | group and the titanium oxide mesocrystal of this invention. 本発明の製造方法の一例を示す概念図である。It is a conceptual diagram which shows an example of the manufacturing method of this invention. 実施例1〜3及び比較例4、5及び11の結晶の粉末X線回折(XRD)の結果を示すグラフである。なお、参考として、アナターゼ型酸化チタン、NHNO、及びNHTiOFのピークも示す。It is a graph which shows the result of the powder X-ray diffraction (XRD) of the crystal | crystallization of Examples 1-3 and Comparative Examples 4, 5 and 11. For reference, peaks of anatase-type titanium oxide, NH 4 NO 3 , and NH 4 TiOF 3 are also shown. 比較例1〜2の結晶の粉末X線回折(XRD)の結果を示すグラフである。It is a graph which shows the result of the powder X-ray diffraction (XRD) of the crystal | crystallization of Comparative Examples 1-2. 比較例3の結晶の粉末X線回折(XRD)及び電子顕微鏡(SEM)観察の結果を示す図である。It is a figure which shows the result of the powder X-ray diffraction (XRD) and electron microscope (SEM) observation of the crystal | crystallization of the comparative example 3. 実施例2の酸化チタンメソ結晶の電子顕微鏡(SEM及びTEM)観察の結果を示す図である。It is a figure which shows the result of an electron microscope (SEM and TEM) observation of the titanium oxide mesocrystal of Example 2. 実施例2の酸化チタンメソ結晶の厚みの分布を示すグラフである。3 is a graph showing the distribution of thickness of the titanium oxide mesocrystal of Example 2. 実施例1、3、比較例4、5の結晶の電子顕微鏡(SEM)観察の結果を示す図である。It is a figure which shows the result of the electron microscope (SEM) observation of the crystal | crystallization of Examples 1, 3 and Comparative Examples 4, 5. 実施例5及び比較例6〜8の電子顕微鏡(SEM)観察の結果を示す図である。It is a figure which shows the result of the electron microscope (SEM) observation of Example 5 and Comparative Examples 6-8. 実施例6〜7及び比較例9〜10の電子顕微鏡(SEM)観察の結果を示す図である。It is a figure which shows the result of the electron microscope (SEM) observation of Examples 6-7 and Comparative Examples 9-10. 比較例1の電子顕微鏡(TEM)観察の結果を示す図である。It is a figure which shows the result of the electron microscope (TEM) observation of the comparative example 1. 比較例2の電子顕微鏡(a:TEM、b:SEM)観察の結果を示す図である。It is a figure which shows the result of the electron microscope (a: TEM, b: SEM) observation of the comparative example 2. 実施例1〜4及び比較例1〜3、5の結晶のp−クロロフェノールの光触媒酸化活性を示すグラフである。It is a graph which shows the photocatalytic oxidation activity of the p-chlorophenol of the crystal | crystallization of Examples 1-4 and Comparative Examples 1-3. 実施例1〜4及び比較例1〜3、5の結晶のCr6+の光触媒還元活性を示すグラフである。It is a graph showing the photocatalytic reduction activity of Cr 6+ crystals of Examples 1 to 4 and Comparative Examples 1 to 3 and 5. 実施例1〜4及び比較例1〜3、5の結晶のRhBの光触媒酸化活性を示すグラフである。It is a graph which shows the photocatalytic oxidation activity of RhB of the crystal | crystallization of Examples 1-4 and Comparative Examples 1-3. 実施例と比較例1〜2におけるナノ結晶の配列と電子の移動の一例を説明する概念図である。It is a conceptual diagram explaining an example of the arrangement | sequence of a nanocrystal and the movement of an electron in an Example and Comparative Examples 1-2. 実施例2及び比較例1における時間分解拡散反射率の測定結果を示すグラフである。It is a graph which shows the measurement result of the time-resolved diffuse reflectance in Example 2 and Comparative Example 1. 実施例2及び比較例1における酸化チタン結晶表面上のMTPMの吸着挙動の測定結果を示すグラフである。It is a graph which shows the measurement result of the adsorption | suction behavior of MTPM on the titanium oxide crystal surface in Example 2 and Comparative Example 1. 実施例3〜4における時間分解拡散反射率の測定結果を示すグラフである。It is a graph which shows the measurement result of the time-resolved diffuse reflectance in Examples 3-4. 比較例2における時間分解拡散反射率の測定結果を示すグラフである。10 is a graph showing measurement results of time-resolved diffuse reflectance in Comparative Example 2. 実施例2及び比較例1における単一粒子蛍光分光の測定結果を示すグラフである。It is a graph which shows the measurement result of the single particle fluorescence spectroscopy in Example 2 and Comparative Example 1. 実施例2において、UV照射強度による光電流応答についての測定結果を示すグラフである。In Example 2, it is a graph which shows the measurement result about the photocurrent response by UV irradiation intensity. 実施例2及び比較例1の結晶の光電流応答の対比の結果を示すグラフである。It is a graph which shows the comparison result of the photocurrent response of the crystal of Example 2 and Comparative Example 1. 酸化チタンメソ結晶の幅及び厚みの違いによる光電流応答の対比を示すグラフである。It is a graph which shows the contrast of a photocurrent response by the difference in the width | variety and thickness of a titanium oxide mesocrystal. 実施例8の酸化チタンメソ結晶−機能性材料の複合材料の電子顕微鏡(SEM)観察の結果を示す図である。It is a figure which shows the result of the electron microscope (SEM) observation of the composite material of the titanium oxide mesocrystal-functional material of Example 8.

1.酸化チタンメソ結晶
本発明の酸化チタンメソ結晶は、平均幅の平均厚みに対する比(平均幅/平均厚み)が10〜100であり、比表面積が10m/g以上である。
1. Titanium oxide mesocrystal The titanium oxide mesocrystal of the present invention has a ratio of average width to average thickness (average width / average thickness) of 10 to 100, and a specific surface area of 10 m 2 / g or more.

本発明において、「酸化チタンメソ結晶」とは、酸化チタンナノ結晶が規則的に配列したメソサイズ(具体的には1〜10μm程度)の結晶性超構造体を意味する。なお、超構造体とは、ナノ粒子又はナノ結晶が無秩序に凝集しているのではなく、規則的に配列した構造を意味する(図1、非特許文献4のFigure 1参照)。図1において、N-I、N-II及びN-IIIは、酸化チタンナノ粒子が規則的に配列した様々な酸化チタンナノ結晶を表している。そして、M-I、M-II及びM-IIIが、これらが規則的に配列した酸化チタンメソ結晶を表している。この際、酸化チタンメソ結晶において、酸化チタンナノ粒子1つ1つも、規則的に配列している。このように、本発明の酸化チタンメソ結晶は、酸化チタンナノ結晶が無秩序に凝集せず、規則的に配列した大きなサイズの結晶であるため、無秩序な凝集を抑制することができる。  In the present invention, the “titanium oxide mesocrystal” means a mesosize (specifically, about 1 to 10 μm) crystalline superstructure in which titanium oxide nanocrystals are regularly arranged. Note that the superstructure means a structure in which nanoparticles or nanocrystals are not randomly aggregated but regularly arranged (see FIG. 1 and FIG. 1 of Non-Patent Document 4). In FIG. 1, N-I, N-II, and N-III represent various titanium oxide nanocrystals in which titanium oxide nanoparticles are regularly arranged. M-I, M-II, and M-III represent titanium oxide mesocrystals in which these are regularly arranged. At this time, each titanium oxide nanoparticle is regularly arranged in the titanium oxide mesocrystal. As described above, the titanium oxide mesocrystal of the present invention is a large-sized crystal in which the titanium oxide nanocrystals are not randomly aggregated but regularly arranged, and therefore, disordered aggregation can be suppressed.

また、本発明の酸化チタンメソ結晶においては、上記のように、酸化チタンナノ結晶が規則的に配列していることから、全体として単結晶とすることも可能である。  Further, in the titanium oxide mesocrystal of the present invention, since the titanium oxide nanocrystals are regularly arranged as described above, it is possible to form a single crystal as a whole.

なお、図1において、左下に示されているAmorphous Solid及びPolycrystalは、酸化チタンナノ粒子又は酸化チタンナノ結晶が無秩序に凝集した状態を表している。  In FIG. 1, Amorphous Solid and Polycrystal shown in the lower left represent a state in which titanium oxide nanoparticles or titanium oxide nanocrystals are randomly aggregated.

また、図2にも示されるように、従来の無秩序な凝集体では、酸化チタンナノ結晶同士の接点が少なく(図2では点でのみ接しており)、太陽光により発生した電子が伝導しにくかったが、本発明の酸化チタンメソ結晶においては、酸化チタンナノ結晶が規則的に配列しており、酸化チタンナノ結晶同士の接点が多く(図2では線で接しており)、電子が伝導しやすくなり、高い電気伝導度が得られる。また、本発明の酸化チタンメソ結晶では凝集を抑制することができることから、同程度の比表面積を有する酸化チタンナノ粒子を使用した場合と比較しても、高い比表面積を維持することができ、光触媒活性を飛躍的に向上させることもできる。  In addition, as shown in FIG. 2, in the conventional disordered aggregate, there are few contacts between the titanium oxide nanocrystals (in FIG. 2, they are in contact only with dots), and electrons generated by sunlight are difficult to conduct. However, in the titanium oxide mesocrystal of the present invention, the titanium oxide nanocrystals are regularly arranged, and there are many contact points between the titanium oxide nanocrystals (in FIG. 2, they are in contact with each other), which facilitates conduction of electrons and is high. Electrical conductivity is obtained. Further, since the titanium oxide mesocrystal of the present invention can suppress aggregation, it can maintain a high specific surface area compared to the case of using titanium oxide nanoparticles having the same specific surface area, and has a photocatalytic activity. Can be dramatically improved.

本発明の酸化チタンメソ結晶においては、厚みと比較して幅が充分大きいことが特徴の1つである。具体的には、平均幅の平均厚みに対する比(平均幅/平均厚み)が10〜100、好ましくは40〜50程度である。平均幅の平均厚みに対する比を大きくすることで、酸化チタンメソ結晶のサイズを大きくすることができ、無秩序な凝集を抑制することができるが、大きすぎると壊れやすくなる観点から、上記の範囲が好ましい。  One feature of the titanium oxide mesocrystal of the present invention is that the width is sufficiently larger than the thickness. Specifically, the ratio of the average width to the average thickness (average width / average thickness) is about 10 to 100, preferably about 40 to 50. By increasing the ratio of the average width to the average thickness, the size of the titanium oxide mesocrystal can be increased, and disordered aggregation can be suppressed, but the above range is preferable from the viewpoint of being easily broken when it is too large. .

また、本発明の酸化チタンメソ結晶は、上記のとおり、平均幅の平均厚みに対する比が大きいことから、表面エネルギーの高い{001}面を主な結晶面として有することができる。{001}面は、高活性な結晶面として注目されているため(非特許文献5)、本発明の酸化チタンメソ結晶は、{001}面を主な結晶面として有することにより、光触媒活性等を向上させることができる。  Moreover, since the ratio of the average width to the average thickness is large as described above, the titanium oxide mesocrystal of the present invention can have a {001} plane having a high surface energy as a main crystal plane. Since the {001} plane is attracting attention as a highly active crystal plane (Non-Patent Document 5), the titanium oxide mesocrystal of the present invention has a {001} plane as a main crystal plane, thereby providing photocatalytic activity and the like. Can be improved.

