JP4535187B2 - Antenna attitude control device - Google Patents

Antenna attitude control device Download PDF

Info

Publication number
JP4535187B2
JP4535187B2 JP2008264973A JP2008264973A JP4535187B2 JP 4535187 B2 JP4535187 B2 JP 4535187B2 JP 2008264973 A JP2008264973 A JP 2008264973A JP 2008264973 A JP2008264973 A JP 2008264973A JP 4535187 B2 JP4535187 B2 JP 4535187B2
Authority
JP
Japan
Prior art keywords
satellite
antenna
moving body
angle
polarization angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008264973A
Other languages
Japanese (ja)
Other versions
JP2009284458A (en
Inventor
大輔 塚原
耕一 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008264973A priority Critical patent/JP4535187B2/en
Publication of JP2009284458A publication Critical patent/JP2009284458A/en
Application granted granted Critical
Publication of JP4535187B2 publication Critical patent/JP4535187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、船舶等の移動体に搭載され、衛星を追尾する衛星通信用アンテナの偏波角制御を行うアンテナ姿勢制御装置に関するものである。   The present invention relates to an antenna attitude control device that is mounted on a moving body such as a ship and performs polarization angle control of a satellite communication antenna that tracks a satellite.

船舶等の移動体に搭載され通信衛星を介して通信を行う通信端末局においては、移動体上に設置された通信用アンテナの姿勢を移動体の運動に合わせて制御して絶えず衛星を追尾し、衛星との電波の指向性を最良の状態にして通信回線の確保、維持を行うことが必要である。また、このようなアンテナの追尾制御において、さらに良好なアンテナ利得を得るためには衛星からの電波の偏波角に対してアンテナの偏波方向を合わせる制御も必要とする。そのため、移動体搭載の衛星追尾用アンテナの姿勢制御において偏波角の制御も行えるようにする技術が提案されている(例えば特許文献1参照)。   In a communication terminal station that is mounted on a mobile body such as a ship and communicates via a communication satellite, the attitude of the communication antenna installed on the mobile body is controlled in accordance with the movement of the mobile body to constantly track the satellite. Therefore, it is necessary to secure and maintain the communication line with the best directivity of radio waves with the satellite. Further, in such antenna tracking control, in order to obtain a better antenna gain, it is also necessary to control the antenna polarization direction with respect to the polarization angle of the radio wave from the satellite. For this reason, a technique has been proposed in which the polarization angle can be controlled in the attitude control of the satellite tracking antenna mounted on the mobile body (see, for example, Patent Document 1).

特許文献1に記載されたアンテナの姿勢制御技術では、角速度検出手段を用いて検出した移動体の運動の角速度成分から移動体座標と地球座標との座標変換マトリックスを算出し、加速度検出手段を用いて検出した移動体運動の加速度成分と、地磁気方位コンパスまたはジャイロコンパスを用いて検出した移動体の方位に基づいて上記座標変換マトリックスのドリフト成分を除去し、地球座標系においてアンテナの取るべきコマンド方位角、コマンド俯仰角、コマンド偏波角からなるコマンド姿勢マトリクスを決定し、座標変換マトリクスを用いてコマンド姿勢マトリクスを移動体座標上でのアンテナ姿勢マトリクスに変換し、アンテナ姿勢マトリクスの要素成分に基づいて移動体に搭載されるアンテナの姿勢を制御するようにしている。   In the antenna attitude control technique described in Patent Document 1, a coordinate transformation matrix between the moving body coordinates and the earth coordinates is calculated from the angular velocity component of the movement of the moving body detected using the angular velocity detecting means, and the acceleration detecting means is used. The drift component of the coordinate transformation matrix is removed based on the acceleration component of the moving body motion detected in this way and the orientation of the moving body detected using the geomagnetic azimuth compass or gyrocompass, and the command orientation that the antenna should take in the earth coordinate system Command attitude matrix consisting of angle, command elevation angle, and command polarization angle is determined, and command attitude matrix is converted to antenna attitude matrix on moving body coordinates using coordinate conversion matrix, and based on element components of antenna attitude matrix Thus, the attitude of the antenna mounted on the moving body is controlled.

特開平7−79111号公報JP-A-7-79111

特許文献1に記載されたアンテナ姿勢制御技術では、移動体の方位を検出するために、移動体に搭載されている地磁気方位コンパスまたはジャイロコンパスを使用している。衛星追尾の際、アンテナの偏波方向を衛星偏波方向に合わせるための偏波角度制御成分の演算のためには、後述するように移動体の方位検出値を使用するが、方位検出値に誤差が含まれている場合には、制御される偏波角度成分の誤差として現れる。この偏波角度制御値の誤差は衛星仰角に依存し、衛星仰角が小さくなるほど発散していく。このため、追尾すべき衛星の仰角が小さくなるほど、方位検出値に含まれる誤差による偏波角度制御誤差が大きくなり、アンテナの交差偏波識別度が低下するという問題があった。   In the antenna attitude control technique described in Patent Document 1, a geomagnetic azimuth compass or gyrocompass mounted on a moving body is used to detect the azimuth of the moving body. When tracking the satellite, the direction detection value of the moving body is used as described later for the calculation of the polarization angle control component for adjusting the antenna polarization direction to the satellite polarization direction. When an error is included, it appears as an error of the polarization angle component to be controlled. The error of the polarization angle control value depends on the satellite elevation angle, and diverges as the satellite elevation angle decreases. For this reason, as the elevation angle of the satellite to be tracked becomes smaller, the polarization angle control error due to the error included in the azimuth detection value becomes larger, and there is a problem that the cross polarization identification degree of the antenna decreases.

