JP6053163B2 - Multilevel modulation signal generation method and optical communication system - Google Patents

Multilevel modulation signal generation method and optical communication system Download PDF

Info

Publication number
JP6053163B2
JP6053163B2 JP2013128228A JP2013128228A JP6053163B2 JP 6053163 B2 JP6053163 B2 JP 6053163B2 JP 2013128228 A JP2013128228 A JP 2013128228A JP 2013128228 A JP2013128228 A JP 2013128228A JP 6053163 B2 JP6053163 B2 JP 6053163B2
Authority
JP
Japan
Prior art keywords
onu
signal
modulation signal
olt
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013128228A
Other languages
Japanese (ja)
Other versions
JP2015005796A (en
Inventor
法子 飯山
法子 飯山
淳一 可児
淳一 可児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013128228A priority Critical patent/JP6053163B2/en
Publication of JP2015005796A publication Critical patent/JP2015005796A/en
Application granted granted Critical
Publication of JP6053163B2 publication Critical patent/JP6053163B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Optical Communication System (AREA)

Description

本発明は、世代の異なる加入者宅側装置を共存させるための多値変調信号生成方法及び世代の異なる加入者宅側装置が共存可能な光通信システムに関する。   The present invention relates to a multi-level modulation signal generation method for coexisting subscriber premises apparatuses of different generations and an optical communication system in which subscriber premises apparatuses of different generations can coexist.

現在光アクセスシステムとして、図1のように、1つの局舎側装置(OLT:Optical Line Terminal)101と複数の加入者宅側装置(ONU:Optical Network Unit)201をパワースプリッタ150を介して接続する、Passive Optical Network(PON)システム301が広く普及している。   As a current optical access system, as shown in FIG. 1, one station side device (OLT: Optical Line Terminal) 101 and a plurality of subscriber home side devices (ONU: Optical Network Unit) 201 are connected via a power splitter 150. The Passive Optical Network (PON) system 301 is widely used.

このような形態の光アクセスシステムにおいて、一般にある世代のシステムから次の世代のシステムへの装置の交換を要する移行を行う際、すべてのONUを一斉に交換することは、各加入者の都合や希望するサービス等の条件により困難である。そのため、図2のPONシステム302ように、1つの次世代の新OLTに世代の異なるONU(新ONUと旧ONU)を接続してサービスを提供するための、何らかの手段が必要となる。この手段を共存方式と呼ぶ。新ONUへのサービスと旧ONUへのサービスを、波長多重分割方式(WDM:Wavelength Division Multiplexing)により波長を分けて行う技術などが、これまでに提案されている。   In such an optical access system, when performing a transition that generally requires replacement of a device from one generation system to the next generation system, it is important to replace all ONUs at the same time. Difficult depending on conditions such as desired service. Therefore, as in the PON system 302 in FIG. 2, some means is required for providing services by connecting ONUs of different generations (new ONU and old ONU) to one next-generation new OLT. This means is called a coexistence method. A technique for dividing a wavelength into a service for a new ONU and a service for an old ONU using a wavelength division division multiplexing (WDM) has been proposed.

一方で、デジタル信号処理技術を用いた多値変調により、光ファイバ通信を広帯域化せずに高速化することが可能であり、そのような技術を光アクセスシステムに適用するための検討も行われている。本技術を新たにアクセスシステムの下り通信に導入するためには、多値変調信号を受信できず、OOK信号のみを受信可能な旧ONUと、多値変調信号が受信可能な新ONUを同時に接続してサービスを提供するための共存方式が必要となる。前者のONUは受信器として直接検波器のみを備えており、後者は受信器としてコヒーレント検波器およびデジタル信号処理部を備えている。共存方式の一手段として、図3のように、振幅と位相で変調されるStar−QAM型多値変調信号(特に振幅が2レベルで変調されているもの)を利用して旧ONU201にはOOK信号を、新ONU202には位相変調を含む多値変調信号を、同時に伝送する共存方式が提案されている(例えば、非特許文献1を参照。)。   On the other hand, multi-level modulation using digital signal processing technology can increase the speed of optical fiber communication without increasing the bandwidth, and studies for applying such technology to optical access systems have also been conducted. ing. In order to introduce this technology to the downlink communication of an access system, an old ONU that cannot receive a multilevel modulation signal and can only receive an OOK signal and a new ONU that can receive a multilevel modulation signal are connected simultaneously. Thus, a coexistence method for providing services is required. The former ONU includes only a direct detector as a receiver, and the latter includes a coherent detector and a digital signal processing unit as a receiver. As one means of the coexistence method, as shown in FIG. 3, the old ONU 201 is OOK using a Star-QAM type multi-level modulation signal (particularly, one whose amplitude is modulated at two levels) modulated by amplitude and phase. A coexistence method has been proposed in which a signal and a multilevel modulation signal including phase modulation are simultaneously transmitted to the new ONU 202 (see, for example, Non-Patent Document 1).

N. Iiyama, S−Y. Kim, T. Shimada, S. Kimura and N. Yoshimoto, “Co−existent downstream scheme between OOK and QAM signals in an optical access network using software−defined technology,” in Proc.OFC’12, paper JTh2A.53, 2012.N. Iiyama, S-Y. Kim, T .; Shimada, S .; Kimura and N.K. Yoshimoto, “Co-existent downstream scheme between OOK and QAM signals in an optical access network using software-defined technology,”. OFC'12, paper JTh2A. 53, 2012.

