JP6057208B2 - Electroplating solution, method for producing active material for lithium secondary battery, and lithium secondary battery - Google Patents

Electroplating solution, method for producing active material for lithium secondary battery, and lithium secondary battery Download PDF

Info

Publication number
JP6057208B2
JP6057208B2 JP2012248546A JP2012248546A JP6057208B2 JP 6057208 B2 JP6057208 B2 JP 6057208B2 JP 2012248546 A JP2012248546 A JP 2012248546A JP 2012248546 A JP2012248546 A JP 2012248546A JP 6057208 B2 JP6057208 B2 JP 6057208B2
Authority
JP
Japan
Prior art keywords
carbonate
active material
lithium secondary
secondary battery
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012248546A
Other languages
Japanese (ja)
Other versions
JP2014096321A (en
Inventor
逢坂 哲彌
哲彌 逢坂
聰之 門間
聰之 門間
時彦 横島
時彦 横島
洋希 奈良
洋希 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2012248546A priority Critical patent/JP6057208B2/en
Publication of JP2014096321A publication Critical patent/JP2014096321A/en
Application granted granted Critical
Publication of JP6057208B2 publication Critical patent/JP6057208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、シリコンを含有するリチウム二次電池用活物質を製造するための電気めっき液、前記電気めっき液を用いるリチウム二次電池用活物質の製造方法、及び前記活物質用いて製造された負極を具備するリチウム二次電池に関する。   The present invention is produced using an electroplating solution for producing an active material for lithium secondary battery containing silicon, a method for producing an active material for lithium secondary battery using the electroplating solution, and the active material. The present invention relates to a lithium secondary battery including a negative electrode.

携帯電子機器等の電源としてリチウム二次電池が用いられている。一般的なリチウム二次電池では、負極の活物質として、黒鉛を代表とする炭素材料が用いられている。しかし、黒鉛からなる活物質では、リチウムがLiCの組成までしか挿入できず、理論エネルギー容量は372mAh/gである。 A lithium secondary battery is used as a power source for portable electronic devices and the like. In a general lithium secondary battery, a carbon material typified by graphite is used as the negative electrode active material. However, in the active material made of graphite, lithium can be inserted only up to the composition of LiC 6 and the theoretical energy capacity is 372 mAh / g.

シリコンを活物質とすると、負極活物質あたりの理論エネルギー容量が4200mAh/gとなり、大容量のリチウム電池が実現可能とされている。   When silicon is used as the active material, the theoretical energy capacity per negative electrode active material is 4200 mAh / g, and a large-capacity lithium battery can be realized.

しかし、シリコンを活物質とする負極は、充放電するときに大きな体積変化を伴う。このため、活物質の脱落等が発生し、充放電を繰り返すと容量が低下するという問題があった。このため、活物質の第三金属との合金化、カーボン材料とのコンポジット化、薄膜化、多孔質化及び集電体の粗面化等が検討されている。   However, a negative electrode using silicon as an active material is accompanied by a large volume change when charging and discharging. For this reason, there is a problem that the active material is dropped and the capacity is reduced when charging and discharging are repeated. For this reason, studies have been made on alloying the active material with a third metal, compositing with a carbon material, making the film thin, making it porous, and roughening the current collector.

発明者らは、特開2012−89267号公報及び特開2012−204195号公報において、シリコンと酸素と炭素とが均一に分散しており、シリコンと酸素の組成比がSiOx(0.1≦X<2)であり、アモルファスかつ準安定相のSi−O−Cからなる活物質を用いることで、充放電による容量変化が小さい電池が提供できることを開示している。この活物質は、シリコンイオン、酸素及び炭素を含有する電解溶液から、電気化学的成膜法により製造される。   In Japanese Patent Laid-Open Nos. 2012-89267 and 2012-204195, the inventors have uniformly dispersed silicon, oxygen, and carbon, and the composition ratio of silicon to oxygen is SiOx (0.1 ≦ X It is <2), and it is disclosed that a battery having a small capacity change due to charge / discharge can be provided by using an amorphous and metastable phase Si—O—C active material. This active material is manufactured from an electrolytic solution containing silicon ions, oxygen, and carbon by an electrochemical film formation method.

しかし、充放電サイクル特性のより良好なリチウム二次電池を、より安定して製造することが求められていた。   However, it has been required to more stably produce a lithium secondary battery having better charge / discharge cycle characteristics.