このように、平均幅の平均厚みに対する比を大きくすることが好ましいため、平均幅は大きいほうが好ましい。また、平均厚みは小さいほうが好ましい。具体的には、平均幅は、2〜8μm程度が好ましく、4〜5μm程度がより好ましい。また、平均厚みは、50〜300nm程度が好ましく、70〜110nm程度がより好ましい。  Thus, since it is preferable to increase the ratio of the average width to the average thickness, it is preferable that the average width is large. Moreover, the one where average thickness is smaller is preferable. Specifically, the average width is preferably about 2 to 8 μm, and more preferably about 4 to 5 μm. The average thickness is preferably about 50 to 300 nm, more preferably about 70 to 110 nm.

なお、本発明の酸化チタンメソ結晶では、平均幅とは、表面が正方形又は長方形である板状結晶と見立てた場合において、見立てた正方形又は長方形の辺の平均値を意味する。また、本発明の酸化チタンメソ結晶の平均厚みとは、板状結晶の場合にはその厚みの平均値、板状でない場合には板状結晶と見立てた場合の厚みの平均値である。これらの幅及び厚みは、例えば、電子顕微鏡観察(SEM等)等により測定することができる。  In addition, in the titanium oxide mesocrystal of the present invention, the average width means an average value of the sides of the estimated square or rectangle when the surface is regarded as a plate-like crystal having a square or rectangle. In addition, the average thickness of the titanium oxide mesocrystal of the present invention is an average value of the thickness in the case of a plate-like crystal, and an average value of the thickness when it is assumed to be a plate-like crystal in the case of not being plate-like. These widths and thicknesses can be measured, for example, by observation with an electron microscope (SEM or the like).

また、本発明の酸化チタンメソ結晶の比表面積は、10m/g以上である。酸化チタンメソ結晶の比表面積が小さすぎると、光触媒活性及び光電流寿命に劣る。本発明では、酸化チタンメソ結晶の比表面積は、代表的な光触媒である酸化チタンナノ粒子P25の50m/gより大きくすることも可能である。なお、酸化チタンメソ結晶の比表面積は、10〜80m/g程度が好ましく、50〜70m/g程度がより好ましい。また、本発明の酸化チタンメソ結晶の比表面積は、例えば、BET法等により測定することができる。Moreover, the specific surface area of the titanium oxide mesocrystal of the present invention is 10 m 2 / g or more. When the specific surface area of the titanium oxide mesocrystal is too small, the photocatalytic activity and the photocurrent life are inferior. In the present invention, the specific surface area of the titanium oxide mesocrystal can be larger than 50 m 2 / g of the titanium oxide nanoparticle P25 which is a typical photocatalyst. In addition, about 10-80 m < 2 > / g is preferable and, as for the specific surface area of a titanium oxide mesocrystal, about 50-70 m < 2 > / g is more preferable. The specific surface area of the titanium oxide mesocrystal of the present invention can be measured by, for example, the BET method.

本発明の酸化チタンメソ結晶を構成する酸化チタンナノ結晶としては、アナターゼ型であってもルチル型であってもよい。なかでも、触媒活性が高いことから、本発明の酸化チタンメソ結晶は、アナターゼ型酸化チタンナノ結晶の集合体とすることが好ましい。なお、酸化チタンナノ結晶の結晶構造は、例えば、粉末X線回折等により測定することができる。  The titanium oxide nanocrystal constituting the titanium oxide mesocrystal of the present invention may be anatase type or rutile type. Among these, since the catalytic activity is high, the titanium oxide mesocrystal of the present invention is preferably an aggregate of anatase-type titanium oxide nanocrystals. The crystal structure of the titanium oxide nanocrystal can be measured by, for example, powder X-ray diffraction.

また、本発明の酸化チタンメソ結晶を構成する酸化チタンナノ結晶の平均粒子径は、光触媒活性により優れる観点から、30〜70nm程度が好ましく、35〜40nm程度がより好ましい。酸化チタンナノ粒子の平均粒子径は、例えば、粉末X線回折(シェラーの式を用いて)等により測定することができる。  In addition, the average particle size of the titanium oxide nanocrystals constituting the titanium oxide mesocrystal of the present invention is preferably about 30 to 70 nm, more preferably about 35 to 40 nm, from the viewpoint of superior photocatalytic activity. The average particle diameter of the titanium oxide nanoparticles can be measured by, for example, powder X-ray diffraction (using Scherrer's equation) or the like.

本発明の酸化チタンメソ結晶における細孔径及び細孔容積は、より比表面積を向上させる観点から大きいほうが好ましい。具体的には、平均細孔径は、3〜8nm程度が好ましい。また、平均細孔容積は、0.1〜0.2cm/g程度が好ましい。これらは、BJHモデルによる吸着等温線等から測定することができる。The pore diameter and pore volume in the titanium oxide mesocrystal of the present invention are preferably larger from the viewpoint of further improving the specific surface area. Specifically, the average pore diameter is preferably about 3 to 8 nm. The average pore volume is preferably about 0.1 to 0.2 cm 3 / g. These can be measured from an adsorption isotherm by the BJH model.

本発明の酸化チタンメソ結晶においては、酸化チタンの純度を向上させ、不純物である窒素、フッ素等を実質的に含まない結晶とすることができる。このことは、本発明の酸化チタンメソ結晶のバンドギャップが、酸化チタンと同程度であることから確認することができる。  In the titanium oxide mesocrystal of the present invention, the purity of titanium oxide can be improved and a crystal substantially free of impurities such as nitrogen and fluorine can be obtained. This can be confirmed from the fact that the band gap of the titanium oxide mesocrystal of the present invention is comparable to that of titanium oxide.

本発明の酸化チタンメソ結晶の形状は、板状であっても、他の形状であってもよい。なかでも、表面エネルギーの高い{001}面を主な結晶面として有するためには平均幅の平均厚みに対する比が大きいことが好ましいことから、板状が好ましい。  The shape of the titanium oxide mesocrystal of the present invention may be a plate shape or another shape. Among these, in order to have a {001} plane having a high surface energy as a main crystal plane, a plate-like shape is preferable because the ratio of the average width to the average thickness is preferably large.

2.NH TiOF 結晶
上記説明した本発明の酸化チタンメソ結晶は、後述のように、本発明のNHTiOF 結晶を用いて、トポタクティック反応により得ることができる。このトポタクティック反応においては、結晶の形状はほぼ維持される(非特許文献1等参照)ので、結晶の形状は本発明の酸化チタンメソ結晶と同様である。具体的には、以下のとおりである。
2. NH 4 TiOF 3 crystal
  As described later, the titanium oxide mesocrystal of the present invention described above is the NH of the present invention.4TiOF 3It can be obtained by a topotactic reaction using crystals. In this topotactic reaction, the crystal shape is substantially maintained (see Non-Patent Document 1, etc.), so the crystal shape is the same as that of the titanium oxide mesocrystal of the present invention. Specifically, it is as follows.

本発明のNHTiOF結晶においては、厚みと比較して幅が充分大きいことが特徴である。具体的には、平均幅の平均厚みに対する比(平均幅/平均厚み)が10〜100、好ましくは40〜50程度である。平均幅の平均厚みに対する比を多くすることで、最終的に得られる酸化チタンメソ結晶のサイズを大きくすることができ、酸化チタンメソ結晶の無秩序な凝集を抑制することができるが、大きすぎると壊れやすくなる観点から、上記の範囲が好ましい。The NH 4 TiOF 3 crystal of the present invention is characterized by a sufficiently large width compared to the thickness. Specifically, the ratio of the average width to the average thickness (average width / average thickness) is about 10 to 100, preferably about 40 to 50. By increasing the ratio of the average width to the average thickness, the size of the titanium oxide mesocrystal finally obtained can be increased, and disordered aggregation of the titanium oxide mesocrystal can be suppressed. From the viewpoint of the above, the above range is preferable.

また、本発明のNHTiOF結晶は、上記のとおり、平均幅の平均厚みに対する比が大きいことから、最終的に得られる酸化チタンメソ結晶を、表面エネルギーの高い{001}面を主な結晶面として有することができる。{001}面は、高活性な結晶面として注目されているため(非特許文献5)、本発明の酸化チタンメソ結晶は、{001}面を主な結晶面として有することにより、光触媒活性等を向上させることができる。In addition, since the NH 4 TiOF 3 crystal of the present invention has a large ratio of the average width to the average thickness as described above, the finally obtained titanium oxide mesocrystal is a main crystal with a {001} plane having a high surface energy. Can have as a face. Since the {001} plane is attracting attention as a highly active crystal plane (Non-Patent Document 5), the titanium oxide mesocrystal of the present invention has a {001} plane as a main crystal plane, thereby providing photocatalytic activity and the like. Can be improved.

このように、平均幅の平均厚みに対する比を大きくすることが好ましいため、平均幅は大きいほうが好ましい。また、平均厚みは小さいほうが好ましい。具体的には、平均幅は、2〜8μm程度が好ましく、4〜5μm程度がより好ましい。また、平均厚みは、50〜300nm程度が好ましく、70〜110nm程度がより好ましい。  Thus, since it is preferable to increase the ratio of the average width to the average thickness, it is preferable that the average width is large. Moreover, the one where average thickness is smaller is preferable. Specifically, the average width is preferably about 2 to 8 μm, and more preferably about 4 to 5 μm. The average thickness is preferably about 50 to 300 nm, more preferably about 70 to 110 nm.

なお、平均幅及び平均厚みは、上記説明したものである。  The average width and average thickness are those described above.

本発明のNHTiOF結晶の形状は、板状であっても、他の形状であってもよい。なかでも、最終的に得られる酸化チタンメソ結晶において、表面エネルギーの高い{001}面を主な結晶面として有するためには平均幅の平均厚みに対する比が大きいことが好ましいことから、板状が好ましい。The shape of the NH 4 TiOF 3 crystal of the present invention may be a plate shape or another shape. Among these, in the finally obtained titanium oxide mesocrystal, in order to have a {001} plane having a high surface energy as a main crystal plane, the ratio of the average width to the average thickness is preferably large, and thus a plate shape is preferable. .

3.酸化チタンメソ結晶及びNH TiOF 結晶の製造方法
本発明の酸化チタンメソ結晶は、TiF、NHNO、NHF及び水を含み、且つ、TiFとNHNOとの含有比率が1:4〜15(モル比)であり、TiFとNHFとの含有比率が1:1〜9(モル比)である前駆体水溶液を、空気雰囲気又は酸素雰囲気下250〜700℃の条件下に焼成した後に、酸素雰囲気下400〜700℃の条件下に焼成する工程を備える方法により、製造することができる。
3. Production method of titanium oxide mesocrystal and NH 4 TiOF 3 crystal The titanium oxide mesocrystal of the present invention contains TiF 4 , NH 4 NO 3 , NH 4 F and water, and the content ratio of TiF 4 and NH 4 NO 3 is A precursor aqueous solution having a content ratio of 1: 4 to 15 (molar ratio) and TiF 4 and NH 4 F of 1: 1 to 9 (molar ratio) is 250 to 700 ° C. in an air atmosphere or an oxygen atmosphere. It can manufacture by the method provided with the process of baking on 400-700 degreeC conditions in oxygen atmosphere after baking on conditions.