振幅が2レベルで変調されたStar−QAM型信号の基本的な特性として、振幅の2レベルの比は自由に設定することができるが、その値により振幅変調の成分と位相変調の成分の信号品質は図4に示すように変化する。振幅比が小さくなると、旧ONUで受信する信号のアイパターンにおけるアイの開きが小さくなり、振幅変調成分の信号品質が劣化する。一方、新ONUで受信するコンスタレーションにおいては、2つの円の距離が近くなり、振幅変調成分の信号品質は同じく劣化しているが、位相変調成分の最小信号間距離が大きくなり、信号品質は向上する。振幅比が大きくなると、その逆となり、振幅変調成分の信号品質は向上し、位相変調成分の信号品質は劣化する。このように、振幅比に対して、振幅変調成分と位相変調成分の信号品質はトレードオフである。
なお、振幅変調成分の信号品質及び位相変調成分の信号品質とは、それぞれ受信したStar−QAM型多値変調信号から検出した振幅変調成分の信号品質及び位相変調成分の信号品質を意味する。
As a basic characteristic of a Star-QAM type signal whose amplitude is modulated at two levels, the ratio of the two levels of amplitude can be freely set, but the signal of the component of amplitude modulation and the component of phase modulation depends on the value. The quality changes as shown in FIG. When the amplitude ratio decreases, the eye opening in the eye pattern of the signal received by the old ONU decreases, and the signal quality of the amplitude modulation component deteriorates. On the other hand, in the constellation received by the new ONU, the distance between the two circles is close and the signal quality of the amplitude modulation component is also degraded, but the minimum inter-signal distance of the phase modulation component is large, and the signal quality is improves. When the amplitude ratio is increased, the opposite is true, the signal quality of the amplitude modulation component is improved, and the signal quality of the phase modulation component is degraded. Thus, the signal quality of the amplitude modulation component and the phase modulation component is a trade-off with respect to the amplitude ratio.
The signal quality of the amplitude modulation component and the signal quality of the phase modulation component mean the signal quality of the amplitude modulation component and the signal quality of the phase modulation component detected from the received Star-QAM type multilevel modulation signal, respectively.

振幅が2レベルで変調されたStar−QAM型信号においては、振幅比に対して、振幅変調成分と位相変調成分の信号品質はトレードオフであるため、設定する振幅比によっては旧ONUと新ONUにおける受信信号が同時に規定の信号品質を満たすことができず、置き換えおよび共存が困難となる。そして、置き換えおよび共存を可能とするStar−QAM信号の振幅比の値はこれまで示されていない。   In a Star-QAM type signal whose amplitude is modulated at two levels, the signal quality of the amplitude modulation component and the phase modulation component is a trade-off with respect to the amplitude ratio, so the old ONU and the new ONU depend on the set amplitude ratio. In this case, the received signal cannot satisfy the prescribed signal quality at the same time, and replacement and coexistence become difficult. The value of the amplitude ratio of the Star-QAM signal that enables replacement and coexistence has not been shown so far.

そこで、本発明は、旧ONUと新ONUにおける受信信号が同時に規定の信号品質を満たすことが可能な多値変調信号生成方法、及び光通信システムを提供することを目的とする。   Accordingly, an object of the present invention is to provide a multi-level modulation signal generation method and an optical communication system in which received signals in an old ONU and a new ONU can simultaneously satisfy a prescribed signal quality.

上記目的を達成するために、本発明は、OLTからの多値変調信号をPDで直接検波した際に、その多値変調信号の消光比が所定範囲に収まるように変調時の振幅比を調整することとした。   In order to achieve the above object, the present invention adjusts the amplitude ratio at the time of modulation so that the extinction ratio of the multilevel modulation signal falls within a predetermined range when the multilevel modulation signal from the OLT is directly detected by the PD. It was decided to.

具体的には、本発明に係る多値変調信号生成方法は、
オンオフ変調(OOK:on−off−keying)信号のみを受信可能である、少なくとも1つの第1加入者宅側装置(ONU:Optical Network Unit)と、
多値変調信号を受信可能である、少なくとも1つの第2ONUと、
光源からの光を2レベルの振幅及び位相で変調することで多値変調信号を送信する、1つの局舎側装置(OLT:Optical Line Terminal)と、
前記第1ONU、前記第2ONU、及び前記OLTをパワースプリッタを介して接続する光伝送路と、
を備える光通信システムで前記OLTが送信する多値変調信号を生成する多値変調信号生成方法であって、
記多値変調信号を受光素子(PD:Photo Diode)で直接検波し、前記多値変調信号の消光比を測定する測定ステップと、
前記多値変調信号の位相変調成分と振幅変調成分の双方が規定の信号品質を満たす消光比となるように前記多値変調信号の生成パラメータを前記OLTに設定する設定ステップと、
を順に行う。
Specifically, the multi-level modulation signal generation method according to the present invention includes:
At least one first customer premises unit (ONU) capable of receiving only an on-off-keying (OOK) signal;
At least one second ONU capable of receiving a multi-level modulation signal;
One station side device (OLT: Optical Line Terminal) that transmits a multi-level modulation signal by modulating light from a light source with two levels of amplitude and phase;
An optical transmission line connecting the first ONU, the second ONU, and the OLT via a power splitter;
A multi-level modulation signal generating method for generating a multi-level modulation signal transmitted by the OLT in an optical communication system comprising:
Before SL multilevel modulation signal light receiving element: a measuring step that detects direct (PD Photo Diode), to measure the extinction ratio of the multi-level modulation signal,
A setting step of setting the generation parameter of the multilevel modulation signal in the OLT so that both the phase modulation component and the amplitude modulation component of the multilevel modulation signal have an extinction ratio that satisfies a prescribed signal quality;
Repeat in order.

また、本発明に係る光通信システムは、
OOK信号のみを受信可能である、少なくとも1つの第1ONUと、
多値変調信号を受信可能である、少なくとも1つの第2ONUと、
光源からの光を2レベルの振幅及び位相で変調することで多値変調信号を送信する、1つのOLTと、
前記第1ONU、前記第2ONU、及び前記OLTをパワースプリッタを介して接続する光伝送路と、
を備える光通信システムであって、
前記OLTは、前記多値変調信号の位相変調成分と振幅変調成分の双方が規定の信号品質を満たす消光比となるように前記多値変調信号の生成パラメータが設定されていることを特徴とする。
The optical communication system according to the present invention is
At least one first ONU capable of receiving only an OOK signal;
At least one second ONU capable of receiving a multi-level modulation signal;
One OLT for transmitting a multi-level modulation signal by modulating light from a light source with two levels of amplitude and phase;
An optical transmission line connecting the first ONU, the second ONU, and the OLT via a power splitter;
An optical communication system comprising:
In the OLT, the generation parameter of the multilevel modulation signal is set so that both the phase modulation component and the amplitude modulation component of the multilevel modulation signal have an extinction ratio that satisfies a prescribed signal quality. .

