JP6061348B2 - Satellite tracking antenna system and satellite tracking antenna control method - Google Patents

Satellite tracking antenna system and satellite tracking antenna control method Download PDF

Info

Publication number
JP6061348B2
JP6061348B2 JP2014024321A JP2014024321A JP6061348B2 JP 6061348 B2 JP6061348 B2 JP 6061348B2 JP 2014024321 A JP2014024321 A JP 2014024321A JP 2014024321 A JP2014024321 A JP 2014024321A JP 6061348 B2 JP6061348 B2 JP 6061348B2
Authority
JP
Japan
Prior art keywords
axis
gimbal
interference
tracking antenna
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014024321A
Other languages
Japanese (ja)
Other versions
JP2015150929A (en
Inventor
皓平 須崎
皓平 須崎
杉山 隆利
隆利 杉山
上羽 正純
正純 上羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Nippon Telegraph and Telephone Corp
Original Assignee
NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY, Nippon Telegraph and Telephone Corp filed Critical NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Priority to JP2014024321A priority Critical patent/JP6061348B2/en
Publication of JP2015150929A publication Critical patent/JP2015150929A/en
Application granted granted Critical
Publication of JP6061348B2 publication Critical patent/JP6061348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば船舶に搭載され、静止通信衛星の方向に衛星追尾アンテナ(例えばアンテナ反射鏡面)の指向方向を自動制御する衛星追尾アンテナシステムおよび衛星追尾アンテナ制御方法に関する。   The present invention relates to a satellite tracking antenna system and a satellite tracking antenna control method that are mounted on, for example, a ship and automatically control the pointing direction of a satellite tracking antenna (for example, an antenna reflector) in the direction of a stationary communication satellite.

地上移動通信網では電波が届かない外洋を航行する船舶においては、通常、衛星通信システムを用いて通信が確保されている。この通信を確保するためには、波浪等による船舶の動揺に対しても、常にアンテナ反射鏡面の主ビーム方向を一定の指向方向精度で静止通信衛星に向ける衛星追尾アンテナが船舶に搭載される。   In a ship navigating in the open sea where radio waves do not reach in the ground mobile communication network, communication is usually secured using a satellite communication system. In order to ensure this communication, the ship is equipped with a satellite tracking antenna that always directs the main beam direction of the antenna reflector surface to the stationary communication satellite with a certain directivity direction accuracy even when the ship is shaken by waves or the like.

この衛星追尾アンテナでは、2軸〜4軸のジンバル機構とそれに取り付けたエンコーダーによりジンバル角度をフィードバックし、船舶の動揺にかかわらず、アンテナ反射鏡面の主ビーム方向を静止通信衛星に常に向ける制御系を構成している(非特許文献1)。特に、制御系構成の特徴としては、1つのジンバル軸毎に独立に制御系を構成し、回転角度等のセンサ出力を用いて、モータによりジンバル軸が駆動されている。   In this satellite tracking antenna, a gimbal angle is fed back by a 2-axis to 4-axis gimbal mechanism and an encoder attached to it, and a control system that always directs the main beam direction of the antenna reflector to the geostationary communication satellite regardless of the movement of the ship. (Non-patent document 1). In particular, as a feature of the control system configuration, a control system is configured independently for each gimbal axis, and the gimbal axis is driven by a motor using a sensor output such as a rotation angle.

ここで、図1に示すように、船舶に設置された衛星追尾アンテナが4つの駆動軸(Gi 軸、iは1〜4)を有するジンバルプラットフォームから構成されるとする。この場合、各軸の運動方程式は (1)〜(4) 式のように表される。
11θ"1 =T1 …(1)
22θ"2 =T2 …(2)
33θ"3 =T3 …(3)
44θ"4 =T4 …(4)
θi :Gi 軸の回転角度
θ'i:Gi 軸の回転角速度
θ"i:Gi 軸の回転角加速度
ii:構成物体iのGi 軸回りの慣性能率
i :構成物体iへのトルク
Here, as shown in FIG. 1, it is assumed that the satellite tracking antenna installed on the ship is composed of a gimbal platform having four drive axes (G i axis, i is 1 to 4). In this case, the equations of motion for each axis are expressed as in equations (1) to (4).
I 11 θ ” 1 = T 1 (1)
I 22 θ " 2 = T 2 (2)
I 33 θ " 3 = T 3 (3)
I 44 θ " 4 = T 4 (4)
θ i : G i axis rotation angle θ ′ i : G i axis rotation angular velocity θ " i : G i axis rotation angular acceleration I ii : Percentage of inertia of component object i around G i axis T i : Component object i Torque to

これに基づき、従来技術による4軸ジンバルの制御系は、図2のように、各Gi 軸独立で、制御則処理部、サーボモータ、追尾アンテナを構成する各物体(以下、構成物体という)iにより構成される。従来技術による制御系の処理手順を図3に示す。 Based on this, the control system of the conventional 4-axis gimbal, as shown in FIG. 2, is independent of each G i axis, and each object constituting the control law processing unit, servo motor, and tracking antenna (hereinafter referred to as a component object). i. The processing procedure of the control system according to the prior art is shown in FIG.