この発明は、上記問題点を解決するためになされたもので、衛星仰角の大小にかかわらず偏波角の制御誤差を小さく抑えて、アンテナの交差偏波識別度の低下を防ぐことが可能なアンテナ姿勢制御装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and can control the polarization angle control error to be small regardless of the elevation angle of the satellite, thereby preventing the cross polarization discrimination of the antenna from being lowered. An object is to obtain an antenna attitude control device.

この発明の請求項1に係るアンテナ姿勢制御装置は、移動体の位置を検出する位置検出手段と、この位置検出手段により検出した移動体の位置検出値と衛星位置情報とに基づいて、移動体の位置から見た衛星方向を算出する衛星方向演算部と、移動体の方位を検出する方位検出手段と、移動体の水平面に対する動揺を検出する動揺検出手段と、衛星仰角が所定値以上の場合には上記方位検出手段により検出した方位検出値に基づいて移動体の姿勢を算出し、衛星仰角が所定値以下の場合には上記動揺検出手段により検出した動揺検出値に基づいて移動体の姿勢を算出する姿勢算出部と、この姿勢算出部により算出した移動体の姿勢と、上記衛星方向演算部により算出した衛星方向とに基づいて衛星からの電波の偏波角を算出する偏波角度算出部と、この偏波角度算出部により算出した偏波角に基づいてアンテナの偏波角を調整する偏波角調整手段とを備えたものである。   According to a first aspect of the present invention, there is provided an antenna attitude control device based on a position detection unit that detects a position of a moving body, a position detection value of the moving body detected by the position detection unit, and satellite position information. A satellite direction calculation unit that calculates the satellite direction viewed from the position of the satellite, an azimuth detection unit that detects the azimuth of the moving body, a sway detection unit that detects a sway of the mobile body with respect to the horizontal plane, and a satellite elevation angle equal to or greater than a predetermined value Calculates the attitude of the moving body based on the direction detection value detected by the direction detection means, and when the satellite elevation angle is a predetermined value or less, the attitude of the moving body is calculated based on the shake detection value detected by the movement detection means. A polarization angle calculation that calculates the polarization angle of the radio wave from the satellite based on the attitude calculation unit that calculates the angle, the attitude of the moving body calculated by the attitude calculation unit, and the satellite direction calculated by the satellite direction calculation unit When, in which a polarization angle adjusting means for adjusting the polarization angle of the antenna based on the polarization angle calculated by the polarization angle calculator.

この発明の請求項2に係るアンテナ姿勢制御装置は、移動体の位置を検出する位置検出手段と、この位置検出手段により検出した移動体の位置検出値と衛星位置情報とに基づいて、移動体の位置から見た衛星方向を算出する衛星方向演算部と、上記衛星方向へアンテナを追尾制御する追尾制御部と、移動体の方位を検出する方位検出手段と、移動体の水平面に対する動揺を検出する動揺検出手段と、上記衛星方向演算部により算出した移動体の位置から見た衛星方向、上記追尾制御部により追尾制御したアンテナの移動体固定基準座標系における指向方向、及び、衛星仰角が所定値以上の場合には上記方位検出手段により検出した方位検出値若しくは衛星仰角が所定値以下の場合には上記動揺検出手段により検出した動揺検出値に基づいて移動体の姿勢を算出する姿勢算出部と、この姿勢算出部により算出した移動体の姿勢と、上記衛星方向演算部により算出した衛星方向とに基づいて、衛星からの電波の偏波角を算出する偏波角度算出部と、この偏波角度算出部により算出した偏波角に基づいてアンテナの偏波角を調整する偏波角調整手段とを備えたものである。   According to a second aspect of the present invention, there is provided an antenna attitude control device based on a position detection means for detecting a position of a mobile body, a position detection value of the mobile body detected by the position detection means, and satellite position information. A satellite direction calculation unit that calculates the satellite direction viewed from the position of the satellite, a tracking control unit that controls the tracking of the antenna in the satellite direction, an azimuth detection unit that detects the azimuth of the moving body, and detects the movement of the moving body with respect to the horizontal plane The moving direction detection means, the satellite direction calculated from the position of the moving object calculated by the satellite direction calculation unit, the pointing direction of the antenna controlled by the tracking control unit in the fixed fixed reference coordinate system, and the satellite elevation angle are predetermined. When the value is greater than or equal to the value, the direction detection value detected by the direction detection means or when the satellite elevation angle is less than or equal to a predetermined value, the movement is detected based on the motion detection value detected by the motion detection means. Based on the attitude calculation unit for calculating the attitude of the body, the attitude of the moving object calculated by the attitude calculation unit, and the satellite direction calculated by the satellite direction calculation unit, the polarization angle of the radio wave from the satellite is calculated. A polarization angle calculation unit and polarization angle adjustment means for adjusting the polarization angle of the antenna based on the polarization angle calculated by the polarization angle calculation unit are provided.

この発明によれば、移動体の姿勢の算出において、衛星仰角が所定値以上の場合には移動体の方位検出値を、また、衛星仰角が所定値以下の場合には移動体の水平面に対する動揺検出値を使用するように構成しているので、衛星仰角の大小にかかわらず偏波角の誤差を小さく抑えることができ、交差偏波成分の影響を抑えることができる。   According to the present invention, in the calculation of the attitude of the moving object, the direction detection value of the moving object is obtained when the satellite elevation angle is greater than or equal to a predetermined value, and when the satellite elevation angle is less than or equal to the predetermined value, Since the detection value is used, the error of the polarization angle can be suppressed regardless of the elevation angle of the satellite, and the influence of the cross polarization component can be suppressed.