OLTは、光源からの光を変調して多値変調信号を送信する。そして、当該多値変調信号をPD(旧ONUのPDでもよい)で直接検波した際の消光比が所定範囲に収まる多値変調信号の振幅比となるようにOLTで多値変調信号の生成パラメータを調節する。なお、消光比の所定範囲は、通信の規格に応じた範囲となる。このように、消光比を確認してOLTでの多値変調信号の生成パラメータを調整することで、旧ONUと新ONUにおける受信信号が同時に規定の信号品質を満たすことが可能となる。 The OLT modulates light from a light source and transmits a multilevel modulation signal. The generated parameters of the multi-level modulation signal in OLT as extinction ratio when the multilevel modulated signal obtained by detecting directly PD (may be PD Old ONU) is an amplitude ratio of the multi-level modulation signal lies in a predetermined range Adjust. The predetermined range of the extinction ratio is a range according to the communication standard. In this way, by confirming the extinction ratio and adjusting the generation parameter of the multi-level modulation signal in the OLT, it becomes possible for the received signals in the old ONU and the new ONU to simultaneously satisfy the prescribed signal quality.

従って、本発明は、旧ONUと新ONUにおける受信信号が同時に規定の信号品質を満たすことが可能な多値変調信号生成方法、及び光通信システムを提供することができる。   Therefore, the present invention can provide a multilevel modulation signal generation method and an optical communication system in which received signals in an old ONU and a new ONU can simultaneously satisfy a prescribed signal quality.

本発明に係る多値変調信号生成方法及び光通信システムは、前記設定ステップで、前記消光比が6.1dBより大きく、且つ12.3dBより小さいことを特徴とする。   The multi-level modulation signal generating method and the optical communication system according to the present invention are characterized in that, in the setting step, the extinction ratio is larger than 6.1 dB and smaller than 12.3 dB.

旧システムをIEEE 802.3av 10G−EPONとして想定した場合、PDで直接検波した際に、その消光比が6.1dB〜12.3dBの範囲となるように振幅比を調整した10 Gsymbol/sのStar 8−QAM信号を使用する。その結果、図5に示すように、旧ONU、新ONUで受信するすべての信号が−28dBm以下の受信感度でBER<10E−03を達成し、IEEE 802.3av 10G−EPONの旧ONUと、コヒーレント受信器とDSPを備えた新ONUとの同一OLT配下での共存が可能となる。   Assuming that the old system is IEEE 802.3av 10G-EPON, the amplitude ratio is adjusted to 10 Gsymbol / s so that the extinction ratio is in the range of 6.1 dB to 12.3 dB when directly detecting with PD. A Star 8-QAM signal is used. As a result, as shown in FIG. 5, all signals received by the old ONU and the new ONU achieve BER <10E-03 with a receiving sensitivity of −28 dBm or less, and the old ONU of IEEE 802.3av 10G-EPON, A coherent receiver and a new ONU equipped with a DSP can coexist under the same OLT.

本発明に係る多値変調信号生成方法及び光通信システムは、前記設定ステップで、前記消光比が8.2dBより大きく、且つ12.3dBより小さいことを特徴とする。   The multilevel modulation signal generation method and the optical communication system according to the present invention are characterized in that, in the setting step, the extinction ratio is larger than 8.2 dB and smaller than 12.3 dB.

旧システムをITU−T G.987シリーズ XG−PONとして想定した場合、PDで直接検波した際に、その消光比が8.2dB〜12.3dBの範囲となるように振幅比を調整した10 Gsymbol/sのStar 8−QAM信号を使用する。その結果、図5に示すように、旧ONU、新ONUで受信するすべての信号が−28dBm以下の受信感度でBER<10E−03を達成し、ITU−T G.987シリーズ XG−PONの旧ONUと、コヒーレント受信器とDSPを備えた新ONUとの同一OLT配下での共存が可能となる。   ITU-T G. Assuming 987 series XG-PON, when detecting directly with PD, 10 Gsymbol / s Star 8-QAM signal with amplitude ratio adjusted so that extinction ratio is in the range of 8.2 dB to 12.3 dB Is used. As a result, as shown in FIG. 5, all signals received by the old ONU and the new ONU have achieved a BER <10E-03 with a receiving sensitivity of −28 dBm or less. It becomes possible for the 987 series XG-PON old ONU and the new ONU equipped with a coherent receiver and DSP to coexist under the same OLT.

本発明に係る光通信システムは、前記第1ONU、前記第2ONU、及び前記OLTは、波長多重機能を有してもよい。   In the optical communication system according to the present invention, the first ONU, the second ONU, and the OLT may have a wavelength multiplexing function.

本発明は、旧ONUと新ONUにおける受信信号が同時に規定の信号品質を満たすことが可能な多値変調信号生成方法、及び光通信システムを提供することができる。   The present invention can provide a multilevel modulation signal generation method and an optical communication system in which received signals in an old ONU and a new ONU can simultaneously satisfy a prescribed signal quality.