本発明の酸化チタンメソ結晶の製造方法では、まず、前駆体水溶液を、空気雰囲気又は酸素雰囲気下250〜700℃の条件下に焼成する。  In the method for producing a titanium oxide mesocrystal of the present invention, first, the precursor aqueous solution is fired under conditions of 250 to 700 ° C. in an air atmosphere or an oxygen atmosphere.

具体的には、前駆体水溶液からなる液層を基板上に形成し、空気雰囲気又は酸素雰囲気下250〜700℃の条件下に焼成すればよい。  Specifically, a liquid layer composed of an aqueous precursor solution may be formed on a substrate and fired under conditions of 250 to 700 ° C. in an air atmosphere or an oxygen atmosphere.

基板としては、特に制限はなく、常温において平滑な面を有するものであり、その面は平面あるいは曲面であってもよく、また応力によって変形するものであってもよい。使用できる基板の具体例としては、例えば、シリコン、各種ガラス、透明樹脂等が挙げられる。ただし、後述のように、400℃以上で焼成する必要があることから、シリコン、ガラス等を用いるのが好ましい。  There is no restriction | limiting in particular as a board | substrate, It has a smooth surface at normal temperature, The surface may be a plane or a curved surface, and may deform | transform by stress. Specific examples of substrates that can be used include silicon, various glasses, and transparent resins. However, since it is necessary to fire at 400 ° C. or higher as described later, it is preferable to use silicon, glass, or the like.

液層の膜厚は、特に制限されないが、通常2mm以下程度が好ましい。  The thickness of the liquid layer is not particularly limited, but is usually preferably about 2 mm or less.

液層の形成法は特に限定されるものではなく、用いる基板の種類により公知の方法を適宜採用することができる。例えば、基板上にディープコート、スピンコート等を施したり、基板材料と前駆体水溶液の混合溶液をシリコン、ガラス等に滴下したりすればよい。  The formation method of a liquid layer is not specifically limited, A well-known method is employable suitably according to the kind of board | substrate to be used. For example, deep coating, spin coating, or the like may be performed on the substrate, or a mixed solution of the substrate material and the precursor aqueous solution may be dropped onto silicon, glass, or the like.

なお、基板としては、上記の他、機能性材料を用いて、本発明の酸化チタンメソ結晶との複合材料を容易に製造することができる。機能性材料としては、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)等が挙げられる。  As the substrate, in addition to the above, a functional material can be used to easily manufacture a composite material with the titanium oxide mesocrystal of the present invention. Examples of the functional material include tin-doped indium oxide (ITO) and fluorine-doped tin oxide (FTO).

前駆体水溶液に含まれるチタン前駆体としては、TiFを使用する。TiF中のF イオンが酸化チタンナノ結晶の{001}面に強く吸着し、{001}面を主な結晶面として有する、つまり、サイズが大きい酸化チタンメソ結晶が得られる。  As the titanium precursor contained in the precursor aqueous solution, TiF4Is used. TiF4F inside Ions are strongly adsorbed on the {001} plane of the titanium oxide nanocrystal, and a titanium oxide mesocrystal having a {001} plane as a main crystal plane, that is, a large size is obtained.

チタン前駆体としては、TiFよりも非常に安価なTiClを使用することも知られている(非特許文献2等)が、実際には、酸化チタンナノ結晶が規則的に配列することはなく、つまり酸化チタンメソ結晶が得られることはなく、凝集体しか得られない。その他、チタン前駆体として、Ti(OC、Ti(SO等を使用した場合も同様に、凝集体しか得られない。As a titanium precursor, it is also known to use TiCl 4 which is much cheaper than TiF 4 (Non-patent Document 2, etc.), but actually, titanium oxide nanocrystals are not regularly arranged. That is, titanium oxide mesocrystals are not obtained, and only aggregates are obtained. In addition, when Ti (OC 4 H 9 ) 4 , Ti (SO 4 ) 2 or the like is used as the titanium precursor, only aggregates can be obtained.

本発明の製造方法においては、酸化チタンメソ結晶の結晶構造を制御するためにNHNOを使用する。この際、NHNOの使用量は、TiFとNHNOとの含有比率が1:4〜15(モル比)、好ましくは1:6〜9(モル比)である。NHNOの使用量が少なすぎると、結晶構造を有しない酸化チタンナノ粒子の凝集物しか得られず、酸化チタンメソ結晶は得られない。一方、NHNOの使用量が多すぎると、酸化チタンメソ結晶と酸化チタンナノ粒子との混合物となり、酸化チタンナノ粒子の凝集を防ぐことができない。NHNOの使用量を上記範囲内とすることで、より結晶性の高い酸化チタンメソ結晶が得られる。In the production method of the present invention, NH 4 NO 3 is used to control the crystal structure of the titanium oxide mesocrystal. At this time, the amount of NH 4 NO 3 is, TiF 4 and NH 4 content ratio of NO 3 is 1: 4 to 15 (molar ratio), preferably 1: 6-9 (molar ratio). If the amount of NH 4 NO 3 used is too small, only aggregates of titanium oxide nanoparticles having no crystal structure can be obtained, and titanium oxide mesocrystals cannot be obtained. On the other hand, if the amount of NH 4 NO 3 used is too large, it becomes a mixture of titanium oxide mesocrystals and titanium oxide nanoparticles, and aggregation of titanium oxide nanoparticles cannot be prevented. By setting the amount of NH 4 NO 3 used within the above range, a titanium oxide mesocrystal with higher crystallinity can be obtained.

本発明の製造方法においては、酸化チタンメソ結晶のサイズ(幅)と厚みを制御するためにNHFを使用する。この際、NHFの使用量は、TiFとNHFとの含有比率が1:1〜9(モル比)であり、好ましくは1:3〜5(モル比)である。NHFの使用量が少なすぎると、平均幅が小さく厚みが大きくなり、凝集を防ぐことができない。一方、NHFの使用量が多すぎると、酸化チタンメソ結晶の幅が大きくなりすぎ、且つ、厚みが薄くなりすぎて形状が崩壊するため凝集を防ぐことができない。In the production method of the present invention, NH 4 F is used to control the size (width) and thickness of the titanium oxide mesocrystal. At this time, the amount of NH 4 F used is such that the content ratio of TiF 4 and NH 4 F is 1: 1 to 9 (molar ratio), preferably 1: 3 to 5 (molar ratio). If the amount of NH 4 F used is too small, the average width becomes small and the thickness becomes large, and aggregation cannot be prevented. On the other hand, when the amount of NH 4 F used is too large, the width of the titanium oxide mesocrystal becomes too large, and the thickness becomes too thin and the shape collapses so that aggregation cannot be prevented.

本発明の製造方法においては、溶媒としては水を使用する。原料が有機材料の場合には有機溶媒を使用できるが、本発明では無機系材料を使用するため、水性溶媒、特に水が好ましい。水の使用量は、他の成分に対して過剰量とすればよいが、製膜のためには多すぎないほうがよい。具体的には、TiFと水との含有比率を1:100〜1000(モル比)程度とすればよい。In the production method of the present invention, water is used as the solvent. When the raw material is an organic material, an organic solvent can be used. However, in the present invention, an inorganic solvent is used, and therefore an aqueous solvent, particularly water, is preferable. The amount of water used may be excessive with respect to the other components, but it should not be too much for film formation. Specifically, the content ratio of TiF 4 and water may be about 1: 100 to 1000 (molar ratio).

なお、本発明の製造方法では、従来の方法(非特許文献1等)で使用されていた界面活性剤を使用せずとも、酸化チタンナノ結晶を規則的に配列して酸化チタンメソ結晶を製造することが可能である。  In the production method of the present invention, a titanium oxide mesocrystal is produced by regularly arranging titanium oxide nanocrystals without using a surfactant used in a conventional method (Non-patent Document 1 or the like). Is possible.

本発明の製造方法においては、上記説明した前駆体水溶液を、まず空気雰囲気下250〜700℃、好ましくは250〜300℃、より好ましくは250〜290℃の条件下に焼成する(第1焼成)。これにより、上記した本発明のNHTiOF結晶を製造することができる。この際、酸素雰囲気下でも本発明のNHTiOF結晶を製造することができる。また、焼成温度が低すぎる場合には、NHNOとの混合物となる。さらに、焼成温度が高すぎる場合には、比表面積が10m/g以下の酸化チタン結晶となる。第1焼成において、酸素雰囲気下で400〜700℃で焼成すれば、NHTiOF結晶を経由することなく、1ポットで本発明の酸化チタンメソ結晶を得ることも可能である。In the production method of the present invention, the above-described precursor aqueous solution is first fired under an air atmosphere at 250 to 700 ° C., preferably 250 to 300 ° C., more preferably 250 to 290 ° C. (first firing). . Thereby, the above-described NH 4 TiOF 3 crystal of the present invention can be manufactured. At this time, the NH 4 TiOF 3 crystal of the present invention can be produced even in an oxygen atmosphere. Further, when the firing temperature is too low, the mixture of NH 4 NO 3. Furthermore, when the firing temperature is too high, a titanium oxide crystal having a specific surface area of 10 m 2 / g or less is obtained. In the first baking, if baking is performed at 400 to 700 ° C. in an oxygen atmosphere, the titanium oxide mesocrystal of the present invention can be obtained in one pot without passing through the NH 4 TiOF 3 crystal.

その後、製造したNHTiOF結晶を、酸素雰囲気下400〜700℃の条件下に焼成する(第2焼成)。この焼成により、トポタクティック反応(非特許文献1等参照)を起こさせ、本発明の酸化チタンメソ結晶が得られる。この際、上記の空気雰囲気下での焼成と同じ炉で行ってもよいし、異なる炉で行ってもよい。なお、上述したように、第1焼成において、酸素雰囲気下で400〜700℃の条件下で焼成した場合には、第2焼成を行わずに本発明の酸化チタンメソ結晶を得ることも可能である。Thereafter, the produced NH 4 TiOF 3 crystal is fired under an oxygen atmosphere at 400 to 700 ° C. (second firing). By this firing, a topotactic reaction (see Non-Patent Document 1, etc.) is caused to obtain the titanium oxide mesocrystal of the present invention. At this time, the firing may be performed in the same furnace as in the above-described firing in an air atmosphere or in a different furnace. As described above, in the first firing, when the firing is performed at 400 to 700 ° C. in an oxygen atmosphere, the titanium oxide mesocrystal of the present invention can be obtained without performing the second firing. .

第2焼成(第1焼成しか行わない場合は第1焼成)の雰囲気を酸素雰囲気とすることで、酸化チタンメソ結晶内への窒素、フッ素等の不純物の混入を抑制することができる。なお、本発明において、酸素雰囲気とは、100%の酸素ガスもしくは酸素濃度が90%以上の酸素と空気の混合ガス雰囲気が好ましい。  By setting the atmosphere of the second baking (the first baking when only the first baking is performed) to be an oxygen atmosphere, it is possible to suppress the entry of impurities such as nitrogen and fluorine into the titanium oxide mesocrystal. In the present invention, the oxygen atmosphere is preferably a 100% oxygen gas or a mixed gas atmosphere of oxygen and air having an oxygen concentration of 90% or more.