なお、特開2005―116264号公報には、薄帯上にシリコンを電析することによりリチウム二次電池の負極を製造する方法が開示されている。しかし、明細書には、析出したSiが酸化してSiO或いはSiOに転化することを防止するように留意することが記載されている。すなわち酸化状態のシリコンを電析する発明は積極的に除外されている。 JP-A-2005-116264 discloses a method for producing a negative electrode of a lithium secondary battery by electrodepositing silicon on a ribbon. However, the specification states that care is taken to prevent the deposited Si from being oxidized and converted to SiO or SiO 2 . That is, the invention for electrodepositing oxidized silicon is positively excluded.

特開2012−89267号公報JP 2012-89267 A 特開2012−204195号公報JP 2012-204195 A 特開2005―116264号公報JP-A-2005-116264

本発明は、良好な充放電サイクル特性を示すリチウム二次電池用活物質を安定して製造できる電気めっき液、前記リチウム二次電池用活物質を安定して製造できるリチウム二次電池用活物質の製造方法、及び、前記活物質用いて製造された負極を具備するリチウム二次電池を提供することを目的とする。   The present invention provides an electroplating solution capable of stably producing an active material for a lithium secondary battery exhibiting good charge / discharge cycle characteristics, and an active material for a lithium secondary battery capable of stably producing the active material for a lithium secondary battery. And a lithium secondary battery including a negative electrode manufactured using the active material.

実施形態の電気めっき液は、シリコンと酸素と10〜70at%の炭素とを含有し、シリコンと酸素の組成比がSiOx(0.1≦X<2.0)であり、アモルファスかつ準安定相のSi−O−Cからなるリチウム二次電池用活物質を電析する電気めっき液であって、シリコンイオンと、電解質イオンと、非水溶媒と、0.001〜10vol%の、フルオロエチレンカーボネート、ビニレンカーボネート、およびジプロピルカーボネートから選ばれる1種以上のカーボネート系添加剤と、を含む。 The electroplating solution of the embodiment contains silicon, oxygen, and 10 to 70 at% carbon, the composition ratio of silicon and oxygen is SiOx (0.1 ≦ X <2.0), and is an amorphous and metastable phase. An electroplating solution for electrodepositing an active material for lithium secondary battery comprising Si—O—C, comprising silicon ions, electrolyte ions, nonaqueous solvent, and 0.001 to 10 vol% of fluoroethylene carbonate And one or more carbonate-based additives selected from vinylene carbonate and dipropyl carbonate .

また、別の実施形態のリチウム二次電池用活物質の製造方法は、シリコンと酸素と10〜70at%の炭素とを含有し、シリコンと酸素の組成比がSiOx(0.1≦X<2.0)であり、アモルファスかつ準安定相のSi−O−Cからなるリチウム二次電池用活物質の製造方法であって、シリコンイオンと、電解質イオンと、非水溶媒と、0.001〜10vol%の、フルオロエチレンカーボネート、ビニレンカーボネート、およびジプロピルカーボネートから選ばれる1種以上のカーボネート系添加剤と、を含む電気めっき液を用いて電析を行う。 In another embodiment, the method for producing an active material for a lithium secondary battery includes silicon, oxygen, and 10 to 70 at% carbon, and the composition ratio of silicon to oxygen is SiOx (0.1 ≦ X <2 0.0), an amorphous and metastable phase Si—O—C active material production method for a lithium secondary battery, comprising silicon ions, electrolyte ions, non-aqueous solvent, Electrodeposition is performed using an electroplating solution containing 10 vol% of one or more carbonate-based additives selected from fluoroethylene carbonate, vinylene carbonate, and dipropyl carbonate .

また、別の実施形態のリチウム二次電池は、シリコンイオンと、電解質イオンと、非水溶媒と、0.001〜10vol%の、フルオロエチレンカーボネート、ビニレンカーボネート、およびジプロピルカーボネートから選ばれる1種以上のカーボネート系添加剤と、を含む電気めっき液を用いて電析を行うことで製造された、シリコンと酸素と10〜70at%の炭素とを含有し、シリコンと酸素の組成比がSiOx(0.1≦X<2.0)であり、アモルファスかつ準安定相のSi−O−Cからなるリチウム二次電池用活物質を用いて製造された負極を具備する。 Moreover, the lithium secondary battery of another embodiment is 1 type chosen from a silicon ion, electrolyte ion, a nonaqueous solvent, 0.001-10 vol% of fluoroethylene carbonate, vinylene carbonate, and dipropyl carbonate. It contains silicon, oxygen, and 10 to 70 at% carbon produced by electrodeposition using an electroplating solution containing the above carbonate-based additive, and the composition ratio of silicon and oxygen is SiOx ( 0.1 ≦ X <2.0), and a negative electrode manufactured using an active material for a lithium secondary battery made of amorphous and metastable Si—O—C.