PONシステムを説明する図である。It is a figure explaining a PON system. PONシステムを説明する図である。It is a figure explaining a PON system. OOK信号と多値変調信号を同時に伝送する共存方式のPONシステムを説明する図である。It is a figure explaining the PON system of the coexistence system which transmits an OOK signal and a multi-value modulation signal simultaneously. 振幅のレベル比による振幅変調の成分と位相変調の成分の信号品質の変化を説明する図である。It is a figure explaining the change of the signal quality of the component of an amplitude modulation by the level ratio of an amplitude, and the component of a phase modulation. OLTから多値変調信号を送信したときに旧ONU及び心ONUで受信する信号の振幅変調成分と位相変調成分のビットエラーレート(BER)が10E−03よりも小さくなる最小の受光パワーを説明する図である。The minimum received light power in which the bit error rate (BER) of the amplitude modulation component and the phase modulation component of the signal received by the old ONU and the heart ONU when the multilevel modulation signal is transmitted from the OLT is smaller than 10E-03 will be described. FIG. 多値変調信号の振幅比に対する新旧ONUの各信号成分の信号品質を説明する図である。It is a figure explaining the signal quality of each signal component of the old and new ONU with respect to the amplitude ratio of the multilevel modulation signal. 新OLTの構成を説明する図である。It is a figure explaining the structure of new OLT. 旧ONUの構成を説明する図である。It is a figure explaining the structure of old ONU. 新ONUの構成を説明する図である。It is a figure explaining the structure of new ONU.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
図3に示すように、あるOOK信号のみを扱う旧システムから多値変調信号を扱う新システムへの移行の際に、同一PON配下にOOK信号のみ受信可能な旧ONUと位相変調信号、振幅変調信号を含む多値変調信号が受信可能な新ONUが混在しており、OLTがStar−QAM信号を送信することでそれらの共存が実現している。一般にStar−QAM信号においては、振幅変調成分と位相変調成分は図6に示すようにトレードオフの関係となる。図6において、横軸は信号の振幅比、縦軸はある規定の信号品質を満たす受光パワーとしている。旧システムの規格で定められている最小受光感度を2重線で示している。振幅比が大きくなると、振幅変調成分の信号品質は向上するため、より小さい受光パワーで規定の信号品質を満たすことができる。逆に位相変調成分の信号品質は劣化するため、ある規定の信号品質を満たすために、より大きな受光パワーが必要となる。また、新ONUはコヒーレント検波器を備えているため、直接検波で信号を受信する旧ONUと比較して、より小さい受光パワーで振幅変調成分が規定の信号品質を満たすことができる。
(Embodiment 1)
As shown in FIG. 3, when switching from an old system that handles only a certain OOK signal to a new system that handles a multilevel modulation signal, the old ONU, phase modulation signal, and amplitude modulation that can receive only the OOK signal under the same PON New ONUs capable of receiving multi-level modulation signals including signals are mixed, and coexistence is realized by the OLT transmitting a Star-QAM signal. In general, in the Star-QAM signal, the amplitude modulation component and the phase modulation component have a trade-off relationship as shown in FIG. In FIG. 6, the horizontal axis represents the signal amplitude ratio, and the vertical axis represents the received light power satisfying a specified signal quality. The minimum light sensitivity defined by the old system standard is indicated by a double line. When the amplitude ratio is increased, the signal quality of the amplitude modulation component is improved, so that the specified signal quality can be satisfied with a smaller received light power. Conversely, since the signal quality of the phase modulation component deteriorates, a larger received light power is required to satisfy a specified signal quality. In addition, since the new ONU includes a coherent detector, the amplitude modulation component can satisfy the prescribed signal quality with a smaller received light power than the old ONU that receives a signal by direct detection.

各ONUにおける信号成分の品質が図6で表されるようなシステムに対し、振幅比をaよりも小さい値に設定して信号を生成すると、旧ONUの受信信号が規定の品質を満たさないということになる。これは、図1の状態から図2の状態に切り替わったとき(送信信号がStar−QAM型信号になったとき)に、旧ONUが図1の状態と同じ品質で信号を受信できないということになり、振幅比がaより小さい値のStar−QAM型信号による旧ONUから新ONUへの置き換え、および同一PON配下での共存は不可能ということを表している。一方で振幅比がbより大きい場合には、新ONUの位相変調成分の信号が規定の品質を満たしていない。これも、図1の状態から図2の状態に切り替わったときに、新ONUの位相変調成分が規定の品質で信号を受信できていないということになり、振幅比がbより大きいStar−QAM型信号による旧ONUから新ONUへの置き換え、および同一PON配下での共存は不可能ということを表している。つまり、振幅比がaからbの間にある場合には、全信号が規定の品質を満たすため、振幅比がaからbの間にあるStar−QAM型信号による旧ONUから新ONUへの置き換え、および同一PON配下での共存は可能ということとなる。   When a signal is generated with the amplitude ratio set to a value smaller than a for a system in which the quality of signal components in each ONU is represented in FIG. 6, the received signal of the old ONU does not satisfy the prescribed quality. It will be. This is because when the state of FIG. 1 is switched to the state of FIG. 2 (when the transmission signal becomes a Star-QAM type signal), the old ONU cannot receive a signal with the same quality as the state of FIG. Thus, it is indicated that the replacement of the old ONU with the new ONU by the Star-QAM type signal having the amplitude ratio smaller than a and the coexistence under the same PON are impossible. On the other hand, when the amplitude ratio is larger than b, the signal of the phase modulation component of the new ONU does not satisfy the prescribed quality. This also means that when the state of FIG. 1 is switched to the state of FIG. 2, the phase modulation component of the new ONU has not been received with a prescribed quality, and the Star-QAM type in which the amplitude ratio is greater than b. This indicates that it is impossible to replace the old ONU with the new ONU by a signal and to coexist under the same PON. That is, when the amplitude ratio is between a and b, all the signals satisfy the specified quality, so that the old ONU is replaced with the new ONU by the Star-QAM type signal with the amplitude ratio between a and b. , And coexistence under the same PON is possible.

