JP2016005193A - Optical access system, terminator, home device and optical access method - Google Patents

Optical access system, terminator, home device and optical access method Download PDF

Info

Publication number
JP2016005193A
JP2016005193A JP2014125665A JP2014125665A JP2016005193A JP 2016005193 A JP2016005193 A JP 2016005193A JP 2014125665 A JP2014125665 A JP 2014125665A JP 2014125665 A JP2014125665 A JP 2014125665A JP 2016005193 A JP2016005193 A JP 2016005193A
Authority
JP
Japan
Prior art keywords
level
modulation
signal
transmission distance
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014125665A
Other languages
Japanese (ja)
Other versions
JP6291362B2 (en
Inventor
勝久 田口
Katsuhisa Taguchi
勝久 田口
浅香 航太
Kota Asaka
航太 浅香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014125665A priority Critical patent/JP6291362B2/en
Publication of JP2016005193A publication Critical patent/JP2016005193A/en
Application granted granted Critical
Publication of JP6291362B2 publication Critical patent/JP6291362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system achieving economical high speed large capacity and flexible adaptive modulation, without complicating the configuration and without making the device expensive, in a time sharing multiplex access system and/or wavelength multiplex access system.SOLUTION: A PAM adaptive modulation OLT3 performs PAM modulation of multiple value greater than binary having a multiple value level depending on the transmission distance, for a downlink signal transmitted to an ONU4, and PAM modulation of multiple value greater than binary having a multiple value level depending on the transmission distance, for an uplink signal received from the ONU4. The ONU4 performs PAM demodulation of multiple value greater than binary having a multiple value level depending on the transmission distance, for a downlink signal received from the PAM adaptive modulation OLT3, and PAM modulation of multiple value greater than binary having a multiple value level depending on the transmission distance, for an uplink signal transmitted to the PAM adaptive modulation OLT3.

Description

本発明は、時分割多重光アクセスシステム及び/又は波長多重光アクセスシステムにおいて、経済的な高速・大容量化及び柔軟な適応変調を実現するための技術に関する。   The present invention relates to a technique for realizing economical high-speed and large-capacity and flexible adaptive modulation in a time division multiplexing optical access system and / or wavelength division multiplexing optical access system.

近年、急速な普及を遂げているFiber To The Home(FTTH)サービスを支える光アクセスシステムとして、Passive Optical Network(PON)システムの導入が、世界各国で進められている。   In recent years, the introduction of a Passive Optical Network (PON) system has been promoted in various countries around the world as an optical access system that supports the Fiber To The Home (FTTH) service, which has been rapidly spreading.

PONシステムは、光ファイバ伝送路中に設置された光スプリッタを介して、収容局に設置された1台の終端装置(OLT:Optical Line Terminal)が、複数の加入者宅に設置された宅内装置(ONU:Optical Network Unit)を収容することで、光ファイバ伝送路、光スプリッタ及びOLTを複数の加入者間で共有し高い経済性を実現した光アクセスシステムである。   The PON system is an in-home device in which one terminal device (OLT: Optical Line Terminal) installed in a receiving station is installed in a plurality of subscriber homes via an optical splitter installed in an optical fiber transmission line. By accommodating an (ONU: Optical Network Unit), an optical access system that realizes high economic efficiency by sharing an optical fiber transmission line, an optical splitter, and an OLT among a plurality of subscribers.

現在、日本では、主に1Gb/sの伝送量を有するGE−PON(Gigabit Ethernet−PON)システムが、商用導入されている(Ethernetは登録商標)。また、信号の速度を10倍に高速化した10G−EPON(10 Gigabit−Ethernet PON)システムや、波長多重(WDM:Wavelength Division Multiplexing)技術を適用し40G級の伝送容量を実現するNG−PON2(Next Generation−PON2)システムの、標準化や研究開発が行われている(例えば、非特許文献1を参照。)。   Currently, in Japan, a GE-PON (Gigabit Ethernet-PON) system mainly having a transmission rate of 1 Gb / s has been introduced commercially (Ethernet is a registered trademark). In addition, NG-PON2 (10 G-EPON (10 Gigabit-Ethernet PON) system, which increases the signal speed by 10 times, and wavelength division multiplexing (WDM) technology to realize 40G-class transmission capacity ( Next Generation-PON2) system is being standardized and researched and developed (for example, see Non-Patent Document 1).

H.Nakamura,K.Taguchi,S.Tamaki,T.Mizuno,Y.Hashizume,T.Yamada,M.Ito,H.Takahashi,S.Kimura,and N.Yoshimoto,“40Gbit/s−class−λ−tunable WDM/TDM−PON using λ−selectable B−Tx and 4 x M cyclic AWG router for flexible photonic aggregation networks,” OSA Optics Express,Vol.21,No.1,pp.463−468,January 2013.H. Nakamura, K .; Taguchi, S .; Tamaki, T .; Mizuno, Y.M. Hashizumi, T .; Yamada, M .; Ito, H .; Takahashi, S .; Kimura, and N.K. Yoshimoto, “40 Gbit / s-class-λ-tunable WDM / TDM-PON using λ-selectable B-Tx and 4 × M cyclic AWG route for Oregonet” 21, no. 1, pp. 463-468, January 2013. N.Iiyama,J−I.Kani,J.Terada,and N.Yoshimoto,“Feasibility Study on a Scheme for Coexistence of DSP−Based PON and 10−Gbps/λ PON Using Hierarchical Star QAM Format,” Journal of lightwave technology,Vol.31,No.4,pp.3085−3092,2013.N. Iiyama, JI. Kani, J. et al. Terada, and N.A. Yoshimoto, “Feasibility Study on a Scheme for Coexistence of DSP-Based PON and 10-Gbps / λ PON Using Hierarchical Star QAM Format.” Journal of Japan. 31, no. 4, pp. 3085-3092, 2013. Cvijetic.N,“OFDM for Next−Generation Optical Access Networks,” Journal of lightwave technology,Vol.30,No.4,pp.384−398,2012.Cvjetic. N, “OFDM for Next-Generation Optical Access Networks,” Journal of lightwave technology, Vol. 30, no. 4, pp. 384-398, 2012.

近年、システムの高速・大容量化を実現するための検討が行われるとともに、システムの柔軟性を高めるための検討が盛んに行われており、特に、伝送路品質や要求伝送品質等に応じて、各ユーザ毎に割り当てる信号の変調方式やビットレートを最適化する、適応変調技術が注目されている(例えば、非特許文献2を参照。)。   In recent years, studies have been conducted to realize high-speed and large-capacity systems, and studies to increase system flexibility have been actively conducted, especially according to transmission path quality and required transmission quality. An adaptive modulation technique that optimizes a modulation scheme and a bit rate of a signal assigned to each user has attracted attention (see, for example, Non-Patent Document 2).

従来技術の光アクセスシステムの構成を図1に示す。従来技術の光アクセスシステムは、QAM(Quadrature Amplitude Modulation)方式及び適応変調技術を用いるPONであり、通信事業者ビル内に設置されるQAM適応変調OLT1、ユーザ宅内に設置されるONU2−1−1、・・・、2−1−m、2−2−1、・・・、2−2−m、・・・、2−n−1、・・・、2−n−m、光信号を合分波する光スプリッタ、及び伝送路である光ファイバから構成される。   The configuration of a conventional optical access system is shown in FIG. The optical access system of the prior art is a PON using a QAM (Quadrature Amplitude Modulation) method and adaptive modulation technology, QAM adaptive modulation OLT1 installed in a communication carrier building, ONU2-1-1 installed in a user's home ..., 2-1-m, 2-2-1, ..., 2-2m, ..., 2-n-1, ..., 2-nm, the optical signal. It comprises an optical splitter that multiplexes and demultiplexes, and an optical fiber that is a transmission path.

QAM適応変調OLT1は、各ONU2の伝送路品質や要求伝送品質等に応じて、上り信号及び下り信号のフォーマットを決定する。基本的に、信号の多値度が大きくなるほど、信号の信号対雑音比が劣化するため、信号の伝送距離が制限される。   The QAM adaptive modulation OLT1 determines the format of the uplink signal and the downlink signal according to the transmission path quality and required transmission quality of each ONU2. Basically, the signal multiplicity increases, and the signal-to-noise ratio of the signal deteriorates, so that the signal transmission distance is limited.

従来技術の上りバースト信号及び下り連続信号のフォーマットを図2及び図3に示す。図2及び図3では、ONU2−1−1、2−2−1、2−n−1のみを示す。ONU2−1−1は、QAM適応変調OLT1から近距離にあるため、ONU2−1−1からの上りバースト信号及びONU2−1−1への下り連続信号は、多値度が大きい16QAM信号である。ONU2−2−1、2−n−1は、QAM適応変調OLT1から遠距離にあるため、ONU2−2−1、2−n−1からの上りバースト信号及びONU2−2−1、2−n−1への下り連続信号は、多値度が小さい4QAM信号である。   The formats of the prior art upstream burst signal and downstream continuous signal are shown in FIGS. 2 and 3, only the ONUs 2-1-1, 2-1 and 2-n-1 are shown. Since the ONU 2-1-1 is at a short distance from the QAM adaptive modulation OLT 1, the upstream burst signal from the ONU 2-1-1 and the downstream continuous signal to the ONU 2-1-1 are 16QAM signals having a large multilevel value. . Since ONU2-2-1, 2-n-1 is far from QAM adaptive modulation OLT1, upstream burst signals from ONU2-2-1, 2-n-1 and ONU2-2-1, 2-n-1 The downstream continuous signal to −1 is a 4QAM signal having a small multilevel value.

図1から図3までにおいて説明したように、適用変調技術は、QAM変調方式等を用いるものは多く報告されているが、OOK(On Off Keying)変調方式のNRZ(Non Return to Zero)信号を用いるものは全く報告されていない。OOK変調方式のNRZ信号を用いるものでは、QAM変調方式等を用いるものと比べて、主に光デバイスを制御する電気回路の動作制限から、高い経済性を実現できる伝送速度が10Gb/s程度に制限されてしまう課題があったためである。   As described with reference to FIGS. 1 to 3, many applied modulation techniques using a QAM modulation method have been reported, but an NRZ (Non Return to Zero) signal of an OOK (On Off Keying) modulation method is used. No one has been reported for use. Compared with the one using the QAM modulation method and the like using the NRZ signal of the OOK modulation method, the transmission speed capable of realizing high economic efficiency is about 10 Gb / s mainly due to the operation limitation of the electric circuit for controlling the optical device. This is because there is a problem that is limited.

一方で、将来の飛躍的な高速・大容量化及び高度化を実現する光通信方式として、無線技術で応用されているOFDM(Orthogonal Frequency Division Multiplexing)技術や、デジタル信号処理(DSP:Digital Signal Processing)及びコヒーレント技術を組み合わせたデジタルコヒーレント技術等、長距離大容量光通信に応用がされている技術を、PONシステムに適用する検討がされている(例えば、非特許文献3を参照。)。   On the other hand, OFDM (Orthogonal Frequency Division Multiplexing) technology applied in wireless technology and digital signal processing (DSP: Digital Signal Processing) as future optical communication systems that realize dramatic speedup, large capacity, and sophistication. ) And a technology applied to long-distance large-capacity optical communication, such as a digital coherent technology combined with a coherent technology, has been studied (for example, see Non-Patent Document 3).

そして、OFDM−PONやデジタルコヒーレントPONでは、抜本的なシステムの高速・大容量化及び高度化が可能である。しかし、OFDM−PONでは、線幅の狭くかつ発信安定度の高い光源が必要になり、デジタルコヒーレントPONでは、コヒーレント送受信器やデジタル信号処理用のデジタルアナログ変換回路や信号処理計算回路が必要になる。よって、OFDM−PONやデジタルコヒーレントPONでは、構成が複雑でありかつデバイスが高価なため、システムの経済化が難しいといった課題があった。   In OFDM-PON and digital coherent PON, it is possible to drastically increase the speed, capacity, and sophistication of the system. However, OFDM-PON requires a light source with a narrow line width and high transmission stability, and digital coherent PON requires a coherent transceiver, a digital-analog conversion circuit for digital signal processing, and a signal processing calculation circuit. . Therefore, OFDM-PON and digital coherent PON have a problem in that it is difficult to make the system economical because the configuration is complicated and the device is expensive.