また、第2焼成の焼成温度は400〜700℃、好ましくは400〜600℃、より好ましくは450〜550℃である。焼成温度が低すぎると、NHTiOFを充分にTiOに変換することができず、酸化チタンメソ結晶が得られない。また、比表面積を大きくすることができない。一方、焼成温度が高すぎると、酸化チタンメソ結晶は得られるが、比表面積は低下し、光触媒活性等が悪化する。なお、通常は高温で焼成すると酸化チタンは活性の高いアナターゼ型を維持できず、ルチル型に構造変化するが、本発明においては、高温(上記温度範囲の上限近く)で焼成しても、アナターゼ型を維持することができる。Moreover, the calcination temperature of 2nd baking is 400-700 degreeC, Preferably it is 400-600 degreeC, More preferably, it is 450-550 degreeC. If the firing temperature is too low, NH 4 TiOF 3 cannot be sufficiently converted to TiO 2, and a titanium oxide mesocrystal cannot be obtained. Further, the specific surface area cannot be increased. On the other hand, if the calcination temperature is too high, titanium oxide mesocrystals can be obtained, but the specific surface area decreases, and the photocatalytic activity and the like deteriorate. Normally, titanium oxide cannot maintain a highly active anatase type when baked at a high temperature, and the structure changes to a rutile type. However, in the present invention, anatase can be baked at a high temperature (near the upper limit of the above temperature range). The mold can be maintained.

なお、上記説明した本発明の製造方法の概念の一例を図3に示す。  An example of the concept of the manufacturing method of the present invention described above is shown in FIG.

4.用途
本発明の酸化チタンメソ結晶は、上記のように、比表面積が大きいとともに、酸化チタンナノ結晶を規則的に配列したものであり、且つ、サイズも大きく凝集を抑制できることから、光触媒活性、フォトルミネッセンス特性、光誘起電荷分離特性が高く、導電性も高いものである。また、本発明によれば、非常に簡便な方法で酸化チタンメソ結晶を製造することができるため、大量生産性にも優れる。そのため、環境浄化光触媒、水素発生光触媒、色素増感太陽電池、リチウムイオンバッテリー等、種々様々な用途に適用することが可能である。
4). Applications The titanium oxide mesocrystal of the present invention has a large specific surface area as described above, and is a regular arrangement of titanium oxide nanocrystals, and has a large size and can suppress aggregation, so that photocatalytic activity and photoluminescence characteristics are achieved. The photo-induced charge separation characteristics are high and the conductivity is high. In addition, according to the present invention, since titanium oxide mesocrystals can be produced by a very simple method, the mass productivity is excellent. Therefore, it can be applied to various uses such as an environmental purification photocatalyst, a hydrogen generation photocatalyst, a dye-sensitized solar cell, and a lithium ion battery.

実施例に基づいて、本発明を具体的に説明するが、本発明は、これらのみに限定されるものではない。  The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

<実施例及び比較例>
実施例1:400℃焼成(Meso-TiO 2 -400)
まず、TiF、NHNO、NHを含む前駆体水溶液(組成はモル比で、TiF :NHNO:NH:HO=1:6.6:4:117)からなる液層を、シリコン基板に形成した。具体的には、前駆体水溶液を基板上に滴下した。液層の厚みは、1mm以下となるようにした。シリコン基板上に形成した液層を、空気雰囲気下250℃で2時間焼結することで、シリコン基板上にNHTiOF結晶を形成した。その後、酸素雰囲気(酸素100%)下400℃で8時間焼成することで、シリコン基板上に実施例1の酸化チタンメソ結晶を形成した。なお、前駆体水溶液に使用した原料はいずれも市販品を使用した。
  <Examples and Comparative Examples>
  Example 1: Firing at 400 ° C. (Meso-TiO 2 -400)
  First, TiF4, NH4NO3, NH4Precursor aqueous solution (composition is molar ratio, TiF 4: NH4NO3: NH4: H2A liquid layer composed of O = 1: 6.6: 4: 117) was formed on a silicon substrate. Specifically, the precursor aqueous solution was dropped on the substrate. The thickness of the liquid layer was set to 1 mm or less. The liquid layer formed on the silicon substrate is sintered at 250 ° C. for 2 hours in an air atmosphere, so that NH is formed on the silicon substrate.4TiOF3Crystals formed. Then, the titanium oxide mesocrystal of Example 1 was formed on the silicon substrate by baking at 400 degreeC under oxygen atmosphere (oxygen 100%) for 8 hours. In addition, as for the raw material used for precursor aqueous solution, all used the commercial item.

実施例2:500℃焼成(Meso-TiO 2 -500)
酸素雰囲気下での焼成温度を500℃とすること以外は実施例1と同様に、実施例2のNHTiOF結晶及び酸化チタンメソ結晶を作製した。
Example 2: Firing at 500 ° C. (Meso-TiO 2 -500)
An NH 4 TiOF 3 crystal and a titanium oxide mesocrystal of Example 2 were produced in the same manner as in Example 1 except that the firing temperature in an oxygen atmosphere was 500 ° C.

実施例3:600℃焼成(Meso-TiO 2 -600)
酸素雰囲気下での焼成温度を600℃とすること以外は実施例1と同様に、実施例3のNHTiOF結晶及び酸化チタンメソ結晶を作製した。
Example 3: Firing at 600 ° C. (Meso-TiO 2 -600)
An NH 4 TiOF 3 crystal and a titanium oxide mesocrystal of Example 3 were produced in the same manner as in Example 1 except that the firing temperature in an oxygen atmosphere was 600 ° C.

実施例4:700℃焼成(Meso-TiO 2 -700)
酸素雰囲気下での焼成温度を700℃とすること以外は実施例1と同様に、実施例のNHTiOF結晶及び酸化チタンメソ結晶を作製した。
Example 4: Firing at 700 ° C. (Meso-TiO 2 -700)
An NH 4 TiOF 3 crystal and a titanium oxide mesocrystal of Example 4 were produced in the same manner as in Example 1 except that the baking temperature in an oxygen atmosphere was 700 ° C.

実施例5:500℃焼成、TiF :NH NO =1:9
前駆体水溶液において、TiF:NHNO=1:9(モル比)とすること以外は実施例2と同様に、実施例5の酸化チタンメソ結晶を作製した。
Example 5: Firing at 500 ° C., TiF 4 : NH 4 NO 3 = 1: 9
A titanium oxide mesocrystal of Example 5 was produced in the same manner as in Example 2 except that TiF 4 : NH 4 NO 3 = 1: 9 (molar ratio) in the precursor aqueous solution.

実施例6:500℃焼成、TiF :NH F=1:2
前駆体水溶液において、TiF:NHF=1:2(モル比)とすること以外は実施例2と同様に、実施例6の酸化チタンメソ結晶を作製した。
Example 6: Firing at 500 ° C., TiF 4 : NH 4 F = 1: 2
A titanium oxide mesocrystal of Example 6 was prepared in the same manner as in Example 2 except that TiF 4 : NH 4 F = 1: 2 (molar ratio) in the precursor aqueous solution.

実施例7:500℃焼成、TiF :NH F=1:8
前駆体水溶液において、TiF:NHF=1:8(モル比)とすること以外は実施例2と同様に、実施例7の酸化チタンメソ結晶を作製した。
Example 7: Firing at 500 ° C., TiF 4 : NH 4 F = 1: 8
A titanium oxide mesocrystal of Example 7 was produced in the same manner as in Example 2 except that TiF 4 : NH 4 F = 1: 8 (molar ratio) in the precursor aqueous solution.

比較例1:酸化チタンナノ結晶(Nano-TiO 2
非特許文献6に従い、比較例1の酸化チタンナノ結晶を作製した。この試料は、酸素雰囲気下、600℃で8時間焼成した。
Comparative Example 1: Titanium oxide nanocrystals (Nano-TiO 2 )
According to Non-Patent Document 6, a titanium oxide nanocrystal of Comparative Example 1 was produced. This sample was baked at 600 ° C. for 8 hours in an oxygen atmosphere.

比較例2:酸化チタン多結晶(Poly-TiO 2
まず、TiFを含む前駆体水溶液(組成はモル比で、TiF:HO=1:117)からなる液層を、シリコン基板に形成した。その後、シリコン基板上に形成した液層を、空気雰囲気下500℃で2時間焼結した。さらに、酸素雰囲気下500℃で8時間焼成し、比較例2の酸化チタン多結晶を得た。
Comparative Example 2: Titanium oxide polycrystal (Poly-TiO 2 )
First, a liquid layer composed of an aqueous precursor solution containing TiF 4 (composition is molar ratio, TiF 4 : H 2 O = 1: 117) was formed on a silicon substrate. Thereafter, the liquid layer formed on the silicon substrate was sintered at 500 ° C. for 2 hours in an air atmosphere. Furthermore, it was baked at 500 ° C. for 8 hours in an oxygen atmosphere to obtain a titanium oxide polycrystal of Comparative Example 2.

比較例3:酸化チタンマイクロ結晶(Micro-TiO 2
非特許文献7に従い、比較例3の酸化チタンマイクロ結晶を作製した。この試料は、酸素雰囲気下、600℃で8時間焼成した。
Comparative Example 3: Titanium oxide microcrystal (Micro-TiO 2 )
In accordance with Non-Patent Document 7, a titanium oxide microcrystal of Comparative Example 3 was produced. This sample was baked at 600 ° C. for 8 hours in an oxygen atmosphere.

比較例4:300℃焼成(TiO 2 -300)
酸素雰囲気下での焼成温度を300℃とすること以外は実施例1と同様に、比較例4の酸化チタン結晶を作製した。
Comparative Example 4: Firing at 300 ° C. (TiO 2 -300)
A titanium oxide crystal of Comparative Example 4 was produced in the same manner as in Example 1 except that the firing temperature in an oxygen atmosphere was 300 ° C.

比較例5:800℃焼成(Meso-TiO 2 -800)
酸素雰囲気下での焼成温度を800℃とすること以外は実施例1と同様に、比較例5の酸化チタン結晶を作製した。
Comparative Example 5: 800 ° C. firing (Meso-TiO 2 -800)
A titanium oxide crystal of Comparative Example 5 was produced in the same manner as in Example 1 except that the firing temperature in an oxygen atmosphere was 800 ° C.

比較例6:500℃焼成、TiF :NH NO =1:0
前駆体水溶液において、NHNOを使用しない(TiF:NHNO=1:0(モル比))こと以外は実施例2と同様に、比較例6の結晶を作製した。
Comparative Example 6: 500 ° C. calcination, TiF 4: NH 4 NO 3 = 1: 0
A crystal of Comparative Example 6 was produced in the same manner as in Example 2 except that NH 4 NO 3 was not used (TiF 4 : NH 4 NO 3 = 1: 0 (molar ratio)) in the precursor aqueous solution.

比較例7:500℃焼成、TiF :NH NO =1:3
前駆体水溶液において、TiF:NHNO=1:3(モル比)とすること以外は実施例2と同様に、比較例7の結晶を作製した。
Comparative Example 7: Firing at 500 ° C., TiF 4 : NH 4 NO 3 = 1: 3
A crystal of Comparative Example 7 was produced in the same manner as in Example 2 except that TiF 4 : NH 4 NO 3 = 1: 3 (molar ratio) in the precursor aqueous solution.

比較例8:500℃焼成、TiF :NH NO =1:20
前駆体水溶液において、TiF:NHNO=1:20(モル比)とすること以外は実施例2と同様に、比較例8の結晶を作製した。
Comparative Example 8: Firing at 500 ° C., TiF 4 : NH 4 NO 3 = 1: 20
A crystal of Comparative Example 8 was produced in the same manner as Example 2 except that TiF 4 : NH 4 NO 3 = 1: 20 (molar ratio) in the precursor aqueous solution.