本実施形態の光通信システムは、
OOK信号のみを受信可能である、少なくとも1つの第1ONUと、
多値変調信号を受信可能である、少なくとも1つの第2ONUと、
光源からの光を2レベルの振幅及び位相で変調することで多値変調信号を送信する、1つのOLTと、
前記第1ONU、前記第2ONU、及び前記OLTをパワースプリッタを介して接続する光伝送路と、
を備える光通信システムであって、
前記OLTは、前記多値変調信号の位相変調成分と振幅変調成分の双方が規定の信号品質を満たす消光比となるように前記多値変調信号の生成パラメータが設定されていることを特徴とする。
The optical communication system of this embodiment is
At least one first ONU capable of receiving only an OOK signal;
At least one second ONU capable of receiving a multi-level modulation signal;
One OLT for transmitting a multi-level modulation signal by modulating light from a light source with two levels of amplitude and phase;
An optical transmission line connecting the first ONU, the second ONU, and the OLT via a power splitter;
An optical communication system comprising:
In the OLT, the generation parameter of the multilevel modulation signal is set so that both the phase modulation component and the amplitude modulation component of the multilevel modulation signal have an extinction ratio that satisfies a prescribed signal quality. .

多値変調信号の2レベル振幅の振幅比は、次のように決定する。
記多値変調信号を受光素子(PD:Photo Diode)で直接検波し、前記多値変調信号の消光比を測定する測定ステップと、
前記多値変調信号の位相変調成分と振幅変調成分の双方が規定の信号品質を満たす消光比となるように前記多値変調信号の生成パラメータを前記OLTに設定する設定ステップと、
を順に行う。
The amplitude ratio of the two-level amplitude of the multilevel modulation signal is determined as follows.
Before SL multilevel modulation signal light receiving element: a measuring step that detects direct (PD Photo Diode), to measure the extinction ratio of the multi-level modulation signal,
A setting step of setting the generation parameter of the multilevel modulation signal in the OLT so that both the phase modulation component and the amplitude modulation component of the multilevel modulation signal have an extinction ratio that satisfies a prescribed signal quality;
Repeat in order.

本実施形態の光通信システムは、前記消光比が6.1dBより大きく、且つ12.3dBより小さいことを特徴とする。   The optical communication system of this embodiment is characterized in that the extinction ratio is larger than 6.1 dB and smaller than 12.3 dB.

本実施形態では、旧システムをIEEE 802.3av 10G−EPONと想定し、そのONUを旧ONUとする。旧ONUと新ONUとの共存を可能とするStar 8−QAM信号の振幅比を数値計算により特定する。OLT102の送信器部分、旧ONU201の受信器部分、新ONU202の受信器部分は、それぞれ図7−9のように構成される。ただし、本発明に直接関係のある部分のみを示している。   In this embodiment, it is assumed that the old system is IEEE 802.3av 10G-EPON, and the ONU is the old ONU. The amplitude ratio of the Star 8-QAM signal that enables the old ONU and the new ONU to coexist is specified by numerical calculation. The transmitter part of the OLT 102, the receiver part of the old ONU 201, and the receiver part of the new ONU 202 are configured as shown in FIG. However, only the part directly related to the present invention is shown.

OLT102は、DSP(デジタル信号処理部)11によりI成分とQ成分の4ASK信号を生成し、D/A変換器12を通してIQ変調器13に入力することで、光源14の出力光からStar 8−QAM信号を生成する。送信信号のパワーは+2.5dBmとなるよう調整した。DSP11で4ASK信号を生成する際に、4値の振幅の間隔を調整することにより、振幅比を変化させることができる。本明細書では、4ASK信号の4値の振幅の間隔を調整するためにDSP11に設定するパラメータを「多値変調信号の生成パラメータ」と呼ぶ。   The OLT 102 generates a 4ASK signal of an I component and a Q component by a DSP (digital signal processing unit) 11 and inputs the 4ASK signal to the IQ modulator 13 through the D / A converter 12, whereby Star 8− A QAM signal is generated. The power of the transmission signal was adjusted to +2.5 dBm. When the 4ASK signal is generated by the DSP 11, the amplitude ratio can be changed by adjusting the interval between the four amplitudes. In this specification, a parameter set in the DSP 11 in order to adjust the interval of the four-level amplitude of the 4ASK signal is referred to as a “multi-level modulation signal generation parameter”.

旧ONU201はPD21を備える。旧ONU201は、OLT102が送信したStar 8−QAM信号をPD21で受光し、直接検波を行う。旧ONU201は、OOK信号のみ受信可能である。このため、旧ONU201は、Star 8−QAM信号の振幅変調成分のみをOOK信号として受信することになる。   The old ONU 201 includes a PD 21. The old ONU 201 receives the Star 8-QAM signal transmitted from the OLT 102 by the PD 21 and directly detects it. The old ONU 201 can receive only the OOK signal. Therefore, the old ONU 201 receives only the amplitude modulation component of the Star 8-QAM signal as the OOK signal.

新ONU202は光源、光源26、90°ハイブリッド27、バランスPD28からなるコヒーレント検波器25により信号を受信し、A/D変換器29を通してDSP30により信号の復元、復調等を行う。   The new ONU 202 receives a signal by a coherent detector 25 including a light source, a light source 26, a 90 ° hybrid 27, and a balance PD 28, and performs restoration, demodulation, and the like of the signal by a DSP 30 through an A / D converter 29.

OLT102の光源14と新ONU202の光源26の線幅と出力パワーはそれぞれ100kHz、10.0dBmとした。上記の系において、OLT102からシンボルレートが10Gsymbol/sのStar 8−QAM信号を送信したときの、旧ONU201、新ONU202で受信した信号の振幅変調成分と位相変調成分のビットエラーレート(BER)が10E−03よりも小さくなる最小の受光パワーを図5に示す。   The line width and output power of the light source 14 of the OLT 102 and the light source 26 of the new ONU 202 were 100 kHz and 10.0 dBm, respectively. In the above system, when a Star 8-QAM signal having a symbol rate of 10 G symbol / s is transmitted from the OLT 102, the bit error rate (BER) of the amplitude modulation component and the phase modulation component of the signal received by the old ONU 201 and the new ONU 202 is FIG. 5 shows the minimum light receiving power smaller than 10E-03.