図2および図3において、Gi 軸への回転角コマンドθicを入力し(S1)、Gi 軸の実測された回転角θi との差分を計算し(S2)、制御則に基づきサーボモータへのコマンドを計算し(S3)、サーボモータにより構成物体iへのトルクTi を発生させる(S4)。このとき、構成物体iに作用する外乱トルクTdiが加わって構成物体iがGi 軸回りに回転し(S5)、Gi 軸の回転角度θi および回転角速度θ'iを計測し(S6)、ステップS2,S3にフィードバックする。 2 and 3, enter the rotation angle command theta ics to G i axis (S1), calculates a difference between the rotational angle theta i actually measured of G i axis (S2), the servo on the basis of the control law A command to the motor is calculated (S3), and a torque T i to the component i is generated by the servo motor (S4). In this case, configuration object i subjected to any disturbance torque T di acting on configuration object i is rotated in G i axis (S5), to measure the rotation angle theta i and the rotational angular velocity theta 'i of G i axis (S6 ) And feed back to steps S2 and S3.

桧垣、土谷、“船舶用ブロードバンドアンテナにおける防振機構系と追尾制御系の設計手法について”, 電子情報通信学会論文誌B, Vol.J91-B, No.12, pp.1578-1586, 2008Higaki, Tsuchiya, “Design methods for vibration isolation and tracking control systems in marine broadband antennas”, IEICE Transactions B, Vol.J91-B, No.12, pp.1578-1586, 2008

中型および大型の船舶に比して、大きな動揺を受ける小型船舶に搭載する衛星追尾アンテナの制御系を想定する。小型船舶において、仰角および方位角のみを駆動する2軸のジンバルによる衛星追尾アンテナを構成した場合、小型船舶であるが故に発生する2軸のジンバル間の干渉が大きくなる。通常、ジンバルを用いたアンテナ追尾機構はそのジンバル軸数に応じて2入力2出力から4入力4出力になるが、現在は中型・大型の船舶への搭載を前提としているために各軸に発生する角速度・角度変動は小さく、制御設計上問題にならないとして、1入力1出力の独立の設計あるいは、干渉係数なる評価指標による得られるゲイン余裕、位相余裕変動の小さい範囲で1入力1出力系の制御系設計がなされている。   Assuming a satellite tracking antenna control system mounted on a small ship that is subject to large fluctuations compared to medium and large ships. In a small vessel, when a satellite tracking antenna with a biaxial gimbal that drives only the elevation angle and the azimuth angle is configured, the interference between the biaxial gimbals generated due to the small vessel becomes large. Normally, the gimbal antenna tracking mechanism changes from 2-input 2-output to 4-input 4-output according to the number of gimbal axes, but it is currently assumed to be mounted on medium-sized and large ships, so it occurs on each axis. Assuming that the angular velocity and angle fluctuations are small and do not pose a problem in control design, the independent design of one input and one output or the one input and one output system within a range where gain margin and phase margin fluctuation obtained by an evaluation index that is an interference coefficient are small. The control system is designed.

しかしながら、小型船舶で発生するようなより大きな動揺で、かつ、より高い周波数の外乱トルク環境において所望の指向方向精度を達成しようとした場合、ジンバル軸の非直交性により大きな軸間および他軸の運動による干渉トルクが発生し、指向方向精度が低下する、更には各軸独立に構成した1入力1出力の制御系の安定性が損なわれるという課題があった。   However, when attempting to achieve the desired pointing accuracy in a larger turbulence and higher frequency disturbance torque environment such as occurs in a small vessel, the non-orthogonality of the gimbal axes can cause large inter-axis and other axis There is a problem in that interference torque due to movement is generated, the pointing direction accuracy is lowered, and the stability of the control system of one input and one output configured independently for each axis is impaired.