比較例9:500℃焼成、TiF :NH F=1:0
前駆体水溶液において、NHFを使用しない(TiF:NHF=1:0(モル比))こと以外は実施例2と同様に、比較例9の結晶を作製した。
Comparative Example 9: Firing at 500 ° C., TiF 4 : NH 4 F = 1: 0
A crystal of Comparative Example 9 was produced in the same manner as in Example 2 except that NH 4 F was not used in the precursor aqueous solution (TiF 4 : NH 4 F = 1: 0 (molar ratio)).

比較例10:500℃焼成、TiF :NH F=1:10
前駆体水溶液において、TiF:NHF=1:10(モル比)とすること以外は実施例2と同様に、比較例10の結晶を作製した。
Comparative Example 10: Firing at 500 ° C., TiF 4 : NH 4 F = 1: 10
A crystal of Comparative Example 10 was produced in the same manner as in Example 2 except that TiF 4 : NH 4 F = 1: 10 (molar ratio) in the precursor aqueous solution.

比較例11:250℃焼成(TiO 2 -250)
酸素雰囲気下での焼成温度を250℃とすること以外は実施例1と同様に、比較例11の酸化チタン結晶を作製した。
Comparative Example 11: 250 ° C. firing (TiO 2 -250)
A titanium oxide crystal of Comparative Example 11 was produced in the same manner as in Example 1 except that the firing temperature in an oxygen atmosphere was 250 ° C.

<評価>
試験例1:比表面積
実施例1〜4及び比較例1〜5の結晶の比表面積をBET法により測定した。結果を表1に示す。
<Evaluation>
Test Example 1: Specific surface area The specific surface areas of the crystals of Examples 1 to 4 and Comparative Examples 1 to 5 were measured by the BET method. The results are shown in Table 1.

試験例2:細孔径及び細孔容積
実施例1〜4及び比較例1〜5の結晶の細孔径及び細孔容積をBJH法により測定した。結果を表1に示す。
Test Example 2: Pore diameter and pore volume The pore diameter and pore volume of the crystals of Examples 1 to 4 and Comparative Examples 1 to 5 were measured by the BJH method. The results are shown in Table 1.

試験例3:X線回折
実施例1〜3及び比較例4、5及び11の結晶の特性を粉末X線回折(XRD)により測定した。また、実施例1〜4及び比較例1〜5の結晶について、X線回折ピークから、シェラーの式を用いて、各結晶を構成する酸化チタンナノ結晶の粒子径を評価した。結果を表1及び図4に示す。
Test Example 3: X-ray diffraction The characteristics of the crystals of Examples 1 to 3 and Comparative Examples 4, 5, and 11 were measured by powder X-ray diffraction (XRD). Moreover, about the crystal | crystallization of Examples 1-4 and Comparative Examples 1-5, the particle diameter of the titanium oxide nanocrystal which comprises each crystal | crystallization was evaluated from the X-ray diffraction peak using Scherrer's formula. The results are shown in Table 1 and FIG.

参考までに、比較例1〜3の結晶のX線回折の結果も図5〜6に示す。いずれも、アナターゼ型の酸化チタンが検出されている。  For reference, the results of X-ray diffraction of the crystals of Comparative Examples 1 to 3 are also shown in FIGS. In both cases, anatase-type titanium oxide has been detected.

Figure 0006061872
Figure 0006061872

試験例4:電子顕微鏡観察
実施例2の結晶の特性を走査型電子顕微鏡(SEM)及び透過型電子顕微鏡(TEM)により観察した。結果を図7〜8に示す。
Test Example 4: Electron Microscope Observation The characteristics of the crystal of Example 2 were observed with a scanning electron microscope (SEM) and a transmission electron microscope (TEM). The results are shown in FIGS.

図7aに示されるように、本発明の酸化チタンメソ結晶(特に実施例2)は、表面が略正方形状の板状結晶であった。  As shown in FIG. 7a, the titanium oxide mesocrystal of the present invention (particularly Example 2) was a plate-like crystal having a substantially square surface.

また、図7bのように、酸化チタンナノ結晶が規則的に並んでいた。また、数nm程度の細孔が生じていた。細孔構造はTEMでも確認し(図7d)、結晶上の制限視野電子線回折(SAED)パターンから、{001}面に沿った単結晶のアナターゼ型結晶が確認された。酸化チタン粒子の接点の高分解能透過電子顕微鏡(HRTEM)像より、単結晶格子が、0.189nm程度の格子間隔を有するアナターゼ(200)又は(020)結晶面の原子面を示した(図7e)。これらの結果は、本発明の酸化チタンメソ結晶は、{001}面が表面に露出していることを強く示唆している。さらに、均一格子縞が明確に得られ、完璧に配向した酸化チタンナノ結晶が確認された。ナノ結晶が規則的に並ぶことにより、表面には多数の欠陥や孔が形成されていた(図7b及びe)。結晶端の孔を有する箇所のTEM像から、ナノ結晶は、正規構造に並んでいることが示された(図7f)。 Further, as shown in FIG. 7b, the titanium oxide nanocrystals were regularly arranged. Further, pores of about several nm were generated. The pore structure was also confirmed by TEM (FIG. 7d), and a single crystal anatase crystal along the {001} plane was confirmed from the limited-field electron diffraction (SAED) pattern on the crystal. From the high-resolution transmission electron microscope (HRTEM) image of the contact point of the titanium oxide particles, the single crystal lattice showed an atomic plane of anatase (200) or (020) crystal plane having a lattice spacing of about 0.189 nm (FIG. 7e). ). These results strongly suggest that the {001} plane is exposed on the surface of the titanium oxide mesocrystal of the present invention. Furthermore, uniform lattice fringes were clearly obtained, and perfectly oriented titanium oxide nanocrystals were confirmed. By nanocrystals regularly arranged, on the surface a large number of defects or holes were formed (Fig. 7b and 7 e). A TEM image of a portion having a hole at the end of the crystal showed that the nanocrystals were aligned in a regular structure (FIG. 7f).

酸化チタンメソ結晶の平均厚みは、約80nmであり(図7c)、50〜300nmの範囲で分布していた(図8)。  The average thickness of the titanium oxide mesocrystal was about 80 nm (FIG. 7c), and was distributed in the range of 50 to 300 nm (FIG. 8).

他の実施例においても、本発明の酸化チタンメソ結晶の形状及び結晶構造は同様の結果が得られた(図4及び9等参照)。  In other examples, similar results were obtained in the shape and crystal structure of the titanium oxide mesocrystal of the present invention (see FIGS. 4 and 9).

また、実施例5及び比較例6〜8の走査型電子顕微鏡(SEM)像を図10に示す。NHNOを使用しない場合や、量が少ない場合には、酸化チタン粒子の再結合による一次粒子の凝集体が見られた(図10a〜b)。NHNOの量を増やすと、板状の酸化チタンメソ結晶が形成された(図10c)。さらにNHNOの量を増やすと、板状結晶と粒子との混合物となった(図10d)。このため、実施例5のみが、酸化チタンナノ粒子の凝集を抑制できることが示唆されている。Moreover, the scanning electron microscope (SEM) image of Example 5 and Comparative Examples 6-8 is shown in FIG. When NH 4 NO 3 was not used or when the amount was small, aggregates of primary particles due to recombination of titanium oxide particles were observed (FIGS. 10a and 10b). When the amount of NH 4 NO 3 was increased, plate-like titanium oxide mesocrystals were formed (FIG. 10c). When the amount of NH 4 NO 3 was further increased, a mixture of plate crystals and particles was obtained (FIG. 10d). For this reason, it is suggested that only Example 5 can suppress aggregation of titanium oxide nanoparticles.

さらに、実施例6〜7及び比較例9〜10の走査型電子顕微鏡(SEM)像を図11に示す。NHFを使用しない場合は、酸化チタン結晶の厚みは300〜500nm程度で、幅は約1μm程度であった(図11a)。NHFの量を増やすと、厚みは小さく、幅は大きくすることができた(図11b〜c)。具体的には、厚みは70〜110nm程度、幅は4〜5μm程度とすることが可能であった。なお、本発明の酸化チタンメソ結晶の幅及び厚みは、焼成温度に依存せず、同程度の形状の結晶が得られる。さらにNHFの量を増やすと、厚みが小さすぎ、幅が大きすぎて酸化チタン結晶の形状が崩壊し、フラグメント化した小さな塊との混合物となった(図11d)。このため、実施例6〜7が、酸化チタンナノ粒子の凝集を抑制しつつ幅と厚みの比を大きくできることが示唆されている。Furthermore, the scanning electron microscope (SEM) image of Examples 6-7 and Comparative Examples 9-10 is shown in FIG. When NH 4 F was not used, the thickness of the titanium oxide crystal was about 300 to 500 nm and the width was about 1 μm (FIG. 11 a). When the amount of NH 4 F was increased, the thickness was decreased and the width was increased (FIGS. 11b to 11c). Specifically, it was possible to set the thickness to about 70 to 110 nm and the width to about 4 to 5 μm. In addition, the width | variety and thickness of the titanium oxide mesocrystal of this invention do not depend on a calcination temperature, and the crystal | crystallization of the same grade is obtained. When the amount of NH 4 F was further increased, the thickness was too small, the width was too large, and the shape of the titanium oxide crystal collapsed, resulting in a mixture with fragmented small masses (FIG. 11d). For this reason, it is suggested that Examples 6-7 can enlarge ratio of a width | variety and thickness, suppressing aggregation of a titanium oxide nanoparticle.

参考までに、比較例1〜3の結晶の電子顕微鏡(SEM及びTEM)観察の結果も図6(比較例3)、12(比較例1)及び13(比較例2)に示す。比較例1〜2は凝集しており、比較例3は幅と厚みの比率が小さいものである。  For reference, the results of electron microscope (SEM and TEM) observation of the crystals of Comparative Examples 1 to 3 are also shown in FIGS. 6 (Comparative Example 3), 12 (Comparative Example 1) and 13 (Comparative Example 2). Comparative Examples 1 and 2 are agglomerated, and Comparative Example 3 has a small width to thickness ratio.

試験例5:元素分析
エネルギー分散型X線分析(EDX)により、実施例2の酸化チタンメソ結晶の元素分析を行った。その結果、窒素、フッ素等のような酸化チタンの構成元素以外の元素は検出されなかった。
Test Example 5 Elemental Analysis Elemental analysis of the titanium oxide mesocrystal of Example 2 was performed by energy dispersive X-ray analysis (EDX). As a result, elements other than the constituent elements of titanium oxide such as nitrogen and fluorine were not detected.

また、定常状態拡散反射スペクトルから、実施例2の酸化チタンメソ結晶のバンドギャップは3.2eVと算出された。酸化チタンのバンドギャップと同程度であるので、このことからも、実施例2の酸化チタンメソ結晶には不純物が混入していないことが示唆されている。  From the steady state diffuse reflectance spectrum, the band gap of the titanium oxide mesocrystal of Example 2 was calculated to be 3.2 eV. Since it is almost the same as the band gap of titanium oxide, this also suggests that impurities are not mixed in the titanium oxide mesocrystal of Example 2.