本発明によれば、良好な充放電サイクル特性を示すリチウム二次電池用活物質を安定して製造できる電気めっき液、前記リチウム二次電池用活物質を安定して製造できるリチウム二次電池用活物質の製造方法、及び、前記活物質用いて製造された負極を具備するリチウム二次電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the electroplating liquid which can manufacture stably the active material for lithium secondary batteries which shows favorable charging / discharging cycling characteristics, The lithium secondary battery which can manufacture the said active material for lithium secondary batteries stably A method for producing an active material and a lithium secondary battery including a negative electrode produced using the active material can be provided.

リチウム電池の構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of a lithium battery. 実施形態のリチウム二次電池用活物質の製造装置を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing apparatus of the active material for lithium secondary batteries of embodiment. 実施形態のリチウム二次電池用活物質を用いた電池の充放電サイクル特性評価結果である。It is a charging / discharging cycle characteristic evaluation result of the battery using the active material for lithium secondary batteries of embodiment.

以下、本発明の実施形態の電気めっき液30及びリチウム二次電池用活物質の製造方法について説明する。電気めっき液30によれば、シリコンと酸素と10〜70at%の炭素と、を含有し、シリコンと酸素の組成比がSiOx(0.1≦X<2.0)であり、アモルファスかつ準安定相であるリチウム二次電池用活物質を電析できる。なお「〜」は「以上、以下」を示している。   Hereinafter, the manufacturing method of the electroplating liquid 30 and the active material for lithium secondary batteries of embodiment of this invention is demonstrated. The electroplating solution 30 contains silicon, oxygen, and 10 to 70 at% carbon, the composition ratio of silicon and oxygen is SiOx (0.1 ≦ X <2.0), and is amorphous and metastable. The active material for lithium secondary batteries which is a phase can be electrodeposited. “˜” indicates “above and below”.

発明者らは、特開2012−89267号公報及び特開2012−204195号公報において開示した発明を更に鋭意研究し、電気めっき液30等を発明するに至った。   The inventors have further diligently studied the inventions disclosed in JP 2012-89267 A and JP 2012-204195 A and have invented the electroplating solution 30 and the like.

<リチウム二次電池の構成例>
図1に示すように、リチウム電池10は、例えば、集電体11上に形成された活物質12を有する負極13と、正極14と、負極13と正極14との間に配置されて貯留領域17を形成するセパレータ15と、貯留領域17中に充填される電解溶液16と、封止構造部18と、を有する。すなわち、リチウム電池10の基本構成要素は、負極13と、正極14と、電解溶液16と、である。
<Configuration example of lithium secondary battery>
As shown in FIG. 1, the lithium battery 10 is, for example, disposed between a negative electrode 13 having an active material 12 formed on a current collector 11, a positive electrode 14, and the negative electrode 13 and the positive electrode 14. 17, a separator 15 that forms 17, an electrolytic solution 16 that fills the storage region 17, and a sealing structure 18. That is, the basic components of the lithium battery 10 are the negative electrode 13, the positive electrode 14, and the electrolytic solution 16.

<リチウム二次電池用負極(活物質)の製造>
図2に示すように、実施形態の活物質12は、電気めっき液30を用いて電析を行うことで製造される。例えば電析装置20は、白金線23を陽極とし、銅箔22を陰極としている。銅箔22は集電体11であり、負極13の一部となる。
<Manufacture of negative electrode (active material) for lithium secondary battery>
As shown in FIG. 2, the active material 12 of the embodiment is manufactured by performing electrodeposition using an electroplating solution 30. For example, the electrodeposition apparatus 20 uses the platinum wire 23 as an anode and the copper foil 22 as a cathode. The copper foil 22 is the current collector 11 and becomes a part of the negative electrode 13.

参照電極21としては、Li/Li(TBAClO)を用いた。すなわち、以下の説明において電位Vは、(vs. Li/Li)にて示す。また、TBAは、Tetra Butyl Ammoniumの略号である。 Li / Li + (TBAClO 4 ) was used as the reference electrode 21. That is, in the following description, the potential V is represented by (vs. Li / Li + ). TBA is an abbreviation for Tetra Butyl Ammonium.