本発明は、このような課題を解決し、小型船舶で想定される動揺下でも高精度な衛星追尾制御が可能な衛星追尾アンテナシステムおよび衛星追尾アンテナ制御方法を提供することを目的とする。   An object of the present invention is to solve such a problem and to provide a satellite tracking antenna system and a satellite tracking antenna control method capable of performing highly accurate satellite tracking control even under a fluctuation assumed in a small ship.

第1の発明は、複数のジンバル軸より構成されるジンバルプラットフォームと、該プラットフォーム上に搭載される衛星追尾アンテナとを備えた衛星追尾アンテナシステムにおいて、複数のジンバル軸の回転角度および回転角速度と、既知である構成物体の物理特性とを用いて、各ジンバル軸に対して他の全てのジンバル軸の運動により発生する干渉成分を算定する干渉補償手段と、各ジンバル軸に対する干渉成分を打ち消すように制御トルクを発生し、各ジンバル軸の制御を行う制御手段とを備える。干渉補償手段は、以下に示す (5)〜(8) 式で表される運動方程式を解くことにより干渉成分を算定する。   A first invention provides a satellite tracking antenna system including a gimbal platform including a plurality of gimbal axes, and a satellite tracking antenna mounted on the platform, and a rotation angle and a rotation angular velocity of the plurality of gimbal axes, Interference compensation means for calculating the interference component generated by the motion of all other gimbals axes with respect to each gimbal axis using the physical characteristics of the known component, and canceling the interference components for each gimbal axis Control means for generating control torque and controlling each gimbal shaft. The interference compensation means calculates the interference component by solving the equation of motion represented by the following equations (5) to (8).

第2の発明は、複数のジンバル軸より構成されるジンバルプラットフォームと、該プラットフォーム上に搭載される衛星追尾アンテナとを備え、該衛星追尾アンテナのアンテナ指向方向を制御する衛星追尾アンテナ制御方法において、複数のジンバル軸の回転角度および回転角速度と、既知である構成物体の物理特性とを用いて、各ジンバル軸に対して他の全てのジンバル軸の運動により発生する干渉成分を算定する干渉補償ステップと、各ジンバル軸に対する干渉成分を打ち消すように制御トルクを発生し、各ジンバル軸の制御を行う制御ステップとを有する。干渉補償ステップでは、以下に示す (5)〜(8) 式で表される運動方程式を解くことにより干渉成分を算定するAccording to a second aspect of the present invention, there is provided a satellite tracking antenna control method comprising: a gimbal platform including a plurality of gimbal axes; and a satellite tracking antenna mounted on the platform, wherein the antenna tracking direction of the satellite tracking antenna is controlled. Interference compensation step for calculating interference components generated by the motion of all other gimbal axes with respect to each gimbal axis using the rotation angles and rotational angular velocities of the plurality of gimbal axes and the known physical properties of the constituent object If, it generates a control torque so as to cancel the interference component for each gimbal axis, and a control step intends line controls each gimbal axis. In the interference compensation step, the interference component is calculated by solving the equation of motion expressed by the following equations (5) to (8) .

本発明は、ジンバルプラットフォームの各軸の非直交性により発生する干渉成分(干渉トルク)を、構成物体である例えばアンテナ反射鏡面およびジンバルプラットフォームの質量、慣性能率等の物理特性、ジンバル軸の回転角度、回転角速度の情報を用いて補償し、安定で高精度な指向方向を達成することができる。これにより、小型船舶で発生するような大きな動揺で、かつ高い周波数の外乱トルク環境であっても、所望の指向方向精度を安定に達成することができる。   In the present invention, an interference component (interference torque) generated due to non-orthogonality of each axis of the gimbal platform is converted into physical characteristics such as the mass of the antenna reflecting mirror surface and the gimbal platform that are constituent objects, the inertial performance ratio, the rotation angle of the gimbal axis Compensation is performed using information on the rotational angular velocity, and a stable and highly accurate pointing direction can be achieved. As a result, the desired directivity accuracy can be stably achieved even in a high-frequency disturbance torque environment with large fluctuations that occur in small ships.

4軸ジンバルによる衛星追尾アンテナの構成例を示す図である。It is a figure which shows the structural example of the satellite tracking antenna by a 4-axis gimbal. 従来技術による4軸ジンバルの制御系を示す図である。It is a figure which shows the control system of the 4-axis gimbal by a prior art. 従来技術による制御系の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the control system by a prior art. 本発明による干渉補償を行う制御系を示す図である。It is a figure which shows the control system which performs the interference compensation by this invention. 本発明による制御系の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the control system by this invention. 各構成物体と設定座標系を示す図である。It is a figure which shows each structural object and a setting coordinate system.