他の実施例においても、本発明の酸化チタンメソ結晶の元素分析の結果は同様の結果が得られた。  In other examples, similar results were obtained for the elemental analysis of the titanium oxide mesocrystal of the present invention.

試験例6:光触媒活性(p−クロロフェノール)
p−クロロフェノールの光触媒酸化を測定した。
Test Example 6: Photocatalytic activity (p-chlorophenol)
The photocatalytic oxidation of p-chlorophenol was measured.

p−クロロフェノールを1.0×10−4M含む実施例1〜4及び比較例1〜3、5の結晶の分散液4mL(0.2g/L)を用いて、20分間超音波分解し、石英キュベット中に移した。光触媒反応を、室温でフィルター(365nm)を用いて水銀光源(REX−120)により紫外光を照射して開始させた。紫外光の強度は、70mW/cmとし、反応時間は4時間とした。紫外光照射を止めた後、試料を10000rpmで遠心分離し(HITACHI himac CF16RX)、パーティクルを除去した。未反応分子の濃度を、固有波長において紫外分光光度計((株)島津製作所のUV-3100)で分析し、分解率を算出した。Using 4 mL (0.2 g / L) of a dispersion of the crystals of Examples 1 to 4 and Comparative Examples 1 to 3 and 5 containing 1.0 × 10 −4 M of p-chlorophenol, ultrasonic decomposition was performed for 20 minutes. And transferred into a quartz cuvette. The photocatalytic reaction was initiated by irradiation with ultraviolet light from a mercury light source (REX-120) using a filter (365 nm) at room temperature. The intensity of ultraviolet light was 70 mW / cm 2 and the reaction time was 4 hours. After the ultraviolet light irradiation was stopped, the sample was centrifuged at 10000 rpm (HITACHI himac CF16RX) to remove particles. The concentration of unreacted molecules was analyzed with an ultraviolet spectrophotometer (UV-3100, Shimadzu Corporation) at the intrinsic wavelength, and the decomposition rate was calculated.

結果を図14に示す。実施例の酸化チタンメソ結晶においては、他のどの比較例よりも優れた光触媒活性を示した(約2倍以上)。なかでも、500℃で焼成した実施例2が、最も優れた光触媒活性を示した。  The results are shown in FIG. The titanium oxide mesocrystals of the examples showed a photocatalytic activity superior to that of any other comparative examples (about twice or more). Especially, Example 2 baked at 500 ° C. showed the most excellent photocatalytic activity.

試験例7:光触媒活性(Cr 6+
Cr6+の光触媒還元を測定した。
Test Example 7: Photocatalytic activity (Cr 6+ )
The photocatalytic reduction of Cr 6+ was measured.

p−クロロフェノールを1.0×10−4M含む分散液ではなく、Cr6+を4.0×10−4M含み、HSOでpHを3に調整した分散液を用いたこと以外は試験例と同様にして、Cr6+の分解率を算出した。 Not a dispersion containing 1.0 × 10 −4 M of p-chlorophenol, but a dispersion containing 4.0 × 10 −4 M of Cr 6+ and adjusted to pH 3 with H 2 SO 4 Was the same as in Test Example 6 to calculate the decomposition rate of Cr 6+ .

結果を図15に示す。実施例の酸化チタンメソ結晶においては、他のどの比較例よりも優れた光触媒活性を示した(約2倍以上)。なかでも、500℃で焼成した実施例2が、最も優れた光触媒活性を示した。  The results are shown in FIG. The titanium oxide mesocrystals of the examples showed a photocatalytic activity superior to that of any other comparative examples (about twice or more). Especially, Example 2 baked at 500 ° C. showed the most excellent photocatalytic activity.

試験例8:光触媒活性(RhB)
ローダミンB(RhB)の光触媒酸化を測定した。
Test Example 8: Photocatalytic activity (RhB)
The photocatalytic oxidation of rhodamine B (RhB) was measured.

p−クロロフェノールを1.0×10−4M含む分散液ではなく、ローダミンB(RhB)を1.0×10−5M含む分散液を用い、反応時間を10分としたこと以外は試験例と同様にして、RhBの分解率を算出した。 Test except that a dispersion containing 1.0 × 10 −5 M of rhodamine B (RhB) was used instead of a dispersion containing 1.0 × 10 −4 M of p-chlorophenol, and the reaction time was 10 minutes. In the same manner as in Example 6 , the decomposition rate of RhB was calculated.

結果を図16に示す。実施例の酸化チタンメソ結晶においては、他のどの比較例よりも優れた光触媒活性を示した(約2倍以上)。なかでも、500℃で焼成した実施例2が、最も優れた光触媒活性を示した。  The results are shown in FIG. The titanium oxide mesocrystals of the examples showed a photocatalytic activity superior to that of any other comparative examples (about twice or more). Especially, Example 2 baked at 500 ° C. showed the most excellent photocatalytic activity.

比較例1及び2(特に比較例1)の結晶は、実施例と比較しても遜色のない比表面積を有しているが、光触媒活性は著しく低下している。このことから、比較例1の結晶は、本発明の酸化チタンメソ結晶のように、規則的に酸化チタンナノ結晶が配列しているわけではなく、無秩序に凝集していることが示唆されている(図17参照)。  The crystals of Comparative Examples 1 and 2 (particularly Comparative Example 1) have a specific surface area comparable to that of the Examples, but the photocatalytic activity is significantly reduced. This suggests that in the crystal of Comparative Example 1, the titanium oxide nanocrystals are not regularly arranged as in the titanium oxide mesocrystal of the present invention but are randomly aggregated (see FIG. 17).

試験例9:時間分解拡散反射率
電荷分離状態の寿命を評価するため、時間分解反射分光法を行った。この測定は、光触媒反応の効率の評価基準である。
Test Example 9: Time-resolved diffuse reflectance time-resolved reflectance spectroscopy was performed in order to evaluate the lifetime of the charge separation state. This measurement is a criterion for evaluating the efficiency of the photocatalytic reaction.

具体的には、以下のように行った。  Specifically, it was performed as follows.

遅延発生器(Stanford Research Systems, DG535)を用いて時間的に制御されたQスイッチNd3+:YAGレーザー(Continuum, Surelite II-10)からの第三高周波(355 nm, 5 ns(半値全幅)、1.5 mJ/pulse)を酸化チタンの励起光源として用いた。パルス450Wキセノンアークランプ(Ushio, UXL-451-0)からの分析光は、集束レンズに集められ、分光器(Nikon, G250)を通して、シリコンアバランシェフォトダイオード検出器(Hamamatsu Photonics, S5343)に向かわせた。過渡信号は、オシロスコープ(Tektronix, TDS 580D)により記録した。実験は全て室温で行った。Time-controlled Q-switch Nd 3+ using a delay generator (Stanford Research Systems, DG535): Third high frequency (355 nm, 5 ns (full width at half maximum)) from a YAG laser (Continuum, Surelite II-10), 1.5 mJ / pulse) was used as the excitation light source for titanium oxide. Analytical light from a pulsed 450W xenon arc lamp (Ushio, UXL-451-0) is collected in a focusing lens and directed through a spectrometer (Nikon, G250) to a silicon avalanche photodiode detector (Hamamatsu Photonics, S5343) It was. Transient signals were recorded with an oscilloscope (Tektronix, TDS 580D). All experiments were performed at room temperature.

図18に示されるように、実施例2の酸化チタンメソ結晶においては、可視から近赤外領域の広い波長範囲で過渡吸収が確認された。この範囲は、捕捉正孔(主として440〜600nm)と捕捉電子(660〜900nm)の吸収帯が重複している。  As shown in FIG. 18, in the titanium oxide mesocrystal of Example 2, transient absorption was confirmed in a wide wavelength range from the visible region to the near infrared region. In this range, absorption bands of trapped holes (mainly 440 to 600 nm) and trapped electrons (660 to 900 nm) overlap.

ここで、プローブ分子として4−(メチルチオ)フェニルメタノール(MTPM)を選択し、電荷分離状態の寿命を評価した。プローブ分子としてMTPMを使用することで、正孔との反応によって生じる一電子酸化体の過渡信号をよりはっきりと認識することができるためである(図18)。また、MTPMは、p−クロロフェノールと似た構造を有しているためでもある。  Here, 4- (methylthio) phenylmethanol (MTPM) was selected as a probe molecule, and the lifetime of the charge separation state was evaluated. This is because by using MTPM as a probe molecule, a transient signal of a one-electron oxidant generated by reaction with holes can be recognized more clearly (FIG. 18). This is also because MTPM has a structure similar to p-chlorophenol.

ここで、酸化チタン結晶表面上のMTPMの吸着挙動を測定すると、図19のように、実施例2と比較例1でほぼ同じ挙動を示した。このため、実施例2と比較例1とを比較すれば、反応効率における吸着の寄与を最小限にすることができる。  Here, when the adsorption behavior of MTPM on the titanium oxide crystal surface was measured, the same behavior was shown in Example 2 and Comparative Example 1 as shown in FIG. For this reason, if Example 2 and Comparative Example 1 are compared, the contribution of adsorption to the reaction efficiency can be minimized.

ここで、光生成した正孔により吸着したMTPMの一電子酸化により生成するMTPM ●+の550nm吸収バンドの吸収データから、酸化チタン中の電子との電荷再結合の速度を見積もることができる。図18では、これらの比較がなされており、半減期は実施例2では2μsと、比較例1の0.5μsよりも非常に長くなっている。実施例2以外の実施例3〜4の酸化チタンメソ結晶についても、同様の結果となった(図20)。一方、比較例2の結晶については、非常に弱い過渡信号で、且つ、半減期が非常に短かった(図21)。  Here, MTPM generated by one-electron oxidation of MTPM adsorbed by photogenerated holes ● +The rate of charge recombination with electrons in titanium oxide can be estimated from the absorption data of the 550 nm absorption band. In FIG. 18, these comparisons are made, and the half-life is 2 μs in Example 2, which is much longer than 0.5 μs in Comparative Example 1. Similar results were obtained for the titanium oxide mesocrystals of Examples 3 to 4 other than Example 2 (FIG. 20). On the other hand, the crystal of Comparative Example 2 had a very weak transient signal and a very short half-life (FIG. 21).

試験例10:単一粒子蛍光分光
光生成した電子と正孔の再結合により、はっきりとしたフォトルミネッセンスが得られる。酸化チタンのフォトルミネッセンス特性を評価するため、単一粒子蛍光分光を行った。蛍光分光は、高い空間分解能で表面反応を観測することができる強力な手法である。
Test Example 10: Single-particle fluorescence spectroscopic light Clear photoluminescence is obtained by recombination of electrons and holes generated. Single particle fluorescence spectroscopy was performed to evaluate the photoluminescence properties of titanium oxide. Fluorescence spectroscopy is a powerful technique that can observe surface reactions with high spatial resolution.