電気めっき液30は、シリコンイオンと、電解質イオンと、0.001〜10vol%のカーボネート系添加剤と、非水溶媒と、を含む。例えば、電気めっき液30は、0.5M/リットルのSiClと、0.5M/リットルのTBAClOと、1vol(体積)%のフルオロエチレンカーボネート(FEC)と、プロピレンカーボネイト(PC)と、かなる。SiClはシリコンイオン供給源であり、TBAClOは電解質イオン供給源であり、FECはカーボネート系添加剤であり、PCは非水溶媒である。 The electroplating solution 30 contains silicon ions, electrolyte ions, 0.001 to 10 vol% carbonate-based additive, and a non-aqueous solvent. For example, the electroplating solution 30 includes 0.5 M / liter SiCl 4 , 0.5 M / liter TBAClO 4 , 1 vol (volume)% fluoroethylene carbonate (FEC), propylene carbonate (PC), or the like. Become. SiCl 4 is a silicon ion source, TBAClO 4 is an electrolyte ion source, FEC is a carbonate-based additive, and PC is a non-aqueous solvent.

すなわち、非水溶媒としては、ジメトキシエタン(DME)、ジエトキシエタン(DEE)、アセトニトリル、プロピルニトリル、エチルエーテル、ジメチルスルホキシド、又はメチルピロリドン等だけでなく、PC又はエチレンカーボネート(EC)等のカーボネート系溶媒も用いることができる。   That is, as the non-aqueous solvent, not only dimethoxyethane (DME), diethoxyethane (DEE), acetonitrile, propylnitrile, ethyl ether, dimethyl sulfoxide, or methylpyrrolidone but also carbonates such as PC or ethylene carbonate (EC) System solvents can also be used.

カーボネート系溶媒とカーボネート系添加剤とは類似しているが、陰極面への吸着能力に差がある。すなわち、カーボネート系溶媒も、カーボネート系添加剤と同じように、「−O−(C=O)−」構造を有するが、C、H、Oから構成されており、求核性及び求電子性が比較的小さい。これに対して、カーボネート系添加剤は、F等の極性原子による分極又は二重結合等による、求核性及び求電子性がある。   A carbonate-based solvent and a carbonate-based additive are similar, but there is a difference in adsorption ability to the cathode surface. That is, the carbonate-based solvent also has a “—O— (C═O) —” structure like the carbonate-based additive, but is composed of C, H, and O, and is nucleophilic and electrophilic. Is relatively small. On the other hand, the carbonate-based additive has nucleophilicity and electrophilicity due to polarization by a polar atom such as F or double bond.

カーボネート系溶媒も陰極面に吸着し、膜中へのO及びCの共析に寄与する。すなわち、カーボネート系添加剤を添加しない電気めっき液からの製造された活物質も、Si−O−Cからなる場合があるが、所望の組成及び構造の活物質が得られないことがある。   The carbonate solvent is also adsorbed on the cathode surface and contributes to the eutectoid of O and C into the film. That is, an active material produced from an electroplating solution without adding a carbonate-based additive may also be made of Si—O—C, but an active material having a desired composition and structure may not be obtained.

これに対して、カーボネート系添加剤を添加した電気めっき液30を用いることで、安定して所望の組成及び構造の活物質を製造できる。   On the other hand, an active material having a desired composition and structure can be stably produced by using the electroplating solution 30 to which a carbonate-based additive is added.

カーボネート系溶媒としては、例えば、PC、EC、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる1種以上を用いることができる。   As the carbonate solvent, for example, one or more selected from PC, EC, butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and the like can be used.

カーボネート系添加剤としては、例えば、FEC、ビニレンカーボネート(VC)、ジプロピルカーボネート等から選ばれる1種以上を用いることができる。   As a carbonate type additive, 1 or more types chosen from FEC, vinylene carbonate (VC), dipropyl carbonate, etc. can be used, for example.

そして、後述するように、非水溶媒としてカーボネート系溶媒を用い、更にカーボネート系添加剤を添加した電気めっき液が好ましく、特に好ましくは、非水溶媒としてPCを用い、カーボネート系添加剤としてFECを用いた、実施形態の電気めっき液30が特に好ましい。   And, as will be described later, an electroplating solution using a carbonate solvent as a nonaqueous solvent and further adding a carbonate additive is preferable, and particularly preferably, PC is used as a nonaqueous solvent and FEC is used as a carbonate additive. The electroplating solution 30 of the embodiment used is particularly preferred.

電流密度I=1.0mA/cmにて2C(クーロン)/cmの通電電気量に制御し、活物質12を集電体11である、80μmの銅箔22上に成膜して負極13を製造した。 Controls at a current density I = 1.0mA / cm 2 to 2C (coulomb) / cm 2 of current electrical quantity, the active material 12 as a current collector 11, negative electrode was deposited on a 80μm copper foil 22 13 was produced.

<リチウム二次電池用活物質の解析>
エネルギー分散型蛍光X線分析装置(EDX)を用い、活物質12を構成する元素の面内分布(マッピング)を測定したところ、SiとOとCとが均一に分散していた。
<Analysis of active materials for lithium secondary batteries>
When an in-plane distribution (mapping) of elements constituting the active material 12 was measured using an energy dispersive X-ray fluorescence analyzer (EDX), Si, O, and C were uniformly dispersed.