本発明は、従来の衛星追尾アンテナでは用いられていない他軸からの干渉の補償を各軸ごとに行うことを特徴とする。   The present invention is characterized in that each axis compensates for interference from other axes that are not used in the conventional satellite tracking antenna.

図1に示したジンバルプラットフォームの4つの駆動軸(G1 ,G2 ,G3 ,G4 軸)の基準点からの回転角度および船舶に対する回転角速度を計測する。本計測方法については、軸毎に取り付けたセンサにより直接、あるいは、ジンバル軸毎に慣性航法装置を装着し、慣性航法装置間の相対オイラー角度、オイラー角速度からの計算により求める。これら得られた回転角度θi および回転角速度θ'i、追尾アンテナを構成する構成物体iの物理特性(慣性行列、質量、重心位置等)を用いて、制御対象とするジンバル軸に作用する他軸の運動の影響を補正する。 The rotational angle from the reference point of the four drive shafts (G 1 , G 2 , G 3 , G 4 axes) of the gimbal platform shown in FIG. 1 and the rotational angular velocity with respect to the ship are measured. This measurement method is obtained by calculation from the relative Euler angles and Euler angular velocities between the inertial navigation devices, either directly by a sensor attached to each axis or by mounting an inertial navigation device for each gimbal axis. Using the obtained rotation angle θ i and rotation angular velocity θ ′ i and the physical characteristics (inertia matrix, mass, position of the center of gravity, etc.) of the constituent object i constituting the tracking antenna, other than acting on the gimbal axis to be controlled Compensate for shaft movement effects.

一般に、図1のような4軸ジンバルの運動方程式は、 (5)〜(8) 式のように表される。 C11θ"1+C21θ"2+C31θ"3+C41θ"4+f1 =T1 …(5)
12θ"1+C22θ"2+C32θ"3+C42θ"4+f2 =T2 …(6)
13 θ" 1 +C23θ"2+C33θ"3+C43θ"4+f3 =T3 …(7)
14θ"1+C24θ"2+C34θ"3+C44θ"4+f4 =T4 …(8)
ij:構成物体iから構成物体jへの干渉係数
ただし、Ciiは構成物体iのGi 軸回りの慣性能率(Iii
i :構成物体の回転角度(θ1234)、回転角速度(θ'1,θ'2,θ'3,θ'4) により構成物体iに作用するトルク。当該角度、角速度と構成物体の物理特性 (慣性行列、質量、重心位置、重心から各軸までの最短距離)の関数
i :構成物体iに作用する制御トルクおよび干渉トルクの総和
In general, the equation of motion of a 4-axis gimbal as shown in FIG. 1 is expressed by the following equations (5) to (8). C 11 θ " 1 + C 21 θ" 2 + C 31 θ " 3 + C 41 θ" 4 + f 1 = T 1 (5)
C 12 θ " 1 + C 22 θ" 2 + C 32 θ " 3 + C 42 θ" 4 + f 2 = T 2 (6)
C 13 θ ″ 1 + C 23 θ ″ 2 + C 33 θ ″ 3 + C 43 θ ″ 4 + f 3 = T 3 (7)
C 14 θ " 1 + C 24 θ" 2 + C 34 θ " 3 + C 44 θ" 4 + f 4 = T 4 (8)
C ij : Coefficient of interference from constituent object i to constituent object j
Where C ii is the inertia ratio (I ii ) of the constituent object i around the G i axis.
f i : Torque acting on the component i depending on the rotation angle (θ 1 , θ 2 , θ 3 , θ 4 ) and rotation angular velocity (θ ′ 1 , θ ′ 2 , θ ′ 3 , θ ′ 4 ) of the component. Function of the angle, the angular velocity, and the physical characteristics of the constituent object (inertia matrix, mass, center of gravity position, shortest distance from the center of gravity to each axis) T i : sum of control torque and interference torque acting on the constituent object i

船舶が小型化すると波の影響を受けやすくなり、従ってジンバルプラットフォーム全体が大きな動揺を受けることになる。これにより、これまで無視することができていたGi 軸回りに対する、Gj 軸の角加速度に起因する干渉トルクCijθ"jおよびGj 軸の角度、角速度に起因する干渉トルクfi は無視できなくなる。例えば、G1 軸には、G2 ,G3 ,G4 軸からC21θ"2,C31θ"3,C41θ"4,f1 の干渉トルクを受けるが、これらは大きさ、位相不明なトルクとして制御系へ入力され、指向方向誤差の増加および制御系の安定余裕の減少、不安定化をもたらす。さらに、自軸回りと他軸回りの運動の相互作用によって、当該軸および他軸の独立に設計した制御系が共に不安定化することもありうる。 As ships become smaller, they are more susceptible to waves, and the entire gimbal platform is therefore greatly shaken. As a result, the interference torque C ij θ " j caused by the angular acceleration of the G j axis and the interference torque f i caused by the angle and angular velocity of the G j axis with respect to the G i axis, which could be ignored until now, are For example, the G 1 axis receives interference torques of C 21 θ ″ 2 , C 31 θ ″ 3 , C 41 θ ″ 4 , and f 1 from the G 2 , G 3 , and G 4 axes. Is input to the control system as a torque whose magnitude and phase are unknown, resulting in an increase in pointing direction error, a decrease in the stability margin of the control system, and instability. Furthermore, due to the interaction between the movements about the own axis and the other axis, the control system designed independently for the axis and the other axis may become unstable.

しかしながら、Gi 軸に対するこのような干渉トルクCjiθ"j,fi は、 (5)〜(8) 式に基づき各構成物体の物理特性およびジンバル軸の回転角、回転角速度を用いることにより時々刻々算定が可能である。したがって、これら干渉トルクを打ち消すように、制御トルクにあらかじめ加算することにより、あたかも各軸を独立に設計可能となり、安定性を確保した上で、所望の指向方向精度の維持することができる。 However, such interference torque C ji θ " j , f i with respect to the G i axis is obtained by using the physical characteristics of each component, the rotation angle of the gimbal axis, and the rotation angular velocity based on the equations (5) to (8). Therefore, it is possible to design each axis independently by adding them to the control torque in advance so as to cancel out these interference torques, ensuring the stability and ensuring the desired pointing direction accuracy. Can be maintained.

図4は、本発明による干渉補償を行う制御系を示す。ここでは、G1 軸制御部20−1のみを具体的に示すが、G2 軸制御部20−2〜G4 軸制御部20−4についても同様である。 FIG. 4 shows a control system for performing interference compensation according to the present invention. Here, only the G 1 axis control unit 20-1 is specifically shown, but the same applies to the G 2 axis control unit 20-2 to the G 4 axis control unit 20-4.

図4において、Gi 軸の回転角度θi および回転角速度θ'iを計測して干渉補償器10に入力し、さらに構成物体iの物理特性を用いて、他のGj 軸の運動により発生する干渉トルクCjiθ"j,fi を計算し、それぞれGi 軸制御部20−iに入力する。Gi 軸制御部20−iは、図2に示す構成と同様の制御則処理部、サーボモータ、構成物体iに加えて、干渉補償器10から干渉トルクを入力し、これを打ち消すようにモータコマンドへ合成するコマンド合成部を備える。 In FIG. 4, the rotation angle θ i and the rotation angular velocity θ ′ i of the G i axis are measured and input to the interference compensator 10, and further generated by the movement of another G j axis using the physical characteristics of the constituent object i. interference torques C ji θ "j which computes f i, .G i axis control unit 20-i to be inputted to the G i axis control unit 20-i, respectively, configured similar to the control law unit shown in FIG. 2 In addition to the servo motor and the constituent object i, a command synthesizing unit that inputs interference torque from the interference compensator 10 and synthesizes it into a motor command so as to cancel it is provided.

なお、構成物体i毎の物理特性としては、慣性行列Ii 、質量mi 、重心位置 ig、接続点位置(接続点までの距離) iGj があり、これらは構成物体iに設定した座標系を基準に表される。 The physical characteristics for each constituent object i include an inertia matrix I i , mass m i , gravity center position R ig , and connection point position (distance to the connection point) r iGj, which are the coordinates set for the component object i. Expressed on the basis of the system.

図5は、本発明による制御系の処理手順を示す。
図4および図5において、Gi 軸への回転角コマンドθicを入力し(S1)、Gi 軸の実測された回転角θi との差分を計算し(S2)、制御則に基づきサーボモータへのコマンドを計算する(S3)。一方、干渉補償器10では、Gi 軸の回転角度θi と、回転角速度θ'iと、構成物体iの物理特性(定数)を入力し、(5)〜(8)式に基づいて干渉トルクCjiθ"j,fi および外乱トルクTdiを計算し、それらをモータコマンドへ変換してGi 軸制御部20−iのコマンド合成部に入力し、それらを打ち消すようにモータコマンドを合成する(S11)。そして、サーボモータにより構成物体iへのトルクTi を発生させ(S4)、構成物体iがGi 軸回りに回転し(S5)、Gi 軸の回転角度θi および回転角速度θ'iを計測し(S6)、ステップS2,S3にフィードバックする。
FIG. 5 shows a processing procedure of the control system according to the present invention.
4 and 5, enter the rotation angle command theta ics to G i axis (S1), calculates a difference between the rotational angle theta i actually measured of G i axis (S2), the servo on the basis of the control law A command to the motor is calculated (S3). On the other hand, the interference compensator 10 inputs the rotation angle θ i of the G i axis, the rotation angular velocity θ ′ i, and the physical characteristics (constants) of the constituent object i, and performs interference based on the equations (5) to (8). torque C ji θ "j, calculates the f i and the disturbance torque T di, they enter by converting the motor command to the command combining unit G i axis control unit 20-i, the motor command to cancel them Then, the torque T i to the component i is generated by the servo motor (S4), the component i rotates around the G i axis (S5), and the rotation angle θ i of the G i axis and The rotational angular velocity θ ′ i is measured (S6) and fed back to steps S2 and S3.

なお、本補償法は、ジンバルプラットフォームの軸数によらず、4軸未満、4軸以上の場合も動揺に適用可能である。また、図1に示す衛星追尾アンテナにおける構成物体1〜4の定義を図6に示す。   Note that this compensation method can be applied to oscillation even when the number of axes of the gimbal platform is less than 4 axes or more than 4 axes. Moreover, the definition of the structural objects 1-4 in the satellite tracking antenna shown in FIG. 1 is shown in FIG.

10 干渉補償器
20−1 G1 軸制御部
20−2 G2 軸制御部
20−3 G3 軸制御部
20−4 G4 軸制御部
DESCRIPTION OF SYMBOLS 10 Interference compensator 20-1 G 1 axis control part 20-2 G 2 axis control part 20-3 G 3 axis control part 20-4 G 4 axis control part

Claims (2)

複数のジンバル軸より構成されるジンバルプラットフォームと、該プラットフォーム上に搭載される衛星追尾アンテナとを備えた衛星追尾アンテナシステムにおいて、
前記複数のジンバル軸の回転角度および回転角速度と、既知である構成物体の物理特性とを用いて、各ジンバル軸に対して他の全てのジンバル軸の運動により発生する干渉成分を算定する干渉補償手段と、
前記各ジンバル軸に対する干渉成分を打ち消すように制御トルクを発生し、前記各ジンバル軸の制御を行う制御手段と
を備え
前記干渉補償手段は、4つのジンバル軸の回転角度および回転角速度と、既知である構成物体の物理特性とを用い、以下の運動方程式を解くことにより前記干渉成分を算定すること特徴とする衛星追尾アンテナシステム。
11 θ" 1 +C 21 θ" 2 +C 31 θ" 3 +C 41 θ" 4 +f 1 =T 1
12 θ" 1 +C 22 θ" 2 +C 32 θ" 3 +C 42 θ" 4 +f 2 =T 2
13 θ" 1 +C 23 θ" 2 +C 33 θ" 3 +C 43 θ" 4 +f 3 =T 3
14 θ" 1 +C 24 θ" 2 +C 34 θ" 3 +C 44 θ" 4 +f 4 =T 4
ij :構成物体iから構成物体jへの干渉係数
ただし、C ii は構成物体iのG i 軸回りの慣性能率(I ii
i :構成物体の回転角度(θ 1 2 3 4 )、回転角速度(θ' 1 ,θ' 2 ,θ' 3 ,θ' 4 ) により構成物体iに作用するトルク。当該角度、角速度と構成物体の物理特性 (慣性行列、質量、重心位置、重心から各軸までの最短距離)の関数
i :構成物体iに作用する制御トルクおよび干渉トルクの総和
In a satellite tracking antenna system comprising a gimbal platform composed of a plurality of gimbal axes and a satellite tracking antenna mounted on the platform,
Interference compensation for calculating interference components generated by the motion of all other gimbal axes with respect to each gimbal axis by using the rotation angle and rotation angular velocity of the plurality of gimbal axes and the physical characteristics of known constituent objects. Means,
Control means for generating a control torque so as to cancel the interference component with respect to each gimbal axis, and for controlling each gimbal axis , and
The interference compensation unit, satellite, characterized in that to calculate the interference component by solving the rotation angle and angular velocity of the four gimbal axis, using the physical properties of the known arrangement the object, the following equation of motion Tracking antenna system.
C 11 θ " 1 + C 21 θ" 2 + C 31 θ " 3 + C 41 θ" 4 + f 1 = T 1
C 12 θ " 1 + C 22 θ" 2 + C 32 θ " 3 + C 42 θ" 4 + f 2 = T 2
C 13 θ " 1 + C 23 θ" 2 + C 33 θ " 3 + C 43 θ" 4 + f 3 = T 3
C 14 θ " 1 + C 24 θ" 2 + C 34 θ " 3 + C 44 θ" 4 + f 4 = T 4
C ij : Coefficient of interference from constituent object i to constituent object j
Where C ii is the inertia ratio (I ii ) of the constituent object i around the G i axis.
f i : Torque acting on the constituent object i according to the rotational angle (θ 1 , θ 2 , θ 3 , θ 4 ) and rotational angular velocity (θ ′ 1 , θ ′ 2 , θ ′ 3 , θ ′ 4 ) of the constituent object. Functions of the angle, angular velocity, and physical properties of the object (inertia matrix, mass, center of gravity position, minimum distance from the center of gravity to each axis)
T i : Sum of control torque and interference torque acting on component i
複数のジンバル軸より構成されるジンバルプラットフォームと、該プラットフォーム上に搭載される衛星追尾アンテナとを備え、該衛星追尾アンテナのアンテナ指向方向を制御する衛星追尾アンテナ制御方法において、
前記複数のジンバル軸の回転角度および回転角速度と、既知である構成物体の物理特性とを用いて、各ジンバル軸に対して他の全てのジンバル軸の運動により発生する干渉成分を算定する干渉補償ステップと、
前記各ジンバル軸に対する干渉成分を打ち消すように制御トルクを発生し、前記各ジンバル軸の制御を行う制御ステップと
を有し、
前記干渉補償ステップでは、4つのジンバル軸の回転角度および回転角速度と、既知である構成物体の物理特性とを用い、以下の運動方程式を解くことにより前記干渉成分を算定すること特徴とする衛星追尾アンテナ制御方法。
11 θ" 1 +C 21 θ" 2 +C 31 θ" 3 +C 41 θ" 4 +f 1 =T 1
12 θ" 1 +C 22 θ" 2 +C 32 θ" 3 +C 42 θ" 4 +f 2 =T 2
13 θ" 1 +C 23 θ" 2 +C 33 θ" 3 +C 43 θ" 4 +f 3 =T 3
14 θ" 1 +C 24 θ" 2 +C 34 θ" 3 +C 44 θ" 4 +f 4 =T 4
ij :構成物体iから構成物体jへの干渉係数
ただし、C ii は構成物体iのG i 軸回りの慣性能率(I ii
i :構成物体の回転角度(θ 1 2 3 4 )、回転角速度(θ' 1 ,θ' 2 ,θ' 3 ,θ' 4 ) により構成物体iに作用するトルク。当該角度、角速度と構成物体の物理特性 (慣性行列、質量、重心位置、重心から各軸までの最短距離)の関数
i :構成物体iに作用する制御トルクおよび干渉トルクの総和
In a satellite tracking antenna control method comprising a gimbal platform composed of a plurality of gimbal axes, and a satellite tracking antenna mounted on the platform, and controlling the antenna pointing direction of the satellite tracking antenna,
Interference compensation for calculating interference components generated by the motion of all other gimbal axes with respect to each gimbal axis by using the rotation angle and rotation angular velocity of the plurality of gimbal axes and the physical characteristics of known constituent objects. Steps,
Wherein generating a control torque so as to cancel the interference component for each gimbal axis, and a row intends control step of controlling the respective gimbal axis
Have
In the interference compensation step, satellite, wherein the rotation angle and angular velocity of the four gimbal axis, using the physical properties of the known arrangement the object, to calculate the interference component by solving the following equation of motion Tracking antenna control method.
C 11 θ " 1 + C 21 θ" 2 + C 31 θ " 3 + C 41 θ" 4 + f 1 = T 1
C 12 θ " 1 + C 22 θ" 2 + C 32 θ " 3 + C 42 θ" 4 + f 2 = T 2
C 13 θ " 1 + C 23 θ" 2 + C 33 θ " 3 + C 43 θ" 4 + f 3 = T 3
C 14 θ " 1 + C 24 θ" 2 + C 34 θ " 3 + C 44 θ" 4 + f 4 = T 4
C ij : Coefficient of interference from constituent object i to constituent object j
Where C ii is the inertia ratio (I ii ) of the constituent object i around the G i axis.
f i : Torque acting on the constituent object i according to the rotational angle (θ 1 , θ 2 , θ 3 , θ 4 ) and rotational angular velocity (θ ′ 1 , θ ′ 2 , θ ′ 3 , θ ′ 4 ) of the constituent object. Functions of the angle, angular velocity, and physical properties of the object (inertia matrix, mass, center of gravity position, minimum distance from the center of gravity to each axis)
T i : Sum of control torque and interference torque acting on component i
JP2014024321A 2014-02-12 2014-02-12 Satellite tracking antenna system and satellite tracking antenna control method Active JP6061348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014024321A JP6061348B2 (en) 2014-02-12 2014-02-12 Satellite tracking antenna system and satellite tracking antenna control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014024321A JP6061348B2 (en) 2014-02-12 2014-02-12 Satellite tracking antenna system and satellite tracking antenna control method

Publications (2)

Publication Number Publication Date
JP2015150929A JP2015150929A (en) 2015-08-24
JP6061348B2 true JP6061348B2 (en) 2017-01-18

Family

ID=53893661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014024321A Active JP6061348B2 (en) 2014-02-12 2014-02-12 Satellite tracking antenna system and satellite tracking antenna control method

Country Status (1)

Country Link
JP (1) JP6061348B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808447A (en) * 2019-10-24 2020-02-18 迪泰(浙江)通信技术有限公司 Shipborne satellite antenna system based on triaxial dynamic tracking technology

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3393025B2 (en) * 1996-12-12 2003-04-07 日本無線株式会社 Three-axis controller for directional antenna
JP4192780B2 (en) * 2003-12-26 2008-12-10 株式会社安川電機 Robot control device
JP4463287B2 (en) * 2007-02-07 2010-05-19 Nec東芝スペースシステム株式会社 Posture change control method, posture change control system, posture change control program, and program recording medium

Also Published As

Publication number Publication date
JP2015150929A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
Dogancay UAV path planning for passive emitter localization
JP6471749B2 (en) Position / orientation estimation apparatus, image processing apparatus, and position / orientation estimation method
EA039190B1 (en) Methods and apparatus to minimize command dynamics of a satellite
JP5907535B2 (en) Satellite tracking antenna system and satellite tracking antenna control method
JP5605539B2 (en) MOBILE POSITION ESTIMATION TRACKING DEVICE, MOBILE POSITION ESTIMATION TRACKING METHOD, AND MOBILE POSITION ESTIMATION TRACKING PROGRAM
US11372072B2 (en) Radio beacon system
Jung et al. Autonomous mapping of underwater magnetic fields using a surface vehicle
KR101235692B1 (en) Geo-pointing Apparatus and Method using Inertial Navigation System
JP6300322B2 (en) Satellite tracking antenna system and satellite tracking antenna control method
JP6061348B2 (en) Satellite tracking antenna system and satellite tracking antenna control method
Ahn et al. Evaluation of five control algorithms for addressing CMG induced jitter on a spacecraft testbed
JP6601418B2 (en) Cooperative control apparatus and cooperative control method
Hong et al. Kinematic algorithms and robust controller design for inertially stabilized system
JP2008241321A (en) Rcs control apparatus
Saini et al. Air-to-air tracking of a maneuvering target with gimbaled radar
JP4535187B2 (en) Antenna attitude control device
Panferov et al. Synthesis of a control system for relative movement of closely spaced satellites
Cho et al. Monopulse tracking performance of a satcom antenna on a moving platform
Leghmizi et al. Kinematics modeling for satellite antenna dish stabilized platform
Hilkert et al. Development of mirror stabilization line-of-sight rate equations for an unconventional sensor-to-gimbal orientation
RU2336611C1 (en) Method of signal emission for stabilisation of antenna reflector direction to alignment object with simultaneous signal emission for roll-rate rotation braking of mobile carrier during antenna base rotation for antenna fixed rigidly inside roll-rate rotation mobile carrier case, and system for its implementation
US8355635B1 (en) Gyro-aided pointing control for laser communications
Chernodarov et al. A SPATIALLY DISTRIBUTED MICRONAVIGATTION SYSTEM FOR A SYNTHETIC–APERTURE RADAR
JP2019199238A (en) Cruising control method and cruising control device
Ranka et al. System identification of the Green Bank Telescope structure and servo system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161208

R150 Certificate of patent or registration of utility model

Ref document number: 6061348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350