実施の形態1.
図1は、この発明の実施の形態1によるアンテナ姿勢制御装置の機能構成を示すブロック図である。衛星追尾アンテナの基本的な姿勢制御は、追尾制御部3からの指示に従って駆動制御部2内のアンテナ軸駆動制御部13がアンテナの指向方向(アンテナ鏡面1の向く方向)を変えることにより行われる。追尾制御部3では、アンテナ軸をコニカルスキャン方式やステップトラック方式などの駆動制御方式を用いて、衛星からの受信波の強度がより大きくなるようにアンテナ角度指令値を生成し、生成したアンテナ角度指令値をアンテナ軸駆動制御部11に指令して、アンテナ指向方向が衛星方向を向くように追尾制御している。アンテナの駆動制御は、簡便にはアンテナ軸に設けた角度検出器が出力するアンテナ軸の角度をモニタし、アンテナ角度指令値に追従するよう、アンテナ軸に設けた駆動モータが駆動されることにより行われるが、移動体の動揺が速い場合には、アンテナ軸等に角速度センサを設け、この角速度センサから出力されるアンテナの角速度情報を用いて運動補償を行い、アンテナ指向方向の駆動制御がより安定化するようにする。
Embodiment 1 FIG.
1 is a block diagram showing a functional configuration of an antenna attitude control apparatus according to Embodiment 1 of the present invention. Basic attitude control of the satellite tracking antenna is performed by the antenna shaft drive control unit 13 in the drive control unit 2 changing the antenna directing direction (direction toward the antenna mirror surface 1) in accordance with an instruction from the tracking control unit 3. . The tracking control unit 3 uses the drive control method such as the conical scan method or the step track method for the antenna axis to generate an antenna angle command value so that the intensity of the received wave from the satellite becomes larger, and the generated antenna angle The command value is commanded to the antenna shaft drive control unit 11 and tracking control is performed so that the antenna directivity direction faces the satellite direction. The antenna drive control is simply performed by monitoring the angle of the antenna shaft output from the angle detector provided on the antenna shaft and driving the drive motor provided on the antenna shaft so as to follow the antenna angle command value. However, when the moving body is moving rapidly, an angular velocity sensor is provided on the antenna shaft, etc., motion compensation is performed using the angular velocity information of the antenna output from this angular velocity sensor, and the drive control in the antenna pointing direction is further improved. Try to stabilize.

位置検出手段4は、GPS(Global Positioning System)等により、移動体の現在の位置(緯度、経度)を検出しており、その位置検出値を衛星方向演算部5に与えている。衛星方向演算部5では、位置検出手段4で取得された移動体の位置検出値と、追尾対象である衛星の位置(緯度、経度、高度)情報から、アンテナ位置(即ち移動体)から見た衛星方向を算出する。移動体が航空機である場合には、移動体の現在位置には高度も含まれる。姿勢算出部6では、衛星方向演算部5で算出された衛星方向(後述のLLN座標系における方向)と、追尾制御部3による追尾制御の結果得られるアンテナ指向方向(後述の移動体に固定された座標系での方向)と、方位検出手段7により検出する方位検出値若しくは動揺検出手段8により検出する動揺検出値とに基づき、移動体の姿勢(ロール角、ピッチ角、ヨー角)を算出する。選択部9では、衛星方向の衛星仰角の大きさに応じて、方位検出値と動揺検出値を切り替えて姿勢算出部6に与える。ここで、方位検出手段7は例えば磁気方位センサやジャイロコンパス等の移動体の方位測定に好適な装置であり、動揺検出手段8は例えば傾斜計や慣性航法装置などの移動体の水平面の動揺を検出するのに好適な装置である。偏波角算出部10では、姿勢算出部6により算出された移動体の姿勢と、衛星方向演算部5で算出された衛星方向とに基づいて衛星からの電波の偏波角を移動体の姿勢を基準に算出し、駆動制御部2内のアンテナ偏波角駆動制御部12に与える。アンテナ偏波角駆動制御部12では、与えられたアンテナの偏波角となるようにアンテナの偏波角を調整する。なお、アンテナの偏波角調整は、アンテナをその指向方向まわりに機械的に回転させる駆動機構を備えてその駆動機構を駆動することによって、あるいは受信電波の直交2軸を回転させる偏波変換器によっても行うことができる。   The position detection means 4 detects the current position (latitude, longitude) of the moving body by GPS (Global Positioning System) or the like, and gives the position detection value to the satellite direction calculation unit 5. The satellite direction calculation unit 5 is viewed from the antenna position (that is, the moving object) from the position detection value of the moving object acquired by the position detecting means 4 and the position (latitude, longitude, altitude) information of the tracking target satellite. Calculate the satellite direction. When the moving body is an aircraft, the current position of the moving body includes the altitude. In the attitude calculation unit 6, the satellite direction (direction in an LLN coordinate system described later) calculated by the satellite direction calculation unit 5 and the antenna pointing direction (fixed to a moving body described later) obtained as a result of tracking control by the tracking control unit 3. The orientation of the moving object (roll angle, pitch angle, yaw angle) based on the orientation detection value detected by the orientation detection means 7 or the motion detection value detected by the motion detection means 8. To do. The selection unit 9 switches the direction detection value and the shake detection value according to the magnitude of the satellite elevation angle in the satellite direction, and gives it to the attitude calculation unit 6. Here, the azimuth detecting means 7 is a device suitable for measuring the azimuth of a moving body, such as a magnetic azimuth sensor or a gyrocompass, and the sway detecting means 8 is a sway of the horizontal plane of the moving body such as an inclinometer or an inertial navigation device. It is a device suitable for detection. The polarization angle calculation unit 10 calculates the polarization angle of the radio wave from the satellite based on the attitude of the moving body calculated by the attitude calculation unit 6 and the satellite direction calculated by the satellite direction calculation unit 5. And is given to the antenna polarization angle drive control unit 12 in the drive control unit 2. The antenna polarization angle drive control unit 12 adjusts the polarization angle of the antenna so that the polarization angle of the given antenna is obtained. The polarization angle adjustment of the antenna includes a drive mechanism that mechanically rotates the antenna around its directivity direction and drives the drive mechanism, or a polarization converter that rotates two orthogonal axes of the received radio wave. Can also be done.

次に姿勢算出部6での移動体の姿勢の算出手法について説明する。まず、座標系について説明する。移動体固定座標系とは、図2に示すように、移動体の機首方向をx軸、移動体の機体の底方向をz軸、このx軸とz軸とで右手系を構成するようにy軸をとった座標系である。また、移動体のLLN(Local Level North)座標系とは、移動体位置を原点に、真北方向をX軸、地球中心方向をZ軸、このX軸とZ軸とで右手系を構成するようにY軸をとった座標系である。また、移動体のLLN座標系のベクトルUから移動体固定座標系のベクトルuへの座標変換は、移動体の姿勢角度であるロール角ψ、ピッチ角θ、ヨー角φを用いて次の式のように行われる。   Next, a method for calculating the posture of the moving body in the posture calculation unit 6 will be described. First, the coordinate system will be described. As shown in FIG. 2, the moving body fixed coordinate system is configured such that the nose direction of the moving body is the x-axis, the bottom direction of the moving body is the z-axis, and the x-axis and the z-axis constitute a right-handed system. This is a coordinate system with the y axis taken along the axis. In addition, the LLN (Local Level North) coordinate system of the moving body is a right-handed system composed of the moving body position as the origin, the true north direction as the X axis, the earth center direction as the Z axis, and the X axis and the Z axis. Thus, the coordinate system takes the Y axis. The coordinate transformation from the vector U of the LLN coordinate system of the moving body to the vector u of the moving body fixed coordinate system is performed using the roll angle ψ, the pitch angle θ, and the yaw angle φ, which are the posture angles of the moving body, as follows: It is done as follows.

Figure 0004535187
Figure 0004535187

まず、移動体の方位検出値を既知量として使用して移動体の姿勢を算出する場合について述べる。アンテナ指向方向は、衛星からの受信波の強度がより大きくなる方向に追尾制御されて衛星方向を指向する。アンテナ偏波角度は、次の方法により算出されてアンテナ偏波角指令値として出力され、オープンループでアンテナ偏波角駆動制御部により調整制御される。既知量である、移動体の位置と衛星位置から計算されたLLN座標系の衛星方向ベクトルP、アンテナ指向方向ベクトルQ(移動体固定座標系での衛星方向ベクトル)、および方位検出手段7から入力する方位検出値(ヨー角)φから、未知量である移動体のロール角ψとピッチ角θを算出することにより移動体の姿勢が算出される。そして、方位検出値と、求まったロール角とピッチ角を用いて、移動体の位置と衛星位置および衛星の偏波角情報から算出された、LLN座標系の衛星偏波方向ベクトルRを座標変換し、移動体固定座標系での衛星偏波方向ベクトルTを算出する。このベクトルをもって、アンテナ偏波角度の指令値を算出し、その方向にアンテナ偏波角度を調整制御する。この手順を以下に詳細に説明する。 First, a case will be described in which the orientation of the moving object is calculated using the detected direction value of the moving object as a known amount. The antenna directing direction is tracking-controlled in a direction in which the intensity of the received wave from the satellite becomes larger and directs the satellite direction. The antenna polarization angle is calculated by the following method and output as an antenna polarization angle command value, and is adjusted and controlled by the antenna polarization angle drive control unit in an open loop. Input from the azimuth detecting means 7, which is a known quantity, the satellite direction vector P of the LLN coordinate system calculated from the position of the moving body and the satellite position, the antenna directing direction vector Q (satellite direction vector in the moving body fixed coordinate system) from which azimuth detection value (yaw angle) phi t, and the orientation of the moving body is calculated by calculating a roll angle [psi S and the pitch angle theta S of the moving object is unknown amount. Then, using the azimuth detection value, the obtained roll angle and pitch angle, the satellite polarization direction vector R of the LLN coordinate system calculated from the position of the moving body, the satellite position, and the polarization angle information of the satellite is coordinate-transformed. Then, the satellite polarization direction vector T in the movable body fixed coordinate system is calculated. Using this vector, a command value for the antenna polarization angle is calculated, and the antenna polarization angle is adjusted and controlled in that direction. This procedure will be described in detail below.

LLN座標系での衛星方向ベクトルPと、移動体固定座標系でのアンテナ指向方向ベクトル(移動体固定座標系での衛星方向ベクトル)Q、方位角(ヨー角)検出値φ、算出したい姿勢の値であるロール角ψ、ピッチ角θ、に対して、次の関係式が成り立つ。 The satellite direction vector P at the LLN coordinate system (the satellite direction vector in a mobile-fixed coordinate system) antenna direction vector in a mobile-fixed coordinate system Q, azimuth (yaw angle) detected value phi t, calculated want attitude The following relational expression holds for the roll angle ψ S and the pitch angle θ S , which are the values of.

Figure 0004535187
Figure 0004535187

ベクトルQは単位ベクトルであるため、変数の自由度は2である。このため式(2)は左辺の自由度2に対して右辺の未定変数がψとθの2つであるため、ψとθを算出することができる。
移動体の位置と衛星位置および衛星の偏波角情報から算出された、LLN座標系の衛星偏波方向ベクトルRと、上記で求まった動揺値ψとθおよび方位検出値φから、移動体固定座標系での衛星偏波方向ベクトルTを次の式から算出することができる。
Since the vector Q is a unit vector, the degree of freedom of the variable is 2. Thus equation (2) is for pending variable on the right side with respect to the left side of the two degrees of freedom is two [psi S and theta S, can be calculated [psi S and theta S.
From the satellite polarization direction vector R of the LLN coordinate system calculated from the position of the moving body, the satellite position, and the polarization angle information of the satellite, the oscillation values ψ S and θ S and the direction detection value φ t obtained above, The satellite polarization direction vector T in the mobile fixed coordinate system can be calculated from the following equation.

Figure 0004535187
Figure 0004535187

次に、この方位検出値に誤差δφが含まれている場合を考える。式(2)と同様な計算を行うと、算出されるロール角とピッチ角は、ロール角真値ψとピッチ角真値θにはならず、それにたいして、誤差δψとδθを含むものになる。すなわち、この関係は次の式により表わすことができる。 Next, let us consider a case where an error δφ t is included in this azimuth detection value. When the same calculation as in equation (2) is performed, the calculated roll angle and pitch angle do not become the roll angle true value ψ t and the pitch angle true value θ t , and errors δψ S and δθ S are It will be included. That is, this relationship can be expressed by the following equation.

Figure 0004535187
Figure 0004535187

一方、ロール角真値ψとピッチ角真値θ、方位角(ヨー角)真値φに対して、次の式が成り立つ。 On the other hand, the following equation holds for the roll angle true value ψ t , the pitch angle true value θ t , and the azimuth (yaw angle) true value φ t .

Figure 0004535187
Figure 0004535187

式(4)と式(5)との比較を行って次の式を得る。   The following formula is obtained by comparing the formula (4) with the formula (5).

Figure 0004535187
Figure 0004535187

この式(6)を整理するため、LLN座標系での衛星方向Pを、方位角(Az)方向の角度α、俯仰角(El)方向の角度βを用いて表記すると次式のようになる。   In order to rearrange this equation (6), the satellite direction P in the LLN coordinate system is expressed using the angle α in the azimuth angle (Az) direction and the angle β in the elevation angle (El) direction as follows: .

Figure 0004535187
Figure 0004535187

これを式(6)に適用し、簡単のためφ+α=0としても一般性は維持できるためこれを用いて簡略化すると、次式が得られる。 When this is applied to Equation (6), also the generality simplified using this since it maintained as φ t + α = 0 for simplicity, the following equation is obtained.

Figure 0004535187
Figure 0004535187

次に式(8)をδψ、δθ、δφの2次の微小量は無視するという方針で整理すると次式が得られる。 Next, when formula (8) is rearranged with a policy of ignoring the secondary minute amounts of δψ S , δθ S , and δφ t , the following formula is obtained.

Figure 0004535187
Figure 0004535187

この式から、誤差δφに対する、誤差δψとδθの量を示す式が次の通り得られる。 From this equation, for error .delta..phi t, expression indicating the amount of error [Delta] [phi] S and .delta..theta S is obtained as follows.

Figure 0004535187
Figure 0004535187

Figure 0004535187
Figure 0004535187

式(11)式から、ヨー角(方位検出値)の誤差であるδφが、−cosβ/sin(β−θ)倍されてロール角の誤差δψになって現れることが分かる。 From equation (11), .delta..phi t is the error of the yaw angle (azimuth detection value), it can be seen that appears as the error [Delta] [phi] S of -cosβ / sin (β-θ) multiplied by with the roll angle.

次に、ロール角とヨー角に動揺推定誤差がある場合、それがどのように偏波角度の制御誤差になるかについて述べる。偏波角方向とロール角、ヨー角誤差との関係は図3に示すようになる。図3から分かる通り、偏波角方向の誤差をδρとすると、δρはヨー角誤差とロール角誤差の射影の合計となる。したがって次式が得られる。   Next, how there is a fluctuation estimation error in the roll angle and the yaw angle will be described. The relationship between the polarization angle direction, the roll angle, and the yaw angle error is as shown in FIG. As can be seen from FIG. 3, when the error in the polarization angle direction is δρ, δρ is the sum of the projections of the yaw angle error and the roll angle error. Therefore, the following equation is obtained.

Figure 0004535187
Figure 0004535187

式(11)と式(12)をまとめると次式が得られる。   Summarizing equations (11) and (12) gives the following equation:

Figure 0004535187
Figure 0004535187

式(13)から、偏波角方向の誤差δρは、ヨー角誤差δφに比例し、衛星仰角βが小さくなるほど発散していくことが分かる。   From equation (13), it can be seen that the error δρ in the polarization angle direction is proportional to the yaw angle error δφ and diverges as the satellite elevation angle β decreases.

一方、既知量としてロール、ピッチ平面内での動揺検出値を利用した場合も、同様に整理すると次式の関係が得られる。   On the other hand, when the detected values of fluctuation in the roll and pitch planes are used as known quantities, the following relationship is obtained by arranging them in the same manner.

Figure 0004535187
Figure 0004535187

式(14)から、偏波角方向の誤差δρは、ロール角誤差δψ(実際にはロール角誤差とピッチ角誤差の合成)に比例し、衛星仰角βが大きくなるほど発散していくことが分かる。   From equation (14), it can be seen that the error δρ in the polarization angle direction is proportional to the roll angle error δψ (actually the combination of the roll angle error and the pitch angle error) and diverges as the satellite elevation angle β increases. .

以上のように、偏波角方向の誤差は、既知量として移動体の方位検出値を利用した場合には衛星仰角が小さくなるほど大きくなり、一方、移動体の動揺検出値を利用した場合には衛星仰角が大きくなるほど大きくなることが分かる。したがって、衛星仰角が境界となる所定値より小さな場合には動揺検出値を使用し、一方、衛星仰角が所定値より大きな場合には方位検出値を使用してアンテナの姿勢成分を算出すれば、偏波角の制御誤差を小さく抑えることが可能となる。
なお、方位検出値および動揺検出値に含まれる誤差は、それぞれ検出に使用する機器の性能によって決定されるため、図4に示すように偏波角の制御誤差を常に最小に抑えられる衛星仰角をパラメータとして与えることで、両検出値の選択の切り替えを行えばよい。
As described above, the error in the polarization angle direction increases as the satellite elevation angle decreases when the moving direction detection value is used as a known amount, whereas when the moving body fluctuation detection value is used. It can be seen that the satellite elevation angle increases as the satellite elevation angle increases. Therefore, if the satellite elevation angle is smaller than a predetermined value as a boundary, the motion detection value is used, whereas if the satellite elevation angle is larger than the predetermined value, the azimuth detection value is used to calculate the antenna attitude component, It becomes possible to suppress the control error of the polarization angle.
Since the errors included in the azimuth detection value and the shake detection value are determined by the performance of the equipment used for detection, the satellite elevation angle at which the polarization angle control error can be kept to a minimum as shown in FIG. The selection of both detection values may be switched by giving them as parameters.

以上のように、この発明の実施の形態1によれば、移動体の姿勢によって生じる偏波角を求める際に、移動体の姿勢成分の算出において、衛星仰角が所定値以上の場合には移動体の方位検出値を、また、衛星仰角が所定値以下の場合には移動体の水平面に対する動揺検出値を使用するように構成しているので、衛星仰角の大小にかかわらず偏波角の算出における誤差を小さく抑えることができ、交差偏波成分による影響を抑えることができる。また、アンテナの交差偏波識別度の低下を防ぐことが可能となり、衛星トランスポンダを使用する際に、裏偏波への影響を小さく抑えることができ、衛星周波数の有効利用を図ることが可能となる。   As described above, according to the first embodiment of the present invention, when the polarization angle generated by the attitude of the moving body is obtained, the movement is performed when the satellite elevation angle is a predetermined value or more in the calculation of the attitude component of the moving body. It is configured to use the body orientation detection value, and if the satellite elevation angle is less than the predetermined value, the motion detection value with respect to the horizontal plane of the moving body is used, so the polarization angle is calculated regardless of the satellite elevation angle. The error in can be suppressed to a small level, and the influence of the cross polarization component can be suppressed. In addition, it is possible to prevent a decrease in the degree of cross polarization identification of the antenna, and when using a satellite transponder, the influence on the back polarization can be suppressed to be small, and the satellite frequency can be effectively used. Become.

なお、アンテナを駆動して指向方向を変化させるためには、アンテナの各軸に駆動機構を設ける必要があり、2軸駆動や3軸駆動の機械駆動方式が用いられている。2軸駆動の場合、方位軸(AZ軸)及び仰角軸(EL軸)によるAZ/EL機械駆動方式や、水平2軸によるXY機械駆動方式がよく用いられる。また、3軸駆動の場合には、AZ/EL機械駆動方式にクロスEL軸駆動を付加する機械駆動方式や、AZ/クロスEL駆動にEL軸駆動を付加する機械駆動方式、AZ駆動にXY駆動を付加する機械駆動方式などが用いられる。2軸駆動は、軸数が少ないことから簡便な機構で構成される反面、いわゆる天頂モードが追尾の特異点となってしまう。天頂モードを避ける手段として、3軸駆動による駆動方式は有効な駆動方式を提供する。また、コニカルスキャン駆動制御方式では、アンテナ指向方向を所定の微小な円錐頂角の円錐状に回転させて受信レベルをモニタし、徐々にアンテナ指向方向をずらしながら空間サーチして、衛星からの受信波のレベルがより大きくなるように駆動制御するなどの手法が用いられるものである。また、ステップトラック駆動制御方式では、アンテナ指向方向をステップ状にずらして空間サーチを行い、衛星からの受信波のレベルがより大きくなるように駆動制御するなどの手法が用いられるものである。   In order to drive the antenna and change the directivity direction, it is necessary to provide a drive mechanism for each axis of the antenna, and a mechanical drive system such as 2-axis drive or 3-axis drive is used. In the case of biaxial driving, an AZ / EL mechanical driving method using an azimuth axis (AZ axis) and an elevation angle axis (EL axis) and an XY mechanical driving method using two horizontal axes are often used. In the case of 3-axis drive, a mechanical drive system that adds cross EL axis drive to the AZ / EL mechanical drive system, a mechanical drive system that adds EL axis drive to the AZ / cross EL drive, and XY drive to AZ drive A mechanical drive system or the like to add The biaxial drive has a simple mechanism because the number of axes is small, but the so-called zenith mode becomes a singular point of tracking. As a means for avoiding the zenith mode, the driving method by the three-axis driving provides an effective driving method. In the conical scan drive control method, the reception level is monitored by rotating the antenna directivity direction into a cone with a predetermined small cone apex angle, and the space search is performed while gradually shifting the antenna directivity direction. A technique such as driving control so that the wave level becomes larger is used. Further, in the step track drive control method, a technique is used in which a spatial search is performed by shifting the antenna directing direction stepwise, and drive control is performed so that the level of the received wave from the satellite becomes higher.

この発明の実施の形態1によるアンテナ姿勢制御装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the antenna attitude | position control apparatus by Embodiment 1 of this invention. アンテナを搭載する移動体の固定座標系における各軸と移動体の姿勢成分との関係を示す説明図である。It is explanatory drawing which shows the relationship between each axis | shaft in the fixed coordinate system of the moving body which mounts an antenna, and the attitude | position component of a moving body. 移動体位置のLLN座標系における各軸と偏波角方向の関係を示す説明図である。It is explanatory drawing which shows the relationship between each axis | shaft in the LLN coordinate system of a mobile body position, and a polarization angle direction. 偏波角制御誤差と衛星仰角の関係を示す説明図である。It is explanatory drawing which shows the relationship between a polarization angle control error and a satellite elevation angle.

符号の説明Explanation of symbols

1 アンテナ鏡面、2 駆動制御部、3 追尾制御部、4 位置検出手段、5 衛星方向算出部、6 姿勢算出部、7 方位検出手段、8 動揺検出手段、9 選択部、10 偏波角度算出部、11 アンテナ軸駆動制御部、12アンテナ偏波角駆動制御部。   DESCRIPTION OF SYMBOLS 1 Antenna mirror surface, 2 Drive control part, 3 Tracking control part, 4 Position detection means, 5 Satellite direction calculation part, 6 Attitude calculation part, 7 Direction detection means, 8 Shake detection means, 9 Selection part, 10 Polarization angle calculation part , 11 Antenna axis drive control unit, 12 antenna polarization angle drive control unit.

Claims (2)

移動体の位置を検出する位置検出手段と、この位置検出手段により検出した移動体の位置検出値と衛星位置情報とに基づいて、移動体の位置から見た衛星方向を算出する衛星方向演算部と、移動体の方位を検出する方位検出手段と、移動体の水平面に対する動揺を検出する動揺検出手段と、衛星仰角が所定値以上の場合には上記方位検出手段により検出した方位検出値に基づいて移動体の姿勢を算出し、衛星仰角が所定値以下の場合には上記動揺検出手段により検出した動揺検出値に基づいて移動体の姿勢を算出する姿勢算出部と、この姿勢算出部により算出した移動体の姿勢と、上記衛星方向演算部により算出した衛星方向とに基づいて衛星からの電波の偏波角を算出する偏波角度算出部と、この偏波角度算出部により算出した偏波角に基づいてアンテナの偏波角を調整する偏波角調整手段とを備えたことを特徴とするアンテナ姿勢制御装置。 Position detecting means for detecting the position of the moving body, and a satellite direction calculation unit for calculating the satellite direction viewed from the position of the moving body based on the position detection value of the moving body and the satellite position information detected by the position detecting means. An azimuth detecting means for detecting the azimuth of the moving body, a sway detecting means for detecting the sway of the moving body with respect to the horizontal plane, and a azimuth detection value detected by the azimuth detecting means when the satellite elevation angle is a predetermined value or more. Calculating the attitude of the moving object, and when the satellite elevation angle is less than or equal to a predetermined value, the attitude calculating unit calculates the attitude of the moving object based on the motion detection value detected by the motion detecting means, and the attitude calculating unit A polarization angle calculation unit that calculates a polarization angle of a radio wave from the satellite based on the attitude of the mobile body calculated and the satellite direction calculated by the satellite direction calculation unit, and the polarization calculated by the polarization angle calculation unit Corner based There are antenna attitude control apparatus characterized by comprising a polarization angle adjusting means for adjusting the polarization angle of the antenna. 移動体の位置を検出する位置検出手段と、この位置検出手段により検出した移動体の位置検出値と衛星位置情報とに基づいて、移動体の位置から見た衛星方向を算出する衛星方向演算部と、上記衛星方向へアンテナを追尾制御する追尾制御部と、移動体の方位を検出する方位検出手段と、移動体の水平面に対する動揺を検出する動揺検出手段と、上記衛星方向演算部により算出した移動体の位置から見た衛星方向、上記追尾制御部により追尾制御したアンテナの移動体固定基準座標系における指向方向、及び、衛星仰角が所定値以上の場合には上記方位検出手段により検出した方位検出値若しくは衛星仰角が所定値以下の場合には上記動揺検出手段により検出した動揺検出値に基づいて移動体の姿勢を算出する姿勢算出部と、この姿勢算出部により算出した移動体の姿勢と、上記衛星方向演算部により算出した衛星方向とに基づいて、衛星からの電波の偏波角を算出する偏波角度算出部と、この偏波角度算出部により算出した偏波角に基づいてアンテナの偏波角を調整する偏波角調整手段とを備えたことを特徴とするアンテナ姿勢制御装置。   Position detecting means for detecting the position of the moving body, and a satellite direction calculation unit for calculating the satellite direction viewed from the position of the moving body based on the position detection value of the moving body and the satellite position information detected by the position detecting means. Calculated by the tracking control unit that controls the tracking of the antenna in the satellite direction, the direction detection unit that detects the direction of the moving object, the movement detection unit that detects the movement of the moving object with respect to the horizontal plane, and the satellite direction calculation unit. Satellite direction viewed from the position of the moving object, pointing direction of the antenna controlled by the tracking control unit in the moving object fixed reference coordinate system, and the direction detected by the direction detecting means when the satellite elevation angle is a predetermined value or more A posture calculation unit that calculates the posture of the moving body based on the motion detection value detected by the motion detection means when the detected value or the satellite elevation angle is equal to or smaller than a predetermined value; The polarization angle calculation unit that calculates the polarization angle of the radio wave from the satellite based on the attitude of the moving body calculated by the above and the satellite direction calculated by the satellite direction calculation unit, and the polarization angle calculation unit An antenna attitude control device comprising polarization angle adjusting means for adjusting the polarization angle of the antenna based on the polarization angle.
JP2008264973A 2008-04-25 2008-10-14 Antenna attitude control device Active JP4535187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008264973A JP4535187B2 (en) 2008-04-25 2008-10-14 Antenna attitude control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008115875 2008-04-25
JP2008264973A JP4535187B2 (en) 2008-04-25 2008-10-14 Antenna attitude control device

Publications (2)

Publication Number Publication Date
JP2009284458A JP2009284458A (en) 2009-12-03
JP4535187B2 true JP4535187B2 (en) 2010-09-01

Family

ID=41454387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264973A Active JP4535187B2 (en) 2008-04-25 2008-10-14 Antenna attitude control device

Country Status (1)

Country Link
JP (1) JP4535187B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938038B (en) * 2010-07-07 2013-06-05 北京爱科迪信息通讯技术有限公司 Automatic adjusting device and method of satellite antenna polarization
CN110086510A (en) 2018-01-26 2019-08-02 中兴通讯股份有限公司 A kind of antenna system and data processing method
CN112649817A (en) * 2020-12-04 2021-04-13 中国科学院国家空间科学中心 Automatic tracking device and method for satellite communication of offshore buoy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042206A (en) * 1990-04-19 1992-01-07 Nec Corp On-vehicle satellite communication equipment
JPH07176935A (en) * 1993-12-21 1995-07-14 Anritsu Corp Antenna mount for travelling object
JPH07202541A (en) * 1993-12-28 1995-08-04 Natl Space Dev Agency Japan<Nasda> Three-axis control antenna system
JPH0865030A (en) * 1994-08-25 1996-03-08 Nec Corp Automatic communication antenna tracking device
JPH1090389A (en) * 1996-09-13 1998-04-10 Japan Radio Co Ltd Controller for satellite communication antenna
JPH10335917A (en) * 1997-06-03 1998-12-18 Japan Radio Co Ltd Triaxial controller for directional antenna
JP2006270806A (en) * 2005-03-25 2006-10-05 Mitsubishi Electric Corp Antenna control device
JP2007033401A (en) * 2005-07-29 2007-02-08 Mitsubishi Electric Corp Antenna control unit for tracking satellite

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042206A (en) * 1990-04-19 1992-01-07 Nec Corp On-vehicle satellite communication equipment
JPH07176935A (en) * 1993-12-21 1995-07-14 Anritsu Corp Antenna mount for travelling object
JPH07202541A (en) * 1993-12-28 1995-08-04 Natl Space Dev Agency Japan<Nasda> Three-axis control antenna system
JPH0865030A (en) * 1994-08-25 1996-03-08 Nec Corp Automatic communication antenna tracking device
JPH1090389A (en) * 1996-09-13 1998-04-10 Japan Radio Co Ltd Controller for satellite communication antenna
JPH10335917A (en) * 1997-06-03 1998-12-18 Japan Radio Co Ltd Triaxial controller for directional antenna
JP2006270806A (en) * 2005-03-25 2006-10-05 Mitsubishi Electric Corp Antenna control device
JP2007033401A (en) * 2005-07-29 2007-02-08 Mitsubishi Electric Corp Antenna control unit for tracking satellite

Also Published As

Publication number Publication date
JP2009284458A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
EP3499260B1 (en) Phased array antenna pointing direction estimation and control
JP3656575B2 (en) Satellite tracking antenna controller
US7095376B1 (en) System and method for pointing and control of an antenna
US8174456B2 (en) Control system and method for reducing directional error of antenna with biaxial gimbal structure
US7808429B2 (en) Beam steering control for mobile antennas
CN102117952B (en) Four-shaft stable framework for antenna and control method
JP2013533467A (en) Determination of spatial orientation information of an object from multiple electromagnetic signals
JP3589990B2 (en) Antenna control method and antenna control device
JP4191588B2 (en) Satellite tracking antenna controller
JP2002158525A (en) Antenna controller for satellite tracking
CN115149994A (en) Satellite tracking method and communication-in-motion equipment
JP4535187B2 (en) Antenna attitude control device
CN113568442B (en) Star alignment control system and method
JP5907535B2 (en) Satellite tracking antenna system and satellite tracking antenna control method
US9217639B1 (en) North-finding using inertial navigation system
Liu et al. Improved path following for autonomous marine vehicles with low-cost heading/course sensors: Comparative experiments
CN102214853A (en) Four-axis frame antenna stabilization system and quick start method thereof
JP4489654B2 (en) Antenna control device for satellite tracking
Cheon et al. Fully magnetic devices-based control for gyroless target pointing of a spinning spacecraft
JP2008281358A (en) Tracking antenna control apparatus
KR100781807B1 (en) self-control automobile and method of tracking target waypoint
JP2013253928A (en) Attitude information calculation device, and attitude information calculation method
JP2019182108A (en) Unmanned flight body, unmanned flight method and unmanned flight program
JP2011208998A (en) Gps signal receiving means of satellite communication device for ship
JP2005300347A (en) Satellite automatic tracking device to be mounted on mobile body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4535187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250