次に、X線回折(XRD)解析を行ったところ、Si(111)、Si(220)、Si(311)、Si(400)に相当するピークは確認されなかった。すなわち、活物質12はアモルファス(非晶質)であった。逆に言えば、本発明においてアモルファスとは、通常のXRD解析においてピークが確認されない状態を意味する。   Next, when X-ray diffraction (XRD) analysis was performed, peaks corresponding to Si (111), Si (220), Si (311), and Si (400) were not confirmed. That is, the active material 12 was amorphous (amorphous). Conversely, in the present invention, amorphous means a state in which no peak is confirmed in a normal XRD analysis.

次に、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)による活物質12の解析を行った。活物質12のSi 2p3/2の結合エネルギーは、Siであることを示す99.5eV又はSiOであることを示す103.5eVではなく、その間の101eV〜103eVであった。 Next, the active material 12 was analyzed by X-ray photoelectron spectroscopy (XPS). The binding energy of Si 2p 3/2 of the active material 12 was not 99.5 eV indicating Si or 103.5 eV indicating SiO 2 , but 101 eV to 103 eV therebetween.

Si 2p3/2の結合エネルギーが101eV〜103eVのSi酸化物は、SiOである。SiOは、SiOのような安定相ではなく、非平衡状態の準安定相である。このため、SiOの構造等は不明であるが、活物質12に含有されているSiは、準安定相であることが判明した。 The Si oxide having Si 2p 3/2 binding energy of 101 eV to 103 eV is SiO. SiO is not a stable phase like SiO 2 but a metastable phase in a non-equilibrium state. For this reason, although the structure of SiO etc. is unknown, it turned out that Si contained in the active material 12 is a metastable phase.

なお、準安定相とは熱平衡状態では存在しない相のことであり、熱力学的には不安定ではあるが、何らかの条件が満たされれば暫定的に存在し得る相である。   The metastable phase is a phase that does not exist in a thermal equilibrium state, and is a thermodynamically unstable phase that may exist temporarily if some condition is satisfied.

次に、グロー放電発光分光分析(GDOES)による、活物質12の組成分析結果を以下に示す。なお、以下は、表面汚染及び集電体11の影響が少ない、活物質12の表面から深さ1μmの場所の値である。   Next, a composition analysis result of the active material 12 by glow discharge emission spectroscopic analysis (GDOES) is shown below. In addition, the following is a value at a place having a depth of 1 μm from the surface of the active material 12 with less surface contamination and the influence of the current collector 11.

Si : 44at%
O : 21at%
C : 35at%
Si: 44 at%
O: 21 at%
C: 35at%

以上のXPS及びGDOESによる解析結果が示すように、活物質12のSiシリコンと酸素とは、SiOx(X=0.48)の状態であった。なお、より厳密には、活物質12は大量の炭素を含有していることから、「Si−O−C」の状態である。   As shown by the above XPS and GDOES analysis results, the Si silicon and oxygen of the active material 12 were in the state of SiOx (X = 0.48). More strictly, the active material 12 contains a large amount of carbon and thus is in a “Si—O—C” state.

活物質12の中の炭素は、活物質12のアモルファス化及び準安定相化に寄与している。   Carbon in the active material 12 contributes to making the active material 12 amorphous and metastable.

すなわち、活物質12は、活物質粉末+導電助剤+バインダ、コアシェル構造、又はμmオーダーレベルのマトリック構造等のバルク的混合物ではなく、原子レベル又はnmオーダーレベルのマトリック構造を有する準安定相のアモルファスである。   That is, the active material 12 is not a bulk mixture such as active material powder + conducting aid + binder, core shell structure, or μm order level matrix structure, but a metastable phase having a matrix structure at the atomic level or nm order level. Amorphous.

<リチウム二次電池特性評価>
次に、リチウム電池10の特性評価について説明する。
<Characteristic evaluation of lithium secondary battery>
Next, characteristic evaluation of the lithium battery 10 will be described.

二次電池の特性評価には、電析装置20と同様の三極式セルを用いた。作用極は負極13を用い、対極はLi箔を用い、参照電極は、Li/Li(TBAClO)を用い、電解溶液は、1M LiClO/EC:PC(1:1 vol%)を用いた。 For the evaluation of the characteristics of the secondary battery, the same tripolar cell as the electrodeposition apparatus 20 was used. The working electrode is the negative electrode 13, the counter electrode is Li foil, the reference electrode is Li / Li + (TBAClO 4 ), and the electrolytic solution is 1 M LiClO 4 / EC: PC (1: 1 vol%). It was.

サイクリックボルタンメトリー(CV)測定では、開回路電位より下限電位0.01V、上限電位1.2Vとし、掃引速度0.1mVとした。定電流充放電試験(サイクル試験)は、50μA/cm、0.01V〜1.2Vの電位範囲で行った。 In cyclic voltammetry (CV) measurement, the lower limit potential was 0.01 V, the upper limit potential was 1.2 V from the open circuit potential, and the sweep rate was 0.1 mV. The constant current charge / discharge test (cycle test) was performed in a potential range of 50 μA / cm 2 and 0.01 V to 1.2 V.

1回目の充放電サイクルにおいて、活物質12のSiOx(X≦2.0)のシリコンは、リチウムで反応させ活物質12Aとなる。活物質12Aは、シリコンと、酸素と、炭素と、リチウムと、を含有し、リチウムは酸化状態である。活物質12Aは、電気めっき液30から電気めっき法により製造された活物質12のシリコンをリチウムで反応させ合金化することにより製造される。すなわち、1回目の充放電サイクルは製造工程と見なすこともできる。   In the first charge / discharge cycle, the SiOx (X ≦ 2.0) silicon of the active material 12 is reacted with lithium to become the active material 12A. The active material 12A contains silicon, oxygen, carbon, and lithium, and lithium is in an oxidized state. The active material 12A is produced by reacting silicon of the active material 12 produced from the electroplating solution 30 by electroplating with lithium to form an alloy. That is, the first charge / discharge cycle can be regarded as a manufacturing process.

図3に示すように、活物質12を有するリチウム電池10のクーロン効率は50サイクル後において、99%であった。これに対して、電気めっき浴30にFECを添加しなかったFEC未添加浴を用いて製造した活物質を有するリチウム電池のクーロン効率は98%未満であった。   As shown in FIG. 3, the Coulomb efficiency of the lithium battery 10 having the active material 12 was 99% after 50 cycles. On the other hand, the Coulomb efficiency of the lithium battery having the active material manufactured using the FEC non-added bath in which no FEC was added to the electroplating bath 30 was less than 98%.

活物質12A、すなわち、Si(−C)とLiO(−C)とを有する活物質12Aを用いると、電池を製造した後に、更に不可逆成分が生成することはない。このため、容量が低下することないものと考えられる。 When the active material 12A, that is, the active material 12A having Si (—C) and Li 2 O (—C) is used, no further irreversible component is generated after the battery is manufactured. For this reason, it is considered that the capacity does not decrease.

更に、電気めっき液30の組成、電流密度等を変えながら試作及び充放電サイクル試験を行ったところ、以下の結果を得た。なお、複数回の試作を行い、良好な充放電サイクル特性を示すリチウム二次電池が安定して製造できることを基準に判定を行った。   Furthermore, when the trial production and the charge / discharge cycle test were performed while changing the composition, current density and the like of the electroplating solution 30, the following results were obtained. A plurality of trials were made, and a determination was made based on the fact that a lithium secondary battery exhibiting good charge / discharge cycle characteristics can be stably manufactured.

カーボネート系添加剤の添加量は、0.001〜10vol%の範囲で一定の効果が得られ、特に好ましくは、0.1〜5wt%の範囲であった。また、非水溶媒としてPCを、カーボネート系添加剤としてFCEを、含む電気めっき液30が最も良い特性を示した。   The addition amount of the carbonate-based additive provided a certain effect in the range of 0.001 to 10 vol%, and particularly preferably in the range of 0.1 to 5 wt%. The electroplating solution 30 containing PC as a non-aqueous solvent and FCE as a carbonate-based additive showed the best characteristics.

また、活物質12の炭素量は、10〜70at%の範囲で、シリコンと酸素の組成比は、SiOx(0.1≦X<20)の範囲のとき、一定の効果が得られた。前記組成の活物質12は、アモルファスかつ準安定相であった。   Further, when the carbon content of the active material 12 was in the range of 10 to 70 at% and the composition ratio of silicon and oxygen was in the range of SiOx (0.1 ≦ X <20), a certain effect was obtained. The active material 12 having the above composition was amorphous and metastable.

本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。   The present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the scope of the present invention.

10…リチウム電池
11…集電体
12…活物質
13…負極
14…正極
15…セパレータ
16…電解溶液
17…貯留領域
18…封止構造部
20…電析装置
21…参照電極
22…銅箔
23…白金線
30…めっき液
DESCRIPTION OF SYMBOLS 10 ... Lithium battery 11 ... Current collector 12 ... Active material 13 ... Negative electrode 14 ... Positive electrode 15 ... Separator 16 ... Electrolytic solution 17 ... Storage area 18 ... Sealing structure 20 ... Electrodeposition apparatus 21 ... Reference electrode 22 ... Copper foil 23 ... Platinum wire 30 ... Plating solution

Claims (7)

シリコンと酸素と10〜70at%の炭素とを含有し、シリコンと酸素の組成比がSiOx(0.1≦X<2.0)であり、アモルファスかつ準安定相のSi−O−Cからなるリチウム二次電池用活物質を電析する電気めっき液であって、
シリコンイオンと、電解質イオンと、非水溶媒と、0.001〜10vol%の、フルオロエチレンカーボネート、ビニレンカーボネート、およびジプロピルカーボネートから選ばれる1種以上のカーボネート系添加剤と、を含むことを特徴とする電気めっき液
It contains silicon, oxygen, and 10 to 70 at% carbon, the composition ratio of silicon and oxygen is SiOx (0.1 ≦ X <2.0), and is made of amorphous and metastable Si—O—C. An electroplating solution for electrodepositing an active material for a lithium secondary battery,
It includes silicon ions, electrolyte ions, nonaqueous solvents, and 0.001 to 10 vol% of one or more carbonate-based additives selected from fluoroethylene carbonate, vinylene carbonate, and dipropyl carbonate. An electroplating solution .
前記非水溶媒が、カーボネート系溶媒であることを特徴とする請求項1に記載の電気めっき液。   The electroplating solution according to claim 1, wherein the non-aqueous solvent is a carbonate-based solvent. 前記カーボネート系溶媒が、プロピレンカーボネートであり、
前記カーボネート系添加剤が、フルオロエチレンカーボネートであることを特徴とする請求項2に記載の電気めっき液。
The carbonate solvent is propylene carbonate,
The electroplating solution according to claim 2, wherein the carbonate-based additive is fluoroethylene carbonate.
シリコンと酸素と10〜70at%の炭素とを含有し、シリコンと酸素の組成比がSiOx(0.1≦X<2.0)であり、アモルファスかつ準安定相のSi−O−Cからなるリチウム二次電池用活物質の製造方法であって、
シリコンイオンと、電解質イオンと、非水溶媒と、0.001〜10vol%の、フルオロエチレンカーボネート、ビニレンカーボネート、およびジプロピルカーボネートから選ばれる1種以上のカーボネート系添加剤と、を含む電気めっき液を用いて電析を行うことを特徴とするリチウム二次電池用活物質の製造方法
It contains silicon, oxygen, and 10 to 70 at% carbon, the composition ratio of silicon and oxygen is SiOx (0.1 ≦ X <2.0), and is made of amorphous and metastable Si—O—C. A method for producing an active material for a lithium secondary battery, comprising:
An electroplating solution comprising silicon ions, electrolyte ions, a non-aqueous solvent, and 0.001 to 10 vol% of at least one carbonate-based additive selected from fluoroethylene carbonate, vinylene carbonate, and dipropyl carbonate A method for producing an active material for a lithium secondary battery, wherein electrodeposition is performed using
前記非水溶媒が、カーボネート系溶媒であることを特徴とする請求項4に記載のリチウム二次電池用活物質の製造方法。   The method for producing an active material for a lithium secondary battery according to claim 4, wherein the non-aqueous solvent is a carbonate-based solvent. 前記カーボネート系溶媒が、プロピレンカーボネートであり、
前記カーボネート系添加剤が、フルオロエチレンカーボネートであることを特徴とする請求項5に記載のリチウム二次電池用活物質の製造方法。
The carbonate solvent is propylene carbonate,
The said carbonate type additive is a fluoroethylene carbonate, The manufacturing method of the active material for lithium secondary batteries of Claim 5 characterized by the above-mentioned.
シリコンイオンと、電解質イオンと、非水溶媒と、0.001〜10vol%の、フルオロエチレンカーボネート、ビニレンカーボネート、およびジプロピルカーボネートから選ばれる1種以上のカーボネート系添加剤と、を含む電気めっき液を用いて電析を行うことで製造された、シリコンと酸素と10〜70at%の炭素とを含有し、シリコンと酸素の組成比がSiOx(0.1≦X<2.0)であり、アモルファスかつ準安定相のSi−O−Cからなるリチウム二次電池用活物質を用いて製造された負極を具備することを特徴とするリチウム二次電池。 An electroplating solution comprising silicon ions, electrolyte ions, a non-aqueous solvent, and 0.001 to 10 vol% of at least one carbonate-based additive selected from fluoroethylene carbonate, vinylene carbonate, and dipropyl carbonate Containing silicon, oxygen, and 10 to 70 at% carbon, and the composition ratio of silicon and oxygen is SiOx (0.1 ≦ X <2.0), A lithium secondary battery comprising a negative electrode manufactured using an active material for a lithium secondary battery comprising amorphous and metastable phase Si—O—C.
JP2012248546A 2012-11-12 2012-11-12 Electroplating solution, method for producing active material for lithium secondary battery, and lithium secondary battery Active JP6057208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012248546A JP6057208B2 (en) 2012-11-12 2012-11-12 Electroplating solution, method for producing active material for lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012248546A JP6057208B2 (en) 2012-11-12 2012-11-12 Electroplating solution, method for producing active material for lithium secondary battery, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2014096321A JP2014096321A (en) 2014-05-22
JP6057208B2 true JP6057208B2 (en) 2017-01-11

Family

ID=50939242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012248546A Active JP6057208B2 (en) 2012-11-12 2012-11-12 Electroplating solution, method for producing active material for lithium secondary battery, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6057208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950546A (en) * 2019-03-24 2019-06-28 湖北中一科技股份有限公司 A kind of manufacture craft and negative current collector of copper foil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6090778B2 (en) * 2013-01-11 2017-03-08 学校法人早稲田大学 Method for producing electrode of lithium secondary battery and method for producing lithium secondary battery
JP7480340B2 (en) * 2020-04-27 2024-05-09 寧徳新能源科技有限公司 Negative electrode mixture and its use

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2231665A1 (en) * 1997-03-25 1998-09-25 Dow Corning Corporation Method for forming an electrode material for a lithium ion battery
JP4344874B2 (en) * 2003-10-06 2009-10-14 独立行政法人産業技術総合研究所 Method for producing foil strip for negative electrode of lithium ion secondary battery by non-aqueous solvent plating method
JP4949904B2 (en) * 2006-03-31 2012-06-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP2008300179A (en) * 2007-05-31 2008-12-11 Samsung Sdi Co Ltd Nonaqueous secondary battery
JP5356309B2 (en) * 2009-05-08 2013-12-04 古河電気工業株式会社 Secondary battery negative electrode, electrode copper foil, secondary battery, and method for producing secondary battery negative electrode
JP5697078B2 (en) * 2010-10-15 2015-04-08 学校法人早稲田大学 Active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP2012204195A (en) * 2011-03-25 2012-10-22 Waseda Univ Active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950546A (en) * 2019-03-24 2019-06-28 湖北中一科技股份有限公司 A kind of manufacture craft and negative current collector of copper foil

Also Published As

Publication number Publication date
JP2014096321A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
US10629958B2 (en) Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution
CN109980285A (en) For lithium-chalcogen battery electrolyte system
CN102576906A (en) Electrolyte for lithium-ion cell
JP2019220416A (en) Method for manufacturing nonaqueous electrolyte secondary battery, and manufacturing system
CN110036521B (en) Lithium ion secondary battery
CN106716691A (en) Lithium battery electrolyte solution containing ethyl (2,2,3,3-tetrafluoropropyl) carbonate
JPH07302617A (en) Nonaqueous electrolyte battery and its manufacture
KR20170104574A (en) Anode for sodium-ion and potassium-ion batteries
JP5697078B2 (en) Active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP2018523260A (en) Electrochemical cell
CN106133952B (en) Non-aqueous electrolyte secondary battery
JP2008021517A (en) Nonaqueous secondary battery
JP2018181772A (en) Nonaqueous electrolyte power storage element and manufacturing method thereof
WO2012133214A1 (en) Active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
KR20150128683A (en) Positive electrode active material for sodium molten salt batteries, positive electrode for sodium molten salt batteries, and sodium molten salt battery
JP6057208B2 (en) Electroplating solution, method for producing active material for lithium secondary battery, and lithium secondary battery
JP5556618B2 (en) Lithium air battery
JP4701923B2 (en) Ion conductive materials and their use
WO2019021522A1 (en) Semisolid electrolyte solution, semisolid electrolyte, semisolid electrolyte layer, and secondary battery
JP3587791B2 (en) Method for producing positive electrode for battery and non-aqueous electrolyte battery
JP2003007332A (en) Lithium secondary battery and manufacturing method of the same
JP6090778B2 (en) Method for producing electrode of lithium secondary battery and method for producing lithium secondary battery
JP5223425B2 (en) Air battery
JP2014072078A (en) Selection method of solvent for electrolyte
KR102356639B1 (en) Non-aqueous electrolyte solutions for rechargeable battery, non-aqueous electrolyte rechargeable battery having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161125

R150 Certificate of patent or registration of utility model

Ref document number: 6057208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250