図5において、横軸は信号をPD21で直接検波したときのアイパターンの消光比、縦軸はBERが10E−03よりも小さくなる最小の受光パワーである。図5のマークはそれぞれ次を意味する。
(凡例)

Figure 0006053163
また、10G−EPON ONU(class PR30)の最小受光感度である−28dBmを点線で示している。 In FIG. 5, the horizontal axis represents the extinction ratio of the eye pattern when the signal is directly detected by the PD 21, and the vertical axis represents the minimum received light power at which the BER is smaller than 10E-03. The marks in FIG. 5 mean the following.
(Legend)
Figure 0006053163
Further, −28 dBm, which is the minimum light receiving sensitivity of 10G-EPON ONU (class PR30), is indicated by a dotted line.

図5より、すべての信号がBER<10E−03を満たす受光パワーが−28dBm以下である範囲は6.1dB〜12.3dBであるので、PD21で直接検波したときの消光比の範囲がこの範囲に収まるStar 8−QAM信号を送信するようにOLT102が設定する。具体的には、当該Star 8−QAM信号を生成できる生成パラメータをDSP11に設定する。これにより、10G−EPON ONUから、コヒーレント検波器とDSPを備えるONUへの置き換え、およびそれらの同一PON配下での共存が可能となる。また、10G−EPON OLTの送信器の消光比は6.0dB以上であるので、6.1dB〜12.3dBという範囲はその基準も満たしている。   As shown in FIG. 5, the range in which the received light power satisfying BER <10E-03 is −28 dBm or less is 6.1 dB to 12.3 dB. Therefore, the range of the extinction ratio when directly detected by the PD 21 is this range. The OLT 102 is set to transmit a Star 8-QAM signal that falls within the range. Specifically, a generation parameter capable of generating the Star 8-QAM signal is set in the DSP 11. Thereby, it is possible to replace the 10G-EPON ONU with an ONU including a coherent detector and a DSP, and coexistence under the same PON. Moreover, since the extinction ratio of the transmitter of 10G-EPON OLT is 6.0 dB or more, the range of 6.1 dB to 12.3 dB satisfies the standard.

(実施形態2)
本実施形態の光通信システムは、前記消光比が8.2dBより大きく、且つ12.3dBより小さいことを特徴とする。
(Embodiment 2)
The optical communication system of this embodiment is characterized in that the extinction ratio is larger than 8.2 dB and smaller than 12.3 dB.

本実施形態は、旧システムをITU−T G.987シリーズ XG−PONと想定する。XG−PONのONU(class N1)の最小受光感度は−27dBmである。このため、PD21で直接検波したときの消光比の範囲が6.1dB〜12.3dBに収まるように、OLT102においてStar 8−QAM信号の振幅比を調整する(DSP11に生成パラメータを設定する)ことで、XG−PON ONUから、コヒーレント検波器とDSPを備えるONUでの置き換え、およびそれらの同一PON配下での共存が可能となる。ただし、XG−PONにおいては、消光比の規格が8.2dB以上であるので、その規定に従う場合には、PDで直接検波したときの消光比の範囲が8.2dB〜12.3dBに収まるように、OLT102においてStar 8−QAM信号の振幅比を調整する。   In the present embodiment, the old system is replaced with ITU-T G.264. Assume 987 series XG-PON. The minimum light receiving sensitivity of the ONG (class N1) of XG-PON is −27 dBm. For this reason, the OLT 102 adjusts the amplitude ratio of the Star 8-QAM signal so that the extinction ratio range when directly detected by the PD 21 falls within the range of 6.1 dB to 12.3 dB (sets a generation parameter in the DSP 11). Thus, it is possible to replace the XG-PON ONU with an ONU including a coherent detector and a DSP, and coexistence under the same PON. However, in XG-PON, since the extinction ratio standard is 8.2 dB or more, the extinction ratio range when directly detecting with PD is in the range of 8.2 dB to 12.3 dB when complying with the specification. In the OLT 102, the amplitude ratio of the Star 8-QAM signal is adjusted.

(実施形態3)
実施形態1,2では、旧システムがTDM−PONの形態であるが、これらを波長多重したWDM/TDM−PONの中の同一波長内の旧ONUと新ONUの共存においても、本発明を適用することができる。
(Embodiment 3)
In the first and second embodiments, the old system is in the form of TDM-PON, but the present invention is also applied to the coexistence of the old ONU and the new ONU in the same wavelength in the WDM / TDM-PON in which these are wavelength-multiplexed. can do.

(他の実施形態)
上記実施形態では、旧ONU201でStar 8−QAM信号を直接検波して振幅比を調整する手法を説明したが、条件調整用の専用測定器を光伝送路の加入者側に接続してStar 8−QAM信号を直接検波して振幅比を調整する手法でもよい。また、条件調整用の専用測定器をOLT102の出力ポートに直接接続し、出力されるStar 8−QAM信号を直接検波して振幅比を調整する手法でもよい。
(Other embodiments)
In the above embodiment, the method of directly detecting the Star 8-QAM signal by the old ONU 201 and adjusting the amplitude ratio has been described. However, a dedicated measuring instrument for condition adjustment is connected to the subscriber side of the optical transmission line to connect the Star 8 A method of directly detecting the QAM signal and adjusting the amplitude ratio may be used. Alternatively, a method may be used in which a dedicated measuring instrument for condition adjustment is directly connected to the output port of the OLT 102, and the amplitude ratio is adjusted by directly detecting the output Star 8-QAM signal.