単一粒子蛍光イメージ及び発光減衰曲線は、Olympus IX71倒立型蛍光顕微鏡に備えられた共焦点走査型顕微鏡システム(PicoQuant, Micro Time 200)により測定した。試料は、油浸対物レンズ(Olympus, UPLSAPO 100XO; 1.40 NA, 100×)を通して、PDL-800Bドライバー(PicoQuant)により制御された380nmの円偏光パルスレーザー(Spectra-Physics, 自動周波数ダブラー付きMAI TAI HTS-W, Inspire Blue TAST-W; 0.8 MHz repetition rate, 10μW excitation power)で励起した。実験は全て室温で行った。  Single particle fluorescence images and emission decay curves were measured with a confocal scanning microscope system (PicoQuant, Micro Time 200) equipped with an Olympus IX71 inverted fluorescence microscope. Samples were passed through an oil immersion objective (Olympus, UPLSAPO 100XO; 1.40 NA, 100 ×), a 380 nm circularly polarized pulse laser (Spectra-Physics, MAI TAI HTS with automatic frequency doubler) controlled by a PDL-800B driver (PicoQuant) -W, Inspire Blue TAST-W; 0.8 MHz repetition rate, 10 μW excitation power). All experiments were performed at room temperature.

図22のように、実施例2の酸化チタンメソ結晶においては、結晶の中心部及び端部のいずれにおいても、450〜600nmにおいて表面捕捉された電荷に起因するブロードな発光が得られた。  As shown in FIG. 22, in the titanium oxide mesocrystal of Example 2, broad light emission due to the charge trapped on the surface at 450 to 600 nm was obtained at both the center and the end of the crystal.

また、発光減衰曲線を異なる場所で評価した結果、強度加重平均減衰寿命が、実施例2の酸化チタンメソ結晶においては、中心部が5.9ns、端部が7.1nsであった。また、実施例4については、中心部が6.6ns、端部が15.2nsであった。それに対して、比較例1については、2.0ns程度であった。このように、本発明の酸化チタンメソ結晶においては、より遅く電荷再結合が起こるため、電荷分離を促進することができる。  In addition, as a result of evaluating the emission decay curve at different locations, the intensity weighted average decay lifetime was 5.9 ns at the center and 7.1 ns at the end in the titanium oxide mesocrystal of Example 2. Moreover, about Example 4, the center part was 6.6 ns and the edge part was 15.2 ns. In contrast, Comparative Example 1 was about 2.0 ns. As described above, in the titanium oxide mesocrystal of the present invention, charge recombination occurs later, so that charge separation can be promoted.

試験例11:電流計測AFM測定
光誘起電荷分離特性を評価するため、UV光源を備えた電流計測AFM測定を行った。
Test Example 11: Current Measurement AFM Measurement In order to evaluate the photoinduced charge separation characteristics, current measurement AFM measurement with a UV light source was performed.

AFM像とI−V曲線は、Olympus IX71倒立型蛍光顕微鏡に取り付けられたORCAモジュール(Asylum Research, Model 59)を備えたMFP-3D原子間力顕微鏡(Asylum Research, Santa Barbara, CA)により得た。全ての電流測定は、Rocky Mountain Nanotechnology, LLCの固体白金カンチレバー(25Pt300B; チップ半径20nm未満)を用いて行った。電子輸送特性は、UV照射又は未照射で、試料表面にマークしたポイントで記録したI−V曲線から評価した。2色ビームスプリッター(Olympus, DM410)を通過したLED(OPTO-LINE, MS-LED-365)からの365nmの光は、減光フィルター(NDフィルター;Olympus)及び対物レンズ(Olympus, UPLSAPO 100XO; 1.40 NA, 100×)を通過させた後、試料に照射された。  AFM images and IV curves were obtained with an MFP-3D atomic force microscope (Asylum Research, Santa Barbara, CA) equipped with an ORCA module (Asylum Research, Model 59) attached to an Olympus IX71 inverted fluorescence microscope. . All current measurements were performed using Rocky Mountain Nanotechnology, LLC solid platinum cantilevers (25Pt300B; tip radius less than 20 nm). The electron transport properties were evaluated from an IV curve recorded at points marked on the sample surface with or without UV irradiation. 365 nm light from an LED (OPTO-LINE, MS-LED-365) that has passed through a two-color beam splitter (Olympus, DM410) is a neutral density filter (ND filter; Olympus) and an objective lens (Olympus, UPLSAPO 100XO; 1.40). The sample was irradiated after passing through NA, 100 ×).

実施例2の酸化チタンメソ結晶においては、UV照射をしない場合には、印加電圧に対する電流応答は見られなかったが、UV照射により明確な光電流応答が見られた(図23)。  In the titanium oxide mesocrystal of Example 2, when UV irradiation was not performed, a current response to the applied voltage was not observed, but a clear photocurrent response was observed by UV irradiation (FIG. 23).

また、実施例2、4及び比較例1の試料について、I−V曲線を測定した結果、同じ強度のUV照射に対して実施例2がより顕著な電流応答を示し、また、電流応答0.5nAに到達するまでのUV照射強度は実施例2のほうが小さくてよいことが見出された(図24)。具体的には、1.9mW/cmのUVを照射した場合には、光電流応答は、実施例2では約1.0nA、実施例4では約2.0nA、比較例1では約0.5nAであった。In addition, as a result of measuring IV curves for the samples of Examples 2 and 4 and Comparative Example 1, Example 2 showed a more remarkable current response to UV irradiation of the same intensity. It was found that the UV irradiation intensity up to 5 nA may be smaller in Example 2 (FIG. 24). Specifically, when UV of 1.9 mW / cm 2 is irradiated, the photocurrent response is about 1.0 nA in Example 2, about 2.0 nA in Example 4, and about 0.2 in Comparative Example 1. It was 5 nA.

さらに、様々な試料のI−V曲線を測定した結果、酸化チタンメソ結晶の幅によっては光電流応答がほとんど変化しないが、厚みによって大きく異なることが示唆された(図25)。I−V値と酸化チタンメソ結晶の厚みの関係から得られた光伝導度は、1.9×10−2Ω−1−1であった。Furthermore, as a result of measuring IV curves of various samples, it was suggested that the photocurrent response hardly changes depending on the width of the titanium oxide mesocrystal, but varies greatly depending on the thickness (FIG. 25). The photoconductivity obtained from the relationship between the IV value and the thickness of the titanium oxide mesocrystal was 1.9 × 10 −2 Ω −1 m −1 .

また、実施例2、4及び比較例1の結晶について、UV照射をやめた後の電流減衰を測定したところ、実施例2は20分より大きく、実施例4は約1分、比較例1は約5分であり、実施例2の酸化チタンメソ結晶が最も維持できていた。  Further, when the current decay of the crystals of Examples 2 and 4 and Comparative Example 1 after the UV irradiation was stopped was measured, Example 2 was larger than 20 minutes, Example 4 was about 1 minute, and Comparative Example 1 was about 1 minute. 5 minutes, and the titanium oxide mesocrystal of Example 2 was most maintained.

以上の試験9〜11の結果から、電子及び正孔の電荷再結合の速度を遅くし、また、電子伝導度を向上させることができ、本発明の酸化チタンナノ結晶の水の光分解、太陽電池の電極材料への有用性が示唆されている。 From the results of Test Examples 9 to 11 described above, the rate of charge recombination of electrons and holes can be reduced, and the electron conductivity can be improved. The utility to the electrode material of a battery is suggested.

実施例8:酸化チタンメソ結晶−ITO膜
まず、TiF、NHNO、NHを含む前駆体水溶液(組成はモル比で、TiF :NHNO:NH:HO=1:6.6:4:117)からなる液層を、ITO膜基板に形成した。具体的には、前駆体水溶液を基板上に滴下した。液層の厚みは、1mm以下となるようにした。ITO基板上に形成した液層を、空気雰囲気下400℃で2時間焼結することで、シリコン基板上に酸化チタンメソ結晶を形成した。その後、酸素雰囲気下400℃で8時間焼成することで、ITO基板上に実施例1の酸化チタンメソ結晶を形成した。
Example 8: Titanium oxide mesocrystal-ITO film
  First, TiF4, NH4NO3, NH4Precursor aqueous solution (composition is molar ratio, TiF 4: NH4NO3: NH4: H2A liquid layer composed of O = 1: 6.6: 4: 117) was formed on the ITO film substrate. Specifically, the precursor aqueous solution was dropped on the substrate. The thickness of the liquid layer was set to 1 mm or less. The liquid layer formed on the ITO substrate was sintered at 400 ° C. for 2 hours in an air atmosphere to form titanium oxide mesocrystals on the silicon substrate. Thereafter, the titanium oxide mesocrystal of Example 1 was formed on the ITO substrate by baking at 400 ° C. for 8 hours in an oxygen atmosphere.

得られた酸化チタンメソ結晶について、試験例4と同様に、電子顕微鏡(SEM)観察をした結果を図26に示す。  About the obtained titanium oxide mesocrystal, the result of having observed with the electron microscope (SEM) similarly to Test Example 4 is shown in FIG.

Claims (15)