そこで、前記課題を解決するために、本発明は、時分割多重光アクセスシステム及び/又は波長多重光アクセスシステムにおいて、構成を複雑にせずかつデバイスを高価にせず、経済的な高速・大容量化及び柔軟な適応変調を実現することを目的とする。   Accordingly, in order to solve the above-mentioned problems, the present invention provides an economical high-speed and large-capacity configuration in a time division multiplexing optical access system and / or wavelength multiplexing optical access system without complicating the configuration and making the device expensive. And it aims at realizing flexible adaptive modulation.

上記目的を達成するために、伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調(PAM:Pulse Amplitude Modulation)方式を用いることにより、上り信号及び/又は下り信号の多値度を向上させることとした。   In order to achieve the above object, by using a multi-value pulse intensity modulation (PAM) method in which the multi-value degree is determined in accordance with the transmission distance, the number of uplink signals and / or downlink signals is increased. It was decided to improve the value.

具体的には、本発明は、終端装置と、複数の宅内装置と、を備える光アクセスシステムであって、前記終端装置は、前記宅内装置へと送信する下り信号に対する、前記宅内装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調と、前記宅内装置から受信した上り信号に対する、前記宅内装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調と、のうち一方又は両方を行い、前記宅内装置は、前記終端装置から受信した下り信号に対する、前記終端装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調と、前記終端装置へと送信する上り信号に対する、前記終端装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調と、のうち一方又は両方を行うことを特徴とする光アクセスシステムである。   Specifically, the present invention is an optical access system comprising a terminal device and a plurality of home devices, wherein the terminal device transmits a downlink signal transmitted to the home device to the home device. Multi-value pulse intensity modulation with a multi-value greater than two values determined according to the distance and an uplink signal received from the home device greater than a binary value with a multi-value determined according to the transmission distance from the home device One or both of multi-level pulse intensity demodulation is performed, and the in-home device is larger than a binary value whose multi-level is determined according to a transmission distance from the terminal device with respect to a downlink signal received from the terminal device One of a multi-level pulse intensity demodulation and a multi-level pulse intensity modulation larger than two values, the multi-level of which is determined according to the transmission distance to the terminal device, for an upstream signal transmitted to the terminal device. Both an optical access system and performs.

また、本発明は、光アクセスシステムにおいて宅内装置と通信を行う終端装置であって、前記宅内装置へと送信する下り信号に対する、前記宅内装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調を行う多値変調部と、前記宅内装置から受信した上り信号に対する、前記宅内装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調を行う多値復調部と、のうち一方又は両方を備えることを特徴とする終端装置である。   In addition, the present invention is a terminal device that communicates with a home device in an optical access system, and a binary value that has a multi-value degree determined according to a transmission distance to the home device with respect to a downlink signal transmitted to the home device A multi-level modulation unit that performs larger multi-level pulse intensity modulation, and a multi-level pulse intensity that is greater than two values, the multi-level of which is determined according to the transmission distance from the in-home device, with respect to the uplink signal received from the in-home device A termination device comprising one or both of a multi-level demodulator for performing demodulation.

また、本発明は、光アクセスシステムにおいて終端装置と通信を行う宅内装置であって、前記終端装置から受信した下り信号に対する、前記終端装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調を行う多値復調部と、前記終端装置へと送信する上り信号に対する、前記終端装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調を行う多値変調部と、のうち一方又は両方を備えることを特徴とする宅内装置である。   Further, the present invention is an in-home device that communicates with a termination device in an optical access system, and is based on a binary value that determines a multilevel degree according to a transmission distance from the termination device for a downlink signal received from the termination device A multi-level demodulating unit that demodulates a large multi-level pulse intensity, and a multi-level pulse intensity that is greater than a binary value that has a multi-level determined in accordance with a transmission distance to the terminal device for an uplink signal transmitted to the terminal device An in-home apparatus comprising one or both of a multi-level modulation unit that performs modulation.

また、本発明は、終端装置と、複数の宅内装置と、を用いる光アクセス方法であって、前記終端装置が、前記宅内装置へと送信する下り信号に対する、前記宅内装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調を行い、前記宅内装置が、前記終端装置から受信した下り信号に対する、前記終端装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調を行う下り信号変復調ステップと、前記宅内装置が、前記終端装置へと送信する上り信号に対する、前記終端装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調を行い、前記終端装置が、前記宅内装置から受信した上り信号に対する、前記宅内装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調を行う上り信号変復調ステップと、のうち一方又は両方を行うことを特徴とする光アクセス方法である。   The present invention is also an optical access method using a terminal device and a plurality of home devices, wherein the terminal device responds to a downlink signal transmitted to the home device according to a transmission distance to the home device. Multi-level pulse intensity modulation is performed that is greater than the binary value that determines the multi-level value, and the multi-level value is determined according to the transmission distance from the terminal device to the downlink signal received by the home device from the terminal device 2 A downlink signal modulation / demodulation step for performing multi-value pulse intensity demodulation larger than the value, and a binary value whose multivalue level is determined in accordance with a transmission distance to the terminal device for an upstream signal transmitted from the home device to the terminal device Multi-level pulse intensity modulation is performed, and the termination device is a multi-value greater than two values with which the multi-level degree is determined according to the transmission distance from the home device with respect to the upstream signal received from the home device. An optical access method and performing an uplink signal demodulation step of performing a pulse intensity demodulation, one or both of the.

この構成によれば、OOK変調方式を用いることなく、2値より大きい多値のPAM方式を用いるため、単純なOOK変調方式より、高速・大容量化を図ることができ、OFDM技術やデジタルコヒーレント技術より、経済化を図ることができ、したがって、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   According to this configuration, since a multi-value PAM system that is larger than binary is used without using an OOK modulation system, a higher speed and a larger capacity can be achieved than a simple OOK modulation system, and OFDM technology or digital coherent can be used. From the technology, it is possible to achieve economy, and thus it is possible to realize economical high speed and large capacity and flexible adaptive modulation.

ここで、既存のOOK変調方式をベースとして2値より大きい多値のPAM方式を用いるならば、既存の光デバイスや電子回路を適用可能となり、したがって、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   Here, if a multi-value PAM system larger than binary is used based on the existing OOK modulation system, an existing optical device or electronic circuit can be applied. Therefore, economical high-speed / large capacity and flexible Adaptive modulation can be realized.

また、本発明は、終端装置と、複数の宅内装置と、を備える光アクセスシステムであって、前記終端装置は、前記宅内装置へと送信する下り信号に対する、前記宅内装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調及び2値のオンオフ変調のいずれかと、前記宅内装置から受信した上り信号に対する、前記宅内装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調及び2値のオンオフ復調のいずれかと、のうち一方又は両方を行い、前記宅内装置は、前記終端装置から受信した下り信号に対する、前記終端装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調及び2値のオンオフ復調のいずれかと、前記終端装置へと送信する上り信号に対する、前記終端装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調又は2値のオンオフ変調のいずれかと、のうち一方又は両方を行うことを特徴とする光アクセスシステムである。   The present invention is also an optical access system comprising a termination device and a plurality of in-home devices, wherein the termination device responds to a transmission distance to the in-home device for a downlink signal transmitted to the in-home device. The multi-value level is determined in accordance with one of multi-value pulse intensity modulation and binary on-off modulation larger than the binary value, and the transmission distance from the home device for the uplink signal received from the home device. One or both of multi-level pulse intensity demodulation and binary on / off demodulation larger than a predetermined binary value are performed, and the in-home device transmits a downlink signal received from the end device to the end device. One of multi-level pulse intensity demodulation and binary on-off demodulation greater than binary, the multi-level of which is determined according to the distance, and the end signal for the upstream signal transmitted to the end device. An optical access system that performs one or both of multi-level pulse intensity modulation and binary on-off modulation greater than binary, the multi-level of which is determined according to the transmission distance to the apparatus. .

この構成によれば、OOK変調方式を用いるとともに、2値より大きい多値のPAM方式を用いるため、単純なOOK変調方式より、高速・大容量化を図ることができ、OFDM技術やデジタルコヒーレント技術より、経済化を図ることができ、したがって、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   According to this configuration, since an OOK modulation method and a multi-value PAM method larger than two values are used, higher speed and larger capacity can be achieved than a simple OOK modulation method, and OFDM technology and digital coherent technology can be achieved. Thus, the economy can be improved, and therefore, economical high speed and large capacity and flexible adaptive modulation can be realized.

ここで、既存のOOK変調方式をベースとして2値より大きい多値のPAM方式を用いるならば、既存の光デバイスや電子回路を適用可能となり、したがって、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   Here, if a multi-value PAM system larger than binary is used based on the existing OOK modulation system, an existing optical device or electronic circuit can be applied. Therefore, economical high-speed / large capacity and flexible Adaptive modulation can be realized.

また、本発明は、前記終端装置は、前記宅内装置へと送信する下り信号に対する、前記宅内装置への伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する変調と、前記宅内装置から受信した上り信号に対する、前記宅内装置からの伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する復調と、のうち一方又は両方を行い、前記宅内装置は、前記終端装置から受信した下り信号に対する、前記終端装置からの伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する復調と、前記終端装置へと送信する上り信号に対する、前記終端装置への伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する変調と、のうち一方又は両方を行うことを特徴とする光アクセスシステムである。   Further, the present invention provides a modulation that has a maximum multilevel value that is determined according to a transmission distance to the in-home device, and does not deteriorate a signal-to-noise ratio, with respect to a downlink signal transmitted to the in-home device. The uplink signal received from the in-home device is determined according to a transmission distance from the in-home device, and has a maximum multi-level that does not deteriorate the signal-to-noise ratio, and one or both of the demodulation, , With respect to the downlink signal received from the termination device, the demodulation having the maximum multi-level that is determined according to the transmission distance from the termination device and does not deteriorate the signal-to-noise ratio, and for the uplink signal transmitted to the termination device, One or both of modulation and modulation having the maximum multi-level that is determined according to the transmission distance to the terminating device and does not degrade the signal-to-noise ratio. Is Temu.

この構成によれば、伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度でもって、PAM信号又はOOK信号を送受信することができる。   According to this configuration, the PAM signal or the OOK signal can be transmitted / received with the maximum multi-level that is determined according to the transmission distance and does not deteriorate the signal-to-noise ratio.

また、本発明は、前記終端装置は、前記宅内装置へと送信する下り信号に対する、前記宅内装置への伝送距離及び前記宅内装置への通信帯域に応じて定まる多値度を有する変調と、前記宅内装置から受信した上り信号に対する、前記宅内装置からの伝送距離及び前記宅内装置からの通信帯域に応じて定まる多値度を有する復調と、のうち一方又は両方を行い、前記宅内装置は、前記終端装置から受信した下り信号に対する、前記終端装置からの伝送距離及び前記終端装置からの通信帯域に応じて定まる多値度を有する復調と、前記終端装置へと送信する上り信号に対する、前記終端装置への伝送距離及び前記終端装置への通信帯域に応じて定まる多値度を有する変調と、のうち一方又は両方を行うことを特徴とする光アクセスシステムである。   Further, the present invention provides a modulation in which the termination device has a multi-value degree determined according to a transmission distance to the in-home device and a communication band to the in-home device for a downlink signal transmitted to the in-home device, The uplink signal received from the in-home device performs one or both of a demodulation having a multi-value level determined according to a transmission distance from the in-home device and a communication band from the in-home device, and the in-home device Demodulation having a multilevel value determined according to a transmission distance from the termination device and a communication band from the termination device with respect to a downlink signal received from the termination device, and the termination device with respect to an uplink signal transmitted to the termination device An optical access system that performs one or both of modulation having a multi-value level determined according to a transmission distance to the terminal device and a communication band to the termination device

この構成によれば、伝送距離及び通信帯域の両方に応じて定まる多値度でもって、PAM信号又はOOK信号を送受信することができる。   According to this configuration, the PAM signal or the OOK signal can be transmitted / received with a multi-value degree determined according to both the transmission distance and the communication band.

また、本発明は、前記終端装置及び前記宅内装置の間の伝送距離は、前記終端装置が前記宅内装置に動的帯域割当を行う際に、前記終端装置がレンジング情報に基づいて推定することを特徴とする光アクセスシステムである。   In the present invention, the transmission distance between the terminating device and the in-home device is estimated by the terminating device based on ranging information when the terminating device performs dynamic bandwidth allocation to the in-home device. An optical access system is characterized.

この構成によれば、伝送距離を容易に推定することができる。   According to this configuration, the transmission distance can be easily estimated.

このように、本発明は、時分割多重光アクセスシステム及び/又は波長多重光アクセスシステムにおいて、構成を複雑にせずかつデバイスを高価にせず、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   As described above, the present invention provides an economical high-speed, large-capacity and flexible adaptive modulation in a time-division multiplexed optical access system and / or a wavelength-multiplexed optical access system without complicating the configuration and making the device expensive. Can be realized.

従来技術の光アクセスシステムの構成を示す図である。It is a figure which shows the structure of the optical access system of a prior art. 従来技術の上りバースト信号のフォーマットを示す図である。It is a figure which shows the format of the upstream burst signal of a prior art. 従来技術の下り連続信号のフォーマットを示す図である。It is a figure which shows the format of the downlink continuous signal of a prior art. 実施形態1の光アクセスシステムの構成を示す図である。1 is a diagram illustrating a configuration of an optical access system according to a first embodiment. 実施形態1の上りバースト信号のフォーマットを示す図である。It is a figure which shows the format of the upstream burst signal of Embodiment 1. 実施形態1の下り連続信号のフォーマットを示す図である。It is a figure which shows the format of the downstream continuous signal of Embodiment 1. FIG. 実施形態1のPAM適応変調OLTの構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a PAM adaptive modulation OLT according to the first embodiment. 実施形態1の下り連続信号の生成方法を示す図である。It is a figure which shows the production | generation method of the downlink continuous signal of Embodiment 1. FIG. 実施形態1のONUの構成を示す図である。It is a figure which shows the structure of ONU of Embodiment 1. FIG. 実施形態2の光アクセスシステムの構成を示す図である。It is a figure which shows the structure of the optical access system of Embodiment 2. FIG. 実施形態2の上りバースト信号のフォーマットを示す図である。It is a figure which shows the format of the upstream burst signal of Embodiment 2. 実施形態2の下り連続信号のフォーマットを示す図である。It is a figure which shows the format of the continuous downlink signal of Embodiment 2. 実施形態2のPAM適応変調OLTの構成を示す図である。6 is a diagram illustrating a configuration of a PAM adaptive modulation OLT according to a second embodiment. FIG. 実施形態2の下り連続信号の生成方法を示す図である。It is a figure which shows the production | generation method of the downlink continuous signal of Embodiment 2. FIG. 実施形態2のONUの構成を示す図である。It is a figure which shows the structure of ONU of Embodiment 2. FIG. 実施形態3の光アクセスシステムの構成を示す図である。FIG. 10 is a diagram illustrating a configuration of an optical access system according to a third embodiment. 実施形態4の光アクセスシステムの構成を示す図である。It is a figure which shows the structure of the optical access system of Embodiment 4.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
実施形態1の光アクセスシステムの構成を図4に示す。実施形態1の光アクセスシステムは、PAM方式及び適応変調技術を用いるPONであり、通信事業者ビル内に設置されるPAM適応変調OLT3、ユーザ宅内に設置されるONU4−1−1、・・・、4−1−m、4−2−1、・・・、4−2−m、・・・、4−n−1、・・・、4−n−m、光信号を合分波する光スプリッタ、及び伝送路である光ファイバから構成される。
(Embodiment 1)
FIG. 4 shows the configuration of the optical access system according to the first embodiment. The optical access system according to the first embodiment is a PON that uses a PAM system and adaptive modulation technology, and includes a PAM adaptive modulation OLT 3 installed in a communication carrier building, an ONU 4-1-1 installed in a user's house,. , 4-1-m, 4-2-1,..., 4-2-2m,..., 4-n-1,. It is composed of an optical splitter and an optical fiber as a transmission path.

PAM適応変調OLT3は、各ONU4の伝送路品質や要求伝送品質等に応じて、上り信号及び下り信号のフォーマットを決定する。基本的に、信号の多値度が大きくなるほど、信号の信号対雑音比が劣化するため、信号の伝送距離が制限される。   The PAM adaptive modulation OLT 3 determines the format of the uplink signal and the downlink signal according to the transmission path quality and required transmission quality of each ONU 4. Basically, the signal multiplicity increases, and the signal-to-noise ratio of the signal deteriorates, so that the signal transmission distance is limited.

図4では、PAM適応変調OLT3は、ONU4−1−1、・・・、4−1−m、4−n−1、・・・、4−n−mが、PAM適応変調OLT3から近距離にあり、PAM8信号を適用可能なエリアにある、と判断する。そして、PAM適応変調OLT3は、ONU4−2−1、・・・、4−2−mが、PAM適応変調OLT3から遠距離にあり、PAM8信号を適用不能でPAM4信号を適用可能なエリアにある、と判断する。   In FIG. 4, the PAM adaptive modulation OLT 3 includes the ONUs 4-1-1,..., 4-1-m, 4-n−1,..., 4-n-m that are close to the PAM adaptive modulation OLT 3. And it is determined that it is in an area where the PAM8 signal can be applied. In addition, the PAM adaptive modulation OLT 3 is located in an area where ONU 4-2-1,..., 4-2-m are far from the PAM adaptive modulation OLT 3, and the PAM 8 signal cannot be applied and the PAM 4 signal can be applied. Judge that.

PAM適応変調OLT3は、各ONU4へと送信する下り連続信号に対する、各ONU4への伝送距離に応じて多値度が定まる2値より大きい多値のPAM変調と、各ONU4から受信した上りバースト信号に対する、各ONU4からの伝送距離に応じて多値度が定まる2値より大きい多値のPAM復調と、を行う。   The PAM adaptive modulation OLT 3 is a multi-value PAM modulation having a multi-value larger than a binary value determined according to a transmission distance to each ONU 4 with respect to a continuous downlink signal transmitted to each ONU 4, and an upstream burst signal received from each ONU 4. On the other hand, multi-value PAM demodulation having a multi-value greater than two values, in which the multi-value degree is determined according to the transmission distance from each ONU 4, is performed.

ここで、PAM適応変調OLT3は、PAM変調を行う際に、各ONU4へと送信する下り連続信号に対する、各ONU4への伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する変調を行う。そして、PAM適応変調OLT3は、PAM復調を行う際に、各ONU4から受信した上りバースト信号に対する、各ONU4からの伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する復調を行う。   Here, when performing PAM modulation, the PAM adaptive modulation OLT 3 is determined according to the transmission distance to each ONU 4 with respect to the downstream continuous signal transmitted to each ONU 4 and has the maximum multilevel value that does not deteriorate the signal-to-noise ratio. Modulation. The PAM adaptive modulation OLT 3 is a demodulator having a maximum multilevel value that is determined according to the transmission distance from each ONU 4 and does not deteriorate the signal-to-noise ratio with respect to the upstream burst signal received from each ONU 4 when performing PAM demodulation. I do.

各ONU4は、PAM適応変調OLT3から受信した下り連続信号に対する、PAM適応変調OLT3からの伝送距離に応じて多値度が定まる2値より大きい多値のPAM復調と、PAM適応変調OLT3へと送信する上りバースト信号に対する、PAM適応変調OLT3への伝送距離に応じて多値度が定まる2値より大きい多値のPAM変調と、を行う。   Each ONU 4 transmits, to the PAM adaptive modulation OLT 3, a multi-value PAM demodulation having a multi-value greater than a binary value, the multi-value degree of which is determined according to the transmission distance from the PAM adaptive modulation OLT 3 with respect to the downlink continuous signal received from the PAM adaptive modulation OLT 3. The multi-level PAM modulation is performed with respect to the upstream burst signal to be larger than the binary value in which the multi-level degree is determined according to the transmission distance to the PAM adaptive modulation OLT 3.

ここで、各ONU4は、PAM復調を行う際に、PAM適応変調OLT3から受信した下り連続信号に対する、PAM適応変調OLT3からの伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する復調を行う。そして、各ONU4は、PAM変調を行う際に、PAM適応変調OLT3へと送信する上りバースト信号に対する、PAM適応変調OLT3への伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する変調を行う。   Here, when each ONU 4 performs PAM demodulation, the maximum multilevel value that is determined according to the transmission distance from the PAM adaptive modulation OLT 3 to the downlink continuous signal received from the PAM adaptive modulation OLT 3 and does not deteriorate the signal-to-noise ratio. Is demodulated. Each of the ONUs 4 is determined according to the transmission distance to the PAM adaptive modulation OLT 3 with respect to the upstream burst signal transmitted to the PAM adaptive modulation OLT 3 when performing the PAM modulation. Modulation is performed.

なお、PAM適応変調OLT3及び各ONU4の間の伝送距離は、PAM適応変調OLT3が各ONU4に動的帯域割当を行う際に、PAM適応変調OLT3がレンジング情報に基づいて推定する。よって、伝送距離を容易に推定することができる。   The transmission distance between the PAM adaptive modulation OLT 3 and each ONU 4 is estimated by the PAM adaptive modulation OLT 3 based on the ranging information when the PAM adaptive modulation OLT 3 performs dynamic band allocation to each ONU 4. Therefore, the transmission distance can be easily estimated.

実施形態1の上りバースト信号及び下り連続信号のフォーマットを図5及び図6に示す。図5及び図6では、ONU4−1−m、4−2−m、4−n−mのみを示す。ONU4−1−m、4−n−mについては、PAM8信号を適用可能なエリアにあり、許容多値度のうちで最大多値度が採られ、上りバースト信号及び下り連続信号は、光強度を“0”、“1”、“2”、“3”、“4”、“5”、“6”、“7”の8段階で変調したPAM8信号である。ONU4−2−mについては、PAM4信号を適用可能なエリアにあり、許容多値度のうちで最大多値度が採られ、上りバースト信号及び下り連続信号は、光強度を“0”、“1”、“2”、“3”の4段階で変調したPAM4信号である。   The formats of the upstream burst signal and downstream continuous signal according to the first embodiment are shown in FIGS. 5 and 6 show only the ONUs 4-1 -m, 4-2 -m, and 4-n -m. The ONUs 4-1m and 4-nm are in an area where the PAM8 signal can be applied, and the maximum multi-level is adopted among the allowable multi-levels, and the upstream burst signal and the downstream continuous signal have the light intensity. Is a PAM8 signal that is modulated in eight stages of “0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”. The ONU 4-2-m is in an area to which the PAM 4 signal can be applied, and the maximum multi-level is adopted among the allowable multi-levels. The upstream burst signal and the downstream continuous signal have a light intensity of “0”, “ This is a PAM4 signal modulated in four stages of “1”, “2”, and “3”.

実施形態1のPAM適応変調OLTの構成を図7に示す。PAM適応変調OLT3は、多値変調部31及び多値復調部32から構成される。   FIG. 7 shows the configuration of the PAM adaptive modulation OLT according to the first embodiment. The PAM adaptive modulation OLT 3 includes a multi-level modulation unit 31 and a multi-level demodulation unit 32.

多値変調部31は、2つ又は3つのOOKの出力を合成することにより、各ONU4へと送信する下り連続信号に対する、2値より大きい多値(ここでは、4値及び8値)のPAM変調を行う。多値復調部32は、各ONU4から受信した上りバースト信号に対する、2値より大きい多値(ここでは、4値及び8値)のPAM復調を行う。   The multi-level modulation unit 31 synthesizes the outputs of two or three OOKs, and thereby multi-value (in this case, 4-value and 8-value) PAM for the downstream continuous signal transmitted to each ONU 4. Modulate. The multi-level demodulator 32 performs PAM demodulation of multi-values (in this case, 4-value and 8-value) larger than binary on the upstream burst signal received from each ONU 4.

多値変調部31は、電気信号生成部311、312、313、信号生成部制御部314、電気信号合成部315及び光信号生成部316から構成され、図8に示した実施形態1の下り連続信号の生成方法に従って、PAM4信号及びPAM8信号を生成する。   The multilevel modulation unit 31 includes electrical signal generation units 311, 312, 313, a signal generation unit control unit 314, an electrical signal synthesis unit 315, and an optical signal generation unit 316. According to the signal generation method, the PAM4 signal and the PAM8 signal are generated.

電気信号生成部311は、“0”レベル又は“1”レベルの電気信号を生成する。電気信号生成部312は、“0”レベル又は“2”レベルの電気信号を生成する。電気信号生成部313は、“0”レベル又は“4”レベルの電気信号を生成する。信号生成部制御部314は、電気信号生成部311、312、313に対して、それぞれが生成可能な電気信号のうち、いずれの電気信号を生成するかを制御する。   The electric signal generator 311 generates an electric signal of “0” level or “1” level. The electric signal generator 312 generates an electric signal of “0” level or “2” level. The electrical signal generator 313 generates an electrical signal of “0” level or “4” level. The signal generation unit control unit 314 controls the electric signal generation units 311, 312, and 313 to generate which one of the electric signals that can be generated.

電気信号合成部315は、電気信号生成部311、312、313から、それぞれが生成可能な電気信号のうち、いずれかの電気信号を入力され、入力されたこれらの電気信号を合成する。光信号生成部316は、電気信号合成部315から、合成された電気信号を入力され、入力された合成電気信号に基づいて、レーザ自体を直接変調するか又は連続光信号を外部変調することで、PAM4信号及びPAM8信号を生成する。   The electrical signal synthesis unit 315 receives one of the electrical signals that can be generated from each of the electrical signal generation units 311, 312, and 313, and synthesizes the input electrical signals. The optical signal generation unit 316 receives the combined electric signal from the electric signal combining unit 315, and directly modulates the laser itself or externally modulates the continuous optical signal based on the input combined electric signal. , PAM4 signal and PAM8 signal are generated.

実施形態1のONUの構成を図9に示す。ONU4は、多値変調部41及び多値復調部42から構成される。多値変調部41は、2つ又は3つのOOKの出力を合成することにより、PAM適応変調OLT3へと送信する上りバースト信号に対する、2値より大きい多値(ここでは、4値又は8値)のPAM変調を行う。多値復調部42は、PAM適応変調OLT3から受信した下り連続信号に対する、2値より大きい多値(ここでは、4値又は8値)のPAM復調を行う。   The configuration of the ONU of Embodiment 1 is shown in FIG. The ONU 4 includes a multilevel modulation unit 41 and a multilevel demodulation unit 42. The multi-level modulation unit 41 synthesizes the outputs of two or three OOK, thereby multi-level (in this case, 4-level or 8-level) greater than 2 for the upstream burst signal transmitted to the PAM adaptive modulation OLT 3 PAM modulation is performed. The multi-level demodulator 42 performs multi-level (four-level or 8-level) PAM demodulation larger than binary on the downlink continuous signal received from the PAM adaptive modulation OLT 3.

多値変調部41は、電気信号生成部411、412、413、信号生成部制御部414、電気信号合成部415及び光信号生成部416から構成され、図8に示した実施形態1の下り連続信号の生成方法と同様に、PAM4信号又はPAM8信号を生成する。   The multi-level modulation unit 41 includes an electric signal generation unit 411, 412, 413, a signal generation unit control unit 414, an electric signal synthesis unit 415, and an optical signal generation unit 416. Similar to the signal generation method, the PAM4 signal or the PAM8 signal is generated.

実施形態1では、OOK変調方式を用いることなく、2値より大きい多値のPAM方式を用いるため、単純なOOK変調方式より、高速・大容量化を図ることができ、OFDM技術やデジタルコヒーレント技術より、経済化を図ることができ、したがって、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   In the first embodiment, since a multi-value PAM system larger than binary is used without using an OOK modulation system, it is possible to achieve a higher speed and a larger capacity than a simple OOK modulation system, and an OFDM technique or a digital coherent technique. Thus, the economy can be improved, and therefore, economical high speed and large capacity and flexible adaptive modulation can be realized.

そして、実施形態1では、既存のOOK変調方式をベースとして2値より大きい多値のPAM方式を用いるため、既存の光デバイスや電子回路を適用可能となり、したがって、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   In the first embodiment, since the multi-value PAM method larger than the binary value is used based on the existing OOK modulation method, an existing optical device or electronic circuit can be applied. And flexible adaptive modulation can be realized.

さらに、実施形態1では、伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度でもって、PAM信号又はOOK信号を送受信することができる。   Furthermore, in the first embodiment, a PAM signal or an OOK signal can be transmitted / received with the maximum multi-level that is determined according to the transmission distance and does not degrade the signal-to-noise ratio.

ここで、実施形態1では、上りバースト信号及び下り連続信号の両方に対して、2値より大きい多値のPAM方式を用いている。一方で、変形例として、上りバースト信号及び下り連続信号の一方に対して、2値より大きい多値のPAM方式を用いてもよい。   Here, in the first embodiment, a multi-value PAM scheme that is larger than binary is used for both the upstream burst signal and the downstream continuous signal. On the other hand, as a modification, a multi-value PAM scheme larger than binary may be used for one of the upstream burst signal and the downstream continuous signal.

そして、実施形態1では、4値及び8値のPAM方式を用いている。一方で、変形例として、4値及び8値より大きい多値のPAM方式を用いてもよい。ここで、2値のPAM方式を用いるときは、“0”レベル又は“1”レベルの電気信号を生成する電気信号生成部、“0”レベル又は“2”レベルの電気信号を生成する電気信号生成部、・・・、“0”レベル又は“2n−1”レベルの電気信号を生成する電気信号生成部を配置すればよい。 In the first embodiment, a 4-value and 8-value PAM method is used. On the other hand, as a modified example, a multi-value PAM method larger than 4-value and 8-value may be used. Here, when the 2n- value PAM method is used, an electric signal generation unit that generates an electric signal of “0” level or “1” level, and an electric signal that generates an electric signal of “0” level or “2” level. A signal generator,..., An electric signal generator that generates an electric signal of “0” level or “2 n−1 ” level may be arranged.

さらに、実施形態1では、光スプリッタを用いて、TDM−PONを構成している。一方で、変形例として、AWG(Arrayed Waveguide Grating)を用いて、WDM−PON又はTDM/WDM−PONを構成してもよい。   Furthermore, in Embodiment 1, a TDM-PON is configured using an optical splitter. On the other hand, as a modification, WDM-PON or TDM / WDM-PON may be configured by using AWG (Arrayed Waveguide Grating).

(実施形態2)
実施形態2の光アクセスシステムの構成を図10に示す。実施形態2の光アクセスシステムは、PAM方式、OOK変調方式及び適応変調技術を用いるPONであり、通信事業者ビル内に設置されるPAM適応変調OLT5、ユーザ宅内に設置されるONU6−1−1、・・・、6−1−m、6−2−1、・・・、6−2−m、・・・、6−n−1、・・・、6−n−m、光信号を合分波する光スプリッタ、及び伝送路である光ファイバから構成される。
(Embodiment 2)
The configuration of the optical access system of the second embodiment is shown in FIG. The optical access system according to the second embodiment is a PON that uses a PAM system, an OOK modulation system, and an adaptive modulation technique, and includes a PAM adaptive modulation OLT 5 installed in a telecommunications carrier building and an ONU 6-1-1 installed in a user's home. ,..., 6-1-m, 6-2-1,..., 6-2-m,..., 6-n-1,. It comprises an optical splitter that multiplexes and demultiplexes and an optical fiber that is a transmission path.

PAM適応変調OLT5は、各ONU6の伝送路品質や要求伝送品質等に応じて、上り信号及び下り信号のフォーマットを決定する。基本的に、信号の多値度が大きくなるほど、信号の信号対雑音比が劣化するため、信号の伝送距離が制限される。   The PAM adaptive modulation OLT 5 determines the format of the uplink signal and the downlink signal according to the transmission path quality and required transmission quality of each ONU 6. Basically, the signal multiplicity increases, and the signal-to-noise ratio of the signal deteriorates, so that the signal transmission distance is limited.

図10では、PAM適応変調OLT5は、ONU6−1−1、・・・、6−1−mが、PAM適応変調OLT5から近距離にあり、PAM8信号を適用可能なエリアにある、と判断する。そして、PAM適応変調OLT5は、ONU6−n−1、・・・、6−n−mが、PAM適応変調OLT5から中距離にあり、PAM8信号を適用不能でPAM4信号を適用可能なエリアにある、と判断する。さらに、PAM適応変調OLT5は、ONU6−2−1、・・・、6−2−mが、PAM適応変調OLT5から遠距離にあり、PAM8信号及びPAM4信号を適用不能でNRZ信号を適用可能なエリアにある、と判断する。   In FIG. 10, the PAM adaptive modulation OLT 5 determines that the ONUs 6-1-1,..., 6-1 -m are in a short distance from the PAM adaptive modulation OLT 5 and are in an area where the PAM 8 signal can be applied. . In the PAM adaptive modulation OLT 5, the ONUs 6-n-1,..., 6-nm are located at a medium distance from the PAM adaptive modulation OLT 5, and the PAM 8 signal cannot be applied and the PAM 4 signal can be applied. Judge that. Further, the PAM adaptive modulation OLT 5 has ONU 6-2-1,..., 6-2-m at a long distance from the PAM adaptive modulation OLT 5, and can apply the NRZ signal without applying the PAM 8 signal and the PAM 4 signal. Judged to be in the area.

PAM適応変調OLT5は、各ONU6へと送信する下り連続信号に対する、各ONU6への伝送距離に応じて多値度が定まる2値より大きい多値のPAM変調及び2値のOOK変調のいずれかと、各ONU6から受信した上りバースト信号に対する、各ONU6からの伝送距離に応じて多値度が定まる2値より大きい多値のPAM復調及び2値のOOK復調のいずれかと、を行う。   The PAM adaptive modulation OLT 5 is one of a multi-value PAM modulation and a binary OOK modulation larger than a binary value whose multi-value degree is determined according to a transmission distance to each ONU 6 with respect to a downstream continuous signal transmitted to each ONU 6. For the upstream burst signal received from each ONU 6, either multi-value PAM demodulation or binary OOK demodulation that is greater than binary and whose multi-value is determined according to the transmission distance from each ONU 6 is performed.

ここで、PAM適応変調OLT5は、PAM変調及びOOK変調を行う際に、各ONU6へと送信する下り連続信号に対する、各ONU6への伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する変調を行う。そして、PAM適応変調OLT5は、PAM復調及びOOK復調を行う際に、各ONU6から受信した上りバースト信号に対する、各ONU6からの伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する復調を行う。   Here, the PAM adaptive modulation OLT 5 is determined according to the transmission distance to each ONU 6 with respect to the continuous downlink signal transmitted to each ONU 6 when performing PAM modulation and OOK modulation. Modulation having a degree of value is performed. The PAM adaptive modulation OLT 5 determines the maximum multi-level that is determined according to the transmission distance from each ONU 6 and does not deteriorate the signal-to-noise ratio with respect to the upstream burst signal received from each ONU 6 when performing PAM demodulation and OOK demodulation. Is demodulated.

各ONU6は、PAM適応変調OLT5から受信した下り連続信号に対する、PAM適応変調OLT5からの伝送距離に応じて多値度が定まる2値より大きい多値のPAM復調及び2値のOOK復調のいずれかと、PAM適応変調OLT5へと送信する上りバースト信号に対する、PAM適応変調OLT5への伝送距離に応じて多値度が定まる2値より大きい多値のPAM変調及び2値のOOK変調のいずれかと、を行う。   Each ONU 6 has either a multi-value PAM demodulation or a binary OOK demodulation larger than a binary value, the multi-value degree of which is determined according to the transmission distance from the PAM adaptive modulation OLT 5 with respect to the downlink continuous signal received from the PAM adaptive modulation OLT 5. One of the multi-level PAM modulation and the binary OOK modulation larger than the binary value, the multi-level value of which is determined according to the transmission distance to the PAM adaptive modulation OLT 5 for the upstream burst signal transmitted to the PAM adaptive modulation OLT 5 Do.

ここで、各ONU6は、PAM復調又はOOK復調を行う際に、PAM適応変調OLT5から受信した下り連続信号に対する、PAM適応変調OLT5からの伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する復調を行う。そして、各ONU6は、PAM変調又はOOK変調を行う際に、PAM適応変調OLT5へと送信する上りバースト信号に対する、PAM適応変調OLT5への伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する変調を行う。   Here, each ONU 6 is determined according to the transmission distance from the PAM adaptive modulation OLT 5 to the downlink continuous signal received from the PAM adaptive modulation OLT 5 when performing PAM demodulation or OOK demodulation. Demodulate with multiple values. When each ONU 6 performs PAM modulation or OOK modulation, the ONU 6 is determined according to the transmission distance to the PAM adaptive modulation OLT 5 with respect to the upstream burst signal transmitted to the PAM adaptive modulation OLT 5 and does not degrade the signal-to-noise ratio. Modulation having a multilevel degree is performed.

なお、PAM適応変調OLT5及び各ONU6の間の伝送距離は、PAM適応変調OLT5が各ONU6に動的帯域割当を行う際に、PAM適応変調OLT5がレンジング情報に基づいて推定する。よって、伝送距離を容易に推定することができる。   The transmission distance between the PAM adaptive modulation OLT 5 and each ONU 6 is estimated by the PAM adaptive modulation OLT 5 based on the ranging information when the PAM adaptive modulation OLT 5 performs dynamic band allocation to each ONU 6. Therefore, the transmission distance can be easily estimated.

実施形態2の上りバースト信号及び下り連続信号のフォーマットを図11及び図12に示す。図11及び図12では、ONU6−1−m、6−2−m、6−n−mのみを示す。ONU6−1−mについては、PAM8信号を適用可能なエリアにあり、許容多値度のうちで最大多値度が採られ、上りバースト信号及び下り連続信号は、光強度を“0”、“1”、“2”、“3”、“4”、“5”、“6”、“7”の8段階で変調したPAM8信号である。ONU6−n−mについては、PAM4信号を適用可能なエリアにあり、許容多値度のうちで最大多値度が採られ、上りバースト信号及び下り連続信号は、光強度を“0”、“1”、“2”、“3”の4段階で変調したPAM4信号である。ONU6−2−mについては、NRZ信号を適用可能なエリアにあり、許容多値度のうちで最大多値度が採られ、上りバースト信号及び下り連続信号は、光強度を“0”、“1”の2段階で変調したNRZ信号である。   The formats of the upstream burst signal and downstream continuous signal according to the second embodiment are shown in FIGS. 11 and 12, only the ONUs 6-1m, 6-2m, and 6-nm are shown. The ONU 6-1-m is in an area where the PAM 8 signal can be applied, and the maximum multi-level is adopted among the allowable multi-levels. The upstream burst signal and the downstream continuous signal have the light intensity of “0”, “ This is a PAM8 signal modulated in eight stages of “1”, “2”, “3”, “4”, “5”, “6”, “7”. ONU6-n-m is in an area where the PAM4 signal can be applied, and the maximum multi-level is adopted among the allowable multi-levels. The upstream burst signal and the downstream continuous signal have the light intensity of “0”, “ This is a PAM4 signal modulated in four stages of “1”, “2”, and “3”. The ONU 6-2-m is in an area where the NRZ signal can be applied, and the maximum multi-level is adopted among the allowable multi-levels. The upstream burst signal and the downstream continuous signal have the light intensity of “0”, “ This is an NRZ signal modulated in two stages of 1 ″.

実施形態2のPAM適応変調OLTの構成を図13に示す。PAM適応変調OLT5は、多値・2値変調部51及び多値・2値復調部52から構成される。   FIG. 13 shows the configuration of the PAM adaptive modulation OLT according to the second embodiment. The PAM adaptive modulation OLT 5 includes a multi-level / binary modulation unit 51 and a multi-level / binary demodulation unit 52.

多値・2値変調部51は、2つ又は3つのOOKの出力を合成することにより、各ONU6へと送信する下り連続信号に対する、2値より大きい多値(ここでは、4値及び8値)のPAM変調を行うとともに、3つのOOKのオンオフを同一状態に同期させて出力を合成することにより、各ONU6へと送信する下り連続信号に対する、2値のOOK変調を行う。多値・2値復調部52は、各ONU6から受信した上りバースト信号に対する、2値より大きい多値(ここでは、4値及び8値)のPAM復調を行うとともに、各ONU6から受信した上りバースト信号に対する、2値のOOK復調を行う。   The multi-level / binary modulation unit 51 synthesizes the outputs of two or three OOKs, thereby multi-levels (in this case, 4-level and 8-level) greater than 2-level for the downstream continuous signal transmitted to each ONU 6. ), And synthesizing outputs by synchronizing on / off of the three OOKs in the same state, thereby performing binary OOK modulation on the downstream continuous signal transmitted to each ONU 6. The multi-level / binary demodulator 52 performs multi-level (four-level and 8-level) PAM demodulation on the upstream burst signal received from each ONU 6 and upstream bursts received from each ONU 6. Perform binary OOK demodulation on the signal.

多値・2値変調部51は、電気信号生成部511、512、513、信号生成部制御部514、電気信号合成部515及び光信号生成部516から構成され、図14に示した実施形態2の下り連続信号の生成方法に従って、PAM4信号、PAM8信号及びNRZ信号を生成する。   The multi-level / binary modulation unit 51 includes electrical signal generation units 511, 512, and 513, a signal generation unit control unit 514, an electrical signal synthesis unit 515, and an optical signal generation unit 516. The second embodiment shown in FIG. The PAM4 signal, the PAM8 signal, and the NRZ signal are generated according to the generation method of the downstream continuous signal.

電気信号生成部511は、“0”レベル又は“1”レベルの電気信号を生成する。電気信号生成部512は、“0”レベル又は“2”レベルの電気信号を生成する。電気信号生成部513は、“0”レベル又は“4”レベルの電気信号を生成する。信号生成部制御部514は、電気信号生成部511、512、513に対して、それぞれが生成可能な電気信号のうち、いずれの電気信号を生成するかを制御する。   The electrical signal generator 511 generates an electrical signal of “0” level or “1” level. The electric signal generator 512 generates an electric signal of “0” level or “2” level. The electric signal generation unit 513 generates an electric signal of “0” level or “4” level. The signal generation unit control unit 514 controls the electric signal generation units 511, 512, and 513 to generate which one of the electric signals that can be generated.

電気信号合成部515は、電気信号生成部511、512、513から、それぞれが生成可能な電気信号のうち、いずれかの電気信号を入力され、入力されたこれらの電気信号を合成する。光信号生成部516は、電気信号合成部515から、合成された電気信号を入力され、入力された合成電気信号に基づいて、レーザ自体を直接変調するか又は連続光信号を外部変調することで、PAM4信号、PAM8信号及びNRZ信号を生成する。   The electrical signal synthesis unit 515 receives one of the electrical signals that can be generated from each of the electrical signal generation units 511, 512, and 513, and synthesizes the input electrical signals. The optical signal generator 516 receives the synthesized electrical signal from the electrical signal synthesizer 515, and directly modulates the laser itself or externally modulates the continuous optical signal based on the inputted synthesized electrical signal. , PAM4 signal, PAM8 signal and NRZ signal are generated.

実施形態2のONUの構成を図15に示す。ONU6は、多値変調部61及び多値復調部62から構成される。多値変調部61は、2つ又は3つのOOKの出力を合成することにより、PAM適応変調OLT5へと送信する上りバースト信号に対する、2値より大きい多値(ここでは、4値又は8値)のPAM変調を行う。多値復調部62は、PAM適応変調OLT5から受信した下り連続信号に対する、2値より大きい多値(ここでは、4値又は8値)のPAM復調を行う。   FIG. 15 shows the configuration of the ONU according to the second embodiment. The ONU 6 includes a multilevel modulation unit 61 and a multilevel demodulation unit 62. The multi-level modulation unit 61 synthesizes the outputs of two or three OOK, thereby multi-level (in this case, 4-level or 8-level) greater than 2 for the upstream burst signal transmitted to the PAM adaptive modulation OLT 5 PAM modulation is performed. The multi-level demodulator 62 performs multi-level (four-level or eight-level) PAM demodulation on binary continuous signals received from the PAM adaptive modulation OLT 5 in this case.

多値変調部61は、電気信号生成部611、612、613、信号生成部制御部614、電気信号合成部615及び光信号生成部616から構成され、図14に示した実施形態2の下り連続信号の生成方法と同様に、PAM4信号又はPAM8信号を生成する。   The multi-level modulation unit 61 includes electric signal generation units 611, 612, and 613, a signal generation unit control unit 614, an electric signal synthesis unit 615, and an optical signal generation unit 616. Similar to the signal generation method, the PAM4 signal or the PAM8 signal is generated.

実施形態2では、OOK変調方式を用いるとともに、2値より大きい多値のPAM方式を用いるため、単純なOOK変調方式より、高速・大容量化を図ることができ、OFDM技術やデジタルコヒーレント技術より、経済化を図ることができ、したがって、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   In the second embodiment, since an OOK modulation method and a multi-value PAM method larger than two values are used, a higher speed and a larger capacity can be achieved than a simple OOK modulation method, and an OFDM technique and a digital coherent technique can be achieved. Therefore, it is possible to achieve economy, and thus it is possible to realize economical high speed and large capacity and flexible adaptive modulation.

そして、実施形態2では、既存のOOK変調方式をベースとして2値より大きい多値のPAM方式を用いるため、既存の光デバイスや電子回路を適用可能となり、したがって、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   In the second embodiment, since the multi-value PAM system larger than the binary value is used based on the existing OOK modulation system, an existing optical device or electronic circuit can be applied. Therefore, economical high speed and large capacity can be achieved. And flexible adaptive modulation can be realized.

さらに、実施形態2では、伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度でもって、PAM信号又はOOK信号を送受信することができる。   Furthermore, in the second embodiment, the PAM signal or the OOK signal can be transmitted / received with the maximum multi-level that is determined according to the transmission distance and does not deteriorate the signal-to-noise ratio.

ここで、実施形態2では、上りバースト信号及び下り連続信号の両方に対して、2値より大きい多値のPAM方式を用いている。一方で、変形例として、上りバースト信号及び下り連続信号の一方に対して、2値より大きい多値のPAM方式を用いてもよい。   Here, in the second embodiment, a multi-value PAM scheme that is larger than binary is used for both the upstream burst signal and the downstream continuous signal. On the other hand, as a modification, a multi-value PAM scheme larger than binary may be used for one of the upstream burst signal and the downstream continuous signal.

そして、実施形態2では、4値及び8値のPAM方式を用いている。一方で、変形例として、4値及び8値より大きい多値のPAM方式を用いてもよい。ここで、2値のPAM方式を用いるときは、“0”レベル又は“1”レベルの電気信号を生成する電気信号生成部、“0”レベル又は“2”レベルの電気信号を生成する電気信号生成部、・・・、“0”レベル又は“2n−1”レベルの電気信号を生成する電気信号生成部を配置すればよい。 In the second embodiment, a 4-value and 8-value PAM method is used. On the other hand, as a modified example, a multi-value PAM method larger than 4-value and 8-value may be used. Here, when the 2n- value PAM method is used, an electric signal generation unit that generates an electric signal of “0” level or “1” level, and an electric signal that generates an electric signal of “0” level or “2” level. A signal generator,..., An electric signal generator that generates an electric signal of “0” level or “2 n−1 ” level may be arranged.

さらに、実施形態2では、光スプリッタを用いて、TDM−PONを構成している。一方で、変形例として、AWG(Arrayed Waveguide Grating)を用いて、WDM−PON又はTDM/WDM−PONを構成してもよい。   Furthermore, in the second embodiment, a TDM-PON is configured using an optical splitter. On the other hand, as a modification, WDM-PON or TDM / WDM-PON may be configured by using AWG (Arrayed Waveguide Grating).

(実施形態3)
実施形態1では、PAM4変調及びPAM8変調のうち、伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する変調を選択する。実施形態3では、PAM4変調及びPAM8変調のうち、伝送距離及び通信帯域に応じて定まる多値度を有する変調を選択する。実施形態3の光アクセスシステムの構成を図16に示す。
(Embodiment 3)
In the first embodiment, a modulation having a maximum multilevel value that is determined according to the transmission distance and does not deteriorate the signal-to-noise ratio is selected from among the PAM4 modulation and the PAM8 modulation. In the third embodiment, a modulation having a multilevel value determined according to a transmission distance and a communication band is selected from among PAM4 modulation and PAM8 modulation. FIG. 16 shows the configuration of the optical access system according to the third embodiment.

実施形態3の光アクセスシステムは、PAM方式及び適応変調技術を用いるPONであり、通信事業者ビル内に設置されるPAM適応変調OLT7、ユーザ宅内に設置されるONU8−1−1、・・・、8−1−m、8−2−1、・・・、8−2−m、・・・、8−n−1、・・・、8−n−m、光信号を合分波する光スプリッタ、及び伝送路である光ファイバから構成される。   The optical access system according to the third embodiment is a PON using the PAM method and adaptive modulation technology, and includes a PAM adaptive modulation OLT 7 installed in a communication carrier building, an ONU 8-1-1 installed in a user's house,. , 8--1-m, 8-2-1,..., 8--2-m,..., 8-n-1,. It is composed of an optical splitter and an optical fiber as a transmission path.

図16では、PAM適応変調OLT7は、ONU8−1−1、・・・、8−1−m、8−n−1、・・・、8−n−mが、PAM適応変調OLT7から近距離にあり、PAM8信号を適用可能なエリアにある、と判断する。そして、PAM適応変調OLT7は、ONU8−2−1、・・・、8−2−mが、PAM適応変調OLT7から遠距離にあり、PAM8信号を適用不能でPAM4信号を適用可能なエリアにある、と判断する。   In FIG. 16, the PAM adaptive modulation OLT 7 has a short distance from the PAM adaptive modulation OLT 7 in the ONUs 8-1-1,..., 8-1-1, 8-n-1,. And it is determined that it is in an area where the PAM8 signal can be applied. In addition, the PAM adaptive modulation OLT 7 has ONUs 8-2-1,..., 8-2-m at a long distance from the PAM adaptive modulation OLT 7 and is in an area where the PAM 8 signal cannot be applied and the PAM 4 signal can be applied. Judge that.

PAM適応変調OLT7は、各ONU8へと送信する下り連続信号に対する、各ONU8への伝送距離に応じて多値度が定まる2値より大きい多値のPAM変調と、各ONU8から受信した上りバースト信号に対する、各ONU8からの伝送距離に応じて多値度が定まる2値より大きい多値のPAM復調と、を行う。   The PAM adaptive modulation OLT 7 is a multi-level PAM modulation whose multi-level is determined in accordance with a transmission distance to each ONU 8 with respect to a downstream continuous signal transmitted to each ONU 8, and an upstream burst signal received from each ONU 8. On the other hand, multi-value PAM demodulation having a multi-value greater than two values, in which the multi-value degree is determined according to the transmission distance from each ONU 8, is performed.

ここで、PAM適応変調OLT7は、PAM変調を行う際に、各ONU8へと送信する下り連続信号に対する、各ONU8への伝送距離及び各ONU8への通信帯域に応じて定まる多値度を有する変調を行う。そして、PAM適応変調OLT7は、PAM復調を行う際に、各ONU8から受信した上りバースト信号に対する、各ONU8からの伝送距離及び各ONU8からの通信帯域に応じて定まる多値度を有する復調を行う。   Here, the PAM adaptive modulation OLT 7 is a modulation having a multi-value degree determined according to the transmission distance to each ONU 8 and the communication band to each ONU 8 for the downstream continuous signal transmitted to each ONU 8 when performing PAM modulation. I do. Then, when performing PAM demodulation, the PAM adaptive modulation OLT 7 performs demodulation having multilevel values determined according to the transmission distance from each ONU 8 and the communication band from each ONU 8 with respect to the upstream burst signal received from each ONU 8. .

各ONU8は、PAM適応変調OLT7から受信した下り連続信号に対する、PAM適応変調OLT7からの伝送距離に応じて多値度が定まる2値より大きい多値のPAM復調と、PAM適応変調OLT7へと送信する上りバースト信号に対する、PAM適応変調OLT7への伝送距離に応じて多値度が定まる2値より大きい多値のPAM変調と、を行う。   Each ONU 8 transmits, to the PAM adaptive modulation OLT 7, a multi-value PAM demodulator having a multi-value degree larger than a binary value, which is determined according to the transmission distance from the PAM adaptive modulation OLT 7, with respect to the downlink continuous signal received from the PAM adaptive modulation OLT 7. The multi-level PAM modulation is performed with respect to the upstream burst signal to be larger than the binary value in which the multi-level is determined according to the transmission distance to the PAM adaptive modulation OLT 7.

ここで、各ONU8は、PAM復調を行う際に、PAM適応変調OLT7から受信した下り連続信号に対する、PAM適応変調OLT7からの伝送距離及びPAM適応変調OLT7からの通信帯域に応じて定まる多値度を有する復調を行う。そして、各ONU8は、PAM変調を行う際に、PAM適応変調OLT7へと送信する上りバースト信号に対する、PAM適応変調OLT7への伝送距離及びPAM適応変調OLT7への通信帯域に応じて定まる多値度を有する変調を行う。   Here, when each ONU 8 performs PAM demodulation, the multilevel degree determined according to the transmission distance from the PAM adaptive modulation OLT 7 and the communication band from the PAM adaptive modulation OLT 7 for the downlink continuous signal received from the PAM adaptive modulation OLT 7. Is demodulated. When each ONU 8 performs PAM modulation, the multilevel degree determined according to the transmission distance to the PAM adaptive modulation OLT 7 and the communication band to the PAM adaptive modulation OLT 7 with respect to the upstream burst signal transmitted to the PAM adaptive modulation OLT 7 Modulation is performed.

ONU8−1−mについては、PAM8信号を適用可能なエリアにあり、通信帯域は大きいため、許容多値度のうちで最大の多値度として、PAM8変調が選択される。ONU8−1−1、8−n−1については、PAM8信号を適用可能なエリアにあるが、通信帯域は中程度であるため、許容多値度のうちで中程度の多値度として、PAM4変調が選択される。ONU8−n−mについては、PAM8信号を適用可能なエリアにあるが、通信帯域は小さいため、許容多値度のうちで最小の多値度として、OOK変調が選択される。   Since ONU8-1-m is in an area to which the PAM8 signal can be applied and the communication band is large, PAM8 modulation is selected as the maximum multi-level among the allowable multi-levels. The ONUs 8-1-1 and 8-n-1 are in the area where the PAM8 signal can be applied, but the communication band is medium. Modulation is selected. ONU8-nm is in an area where the PAM8 signal can be applied, but since the communication band is small, OOK modulation is selected as the minimum multilevel value among the allowable multilevel values.

ONU8−2−1については、PAM4信号を適用可能なエリアにあり、通信帯域は大きいため、許容多値度のうちで最大の多値度として、PAM4変調が選択される。ONU8−2−mについては、PAM4信号を適用可能なエリアにあるが、通信帯域は小さいため、許容多値度のうちで最小の多値度として、OOK変調が選択される。   Since ONU8-2-1 is in an area to which a PAM4 signal can be applied and the communication band is large, PAM4 modulation is selected as the maximum multilevel value among the allowable multilevel values. The ONU8-2-m is in an area where the PAM4 signal can be applied, but since the communication band is small, the OOK modulation is selected as the minimum multilevel value among the allowable multilevel values.

実施形態3では、OOK変調方式を用いることなく、2値より大きい多値のPAM方式を用いるため、単純なOOK変調方式より、高速・大容量化を図ることができ、OFDM技術やデジタルコヒーレント技術より、経済化を図ることができ、したがって、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   In the third embodiment, since a multi-value PAM method larger than binary is used without using an OOK modulation method, a higher speed and a larger capacity can be achieved than a simple OOK modulation method, and an OFDM technique or a digital coherent technique can be achieved. Thus, the economy can be improved, and therefore, economical high speed and large capacity and flexible adaptive modulation can be realized.

そして、実施形態3では、既存のOOK変調方式をベースとして2値より大きい多値のPAM方式を用いるため、既存の光デバイスや電子回路を適用可能となり、したがって、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   In the third embodiment, since the multi-value PAM system larger than the binary value is used based on the existing OOK modulation system, an existing optical device or electronic circuit can be applied. And flexible adaptive modulation can be realized.

さらに、実施形態3では、伝送距離及び通信帯域の両方に応じて定まる多値度でもって、PAM信号又はOOK信号を送受信することができる。   Furthermore, in the third embodiment, a PAM signal or an OOK signal can be transmitted / received with a multi-value level determined according to both the transmission distance and the communication band.

(実施形態4)
実施形態2では、PAM4変調、PAM8変調及びOOK変調のうち、伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する変調を選択する。実施形態4では、PAM4変調、PAM8変調及びOOK変調のうち、伝送距離及び通信帯域に応じて定まる多値度を有する変調を選択する。実施形態4の光アクセスシステムの構成を図17に示す。
(Embodiment 4)
In the second embodiment, a modulation having a maximum multilevel value that is determined according to a transmission distance and does not deteriorate a signal-to-noise ratio is selected from among PAM4 modulation, PAM8 modulation, and OOK modulation. In the fourth embodiment, a modulation having a multilevel value determined according to a transmission distance and a communication band is selected from among PAM4 modulation, PAM8 modulation, and OOK modulation. The configuration of the optical access system of the fourth embodiment is shown in FIG.

実施形態4の光アクセスシステムは、PAM方式、OOK変調方式及び適応変調技術を用いるPONであり、通信事業者ビル内に設置されるPAM適応変調OLT9、ユーザ宅内に設置されるONU10−1−1、・・・、10−1−m、10−2−1、・・・、10−2−m、・・・、10−n−1、・・・、10−n−m、光信号を合分波する光スプリッタ、及び伝送路である光ファイバから構成される。   The optical access system according to the fourth embodiment is a PON that uses a PAM system, an OOK modulation system, and an adaptive modulation technique, and includes a PAM adaptive modulation OLT 9 installed in a telecommunications carrier building and an ONU 10-1-1 installed in a user's home. ,..., 10-1-m, 10-2-1,... 10-2-m,..., 10-n-1,. It comprises an optical splitter that multiplexes and demultiplexes and an optical fiber that is a transmission path.

図17では、PAM適応変調OLT9は、ONU10−1−1、・・・、10−1−mが、PAM適応変調OLT9から近距離にあり、PAM8信号を適用可能なエリアにある、と判断する。そして、PAM適応変調OLT9は、ONU10−n−1、・・・、10−n−mが、PAM適応変調OLT9から中距離にあり、PAM8信号を適用不能でPAM4信号を適用可能なエリアにある、と判断する。さらに、PAM適応変調OLT9は、ONU10−2−1、・・・、10−2−mが、PAM適応変調OLT9から遠距離にあり、PAM8信号及びPAM4信号を適用不能でNRZ信号を適用可能なエリアにある、と判断する。   In FIG. 17, the PAM adaptive modulation OLT 9 determines that the ONUs 10-1-1,..., 10-1 -m are in a short distance from the PAM adaptive modulation OLT 9 and are in an area where the PAM 8 signal can be applied. . In addition, the PAM adaptive modulation OLT 9 has ONUs 10-n-1,..., 10-nm in the middle distance from the PAM adaptive modulation OLT 9, and is in an area where the PAM 8 signal cannot be applied and the PAM 4 signal can be applied. Judge that. Further, the PAM adaptive modulation OLT 9 has ONUs 10-2-1,..., 10-2-m at a long distance from the PAM adaptive modulation OLT 9, and cannot apply the PAM8 signal and the PAM4 signal and can apply the NRZ signal. Judged to be in the area.

PAM適応変調OLT9は、各ONU10へと送信する下り連続信号に対する、各ONU10への伝送距離に応じて多値度が定まる2値より大きい多値のPAM変調及び2値のOOK変調のいずれかと、各ONU10から受信した上りバースト信号に対する、各ONU10からの伝送距離に応じて多値度が定まる2値より大きい多値のPAM復調及び2値のOOK復調のいずれかと、を行う。   The PAM adaptive modulation OLT 9 is one of a multi-value PAM modulation and a binary OOK modulation larger than a binary value whose multi-value degree is determined according to a transmission distance to each ONU 10 for a downstream continuous signal transmitted to each ONU 10. For the upstream burst signal received from each ONU 10, either multi-value PAM demodulation larger than binary or binary OOK demodulation whose multi-value is determined according to the transmission distance from each ONU 10 is performed.

ここで、PAM適応変調OLT9は、PAM変調を行う際に、各ONU10へと送信する下り連続信号に対する、各ONU10への伝送距離及び各ONU10への通信帯域に応じて定まる多値度を有する変調を行う。そして、PAM適応変調OLT9は、PAM復調を行う際に、各ONU10から受信した上りバースト信号に対する、各ONU10からの伝送距離及び各ONU10からの通信帯域に応じて定まる多値度を有する復調を行う。   Here, the PAM adaptive modulation OLT 9 is a modulation having a multilevel value determined according to the transmission distance to each ONU 10 and the communication band to each ONU 10 for the downstream continuous signal transmitted to each ONU 10 when performing PAM modulation. I do. Then, when performing PAM demodulation, the PAM adaptive modulation OLT 9 demodulates the upstream burst signal received from each ONU 10 with multilevel values determined according to the transmission distance from each ONU 10 and the communication band from each ONU 10. .

各ONU10は、PAM適応変調OLT9から受信した下り連続信号に対する、PAM適応変調OLT9からの伝送距離に応じて多値度が定まる2値より大きい多値のPAM復調及び2値のOOK復調のいずれかと、PAM適応変調OLT9へと送信する上りバースト信号に対する、PAM適応変調OLT9への伝送距離に応じて多値度が定まる2値より大きい多値のPAM変調及び2値のOOK変調のいずれかと、を行う。   Each ONU 10 has either a multi-value PAM demodulation or a binary OOK demodulation larger than a binary value, the multi-value degree of which is determined according to the transmission distance from the PAM adaptive modulation OLT 9 for the downlink continuous signal received from the PAM adaptive modulation OLT 9. One of the multi-level PAM modulation and the binary OOK modulation larger than the binary value, the multi-level value of which is determined according to the transmission distance to the PAM adaptive modulation OLT 9 for the upstream burst signal transmitted to the PAM adaptive modulation OLT 9; Do.

ここで、各ONU10は、PAM復調を行う際に、PAM適応変調OLT9から受信した下り連続信号に対する、PAM適応変調OLT9からの伝送距離及びPAM適応変調OLT9からの通信帯域に応じて定まる多値度を有する復調を行う。そして、各ONU10は、PAM変調を行う際に、PAM適応変調OLT9へと送信する上りバースト信号に対する、PAM適応変調OLT9への伝送距離及びPAM適応変調OLT9への通信帯域に応じて定まる多値度を有する変調を行う。   Here, each ONU 10, when performing PAM demodulation, has a multilevel value determined according to the transmission distance from the PAM adaptive modulation OLT 9 and the communication band from the PAM adaptive modulation OLT 9 for the downlink continuous signal received from the PAM adaptive modulation OLT 9. Is demodulated. When each ONU 10 performs PAM modulation, the multilevel degree determined in accordance with the transmission distance to the PAM adaptive modulation OLT 9 and the communication band to the PAM adaptive modulation OLT 9 with respect to the upstream burst signal transmitted to the PAM adaptive modulation OLT 9 Modulation is performed.

ONU10−1−mについては、PAM8信号を適用可能なエリアにあり、通信帯域は大きいため、許容多値度のうちで最大の多値度として、PAM8変調が選択される。ONU10−1−1については、PAM8信号を適用可能なエリアにあるが、通信帯域は小さいため、許容多値度のうちで中程度の多値度として、PAM4変調が選択される。   Since the ONU 10-1-m is in an area where the PAM8 signal can be applied and the communication band is large, the PAM8 modulation is selected as the maximum multilevel value among the allowable multilevel values. The ONU 10-1-1 is in an area to which the PAM8 signal can be applied, but since the communication band is small, the PAM4 modulation is selected as an intermediate multilevel value among the allowable multilevel values.

ONU10−n−1については、PAM4信号を適用可能なエリアにあり、通信帯域は大きいため、許容多値度のうちで最大の多値度として、PAM4変調が選択される。ONU10−n−mについては、PAM4信号を適用可能なエリアにあるが、通信帯域は小さいため、許容多値度のうちで最小の多値度として、OOK変調が選択される。   Since ONU10-n-1 is in an area to which a PAM4 signal can be applied and the communication band is large, PAM4 modulation is selected as the maximum multilevel degree among the allowable multilevel levels. The ONU 10-nm is in an area where the PAM4 signal can be applied, but since the communication band is small, the OOK modulation is selected as the minimum multi-level value among the allowable multi-level values.

ONU10−2−1、・・・、10−2−mについては、NRZ信号を適用可能なエリアにあり、通信帯域の大小に関わらず、OOK変調が選択される。   ONUs 10-2-1 to 10-2-m are in an area where an NRZ signal can be applied, and OOK modulation is selected regardless of the size of the communication band.

実施形態4では、OOK変調方式を用いるとともに、2値より大きい多値のPAM方式を用いるため、単純なOOK変調方式より、高速・大容量化を図ることができ、OFDM技術やデジタルコヒーレント技術より、経済化を図ることができ、したがって、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   In the fourth embodiment, since an OOK modulation method and a multi-value PAM method larger than two values are used, a higher speed and a larger capacity can be achieved than a simple OOK modulation method, and the OFDM technology and the digital coherent technology can be achieved. Therefore, it is possible to achieve economy, and thus it is possible to realize economical high speed and large capacity and flexible adaptive modulation.

そして、実施形態4では、既存のOOK変調方式をベースとして2値より大きい多値のPAM方式を用いるため、既存の光デバイスや電子回路を適用可能となり、したがって、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   In the fourth embodiment, since the multi-value PAM system larger than the binary value is used based on the existing OOK modulation system, the existing optical device or electronic circuit can be applied. And flexible adaptive modulation can be realized.

さらに、実施形態4では、伝送距離及び通信帯域の両方に応じて定まる多値度でもって、PAM信号又はOOK信号を送受信することができる。   Furthermore, in the fourth embodiment, a PAM signal or an OOK signal can be transmitted / received at a multi-value level determined according to both the transmission distance and the communication band.

本発明の光アクセスシステム、終端装置、宅内装置及び光アクセス方法は、時分割多重光アクセスシステム及び/又は波長多重光アクセスシステムにおいて、経済的な高速・大容量化及び柔軟な適応変調を実現することができる。   The optical access system, the terminating device, the in-home device, and the optical access method of the present invention realize economical high speed, large capacity, and flexible adaptive modulation in a time division multiplexing optical access system and / or wavelength multiplexing optical access system. be able to.

1:QAM適応変調OLT
2−1−1、2−1−m、2−2−1、2−2−m、2−n−1、2−n−m:ONU
3:PAM適応変調OLT
4、4−1−1、4−1−m、4−2−1、4−2−m、4−n−1、4−n−m:ONU
5:PAM適応変調OLT
6、6−1−1、6−1−m、6−2−1、6−2−m、6−n−1、6−n−m:ONU
7:PAM適応変調OLT
8−1−1、8−1−m、8−2−1、8−2−m、8−n−1、8−n−m:ONU
9:PAM適応変調OLT
10−1−1、10−1−m、10−2−1、10−2−m、10−n−1、10−n−m:ONU
31:多値変調部
32:多値復調部
41:多値変調部
42:多値復調部
51:多値・2値変調部
52:多値・2値復調部
61:多値変調部
62:多値復調部
311、312、313:電気信号生成部
314:信号生成部制御部
315:電気信号合成部
316:光信号生成部
411、412、413:電気信号生成部
414:信号生成部制御部
415:電気信号合成部
416:光信号生成部
511、512、513:電気信号生成部
514:信号生成部制御部
515:電気信号合成部
516:光信号生成部
611、612、613:電気信号生成部
614:信号生成部制御部
615:電気信号合成部
616:光信号生成部

1: QAM adaptive modulation OLT
2-1-1, 2-1-1m, 2-2-1, 2-2-2m, 2-n-1, 2-nm: ONU
3: PAM adaptive modulation OLT
4, 4-1-1, 4-1-m, 4-2-1, 4-2-2m, 4-n-1, 4-nm: ONU
5: PAM adaptive modulation OLT
6, 6-1-1, 6-1-m, 6-2-1, 6-2m, 6-n-1, 6-nm: ONU
7: PAM adaptive modulation OLT
8-1-1, 8-1-1, 8-2-1, 8--2-m, 8-n-1, 8-nm: ONU
9: PAM adaptive modulation OLT
10-1-1, 10-1-m, 10-2-1, 10-2-m, 10-n-1, 10-nm: ONU
31: Multi-level modulation unit 32: Multi-level demodulation unit 41: Multi-level modulation unit 42: Multi-level demodulation unit 51: Multi-level / binary modulation unit 52: Multi-level / binary demodulation unit 61: Multi-level modulation unit 62: Multilevel demodulator 311, 312, 313: electrical signal generator 314: signal generator controller 315: electrical signal synthesizer 316: optical signal generator 411, 412, 413: electrical signal generator 414: signal generator controller 415: Electric signal synthesizer 416: Optical signal generators 511, 512, 513: Electric signal generator 514: Signal generator controller 515: Electric signal synthesizer 516: Optical signal generators 611, 612, 613: Electric signal generator Unit 614: Signal generation unit control unit 615: Electric signal synthesis unit 616: Optical signal generation unit

Claims (8)

終端装置と、複数の宅内装置と、を備える光アクセスシステムであって、
前記終端装置は、前記宅内装置へと送信する下り信号に対する、前記宅内装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調と、前記宅内装置から受信した上り信号に対する、前記宅内装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調と、のうち一方又は両方を行い、
前記宅内装置は、前記終端装置から受信した下り信号に対する、前記終端装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調と、前記終端装置へと送信する上り信号に対する、前記終端装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調と、のうち一方又は両方を行う
ことを特徴とする光アクセスシステム。
An optical access system comprising a termination device and a plurality of in-home devices,
The terminating device has a multi-value pulse intensity modulation greater than a binary value that has a multi-value degree determined according to a transmission distance to the in-home device for a downlink signal transmitted to the in-home device, and an uplink received from the in-home device. Performing one or both of multi-level pulse intensity demodulation greater than binary and multi-level determined according to the transmission distance from the in-home device for the signal,
The in-home device is configured to demodulate a multi-level pulse intensity demodulated with a multi-level value that is determined according to a transmission distance from the end device with respect to a downlink signal received from the end device, and to transmit to the end device. An optical access system characterized in that one or both of multi-level pulse intensity modulation with a multi-level value larger than 2 is determined according to a transmission distance to the terminal device for a signal.
終端装置と、複数の宅内装置と、を備える光アクセスシステムであって、
前記終端装置は、前記宅内装置へと送信する下り信号に対する、前記宅内装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調及び2値のオンオフ変調のいずれかと、前記宅内装置から受信した上り信号に対する、前記宅内装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調及び2値のオンオフ復調のいずれかと、のうち一方又は両方を行い、
前記宅内装置は、前記終端装置から受信した下り信号に対する、前記終端装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調及び2値のオンオフ復調のいずれかと、前記終端装置へと送信する上り信号に対する、前記終端装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調又は2値のオンオフ変調のいずれかと、のうち一方又は両方を行う
ことを特徴とする光アクセスシステム。
An optical access system comprising a termination device and a plurality of in-home devices,
The terminating device has either a multi-value pulse intensity modulation greater than a binary value or a binary on-off modulation with a multi-value degree determined according to a transmission distance to the home device for a downlink signal transmitted to the home device. One of the multi-level pulse intensity demodulation and the binary on-off demodulation larger than binary, the multi-level of which is determined according to the transmission distance from the in-house device, with respect to the uplink signal received from the in-home device, or Do both
The in-home device has one of multi-level pulse intensity demodulation and binary on-off demodulation larger than binary, the multi-level of which is determined according to the transmission distance from the termination device with respect to the downlink signal received from the termination device. One of the multi-level pulse intensity modulation and the binary on-off modulation larger than binary, the multi-level of which is determined according to the transmission distance to the termination device, with respect to the uplink signal transmitted to the termination device, or An optical access system characterized by performing both.
前記終端装置は、前記宅内装置へと送信する下り信号に対する、前記宅内装置への伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する変調と、前記宅内装置から受信した上り信号に対する、前記宅内装置からの伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する復調と、のうち一方又は両方を行い、
前記宅内装置は、前記終端装置から受信した下り信号に対する、前記終端装置からの伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する復調と、前記終端装置へと送信する上り信号に対する、前記終端装置への伝送距離に応じて定まり信号対雑音比を劣化させない最大の多値度を有する変調と、のうち一方又は両方を行う
ことを特徴とする請求項1又は2に記載の光アクセスシステム。
The terminating device receives from the in-house device a modulation having a maximum multi-level that is determined in accordance with a transmission distance to the in-home device with respect to a downlink signal transmitted to the in-home device and does not deteriorate a signal-to-noise ratio. Performing one or both of the demodulation and the maximum multi-level that does not degrade the signal-to-noise ratio determined according to the transmission distance from the in-home device for the upstream signal,
The in-home device determines the maximum downlink value that is determined according to the transmission distance from the terminal device and does not deteriorate the signal-to-noise ratio with respect to the downlink signal received from the terminal device, and transmits the demodulated signal to the terminal device 3. The method according to claim 1, wherein one or both of an uplink signal and a modulation having a maximum multi-level that does not deteriorate a signal-to-noise ratio that is determined according to a transmission distance to the terminating device are performed. The optical access system described.
前記終端装置は、前記宅内装置へと送信する下り信号に対する、前記宅内装置への伝送距離及び前記宅内装置への通信帯域に応じて定まる多値度を有する変調と、前記宅内装置から受信した上り信号に対する、前記宅内装置からの伝送距離及び前記宅内装置からの通信帯域に応じて定まる多値度を有する復調と、のうち一方又は両方を行い、
前記宅内装置は、前記終端装置から受信した下り信号に対する、前記終端装置からの伝送距離及び前記終端装置からの通信帯域に応じて定まる多値度を有する復調と、前記終端装置へと送信する上り信号に対する、前記終端装置への伝送距離及び前記終端装置への通信帯域に応じて定まる多値度を有する変調と、のうち一方又は両方を行う
ことを特徴とする請求項1又は2に記載の光アクセスシステム。
The terminating device has a modulation having a multilevel value determined according to a transmission distance to the in-home device and a communication band to the in-home device for a downlink signal transmitted to the in-home device, and an uplink received from the in-home device. Performing one or both of a signal, a demodulation having a multivalued degree determined according to a transmission distance from the in-home device and a communication band from the in-home device,
The in-home device demodulates the downlink signal received from the termination device, has a multilevel value determined according to the transmission distance from the termination device and the communication band from the termination device, and transmits to the termination device 3. The modulation according to claim 1, wherein one or both of a modulation having a multi-level value determined according to a transmission distance to the termination device and a communication band to the termination device is performed on a signal. Optical access system.
前記終端装置及び前記宅内装置の間の伝送距離は、前記終端装置が前記宅内装置に動的帯域割当を行う際に、前記終端装置がレンジング情報に基づいて推定する
ことを特徴とする請求項1から4のいずれかに記載の光アクセスシステム。
The transmission distance between the terminating device and the in-home device is estimated by the terminating device based on ranging information when the terminating device performs dynamic bandwidth allocation to the in-home device. 5. The optical access system according to any one of items 1 to 4.
光アクセスシステムにおいて宅内装置と通信を行う終端装置であって、
前記宅内装置へと送信する下り信号に対する、前記宅内装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調を行う多値変調部と、前記宅内装置から受信した上り信号に対する、前記宅内装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調を行う多値復調部と、のうち一方又は両方を備える
ことを特徴とする終端装置。
An end device that communicates with a home device in an optical access system,
A multi-level modulation unit that performs multi-level pulse intensity modulation greater than a binary value that has a multi-value degree determined according to a transmission distance to the home device with respect to a downlink signal transmitted to the home device, and received from the home device A multi-level demodulating unit that performs multi-level pulse intensity demodulation with a multi-level greater than a binary value, the multi-level of which is determined according to the transmission distance from the in-house device for an upstream signal, and one or both of them. apparatus.
光アクセスシステムにおいて終端装置と通信を行う宅内装置であって、
前記終端装置から受信した下り信号に対する、前記終端装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調を行う多値復調部と、前記終端装置へと送信する上り信号に対する、前記終端装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調を行う多値変調部と、のうち一方又は両方を備える
ことを特徴とする宅内装置。
A home device that communicates with a terminating device in an optical access system,
A multi-level demodulating unit that performs multi-level pulse intensity demodulation with a multi-level greater than a binary value that is determined according to a transmission distance from the terminal device with respect to a downlink signal received from the terminal device, and transmits the signal to the terminal device One or both of a multi-level modulation unit that performs multi-level pulse intensity modulation with a multi-level value larger than a binary value that has a multi-level value determined according to a transmission distance to the terminal device for an upstream signal. apparatus.
終端装置と、複数の宅内装置と、を用いる光アクセス方法であって、
前記終端装置が、前記宅内装置へと送信する下り信号に対する、前記宅内装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調を行い、前記宅内装置が、前記終端装置から受信した下り信号に対する、前記終端装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調を行う下り信号変復調ステップと、
前記宅内装置が、前記終端装置へと送信する上り信号に対する、前記終端装置への伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度変調を行い、前記終端装置が、前記宅内装置から受信した上り信号に対する、前記宅内装置からの伝送距離に応じて多値度が定まる2値より大きい多値のパルス強度復調を行う上り信号変復調ステップと、
のうち一方又は両方を行うことを特徴とする光アクセス方法。
An optical access method using an end device and a plurality of in-home devices,
The terminating device performs multi-level pulse intensity modulation, which is greater than two values whose multi-level is determined according to a transmission distance to the in-home device, with respect to a downlink signal transmitted to the in-home device, Downlink signal modulation / demodulation step for performing multi-level pulse intensity demodulation greater than binary with a multi-level degree determined according to the transmission distance from the end device with respect to the down signal received from the end device;
The in-home device performs multi-value pulse intensity modulation larger than two values, the multi-value degree of which is determined according to the transmission distance to the end device, for the uplink signal transmitted to the end device, An uplink signal modulation / demodulation step for performing multi-level pulse intensity demodulation greater than binary, the multi-level being determined according to the transmission distance from the in-home device, with respect to the up-link signal received from the in-home device;
An optical access method characterized by performing one or both of the following:
JP2014125665A 2014-06-18 2014-06-18 Optical access system, termination device, in-home device, and optical access method Active JP6291362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014125665A JP6291362B2 (en) 2014-06-18 2014-06-18 Optical access system, termination device, in-home device, and optical access method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014125665A JP6291362B2 (en) 2014-06-18 2014-06-18 Optical access system, termination device, in-home device, and optical access method

Publications (2)

Publication Number Publication Date
JP2016005193A true JP2016005193A (en) 2016-01-12
JP6291362B2 JP6291362B2 (en) 2018-03-14

Family

ID=55224168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014125665A Active JP6291362B2 (en) 2014-06-18 2014-06-18 Optical access system, termination device, in-home device, and optical access method

Country Status (1)

Country Link
JP (1) JP6291362B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191812A (en) * 2016-04-11 2017-10-19 日本電信電話株式会社 driver
JP2018186112A (en) * 2017-04-24 2018-11-22 日本電信電話株式会社 DML driver
JP2019161512A (en) * 2018-03-14 2019-09-19 日本電信電話株式会社 Optical transmission system and communication condition selection method
US20230275664A1 (en) * 2020-07-27 2023-08-31 Nippon Telegraph And Telephone Corporation Optical communication system and optical communication method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635633A (en) * 1986-06-25 1988-01-11 Nec Corp Optical multivalued communication system
JPH09116750A (en) * 1995-10-18 1997-05-02 Ricoh Co Ltd Picture output device
JP2009017324A (en) * 2007-07-06 2009-01-22 Hitachi Communication Technologies Ltd Passive light network system and its communication method
JP2009124342A (en) * 2007-11-13 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
US20120045209A1 (en) * 2010-08-20 2012-02-23 Broadcom Corporation Cost-Effective Multi-Rate Upstream for 10GEPON Based on High Efficiency Coding
JP2012105180A (en) * 2010-11-12 2012-05-31 Mitsubishi Electric Corp Optical communication system, station-side communication device and subscriber-side communication device
WO2012147889A1 (en) * 2011-04-27 2012-11-01 日本電信電話株式会社 Optical communication device, optical path switching device, and network

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635633A (en) * 1986-06-25 1988-01-11 Nec Corp Optical multivalued communication system
JPH09116750A (en) * 1995-10-18 1997-05-02 Ricoh Co Ltd Picture output device
JP2009017324A (en) * 2007-07-06 2009-01-22 Hitachi Communication Technologies Ltd Passive light network system and its communication method
JP2009124342A (en) * 2007-11-13 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
US20120045209A1 (en) * 2010-08-20 2012-02-23 Broadcom Corporation Cost-Effective Multi-Rate Upstream for 10GEPON Based on High Efficiency Coding
JP2012105180A (en) * 2010-11-12 2012-05-31 Mitsubishi Electric Corp Optical communication system, station-side communication device and subscriber-side communication device
WO2012147889A1 (en) * 2011-04-27 2012-11-01 日本電信電話株式会社 Optical communication device, optical path switching device, and network

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191812A (en) * 2016-04-11 2017-10-19 日本電信電話株式会社 driver
JP2018186112A (en) * 2017-04-24 2018-11-22 日本電信電話株式会社 DML driver
JP2019161512A (en) * 2018-03-14 2019-09-19 日本電信電話株式会社 Optical transmission system and communication condition selection method
WO2019176587A1 (en) * 2018-03-14 2019-09-19 日本電信電話株式会社 Optical transmission system and communication condition selection method
US11165497B2 (en) 2018-03-14 2021-11-02 Nippon Telegraph And Telephone Corporation Optical transmission system and communication condition selection method
JP7071625B2 (en) 2018-03-14 2022-05-19 日本電信電話株式会社 Optical transmission system and communication condition selection method
US20230275664A1 (en) * 2020-07-27 2023-08-31 Nippon Telegraph And Telephone Corporation Optical communication system and optical communication method

Also Published As

Publication number Publication date
JP6291362B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
Liu Enabling optical network technologies for 5G and beyond
EP2421280B1 (en) Cost effective multi-rate upstream for 10GEPON based on high efficiency coding
Houtsma et al. Investigation of modulation schemes for flexible line-rate high-speed TDM-PON
US9882649B2 (en) Transmitting, receiving and communication systems of optical network and method for modulating signal
KR102003914B1 (en) Optical transmitter with optical receiver-specific dispersion pre-compensation
CN102202248B (en) Orthogonal frequency division multiplexing passive optical network system
WO2011044959A1 (en) Method for processing data in an optical network element and optical network element
JP6291362B2 (en) Optical access system, termination device, in-home device, and optical access method
Iiyama et al. Co-existent downstream scheme between OOK and QAM signals in an optical access network using software-defined technology
WO2018162743A1 (en) Flexible modulation in pon networks
JP5697518B2 (en) Station-side terminator, subscriber-side terminator, and optical transmission system
Feng et al. Implementation of network-coding approach for improving the BER performance in non-orthogonal multiple access (NOMA)-PON
CN104038463B (en) Optical access network system based on four-dimensional Dynamic Resource Allocation for Multimedia
Jiang et al. Flexible filter bank multi-carriers PON based on two-dimensional multiple probabilistic shaping distribution
JP5775105B2 (en) Transmitting apparatus / method and receiving apparatus / method in a passive optical communication network
JP6291361B2 (en) Optical access system, termination device, in-home device, and optical access method
Joo et al. 20-Gb/s AMO OFDM transmission over 20-km bidirectional link by separate I/Q baseband delivery using remotely fed 1-GHz RSOAs
van der Linden et al. Demonstration and application of 37.5 Gb/s duobinary-PAM3 in PONs
Singh et al. Transmission of voice, video and data in fiber-to-the-home (FTTH) networks using OFDM
Agarwal et al. Review of mixed line rate and elastic optical network
US11463164B1 (en) Optical line terminal with out-of-band communication channel, and method for implementing
Lin et al. Experimental demonstration of an NOMA scheme for passive optical network
Xue Key Signal Processing Technologies for High-speed Passive Optical Networks
van Veen et al. The role of flexibility in future optical access networks
Giacoumidis Adaptive optical OFDM for local and access networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180209

R150 Certificate of patent or registration of utility model

Ref document number: 6291362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150