(付記)
以下は、本発明を説明したものである。
本発明は、光アクセスシステムにおいて、既に敷設されているあるシステムからその次の世代のシステムへの移行を円滑かつ経済的に行うための技術に関して、その技術が適用可能なパラメータの範囲の指定に関する。
<課題>
デジタル信号処理による多値変調技術をPONの構成をとる光アクセスシステムに導入するにあたり、Star−QAM型信号を用いて現存のOOK信号のみを扱うONUとの共存を図る方式においては、Star−QAM型信号の振幅比の値によっては、新旧どちらかのONUの受信信号が規定の品質を満たさず、置き換えおよび共存が不可能となる。しかし、新旧両ONUが規定の信号品質で信号を受信できるStar−QAM型信号の振幅比の範囲は、これまで明確に示されていない。
(Appendix)
The following is a description of the present invention.
TECHNICAL FIELD The present invention relates to a technique for smoothly and economically transitioning from an already installed system to the next generation system in an optical access system, and to specifying a range of parameters to which the technique can be applied. .
<Issues>
In introducing multi-level modulation technology using digital signal processing into an optical access system having a PON configuration, Star-QAM uses a Star-QAM type signal to coexist with an ONU that handles only an existing OOK signal. Depending on the value of the amplitude ratio of the type signal, the received signal of either the old or new ONU does not satisfy the prescribed quality, and replacement and coexistence are impossible. However, the range of the amplitude ratio of the Star-QAM type signal in which both the new and old ONUs can receive signals with the prescribed signal quality has not been clearly shown so far.

<解決手段>
シンボルレートが10Gsymbol/s、送信パワーが+2.5dBmという条件下でStar 8−QAM信号を送信した際に、振幅比に対する新旧ONUの各信号成分の信号品質として、図6の結果を得た。この結果より、PDで直接検波した際に、その消光比が6.1dB〜12.3dBの範囲となるようなStar 8−QAM信号を使用することで、旧ONU、新ONUで受信するすべての信号が−28dBm以下の受信感度でBER<10E−03を達成し、IEEE 802.3av 10G−EPONあるいはITU−T G.987シリーズ XG−PONのONUと、コヒーレント受信器とDSPを備え、振幅変調成分と位相変調成分が受信可能であるONUとの置き換えおよび同一OLT配下での共存が可能となる。
<Solution>
When a Star 8-QAM signal was transmitted under the conditions of a symbol rate of 10 Gsymbol / s and a transmission power of +2.5 dBm, the signal quality of each signal component of the old and new ONU with respect to the amplitude ratio was obtained as shown in FIG. From this result, when using the Star 8-QAM signal whose extinction ratio is in the range of 6.1 dB to 12.3 dB when directly detecting with the PD, all the signals received by the old ONU and the new ONU are all received. The signal achieves BER <10E-03 with a receiving sensitivity of −28 dBm or less, IEEE 802.3av 10G-EPON or ITU-T G. A 987 series XG-PON ONU, a coherent receiver, and a DSP, which can receive an amplitude modulation component and a phase modulation component, can be replaced and can coexist in the same OLT.

本発明の主な構成は次の通りである。
(1):PDで直接検波をしたときに、消光比が12.3dBより小さくなるようなStar 8−QAMを生成する送信器。
(2):上記(1)と同様の構成で、更に消光比が6.1dBよりも大きくなるようなStar 8−QAMを生成する送信器。
(3):上記(1)と同様の構成で、更に消光比が8.2dBよりも大きくなるようなStar 8−QAMを生成する送信器。
(4):上記(1)から(3)のいずれかの送信器を備えるOLTと、直接検波器のみを備えるIEEE 802.3av 10G−EPONに準拠のONUと、コヒーレント検波器とDSPを備え、振幅変調信号と位相変調信号を受信可能なONUからなるPONシステム。
(5):上記(1)から(3)のいずれかの送信器を備えるOLTと、直接検波器のみを備えるITU−T G. 987シリーズ XG−PONに準拠のONUと、コヒーレント検波器とDSPを備え、振幅変調信号と位相変調信号を受信可能なONUからなるPONシステム。
(6):上記(4)もしくは(5)の構成において、波長多重機能を兼ね備えたPONシステム。
The main configuration of the present invention is as follows.
(1): Transmitter that generates Star 8-QAM such that the extinction ratio is smaller than 12.3 dB when direct detection is performed by a PD.
(2): A transmitter that generates the Star 8-QAM having the same configuration as the above (1) and further having an extinction ratio larger than 6.1 dB.
(3): Transmitter that generates Star 8-QAM with the same configuration as in (1) above, such that the extinction ratio is further greater than 8.2 dB.
(4): An OLT including the transmitter of any one of (1) to (3) above, an ONU conforming to IEEE 802.3av 10G-EPON including only a direct detector, a coherent detector, and a DSP, A PON system comprising an ONU capable of receiving an amplitude modulation signal and a phase modulation signal.
(5): OLT provided with the transmitter of any one of (1) to (3) above, and ITU-T G.1 provided with only a direct detector. 987 Series A PON system comprising an ONU that conforms to XG-PON, a coherent detector, and a DSP that can receive amplitude-modulated signals and phase-modulated signals.
(6): A PON system having the wavelength multiplexing function in the configuration of (4) or (5).

11:DPS
12:D/A変換器
13:IQ変調器
14:光源
21:PD
25:コヒーレント検波器
26:光源
27:90°ハイブリッド
28:バランスPD
29:A/D変換器
30:DSP
101、102:OLT
150:パワースプリッタ
201、202:ONU
301、302:PONシステム
11: DPS
12: D / A converter 13: IQ modulator 14: Light source 21: PD
25: Coherent detector 26: Light source 27: 90 ° hybrid 28: Balanced PD
29: A / D converter 30: DSP
101, 102: OLT
150: Power splitter 201, 202: ONU
301, 302: PON system

Claims (2)