平均幅の平均厚みに対する比(平均幅/平均厚み)が10〜100であり、比表面積が10m/g以上である、酸化チタンメソ結晶。
(ここで、平均幅は、その結晶の表面が正方形又は長方形である板状結晶と見立てた場合に、見立てた正方形又は長方形の辺の平均値をいい、平均厚みは、板状結晶の場合はその厚みの平均値、板状でない場合は板状結晶と見立てた場合の厚みの平均値をいう。)
A titanium oxide mesocrystal having a ratio of an average width to an average thickness (average width / average thickness) of 10 to 100 and a specific surface area of 10 m 2 / g or more.
(Here, the average width refers to the average value of the sides of the square or rectangle when the surface of the crystal is considered to be a square or rectangle, and the average thickness is the case of a plate crystal. (The average value of the thickness is the average value of the thickness when it is regarded as a plate-like crystal if it is not a plate shape.)
主な結晶面が[001]面である表面を有し、その表面の平均幅の平均厚みに対する比(平均幅/平均厚み)が10〜100であり、比表面積が10mThe surface has a [001] plane as the main crystal plane, the ratio of the average width of the surface to the average thickness (average width / average thickness) is 10 to 100, and the specific surface area is 10 m. 2 /g以上である、酸化チタンメソ結晶。/ G or more of titanium oxide mesocrystal. 平均幅が2〜8μmである、請求項1又は2に記載の酸化チタンメソ結晶。 The titanium oxide mesocrystal of Claim 1 or 2 whose average width | variety is 2-8 micrometers. 平均厚みが50〜300nmである、請求項1〜3のいずれかに記載の酸化チタンメソ結晶。 The titanium oxide mesocrystal in any one of Claims 1-3 whose average thickness is 50-300 nm. アナターゼ型酸化チタンナノ結晶の集合体である、請求項1〜のいずれかに記載の酸化チタンメソ結晶。 The titanium oxide mesocrystal according to any one of claims 1 to 4 , which is an aggregate of anatase-type titanium oxide nanocrystals. 単結晶である、請求項1〜のいずれかに記載の酸化チタンメソ結晶。 The titanium oxide mesocrystal according to any one of claims 1 to 5 , which is a single crystal. 板状である請求項1〜のいずれかに記載の酸化チタンメソ結晶。 The titanium oxide mesocrystal according to any one of claims 1 to 6 , which has a plate shape. TiF、NHNO、NHF及び水を含み、且つ、TiFとNHNOとの含有比率が1:4〜15(モル比)であり、TiFとNHFとの含有比率が1:1〜9(モル比)である前駆体水溶液を、酸素雰囲気下400〜700℃の条件下に焼成する工程を備える、請求項1〜のいずれかに記載の酸化チタンメソ結晶の製造方法。 TiF 4 , NH 4 NO 3 , NH 4 F and water are contained, the content ratio of TiF 4 and NH 4 NO 3 is 1: 4 to 15 (molar ratio), and TiF 4 and NH 4 F The titanium oxide mesocrystal according to any one of claims 1 to 7 , comprising a step of firing a precursor aqueous solution having a content ratio of 1: 1 to 9 (molar ratio) under a condition of 400 to 700 ° C in an oxygen atmosphere. Manufacturing method. TiF、NHNO、NHF及び水を含み、且つ、TiFとNHNOとの含有比率が1:4〜15(モル比)であり、TiFとNHFとの含有比率が1:1〜9(モル比)である前駆体水溶液を、空気雰囲気又は酸素雰囲気下250〜700℃の条件下に焼成した後に、酸素雰囲気下400〜700℃の条件下に焼成する工程を備える、請求項1〜のいずれかに記載の酸化チタンメソ結晶の製造方法。 TiF 4 , NH 4 NO 3 , NH 4 F and water are contained, the content ratio of TiF 4 and NH 4 NO 3 is 1: 4 to 15 (molar ratio), and TiF 4 and NH 4 F A precursor aqueous solution having a content ratio of 1: 1 to 9 (molar ratio) is fired under a condition of 250 to 700 ° C. in an air atmosphere or an oxygen atmosphere, and then fired under a condition of 400 to 700 ° C. in an oxygen atmosphere. It comprises a method of manufacturing an oxide Chitanmeso crystal according to any one of claims 1-7. 前記前駆体水溶液からなる液層を基板上に形成させた後に焼成する、請求項8又は9に記載の酸化チタンメソ結晶の製造方法。The method for producing a titanium oxide mesocrystal according to claim 8 or 9, wherein a liquid layer composed of the precursor aqueous solution is formed on a substrate and then fired. 基板の表面に、請求項1〜のいずれかに記載の酸化チタンメソ結晶からなる層が形成された複合材料。 A composite material in which a layer made of the titanium oxide mesocrystal according to any one of claims 1 to 7 is formed on a surface of a substrate . 前記基板が、スズドープ酸化インジウム(ITO)又はフッ素ドープ酸化スズ(FTO)である請求項11に記載の複合材料。The composite material according to claim 11, wherein the substrate is tin-doped indium oxide (ITO) or fluorine-doped tin oxide (FTO). 平均幅の平均厚みに対する比(平均幅/平均厚み)が10〜100である、NHTiOF結晶。
(ここで、平均幅は、その結晶の表面が正方形又は長方形である板状結晶と見立てた場合に、見立てた正方形又は長方形の辺の平均値をいい、平均厚みは、板状結晶の場合はその厚みの平均値、板状でない場合は板状結晶と見立てた場合の厚みの平均値をいう。)
NH 4 TiOF 3 crystal having a ratio of average width to average thickness (average width / average thickness) of 10 to 100.
(Here, the average width refers to the average value of the sides of the square or rectangle when the surface of the crystal is considered to be a square or rectangle, and the average thickness is the case of a plate crystal. (The average value of the thickness is the average value of the thickness when it is regarded as a plate-like crystal if it is not a plate shape.)
TiF、NHNO、NHF及び水を含み、且つ、TiFとNHNOとの含有比率が1:4〜15(モル比)であり、TiFとNHFとの含有比率が1:1〜9(モル比)である前駆体水溶液を、空気雰囲気下250〜300℃の条件下に焼成する工程
を備える、請求項13に記載のNHTiOF結晶の製造方法。
TiF 4 , NH 4 NO 3 , NH 4 F and water are contained, the content ratio of TiF 4 and NH 4 NO 3 is 1: 4 to 15 (molar ratio), and TiF 4 and NH 4 F The method for producing an NH 4 TiOF 3 crystal according to claim 13 , comprising a step of firing an aqueous precursor solution having a content ratio of 1: 1 to 9 (molar ratio) in an air atmosphere at 250 to 300 ° C. .
前記前駆体水溶液からなる液層を基板上に形成させた後に焼成する、請求項14に記載のNHThe NH according to claim 14, wherein a liquid layer comprising the precursor aqueous solution is formed on a substrate and then fired. 4 TiOFTiOF 3 結晶の製造方法。Crystal production method.
JP2013556429A 2012-01-31 2013-01-30 Titanium oxide mesocrystal Active JP6061872B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012018148 2012-01-31
JP2012018148 2012-01-31
PCT/JP2013/051972 WO2013115213A1 (en) 2012-01-31 2013-01-30 Titanium oxide mesocrystal

Publications (2)

Publication Number Publication Date
JPWO2013115213A1 JPWO2013115213A1 (en) 2015-05-11
JP6061872B2 true JP6061872B2 (en) 2017-01-18

Family

ID=48905246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013556429A Active JP6061872B2 (en) 2012-01-31 2013-01-30 Titanium oxide mesocrystal

Country Status (2)

Country Link
JP (1) JP6061872B2 (en)
WO (1) WO2013115213A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787408B (en) * 2014-01-14 2015-09-09 华中科技大学 A kind of preparation method of trifluoro oxygen titanium acid ammonium
CN104058453B (en) * 2014-06-19 2015-07-15 浙江大学 Size-controllable spherical anatase type TiO2 mesocrystal and preparation method thereof
JP6802474B2 (en) * 2016-04-28 2020-12-16 富士通株式会社 Photochemical electrode, manufacturing method of photochemical electrode
AU2018277967B2 (en) 2017-05-31 2021-05-27 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
EP3632554A4 (en) 2017-05-31 2021-04-21 Furukawa Electric Co., Ltd. Oxidation catalyst structure for exhaust gas purification and production method thereof, exhaust gas treatment device for vehicle, catalyst molded body, and gas purification method
WO2018221703A1 (en) 2017-05-31 2018-12-06 古河電気工業株式会社 Catalyst structure for catalytic cracking or hydrodesulfurization, catalytic cracking device and hydrodesulfurization device using said catalyst structure, and production method for catalyst structure for catalytic cracking or hydrodesulfurization
EP3632550A4 (en) 2017-05-31 2021-03-03 National University Corporation Hokkaido University Functional structure and production method for functional structure
WO2018221706A1 (en) 2017-05-31 2018-12-06 古河電気工業株式会社 Methanol reforming catalyst structure, methanol reforming device, production method for methanol reforming catalyst structure, and production method for at least one of olefins and aromatic hydrocarbons
EP3632541A4 (en) 2017-05-31 2021-03-10 National University Corporation Hokkaido University Functional structure and production method for functional structure
JPWO2018221702A1 (en) 2017-05-31 2020-03-26 古河電気工業株式会社 Photocatalyst structure, photocatalyst structure composition, photocatalyst coating material, method for producing photocatalyst structure, and method for decomposing aldehydes
EP3632555A4 (en) 2017-05-31 2021-01-27 Furukawa Electric Co., Ltd. Hydrodesulfurization catalyst structure, hydrodesulfurization device provided with said catalyst structure, and production method of hydrodesulfurization catalyst structure
JP7352909B2 (en) 2017-05-31 2023-09-29 国立大学法人北海道大学 Functional structure and method for manufacturing functional structure
CN110691646A (en) 2017-05-31 2020-01-14 古河电气工业株式会社 Catalyst structure for CO conversion or reverse conversion and method for producing same, reaction apparatus for CO conversion or reverse conversion, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11591238B2 (en) 2017-09-15 2023-02-28 Japan Science And Technology Agency Alkaline earth metal titanate crystal laminate
JP7247792B2 (en) * 2019-07-03 2023-03-29 住友大阪セメント株式会社 Titanium oxide powder, dispersion and cosmetics using the same
CN111450878B (en) * 2020-05-08 2023-03-28 河南城建学院 Based on TiO 2 Mono-atom Ir denitration catalyst for mesomorphism and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR113700A0 (en) * 2000-10-31 2000-11-23 Australian Nuclear Science & Technology Organisation Transition metal oxide compositions
JP4360467B2 (en) * 2003-11-20 2009-11-11 独立行政法人科学技術振興機構 Ferroelectric mesocrystal-supported thin film and method for producing the same
JP4997569B2 (en) * 2007-09-14 2012-08-08 独立行政法人産業技術総合研究所 Nanocrystal integrated TiO2 and manufacturing method thereof
JP5137668B2 (en) * 2008-04-17 2013-02-06 花王株式会社 Crystalline mesoporous titania
JP5532305B2 (en) * 2010-01-08 2014-06-25 独立行政法人産業技術総合研究所 Metal oxide nanocrystal manufacturing method, metal oxide nanocrystal array film manufacturing method, metal oxide nanocrystal array film-coated substrate, and manufacturing method thereof

Also Published As

Publication number Publication date
WO2013115213A1 (en) 2013-08-08
JPWO2013115213A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP6061872B2 (en) Titanium oxide mesocrystal
Zhao et al. Structure, synthesis, and applications of TiO2 nanobelts
Fan et al. Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity
Wen et al. Photocatalysis fundamentals and surface modification of TiO2 nanomaterials
Paul et al. Investigation of the optical property and photocatalytic activity of mixed phase nanocrystalline titania
Kong et al. Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4
You et al. CdS nanoparticles/CeO2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity
Han et al. Porous SnO 2 nanowire bundles for photocatalyst and Li ion battery applications
Zhang et al. Anatase TiO2 nanoparticles immobilized on ZnO tetrapods as a highly efficient and easily recyclable photocatalyst
Fang et al. On the unusual properties of anatase TiO2 exposed by highly reactive facets
JP6297095B2 (en) METAL OXIDE MESO CRYSTAL AND METHOD FOR PRODUCING THE SAME
Hou et al. TiO 2 nanotube/Ag–AgBr three-component nanojunction for efficient photoconversion
Kondalkar et al. Microwave-assisted rapid synthesis of highly porous TiO2 thin films with nanocrystalline framework for efficient photoelectrochemical conversion
Temerov et al. Silver-decorated TiO2 inverse opal structure for visible light-induced photocatalytic degradation of organic pollutants and hydrogen evolution
Wu et al. Solvothermal fabrication of La-WO3/SrTiO3 heterojunction with high photocatalytic performance under visible light irradiation
Jedsukontorn et al. Facile preparation of defective black TiO2 through the solution plasma process: effect of parametric changes for plasma discharge on its structural and optical properties
Guo et al. The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation
Huang et al. Effects of N and F doping on structure and photocatalytic properties of anatase TiO 2 nanoparticles
Ji et al. Interfacial insights into 3D plasmonic multijunction nanoarchitecture toward efficient photocatalytic performance
Wang et al. Promoting charge separation in semiconductor nanocrystal superstructures for enhanced photocatalytic activity
Kuang et al. Ti3+ self-doped rutile/anatase/TiO2 (B) mixed-crystal tri-phase heterojunctions as effective visible-light-driven photocatalysts
Wu et al. Enhanced photocatalytic activity of palladium decorated TiO2 nanofibers containing anatase-rutile mixed phase
Zhang et al. Three-dimensional TiO 2 nanotube arrays combined with gC 3 N 4 quantum dots for visible light-driven photocatalytic hydrogen production
Mollavali et al. Band gap reduction of (Mo+ N) co-doped TiO2 nanotube arrays with a significant enhancement in visible light photo-conversion: A combination of experimental and theoretical study
Khan et al. Characterization and photocatalytic performance of hydrothermally synthesized Cu-doped TiO2 NPs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161213

R150 Certificate of patent or registration of utility model

Ref document number: 6061872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250