オンオフ変調(OOK:on−off−keying)信号のみを受信可能である、少なくとも1つの第1加入者宅側装置(ONU:Optical Network Unit)と、
多値変調信号を受信可能である、少なくとも1つの第2ONUと、
光源からの光を位相及び2レベルの振幅で変調することで多値変調信号を送信する、1つの局舎側装置(OLT:Optical Line Terminal)と、
前記第1ONU、前記第2ONU、及び前記OLTをパワースプリッタを介して接続する光伝送路と、
を備える光通信システムで前記OLTが送信する多値変調信号を生成する多値変調信号生成方法であって、
前記多値変調信号を受信信号として前記第1ONUの受光素子(PD:Photo Diode)で直接検波し、前記多値変調信号の消光比を測定する測定ステップと、
前記測定ステップで測定した前記多値変調信号の消光比を6.1dBより大きく、且つ12.3dBより小さくし、前記第1ONUと前記第2ONUにおける受信信号が同時に規定の信号品質を満たすように前記多値変調信号の生成パラメータを前記OLTに設定する設定ステップと、
を順に行う多値変調信号生成方法。
At least one first customer premises unit (ONU) capable of receiving only an on-off-keying (OOK) signal;
At least one second ONU capable of receiving a multi-level modulation signal;
One station side device (OLT: Optical Line Terminal) that transmits a multi-level modulation signal by modulating the light from the light source with the phase and amplitude of two levels;
An optical transmission line connecting the first ONU, the second ONU, and the OLT via a power splitter;
A multi-level modulation signal generating method for generating a multi-level modulation signal transmitted by the OLT in an optical communication system comprising:
A measurement step of directly detecting the multilevel modulation signal as a reception signal by a light receiving element (PD: Photo Diode) of the first ONU and measuring an extinction ratio of the multilevel modulation signal;
The extinction ratio of the multi-level modulation signal measured in the measurement step is made larger than 6.1 dB and smaller than 12.3 dB, and the received signals in the first ONU and the second ONU satisfy the specified signal quality at the same time. A setting step of setting a generation parameter of a multi-level modulation signal in the OLT;
A method for generating a multi-level modulation signal in order.
前記設定ステップで、前記消光比を8.2dBより大きく、且つ12.3dBより小さくすることを特徴とする請求項1に記載の多値変調信号生成方法。   2. The multilevel modulation signal generation method according to claim 1, wherein, in the setting step, the extinction ratio is made larger than 8.2 dB and smaller than 12.3 dB.
JP2013128228A 2013-06-19 2013-06-19 Multilevel modulation signal generation method and optical communication system Expired - Fee Related JP6053163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013128228A JP6053163B2 (en) 2013-06-19 2013-06-19 Multilevel modulation signal generation method and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013128228A JP6053163B2 (en) 2013-06-19 2013-06-19 Multilevel modulation signal generation method and optical communication system

Publications (2)

Publication Number Publication Date
JP2015005796A JP2015005796A (en) 2015-01-08
JP6053163B2 true JP6053163B2 (en) 2016-12-27

Family

ID=52301378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013128228A Expired - Fee Related JP6053163B2 (en) 2013-06-19 2013-06-19 Multilevel modulation signal generation method and optical communication system

Country Status (1)

Country Link
JP (1) JP6053163B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110089051B (en) * 2016-12-27 2021-06-29 三菱电机株式会社 Optical communication device and optical communication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849632B2 (en) * 2007-06-18 2012-01-11 日本電信電話株式会社 Optical transmission method, encoding method, optical transmission system, and optical transmitter
JP5697518B2 (en) * 2011-04-05 2015-04-08 日本電信電話株式会社 Station-side terminator, subscriber-side terminator, and optical transmission system

Also Published As

Publication number Publication date
JP2015005796A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
US9843390B2 (en) Optical transmitter with optical receiver-specific dispersion pre-compensation
ES2900166T3 (en) Optical communication systems, devices and methods including high performance optical receivers
KR101385900B1 (en) Method for controlling a light source in wavelength division multiplexed passive optical network
US20140241727A1 (en) Communication between transceivers using in-band subcarrier tones
US9838117B2 (en) Bias error correction in an optical coherent transponder
CN109600170B (en) Optical module and signal processing method
Wagner et al. Impairment analysis of WDM-PON based on low-cost tunable lasers
Iiyama et al. Co-existent downstream scheme between OOK and QAM signals in an optical access network using software-defined technology
US9998216B2 (en) Skew measurement in an optical coherent transponder
Ragheb et al. Candidate modulation schemes for next generation-passive optical networks (NG-PONs)
US8923353B2 (en) Laser driver modulation and bias control scheme
van Veen et al. Flexible 50G PON based on multi-rate PAM and CAP-4 with user interleaving
JP6053163B2 (en) Multilevel modulation signal generation method and optical communication system
Rajalakshmi et al. Analysis of TDM and WDM PON using different coding schemes for extended reach
JP2016005193A (en) Optical access system, terminator, home device and optical access method
JP5775105B2 (en) Transmitting apparatus / method and receiving apparatus / method in a passive optical communication network
US9838118B2 (en) Skew compensation in an optical coherent transponder
KR101168761B1 (en) Method for generating phase modulation signal, Apparatus for generating phase modulation signal and optical network using the same
Fabrega et al. Mobile front-/back-haul delivery in elastic metro/access networks with sliceable transceivers based on OFDM transmission and direct detection
US11463164B1 (en) Optical line terminal with out-of-band communication channel, and method for implementing
US20240243812A1 (en) Systems and methods for optimization of transmission signal quality in point-to-multipoint networks
US10268227B2 (en) Transmission apparatus, transmission system and data detection method
Pilori Discrete-multitone modulation for short distance 100 Gbit/s optical links
Singh et al. Comparison of DPSK and QAM modulation schemes in Passive optical network
KR101812588B1 (en) METHOD AND APPARATUS FOR GENERATING OPTICAL POLAR RETURN-to-ZERO AMPLITUDE MODULATION SIGNAL USING REFLECTIVE SEMICONDUCTOR OPTICAL AMPLIFIER AND WAVELENGTH-DIVISION-MULTIPLEXED PASSIVE OPTICAL NETWORK SYSTEM USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R150 Certificate of patent or registration of utility model

Ref document number: 6053163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees