JP6052342B2 - Hot water storage hot water supply system - Google Patents

Hot water storage hot water supply system Download PDF

Info

Publication number
JP6052342B2
JP6052342B2 JP2015117469A JP2015117469A JP6052342B2 JP 6052342 B2 JP6052342 B2 JP 6052342B2 JP 2015117469 A JP2015117469 A JP 2015117469A JP 2015117469 A JP2015117469 A JP 2015117469A JP 6052342 B2 JP6052342 B2 JP 6052342B2
Authority
JP
Japan
Prior art keywords
hot water
water storage
concentrated load
heat storage
boiling operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015117469A
Other languages
Japanese (ja)
Other versions
JP2015158362A (en
Inventor
智 赤木
智 赤木
畝崎 史武
史武 畝崎
正樹 豊島
正樹 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015117469A priority Critical patent/JP6052342B2/en
Publication of JP2015158362A publication Critical patent/JP2015158362A/en
Application granted granted Critical
Publication of JP6052342B2 publication Critical patent/JP6052342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、貯湯式給湯システムに関する。   The present invention relates to a hot water storage type hot water supply system.

タンクに湯を貯え、このタンクから需要端側へ湯を供給する貯湯式給湯機が広く用いられている。貯湯式給湯機は、加熱手段の加熱能力が比較的小さいもの、あるいは加熱手段の起動時における能力の立ち上りが遅いものに、特に適した方式の給湯機である。貯湯式給湯機では、負荷の発生に対して湯切れが生じることのないように、事前に加熱手段により湯を沸き上げ、タンクに溜めておく必要がある。貯湯式給湯機では、主に、電気料金が割安となる深夜時間帯に沸き上げ運転を行い、タンクに湯を溜める、すなわちタンクに蓄熱することが一般的である。   Hot water storage water heaters that store hot water in a tank and supply hot water from the tank to the demand end side are widely used. The hot water storage type hot water heater is a water heater of a system particularly suitable for one having a relatively small heating capacity of the heating means or one having a slow rise in capacity when the heating means is activated. In the hot water storage type water heater, it is necessary to boil hot water in advance by a heating means and store it in a tank so that the hot water does not run out due to the occurrence of a load. In a hot water storage type water heater, it is common to perform a boiling operation in the midnight hours when electricity charges are cheap and to store hot water in a tank, that is, to store heat in the tank.

集合住宅の各世帯において貯湯式給湯機が用いられるような場合を想定すると、深夜時間帯の終了時刻に近い時間には、全世帯の貯湯式給湯機が沸き上げ運転を行っており、集合住宅全体としての需要電力が高くなる可能性がある。特許文献1には、このような場合に需要電力を平準化するため、複数の貯湯式給湯機と相互に通信可能に接続される給湯機制御手段を設け、深夜の沸き上げ運転のタイミングを貯湯式給湯機ごとに変える技術が開示されている。   Assuming that hot water storage hot water heaters are used in each household in an apartment house, hot water heaters in all households are heating up at the time close to the end time of midnight hours, The overall power demand can be high. In such a case, in order to equalize power demand in such a case, a hot water heater control means connected to a plurality of hot water storage type hot water heaters so as to be able to communicate with each other is provided, and the timing of boiling operation at midnight is stored. The technique changed for every water heater is disclosed.

特開2012−97949号公報JP 2012-97949 A

複数の貯湯式給湯機が同時に沸き上げ運転を行う状況は、深夜時間帯に限らず、例えば、夕方の入浴時に低下する蓄熱量を回復する状況でも発生し易い。しかしながら、入浴時に低下した蓄熱量を回復させる沸き上げ運転のタイミングを単に世帯ごとにずらすと、タイミングを遅らせた世帯の貯湯式給湯機においては、蓄熱量の回復が間に合わず、湯切れ発生に繋がる可能性がある。一方、安全をみて、すべての貯湯式給湯機が、入浴時間帯より前に、入浴時間帯の負荷をすべて沸き上げて蓄熱するように運転すれば、単に沸き上げ運転のタイミングを世帯ごとにずらすだけで、湯切れを回避しながら沸き上げ運転の集中を回避することができる。しかしながら、その場合には、すべての貯湯式給湯機が大きな蓄熱量をタンクに長時間保持することになるため、放熱ロスが多くなり、システム全体の省エネルギーを低下させるという問題がある。   The situation where a plurality of hot water storage hot water heaters perform boiling operation at the same time is not limited to the midnight time zone, and is likely to occur even in a situation where, for example, the amount of stored heat that decreases during bathing in the evening is recovered. However, if the timing of the heating operation that recovers the heat storage amount that has decreased during bathing is simply shifted for each household, the recovery of the heat storage amount will not be in time for the hot water storage hot water heater in the household that has delayed the timing, leading to the occurrence of hot water shortages. there is a possibility. On the other hand, for safety reasons, if all hot water storage water heaters are operated so that all the load during the bathing time is heated and stored before the bathing time, the timing of the boiling operation is simply shifted for each household. It is possible to avoid boiling concentration while avoiding running out of hot water. However, in that case, since all the hot water storage type hot water heaters hold a large amount of heat storage in the tank for a long time, there is a problem that heat dissipation loss increases and energy saving of the entire system is reduced.

本発明は、上述のような課題を解決するためになされたもので、負荷が集中する集中負荷時間帯に複数の貯湯式給湯機が消費する合計電力を抑制するとともに、システム全体での沸き上げ量を抑制し、省エネルギーを向上させることのできる貯湯式給湯システムを提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and suppresses the total power consumed by a plurality of hot water storage hot water heaters during a concentrated load time zone in which the load is concentrated, and raises the entire system. It aims at providing the hot water storage type hot-water supply system which can suppress quantity and can improve energy saving.

本発明に係る貯湯式給湯システムは、複数の貯湯式給湯機と、予め設定された集中負荷時間帯に複数の貯湯式給湯機が消費することを許容される合計の電力である許容合計電力の値と、集中負荷時間帯に同時に沸き上げ運転を行うと想定する貯湯式給湯機の台数である想定同時運転台数とに基づいて、各々の貯湯式給湯機が集中負荷時間帯に沸き上げ運転を行う場合の消費電力または加熱能力を制限する制限手段と、を備え、集中負荷時間帯に沸き上げ運転を行っている貯湯式給湯機の台数が想定同時運転台数より少ない場合には、制限手段は、複数の貯湯式給湯機の合計の消費電力が許容合計電力を超えない範囲で、沸き上げ運転を行っている貯湯式給湯機の消費電力または加熱能力の制限を緩和するものである。
また、本発明に係る貯湯式給湯システムは、複数の貯湯式給湯機と、予め設定された集中負荷時間帯に複数の貯湯式給湯機が消費することを許容される合計の電力である許容合計電力の値と、集中負荷時間帯に同時に沸き上げ運転を行うと想定する貯湯式給湯機の台数である想定同時運転台数とに基づいて、各々の貯湯式給湯機が集中負荷時間帯に沸き上げ運転を行う場合の消費電力または加熱能力を制限する制限手段と、を備え、各々の貯湯式給湯機は、発生した負荷の大きさおよび発生した時間帯のパターンである負荷パターンを学習する手段と、学習された負荷パターンと、通常の加熱能力の値とに基づいて、負荷に対して湯切れの無いように、蓄熱量が低下したときに沸き上げ運転を開始する閾値とする通常起動蓄熱量を求める手段と、学習された負荷パターンと、制限手段により制限された加熱能力である制限加熱能力の値とに基づいて、負荷に対して湯切れの無いように、蓄熱量が低下したときに沸き上げ運転を開始する閾値とする制限起動蓄熱量を求める手段と、集中負荷時間帯が開始するまでの時間が所定時間以内である場合には、蓄熱量が、通常起動蓄熱量と制限起動蓄熱量との大きい方よりも小さくなったときに、制限加熱能力にて沸き上げ運転を開始する制御手段と、を有するものである。
また、本発明に係る貯湯式給湯システムは、複数の貯湯式給湯機と、予め設定された集中負荷時間帯に複数の貯湯式給湯機が消費することを許容される合計の電力である許容合計電力の値と、集中負荷時間帯に同時に沸き上げ運転を行うと想定する貯湯式給湯機の台数である想定同時運転台数とに基づいて、各々の貯湯式給湯機が集中負荷時間帯に沸き上げ運転を行う場合の消費電力または加熱能力を制限する制限手段と、を備え、複数の貯湯式給湯機は、各世帯に1台ずつ設けられるものであり、各々の貯湯式給湯機は、水を加熱する加熱手段と、湯を貯留するタンクとを備えるものである。
The hot water storage hot water system according to the present invention includes a plurality of hot water storage water heaters and an allowable total power that is a total power allowed to be consumed by the plurality of hot water storage water heaters during a preset concentrated load time zone. Based on the value and the number of hot water storage water heaters that are assumed to perform boiling operation at the same time during the concentrated load time, each hot water storage water heater performs the boiling operation during the concentrated load time. Limiting means for limiting power consumption or heating capacity when performing, and when the number of hot water storage hot water heaters that perform boiling operation during the concentrated load time period is less than the assumed simultaneous operation number, the limiting means is The restriction of the power consumption or the heating capacity of the hot water storage hot water heater that performs the boiling operation is relaxed within a range where the total power consumption of the hot water storage hot water heaters does not exceed the allowable total power .
Further, the hot water storage hot water system according to the present invention includes a plurality of hot water storage hot water heaters and an allowable total that is a total power allowed to be consumed by the plurality of hot water storage hot water heaters during a preset concentrated load time period. Based on the value of electric power and the number of hot water storage water heaters that are assumed to perform boiling operation at the same time during the concentrated load time, each hot water heater is heated during the concentrated load time. Limiting means for limiting power consumption or heating capacity when operating, and each hot water storage type hot water heater learns a load pattern which is a pattern of a generated load and a generated time zone Based on the learned load pattern and the normal heating capacity value, the normal starting heat storage amount is set as a threshold value for starting the boiling operation when the heat storage amount is reduced so that the hot water does not run out with respect to the load. Means to find Based on the learned load pattern and the value of the limited heating capacity, which is the heating capacity limited by the limiting means, the boiling operation is performed when the heat storage amount is reduced so that the hot water does not run out of the load. The means for obtaining the limited startup heat storage amount as a threshold value to start and when the time until the concentrated load time period starts is within a predetermined time, the heat storage amount is large between the normal startup heat storage amount and the limited startup heat storage amount And a control means for starting the boiling operation with the limited heating capacity when it becomes smaller than the above.
Further, the hot water storage hot water system according to the present invention includes a plurality of hot water storage hot water heaters and an allowable total that is a total power allowed to be consumed by the plurality of hot water storage hot water heaters during a preset concentrated load time period. Based on the value of electric power and the number of hot water storage water heaters that are assumed to perform boiling operation at the same time during the concentrated load time, each hot water heater is heated during the concentrated load time. Limiting means for limiting power consumption or heating capacity when operating, and a plurality of hot water storage water heaters are provided in each household, and each hot water storage water heater supplies water. A heating means for heating and a tank for storing hot water are provided.

本発明によれば、負荷が集中する集中負荷時間帯に複数の貯湯式給湯機が消費する合計電力を抑制するとともに、システム全体での沸き上げ量を抑制し、省エネルギーを向上させることが可能となる。   According to the present invention, it is possible to suppress the total power consumed by a plurality of hot water storage type hot water heaters during a concentrated load time zone in which the load is concentrated, and to suppress the amount of boiling in the entire system and improve energy saving. Become.

本発明の実施の形態1の貯湯式給湯システムを示す構成図である。It is a block diagram which shows the hot water storage type hot-water supply system of Embodiment 1 of this invention. 本発明の実施の形態1の貯湯式給湯システムが備える貯湯式給湯機の構成図である。It is a block diagram of the hot water storage type hot water heater with which the hot water storage type hot water supply system of Embodiment 1 of this invention is provided. 本発明の実施の形態1における貯湯式給湯機内の信号の流れを表すブロック図である。It is a block diagram showing the flow of the signal in the hot water storage type water heater in Embodiment 1 of this invention. 深夜時間帯の沸き上げ運転の概要を説明する図である。It is a figure explaining the outline | summary of the heating operation of a midnight time zone. 追加沸き上げ運転および集中負荷時間帯事前沸き上げ運転の概要を説明する図である。It is a figure explaining the outline | summary of an additional boiling operation and concentrated load time zone prior boiling operation. 本発明の実施の形態2の貯湯式給湯システムが備える貯湯式給湯機における追加沸き上げ運転の概要を説明する図である。It is a figure explaining the outline | summary of the additional boiling operation in the hot water storage type hot water supply machine with which the hot water storage type hot water supply system of Embodiment 2 of this invention is provided.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

実施の形態1.
≪機器構成≫
図1は、本発明の実施の形態1の貯湯式給湯システムを示す構成図である。図1に示すように、本実施の形態1の貯湯式給湯システム1は、集中コントローラ7と、複数の貯湯式給湯機8とを備えている。複数の貯湯式給湯機8は、例えば集合住宅等の施設の各世帯に1台ずつ設けられたものである。図2は、本実施の形態1の貯湯式給湯システム1が備える貯湯式給湯機8の構成図である。貯湯式給湯システム1が備える複数の貯湯式給湯機8は、ほぼ同様の構成であるため、そのうちの一つの貯湯式給湯機8について代表して説明する。
Embodiment 1 FIG.
≪Device configuration≫
FIG. 1 is a configuration diagram showing a hot water storage type hot water supply system according to Embodiment 1 of the present invention. As shown in FIG. 1, the hot water storage hot water supply system 1 according to the first embodiment includes a centralized controller 7 and a plurality of hot water storage hot water heaters 8. A plurality of hot water storage type water heaters 8 are provided in each household of a facility such as an apartment house. FIG. 2 is a configuration diagram of a hot water storage type hot water heater 8 provided in the hot water storage type hot water supply system 1 of the first embodiment. Since the plurality of hot water storage type hot water heaters 8 included in the hot water storage type hot water supply system 1 have substantially the same configuration, only one of the hot water storage type hot water heaters 8 will be described as a representative.

図2に示すように、貯湯式給湯機8は、タンク10、加熱手段20、沸き上げポンプ31、追焚きポンプ32、浴槽ポンプ33、湯栓温調弁41、追焚き熱交換器5、沸き上げ往き配管301a、沸き上げ戻り配管301b、給水配管302、高温導出配管303、温調配管304、湯栓配管305、浴槽往き配管306a、浴槽戻り配管306b、追焚き往き配管307a、追焚き戻り配管307b、および個別制御手段100等を備えている。   As shown in FIG. 2, the hot water storage type hot water heater 8 includes a tank 10, a heating means 20, a boiling pump 31, a reheating pump 32, a bathtub pump 33, a tap temperature control valve 41, a reheating heat exchanger 5, a boiling Upward piping 301a, boiling return piping 301b, feed water piping 302, high temperature outlet piping 303, temperature control piping 304, hot water tap piping 305, bathtub return piping 306a, bathtub return piping 306b, additional return piping 307a, additional return piping 307b, the individual control means 100, and the like.

タンク10内には、上側が高温、下側が低温となる温度成層を形成して、湯水が貯留される。加熱手段20は、タンク10内から導かれる水を沸き上げて高温水にする。この加熱手段20は、例えばヒートポンプを用いて構成される。また、加熱手段20は、例えばインバータ制御などを用いて、加熱能力を可変に設定することができる構成であることが好ましい。沸き上げ往き配管301aは、タンク10内の水を加熱手段20に導く。沸き上げ戻り配管301bは、加熱手段20で沸き上げられた高温水をタンク10に導く。給水配管302は、水道等の水源から供給される低温水をタンク10の下部に導く。   In the tank 10, hot water is stored by forming a temperature stratification in which the upper side is a high temperature and the lower side is a low temperature. The heating means 20 boils the water guided from the tank 10 to make high temperature water. The heating means 20 is configured using, for example, a heat pump. Moreover, it is preferable that the heating means 20 is a structure which can set a heating capability variably, for example using inverter control etc. The boiling forward piping 301 a guides the water in the tank 10 to the heating means 20. The boiling return pipe 301 b guides the high temperature water boiled by the heating means 20 to the tank 10. The water supply pipe 302 guides low temperature water supplied from a water source such as a water supply to the lower part of the tank 10.

高温導出配管303は、タンク10の上部から導出する高温水を通す。温調配管304は、水道等の水源に接続される給水配管302から分岐して湯栓温調弁41に低温水(市水)を導く。湯栓温調弁41は、タンク10の上部から高温導出配管303により導出された高温水と、温調配管304により供給される低温水とを混合することにより温度調節する。湯栓温調弁41にて温度調節された湯は、湯栓配管305を通って、蛇口、シャワーなどの湯栓(図示省略)から放出され、あるいは浴槽6に湯張りされる。浴槽6は、入浴用の40℃前後の湯が溜められる。   The high temperature outlet pipe 303 allows high temperature water led out from the upper part of the tank 10 to pass therethrough. The temperature control pipe 304 branches from a water supply pipe 302 connected to a water source such as a water supply, and guides low temperature water (city water) to the tap temperature control valve 41. The hot-water temperature adjustment valve 41 adjusts the temperature by mixing high-temperature water led out from the upper part of the tank 10 through the high-temperature lead-out pipe 303 and low-temperature water supplied through the temperature control pipe 304. The hot water whose temperature is adjusted by the hot water tap temperature control valve 41 passes through the hot water pipe piping 305 and is discharged from a hot water tap (not shown) such as a faucet or a shower, or is filled in the bathtub 6. The bathtub 6 stores hot water at around 40 ° C. for bathing.

追焚き熱交換器5は、タンク10の上部から導出された高温水と、浴槽6から循環する浴槽水とを熱交換することにより、浴槽水を加熱する。浴槽戻り配管306bは、浴槽6内の浴槽水を追焚き熱交換器5に導く。浴槽往き配管306aは、追焚き熱交換器5で加熱された浴槽水を浴槽6に導く。追焚き往き配管307aは、タンク10の上部の高温水を追焚き熱交換器5に導く。追焚き戻り配管307bは、追焚き熱交換器5で浴槽6からの浴槽水と熱交換して温度低下した湯をタンク10に導く。   The reheating heat exchanger 5 heats the bathtub water by exchanging heat between the hot water led out from the upper part of the tank 10 and the bathtub water circulating from the bathtub 6. The bathtub return pipe 306 b tracks the bathtub water in the bathtub 6 and guides it to the heat exchanger 5. The bathtub going-out pipe 306 a guides the bathtub water heated by the reheating heat exchanger 5 to the bathtub 6. The follow-up piping 307 a guides the high-temperature water in the upper part of the tank 10 to the follow-up heat exchanger 5. The reheating return pipe 307 b guides the hot water whose temperature has decreased by exchanging heat with the bathtub water from the bathtub 6 in the reheating heat exchanger 5 to the tank 10.

沸き上げポンプ31は、沸き上げ往き配管301aの途中に接続される。追焚きポンプ32は、追焚き戻り配管307bの途中に接続される。浴槽ポンプ33は、浴槽戻り配管306bの途中に接続される。   The boiling pump 31 is connected in the middle of the boiling forward piping 301a. The tracking pump 32 is connected in the middle of the tracking return pipe 307b. The bathtub pump 33 is connected in the middle of the bathtub return pipe 306b.

タンク10には、高さ方向に間隔をおいて、貯湯温度センサ501a〜501fが設けられている。図示の構成では、貯湯温度センサ501a〜501fの個数を6個としているが、この個数はこれに限定されるものではなく、タンク10の内部の温度分布をより高精度に測定するのに充分な数の温度センサを設けるようにしてもよい。沸き上げ戻り配管301bには、加熱手段20の下流側にて、沸き上げられた高温水の温度を検出する沸き上げ温度センサ502が設けられている。給水配管302には、給水温度を検出する給水温度センサ504が設けられている。タンク10の上部には、タンク10から導出される高温水の温度を検出する導出温度センサ503が設けられている。湯栓配管305には、湯栓に供給される湯温を検出する湯栓温度センサ505が設けられている。浴槽戻り配管306bには、浴槽6から追焚き熱交換器5に流れ込む浴槽戻り温度を検出する浴槽戻り温度センサ506が設けられている。なお、この浴槽戻り温度センサ506は、定期的に浴槽ポンプ33を運転させることにより、浴槽温度を検出する手段として利用してもよい。追焚き戻り配管307bには、追焚き熱交換器5からタンク10に戻る湯の温度(追焚き戻り温度)を検出する追焚き戻り温度センサ507が設けられている。なお、追焚き戻り温度は、センサでの検出に代えて、追焚きポンプ32の回転数、浴槽ポンプ33の回転数、高温水導出温度、および浴槽戻り温度等から推定してもよい。湯栓配管305には、需要端側で使用される湯量を検出する湯栓流量センサ601が設けられている。   The tank 10 is provided with hot water storage temperature sensors 501a to 501f at intervals in the height direction. In the illustrated configuration, the number of hot water storage temperature sensors 501a to 501f is six. However, the number is not limited to this, and is sufficient to measure the temperature distribution inside the tank 10 with higher accuracy. A number of temperature sensors may be provided. The boiling return pipe 301b is provided with a boiling temperature sensor 502 that detects the temperature of the boiled high-temperature water on the downstream side of the heating means 20. The feed water pipe 302 is provided with a feed water temperature sensor 504 for detecting the feed water temperature. A derived temperature sensor 503 that detects the temperature of the high-temperature water derived from the tank 10 is provided in the upper part of the tank 10. The tap pipe 305 is provided with a tap temperature sensor 505 that detects the temperature of the hot water supplied to the tap. The bathtub return pipe 306b is provided with a bathtub return temperature sensor 506 that detects a bathtub return temperature flowing from the bathtub 6 into the reheating heat exchanger 5. In addition, you may utilize this bathtub return temperature sensor 506 as a means to detect bathtub temperature by operating the bathtub pump 33 regularly. The tracking return pipe 307b is provided with a tracking return temperature sensor 507 for detecting the temperature of the hot water returning from the tracking heat exchanger 5 to the tank 10 (tracking return temperature). The reheating temperature may be estimated from the number of rotations of the reheating pump 32, the number of rotations of the bathtub pump 33, the high temperature water derivation temperature, the bathtub return temperature, and the like, instead of being detected by a sensor. The tap pipe 305 is provided with a tap flow sensor 601 for detecting the amount of hot water used on the demand end side.

個別制御手段100は、上述した各センサで検出される情報等に基づいて、加熱手段20、沸き上げポンプ31、追焚きポンプ32、浴槽ポンプ33、湯栓温調弁41等の動作を制御することにより、貯湯式給湯機8の運転動作を制御する。個別制御手段100は、上述したセンサで検出される情報に基づいて、湯栓負荷、追焚き負荷、タンク10内の貯湯状態等を算出する。また、個別制御手段100には、当該世帯の人数等の世帯情報、浴槽6のサイズ(容量)に関する情報等が記憶されている。   The individual control means 100 controls the operation of the heating means 20, the boiling pump 31, the reheating pump 32, the bathtub pump 33, the hot water tap temperature adjustment valve 41, etc., based on the information detected by each sensor described above. Thus, the operation of the hot water storage type water heater 8 is controlled. The individual control means 100 calculates a hot water tap load, a reheating load, a hot water storage state in the tank 10 and the like based on information detected by the above-described sensor. Further, the individual control means 100 stores household information such as the number of persons in the household, information on the size (capacity) of the bathtub 6, and the like.

図1に示すように、集中コントローラ7は、各世帯の貯湯式給湯機8の個別制御手段100と相互に通信可能に接続される。集中コントローラ7は、各世帯の貯湯式給湯機8の個別制御手段100との通信により、各世帯の湯栓負荷、追焚き負荷、貯湯状態、世帯情報、浴槽サイズなどの情報を取得する。集中コントローラ7は、各世帯の貯湯式給湯機8の個別制御手段100に特定の制御情報を指示することにより、各世帯の貯湯式給湯機8の運転動作を制御する。   As shown in FIG. 1, the centralized controller 7 is connected to the individual control means 100 of the hot water storage hot water heater 8 of each household so as to communicate with each other. The centralized controller 7 acquires information such as the tap load, reheating load, hot water storage state, household information, and bathtub size of each household through communication with the individual control means 100 of the hot water storage hot water heater 8 of each household. The centralized controller 7 controls the operation of the hot water storage hot water heater 8 of each household by instructing specific control information to the individual control means 100 of the hot water storage hot water heater 8 of each household.

図3は、本発明の実施の形態1における貯湯式給湯機8内の信号の流れを表すブロック図である。図3に示すように、個別制御手段100は、蓄熱量算出手段101、必要熱量予測手段104、沸き上げ制御手段105、弁制御手段106、目標温度設定手段107、ポンプ制御手段108、沸き上げモード設定手段109、および負荷設定手段110等を有する。   FIG. 3 is a block diagram showing a signal flow in hot water storage type hot water heater 8 according to Embodiment 1 of the present invention. As shown in FIG. 3, the individual control means 100 includes a heat storage amount calculation means 101, a required heat amount prediction means 104, a boiling control means 105, a valve control means 106, a target temperature setting means 107, a pump control means 108, a boiling mode. A setting unit 109, a load setting unit 110, and the like are included.

個別制御手段100には、時刻検出手段(タイマー)200、貯湯温度センサ501a〜501f、沸き上げ温度センサ502、導出温度センサ503、給水温度センサ504、湯栓温度センサ505、浴槽戻り温度センサ506、追焚き戻り温度センサ507、および、湯栓流量センサ601からの情報が入力される。個別制御手段100は、入力されたこれらの情報に基づいて、加熱手段20、沸き上げポンプ31、追焚きポンプ32、浴槽ポンプ33、湯栓温調弁41等を制御する。   The individual control means 100 includes a time detection means (timer) 200, hot water storage temperature sensors 501a to 501f, a boiling temperature sensor 502, a derived temperature sensor 503, a feed water temperature sensor 504, a tap temperature sensor 505, a bathtub return temperature sensor 506, Information from the tracking return temperature sensor 507 and the tap flow sensor 601 is input. The individual control unit 100 controls the heating unit 20, the boiling pump 31, the reheating pump 32, the bathtub pump 33, the hot-water tap temperature adjustment valve 41, and the like based on the input information.

目標温度設定手段107は、リモコン等のユーザーインターフェース装置(図示省略)を介してユーザーから受ける指示などに基づき、湯栓からの放出にてシャワーや浴槽6に供給する湯の温度、浴槽6の保温または追焚きの際に制御目標とする温度などを設定する。   The target temperature setting means 107 is based on an instruction received from a user via a user interface device (not shown) such as a remote controller, etc., and the temperature of hot water supplied to the shower or the bathtub 6 by releasing from the hot water tap, Or, set the target temperature for tracking.

負荷設定手段110は、ユーザーインターフェース装置(図示省略)を介してユーザーから受ける指示などに基づき、浴槽6への湯張り量、入浴人数、湯張り時刻、入浴時間帯、浴槽保温時間帯、および、浴槽6の温度制御の方法などを設定する。ここで、浴槽6の温度制御方法とは、例えば、浴槽温度を所定の範囲内に維持する自動保温モード、中低温まで冷めた浴槽温度を一括して目標温度まで昇温する一括追焚きモード、湯切れ回避および省エネルギーに不利になるが追焚き能力を優先する急速追焚きモード、などの複数のモードから選択する形で設定する。   The load setting means 110 is based on an instruction received from the user via a user interface device (not shown), and the amount of hot water to the bathtub 6, the number of bathers, the hot water time, the bathing time zone, the bath warming time zone, and A method for controlling the temperature of the bathtub 6 is set. Here, the temperature control method of the bathtub 6 includes, for example, an automatic heat retention mode for maintaining the bathtub temperature within a predetermined range, a batch reheating mode for collectively raising the bathtub temperature cooled to a medium to low temperature to the target temperature, It is set in a form that is selected from a plurality of modes such as a quick chasing mode that gives priority to chasing ability, which is disadvantageous for hot water avoidance and energy saving.

蓄熱量算出手段101は、貯湯温度センサ501a〜501fの情報に基づいてタンク10内の湯の有する蓄熱量の内で湯栓負荷に有効な蓄熱量を算出する。例えば、湯栓負荷においてはタンク10内の湯の有する熱エネルギーを混合によって低温水に与えて使用するため、熱エネルギーの基準温度を給水温度としてタンク容積に関して積分することにより求められる。また、ここでは所定の温度(例えば45℃)以上の湯の領域に関してのみ積分して算出しても良い。   The heat storage amount calculating means 101 calculates the heat storage amount effective for the hot water tap load among the heat storage amounts of the hot water in the tank 10 based on the information of the hot water storage temperature sensors 501a to 501f. For example, in the hot water tap load, the heat energy of the hot water in the tank 10 is given to the low-temperature water by mixing, so that it is obtained by integrating the tank volume with the reference temperature of the heat energy as the feed water temperature. Here, the calculation may be performed by integrating only the hot water region having a predetermined temperature (for example, 45 ° C.) or higher.

また、蓄熱量算出手段101は、貯湯温度センサ501a〜501fの情報、および、目標温度設定手段107で設定された目標温度に基づいて、タンク10内の湯の有する蓄熱量の内で、追焚きに有効な蓄熱量を算出する。例えば、追焚きにおいては追焚き往き配管307aを通じて追焚き熱交換器5に導かれた高温水は、追焚き熱交換器5において浴槽水に熱を供給して温度が低下し、追焚き戻り配管307bからタンク10に戻される。従って、タンク10内の湯の有する熱エネルギーの内、追焚きにおいて有効に利用される熱エネルギーは、貯湯温度から追焚き戻り温度を減算した部分である。つまり、追焚き熱交換器5からタンク10に戻る追焚き戻り温度を熱エネルギーの基準温度としてタンク容積に関して積分することにより追焚きに有効な蓄熱量が求められる。ここで、追焚き戻り温度は、目標温度設定手段107からの情報と、浴槽戻り温度センサ506の情報とに基づいて予測してもよい。例えば、浴槽温度を目標浴槽温度で一定と仮定し、これに追焚き熱交換器5の性能に依存した所定の温度差を加えて追焚き戻り温度を予測してもよい。また、浴槽温度を現在の浴槽温度と目標浴槽温度の平均値で一定と仮定し、次いで追焚き熱交換器5の性能に依存した所定の温度差を加えることによって追焚き戻り温度を予測してもよい。   Further, the heat storage amount calculation means 101 retraces the heat storage amount of the hot water in the tank 10 based on the information of the hot water temperature sensors 501a to 501f and the target temperature set by the target temperature setting means 107. Calculate the effective heat storage amount. For example, in the reheating, the high temperature water led to the reheating heat exchanger 5 through the retreating piping 307a supplies heat to the bath water in the reheating heat exchanger 5 so that the temperature is lowered and the reheating return piping. It returns to the tank 10 from 307b. Therefore, of the thermal energy of the hot water in the tank 10, the thermal energy that is effectively used for reheating is a portion obtained by subtracting the reheating temperature from the hot water storage temperature. That is, a heat storage amount effective for tracking is obtained by integrating the tank return volume from the tracking heat exchanger 5 to the tank 10 with respect to the tank volume. Here, the return return temperature may be predicted based on information from the target temperature setting means 107 and information on the bathtub return temperature sensor 506. For example, assuming that the bath temperature is constant at the target bath temperature, a predetermined temperature difference depending on the performance of the additional heat exchanger 5 may be added thereto to predict the additional return temperature. In addition, assuming that the bath temperature is constant at the average value of the current bath temperature and the target bath temperature, the reheating temperature is predicted by adding a predetermined temperature difference depending on the performance of the reheating heat exchanger 5. Also good.

必要熱量予測手段104は、過去のユーザーの湯栓負荷の実績、または所定の設計値に基づいて、湯栓負荷に対して湯切れを回避するために必要な蓄熱量を予測する。例えば過去のユーザーの湯栓負荷実績に基づく場合、必要熱量予測手段104は、時刻検出手段200、湯栓温度センサ505、および、湯栓流量センサ601からの情報に基づいて、発生した湯栓負荷の大きさおよび発生した時間帯を毎日記録することにより、湯栓負荷が発生するパターンである湯栓負荷パターンを学習する。そして、必要熱量予測手段104は、その学習した湯栓負荷パターンに対して、所定の加熱能力による沸き上げ運転を同時に実施することも考慮して、湯切れが発生しない必要熱量を予測する。ここで、必要熱量は、所定の時間間隔における合計負荷からその時間間隔において沸き上げ可能な熱量を減算することによって求めることができる。また、所定の時間間隔の開始時刻および終了時刻として設定可能な全ケースに対して必要熱量を算出し、その最大値を以て必要熱量を定める場合に最も信頼性の高い必要熱量が求まる。また、所定の設計値に基づいて必要熱量を定める場合は、例えば、一般的に多量の湯栓負荷が予測される時間帯(例えば17時〜23時)は必要熱量を大きく設計し、それ以外の時間帯は必要熱量を小さく設計する方法がある。例えば、必要熱量を大きく設計する場合は42℃換算で300Lとし、必要熱量を小さく設計する場合は42℃換算で50Lとする。   The necessary heat amount predicting means 104 predicts the heat storage amount necessary for avoiding running out of hot water with respect to the hot water tap load based on the past results of the hot water tap load of the user or a predetermined design value. For example, when based on past user tap load results, the required heat amount prediction unit 104 generates the tap load generated based on information from the time detection unit 200, the tap temperature sensor 505, and the tap flow rate sensor 601. By recording the size of the water and the time zone in which it occurs every day, a faucet load pattern, which is a pattern in which a faucet load is generated, is learned. The required heat quantity predicting means 104 predicts the necessary heat quantity at which hot water does not run in consideration of simultaneously performing a boiling operation with a predetermined heating capacity for the learned tap load pattern. Here, the required amount of heat can be obtained by subtracting the amount of heat that can be heated at the time interval from the total load at the predetermined time interval. Further, when the required heat amount is calculated for all cases that can be set as the start time and end time of a predetermined time interval, and the required heat amount is determined using the maximum value, the most reliable required heat amount is obtained. In addition, when determining the required heat quantity based on a predetermined design value, for example, the required heat quantity is designed to be large in a time zone (for example, from 17:00 to 23:00) in which a large amount of tap load is generally predicted. There is a method of designing the required heat amount small during the time period. For example, when designing a large required heat amount, it is set to 300 L in terms of 42 ° C., and when designing a small necessary heat amount, it is set to 50 L in terms of 42 ° C.

更に、必要熱量予測手段104は、過去のユーザーの追焚き負荷の実績、または現在の浴槽6の温度および湯量の状況、あるいはその両方の情報に基づいて、追焚きに必要な蓄熱量を予測する。追焚き負荷は、浴槽6の温度を現時点の温度から目標浴槽温度まで上昇させるのに必要な熱量であり、浴槽6の湯量(例えば200L)に、目標浴槽温度(例えば40℃)と現時点の浴槽温度(例えば30℃)との差を乗算し、更に水の密度(例えば1kg/L)および比熱(例えば1kcal/g℃)を乗算して算出される。ここで、浴槽6の湯量は、例えば、一般的な値(例えば200L)を使用してもよいし、ユーザーが設定する値を使用してもよい。また、タンク10から浴槽6に湯を直接放出する構成の場合には、当該放出経路に流量計を設置し、流量の積算値を浴槽6の湯量とみなしてもよい。また、当該構成において、例えば浴槽戻り配管306b内に圧力センサなどによる水位検出手段を設け、タンク10から浴槽6への湯の直接放出の際に、積算流量と水位との相関を初期学習しておき、その後は逆に水位から推定される浴槽6の湯量を使用してもよい。また、過去の追焚き負荷を学習して記憶する機能を有する場合には、当該学習結果の過去所定期間内の最大値あるいは平均値といった形で当日の追焚き負荷を予測してもよい。ここで、追焚き負荷の学習は、浴槽6の湯量と、追焚き運転の開始時と終了時との温度差とから算出される値に基づいて学習してもよいし、浴槽戻り配管306bあるいは浴槽往き配管306aを循環する流量を、流量計で直接的に検出するか、あるいは浴槽ポンプ33への制御信号から間接的に算出した値と、追焚き熱交換器5の浴槽水の出入り口の温度差とから算出される値に基づいて学習してもよい。また、追焚きに必要な蓄熱量の予測に際し、追焚き負荷そのものを必要な蓄熱量としても良いし、追焚き運転中に加熱手段20が沸き上げ可能な熱量を減算した値を必要な蓄熱量としても良い。   Furthermore, the necessary heat amount predicting means 104 predicts the heat storage amount necessary for reheating based on the past information of the reheating load of the user, the current temperature of the bathtub 6 and the state of the hot water amount, or both. . The additional load is the amount of heat necessary to raise the temperature of the bathtub 6 from the current temperature to the target bathtub temperature. The hot water volume (for example, 200 L) of the bathtub 6 is set to the target bathtub temperature (for example, 40 ° C.) and the current bathtub temperature. It is calculated by multiplying the difference from the temperature (for example, 30 ° C.), and further multiplying the density of the water (for example, 1 kg / L) and the specific heat (for example, 1 kcal / g ° C.). Here, for the amount of hot water in the bathtub 6, for example, a general value (for example, 200 L) may be used, or a value set by the user may be used. Further, in the case where the hot water is directly discharged from the tank 10 to the bathtub 6, a flow meter may be installed in the discharge path, and the integrated value of the flow rate may be regarded as the hot water amount of the bathtub 6. In this configuration, for example, a water level detecting means such as a pressure sensor is provided in the bathtub return pipe 306b, and when the hot water is directly discharged from the tank 10 to the bathtub 6, the correlation between the integrated flow rate and the water level is initially learned. On the contrary, after that, the amount of hot water in the bathtub 6 estimated from the water level may be used. Further, in the case of having a function of learning and storing a past chasing load, the chasing load of the day may be predicted in the form of a maximum value or an average value of the learning results in a past predetermined period. Here, the learning of the reheating load may be learned based on a value calculated from the amount of hot water in the bathtub 6 and the temperature difference between the start and end of the reheating operation, or the bathtub return pipe 306b or The flow rate circulating through the bathtub outlet pipe 306a is directly detected by a flow meter, or indirectly calculated from the control signal to the bathtub pump 33, and the temperature at the entrance and exit of the bathtub water of the reheating heat exchanger 5 You may learn based on the value calculated from a difference. Further, in the prediction of the heat storage amount necessary for reheating, the reheating load itself may be used as the necessary heat storage amount, or a value obtained by subtracting the amount of heat that can be heated by the heating means 20 during the reheating operation is required. It is also good.

必要熱量予測手段104は、湯栓負荷に対して湯切れを回避するために必要な蓄熱量と、追焚きに必要な蓄熱量とを上記のようにして予測し、両者を合計することにより、一日の負荷パターンに対して湯切れの無いようにするために現時点で確保するべき蓄熱量を予測することができる。   The necessary heat amount predicting means 104 predicts the heat storage amount necessary to avoid running out of hot water with respect to the tap load and the heat storage amount necessary for reheating as described above, and sums both. It is possible to predict the amount of heat storage that should be secured at the present time so as not to run out of hot water with respect to the daily load pattern.

沸き上げ制御手段105は、必要熱量予測手段104により予測される必要な蓄熱量に対してタンク10内の蓄熱量が不足しないように、また、一日の負荷の中で所定の比率を所定時間帯に一括で沸き上げるように、加熱手段20の起動、運転状態および停止等を制御することにより、沸き上げ運転を制御する。   The boiling-up control unit 105 sets a predetermined ratio in the daily load for a predetermined time so that the heat storage amount in the tank 10 is not insufficient with respect to the necessary heat storage amount predicted by the necessary heat amount prediction unit 104. The boiling operation is controlled by controlling the start-up, operation state, stop, and the like of the heating means 20 so as to boil up the belt.

弁制御手段106は、目標温度設定手段107で設定された目標温度に基づいて、湯栓温調弁41から流出する湯が目標温度に近づくように湯栓温調弁41の動作を制御する。   Based on the target temperature set by the target temperature setting means 107, the valve control means 106 controls the operation of the tap temperature control valve 41 so that the hot water flowing out from the tap temperature control valve 41 approaches the target temperature.

ポンプ制御手段108は、沸き上げポンプ31、追焚きポンプ32、浴槽ポンプ33、の回転数を制御し、ポンプ循環量を調節する。   The pump control means 108 controls the number of rotations of the boiling pump 31, the reheating pump 32, and the bathtub pump 33, and adjusts the pump circulation amount.

沸き上げモード設定手段109は、ユーザーインターフェース装置(図示省略)を介してユーザーから受ける指示などに基づき、貯湯式給湯機8を全体として省エネルギー優先で制御するか、湯切れ回避優先で制御するか、などを設定する。   The boiling mode setting means 109 controls the hot water storage hot water heater 8 as a whole with priority on energy saving or priority on avoiding hot water based on an instruction received from the user via a user interface device (not shown), And so on.

以上、本実施の形態1における機器構成について説明した。次に、本実施の形態1における貯湯式給湯機8の運転動作について更に説明する。   The device configuration in the first embodiment has been described above. Next, the operation of the hot water storage type water heater 8 in the first embodiment will be further described.

≪基本的運転動作≫
まず、各貯湯式給湯機8の基本的な運転動作を説明する。
≪Basic driving operation≫
First, the basic operation of each hot water storage type hot water heater 8 will be described.

[沸き上げ運転]
タンク10の下部から、給水配管302を通じて低温の水を注入して溜める。タンク10の下部から溜められた低温の水は、沸き上げポンプ31によって沸き上げ往き配管301aに引き込まれ、加熱手段20に導かれる。加熱手段20は、導かれた低温の水を加熱して、高温水に沸き上げる。沸き上げられた高温水は、沸き上げ戻り配管301bを通じてタンク10の上部から流入し、溜められる。
[Boiling operation]
Low temperature water is injected from the lower part of the tank 10 through the water supply pipe 302 and stored. The low-temperature water collected from the lower part of the tank 10 is drawn into the boiling forward piping 301 a by the boiling pump 31 and led to the heating means 20. The heating means 20 heats the led low-temperature water to boil it into high-temperature water. The boiled high-temperature water flows from the upper part of the tank 10 through the boil-up return pipe 301b and is stored.

[湯栓出湯動作]
タンク10の上部から溜められた高温水は、湯が使用される需要端側の要求に応じて、高温導出配管303から流出し、湯栓温調弁41に導かれる。湯栓温調弁41は、給水配管302から分岐させた温調配管304を通じて低温水を導き、タンク10から導いた高温水と混合させ、湯栓配管305を通じて蛇口やシャワー、あるいは浴槽6などの需要端側へ供給する。
[Hot water tap operation]
The high-temperature water collected from the upper part of the tank 10 flows out of the high-temperature outlet pipe 303 and is led to the hot-water tap temperature control valve 41 in accordance with a demand on the demand end side where hot water is used. The tap temperature control valve 41 guides low-temperature water through a temperature control pipe 304 branched from the water supply pipe 302, mixes it with high-temperature water introduced from the tank 10, and uses a faucet, a shower, or a bathtub 6 through the tap pipe 305. Supply to the demand end.

[追焚き運転]
タンク10に溜められた高温水は、ユーザーの操作により強制的に、あるいは、浴槽戻り温度センサ506によって定期的に検出される浴槽温度が目標温度よりも所定量以上小さくなった時に自動的に、追焚き運転によって浴槽温度を上昇させるために、追焚き往き配管307aを通って、追焚き熱交換器5に導かれる。また、このタイミングと概ね同時に、浴槽6に溜められた浴槽水は、浴槽戻り配管306bを通って、追焚き熱交換器5に導かれる。追焚き熱交換器5で浴槽水へ熱を与えて温度の低下したタンク10からの湯は、追焚き戻り配管307bを通ってタンク10に戻る。また、追焚き熱交換器5で熱を受け取って温度の上昇した浴槽水は、浴槽往き配管306aを通って浴槽6に戻る。次いで、ユーザーの操作により強制的に、あるいは、浴槽戻り温度センサ506によって検出される浴槽温度が目標温度よりも所定量以上大きくなったときに自動的に、追焚き運転が終了する。
[Remembrance driving]
The hot water stored in the tank 10 is automatically forced by the user's operation or automatically when the bath temperature detected periodically by the bath return temperature sensor 506 becomes lower than the target temperature by a predetermined amount or more. In order to raise the bathtub temperature by the chasing operation, the chasing heat pipe 5 is led to the chasing heat exchanger 5 through the chasing pipe 307a. At substantially the same time as this, the bathtub water stored in the bathtub 6 is guided to the reheating heat exchanger 5 through the bathtub return pipe 306b. The hot water from the tank 10 whose temperature is lowered by applying heat to the bathtub water in the reheating heat exchanger 5 returns to the tank 10 through the reheating return pipe 307b. Moreover, the bathtub water that has received heat at the reheating heat exchanger 5 and has risen in temperature returns to the bathtub 6 through the bathtub outlet pipe 306a. Next, the chasing operation is automatically terminated by the user's operation or automatically when the bathtub temperature detected by the bathtub return temperature sensor 506 exceeds the target temperature by a predetermined amount or more.

≪一般的な沸き上げ運転≫
次に、各貯湯式給湯機8において一般的に行われる沸き上げ運転を説明する。
[深夜沸き上げ運転]
貯湯式給湯システム1が備える各貯湯式給湯機8は、深夜時間帯の安価な電気料金を活用するため、あるいは、各世帯の起床後の負荷発生に対応するため、深夜時間帯に沸き上げ運転を行う。図4は、深夜時間帯の沸き上げ運転の概要を説明する図である。深夜時間帯の沸き上げ運転は、想定される一日の負荷の全量を蓄熱するように実施しても良いし、省エネルギーとのバランスを考慮して一日の負荷の8割程度を蓄熱するように実施しても良いし、例えば65℃〜70℃といった低めの温度にタンク10の全量を沸き上げても良い。あるいは、電気料金が一日中一律となる契約の場合などには、省エネルギーを最優先して、湯切れ回避可能な最低限の蓄熱量としても良い。
≪General boiling operation≫
Next, the boiling operation generally performed in each hot water storage type hot water heater 8 will be described.
[Midnight boiling operation]
Each hot water storage type hot water heater 8 provided in the hot water storage type hot water supply system 1 is heated at midnight time to utilize an inexpensive electricity charge in the late night time period or to respond to a load generated after getting up in each household. I do. FIG. 4 is a diagram for explaining the outline of the heating operation in the midnight time zone. The boiling operation during midnight hours may be performed so that the entire amount of the assumed daily load is stored, or about 80% of the daily load is stored considering the balance with energy saving. For example, the entire amount of the tank 10 may be boiled to a lower temperature such as 65 ° C. to 70 ° C. Alternatively, in the case of a contract in which the electricity rate is uniform throughout the day, energy saving may be given the highest priority and the minimum heat storage amount that can avoid hot water shortage may be used.

[追加沸き上げ運転]
想定される一日の負荷の全量を深夜沸き上げ運転にて蓄熱しない場合、集中的な負荷に対して湯切れを回避するために、追加沸き上げ運転が必要になる場合がある。追加沸き上げ運転は、現在の蓄熱量が、必要熱量予測手段104の予測する必要な蓄熱量を下回る時に、沸き上げ運転を開始する方法がある。あるいは、負荷の量およびタイミングを予測し、加熱手段20の加熱能力を考慮し、湯切れの無いタイミングで沸き上げ運転を開始する方法もある。
[Additional boiling operation]
If the entire amount of the assumed daily load is not stored in the boiling operation at midnight, an additional boiling operation may be required to avoid running out of hot water for a concentrated load. As the additional boiling operation, there is a method of starting the boiling operation when the current heat storage amount is lower than the necessary heat storage amount predicted by the required heat amount prediction unit 104. Alternatively, there is also a method of predicting the amount and timing of the load, taking into consideration the heating capability of the heating means 20, and starting the boiling operation at a timing without running out of hot water.

[最低蓄熱量沸き上げ運転]
深夜沸き上げ運転と追加沸き上げ運転とによって、一日の負荷に足りるだけの蓄熱を行った後は、理想的には沸き上げ運転を行わなくても湯切れとはならない。しかしながら、想定以上のユーザーの負荷変動に対応するため、最低蓄熱量(例えば、42℃換算で50Lに相当する蓄熱量)を維持するように沸き上げ運転を行う。例えば、蓄熱量が最低蓄熱量以下になった場合に沸き上げ運転を開始し、蓄熱量が最低蓄熱量以上まで回復したら、沸き上げ運転を終了するような運転方法がある。
[Minimum heat storage amount boiling operation]
After heat storage sufficient for the daily load by midnight boiling operation and additional boiling operation, ideally, no hot water runs out even if the boiling operation is not performed. However, in order to cope with the load fluctuation of the user beyond the assumption, the boiling operation is performed so as to maintain the minimum heat storage amount (for example, the heat storage amount corresponding to 50 L in terms of 42 ° C.). For example, there is an operation method in which the boiling operation is started when the heat storage amount is equal to or less than the minimum heat storage amount, and the boiling operation is terminated when the heat storage amount is recovered to the minimum heat storage amount or more.

≪本実施の形態1の特徴的な動作≫
以下に、本実施の形態1の特徴的な動作について説明する。本実施の形態1の貯湯式給湯システム1は、世帯数Nallの集合住宅の各世帯に1台ずつ設置された貯湯式給湯機8、すなわち、全台数Nallの貯湯式給湯機8を備える。本実施の形態1では、例えば入浴が行われる時間帯のように、貯湯式給湯機8において負荷が集中して発生する時間帯を集中負荷時間帯として予め設定しておく。以下の説明では、17時〜23時が集中負荷時間帯として設定されるものとする。このような本実施の形態1の貯湯式給湯システム1に対し、集中負荷時間帯において、全台数Nallの貯湯式給湯機8が消費する合計の電力を、予め設定された許容合計電力Wub以下に抑制することが要求されるものとする。本実施の形態1の貯湯式給湯システム1は、入浴時に減少する蓄熱量を回復する追加沸き上げ運転を実施する貯湯式給湯機8が多数集中しやすい時間帯において、湯切れ回避と合計電力抑制を両立して実現する制約条件の下で、貯湯式給湯システム1全体の省エネルギーを向上することを目的としている。
<< Characteristic Operation of First Embodiment >>
The characteristic operation of the first embodiment will be described below. The hot water storage hot water supply system 1 according to the first embodiment includes the hot water storage hot water heaters 8 installed in each household of an apartment house with the number of households Nall, that is, the hot water storage hot water heaters 8 of all the numbers Nall. In the first embodiment, for example, a time zone in which loads are concentrated in the hot water storage hot water heater 8 is set in advance as a concentrated load time zone, such as a time zone in which bathing is performed. In the following description, it is assumed that 17:00 to 23:00 is set as the concentrated load time zone. For such a hot water storage hot water supply system 1 according to the first embodiment, the total power consumed by all the number of hot water storage hot water heaters 8 in the concentrated load time zone is less than or equal to a preset allowable total power Wub. It is required to be suppressed. The hot water storage type hot water supply system 1 according to the first embodiment avoids hot water shortage and suppresses total power in a time zone where many hot water storage type hot water heaters 8 that perform additional boiling operation for recovering the heat storage amount that decreases during bathing tend to concentrate. It aims at improving the energy saving of the whole hot water storage type hot-water supply system 1 under the constraint conditions which implement | achieve simultaneously.

[集中負荷時間帯事前沸き上げ運転]
集中コントローラ7は、集中負荷時間帯に沸き上げ運転を同時に実施可能な貯湯式給湯機8の台数Nubを求める。この台数Nubを「許容同時運転台数Nub」と称する。許容同時運転台数Nubは、例えば、貯湯式給湯機8一台当たりの平均的な消費電力Wiの値で許容合計電力Wubを除算して求められる。平均的な消費電力Wiの値は、各貯湯式給湯機8の情報を事前に専門業者が手動で集中コントローラ7に入力しても良いし、あるいは、集中コントローラ7が各貯湯式給湯機8の個別制御手段100と通信することにより取得しても良い。あるいは、集中コントローラ7から各貯湯式給湯機8の個別制御手段100に対し、消費電力がWiとなるように制御命令を出しても良い。また、各貯湯式給湯機8の消費電力Wiの推定においては、代表的な定格条件における値を用いても良いし、当日の外気温度、給水温度、タンク10の貯湯状態、加熱手段20による沸き上げ温度、等に基づいて推定しても良い。
[Pre-boiling operation during concentrated load time]
The centralized controller 7 obtains the number Nub of hot water storage type hot water heaters 8 capable of simultaneously performing the boiling operation during the concentrated load time period. This number Nub is referred to as “allowable simultaneous operation number Nub”. The allowable simultaneous operation number Nub is obtained, for example, by dividing the allowable total power Wub by the average power consumption Wi value per 8 hot water storage hot water heaters 8. As for the average power consumption Wi value, information on each hot water storage type hot water heater 8 may be manually input to the centralized controller 7 by a specialist in advance, or the centralized controller 7 may input information about each hot water storage type hot water heater 8. You may acquire by communicating with the separate control means 100. FIG. Alternatively, a control command may be issued from the centralized controller 7 to the individual control means 100 of each hot water storage type hot water heater 8 so that the power consumption becomes Wi. Moreover, in the estimation of the power consumption Wi of each hot water storage type hot water heater 8, values in typical rated conditions may be used, the outdoor temperature of the day, the hot water temperature, the hot water storage state of the tank 10, the boiling by the heating means 20. You may estimate based on raising temperature etc.

集中コントローラ7は、許容同時運転台数Nubに所定の補正係数Kubを乗算した補正後の許容同時運転台数Kub・Nubを算出する。ここで、補正係数Kubは、集中負荷時間帯の合計電力をより確実に許容合計電力Wub以下にするために1より小さい値としても良いし、あるいは、集中負荷時間帯に各貯湯式給湯機8が追加沸き上げ運転を行うタイミングがずれる可能性を考慮して1より大きい値としても良い。補正後の許容同時運転台数Kub・Nubは、更に、小数点以下を切り捨てまたは四捨五入して、自然数とされる。以下の説明では、このようにして自然数とされた補正後の許容同時運転台数Kub・Nubの値を単に許容同時運転台数Kub・Nubと呼ぶ。なお、全台数Nall>許容同時運転台数Kub・Nub>1である。   The centralized controller 7 calculates the corrected allowable simultaneous operation number Kub · Nub by multiplying the allowable simultaneous operation number Nub by a predetermined correction coefficient Kub. Here, the correction coefficient Kub may be set to a value smaller than 1 in order to make the total power in the concentrated load time zone more surely equal to or less than the allowable total power Wub, or each hot water storage type water heater 8 in the concentrated load time zone. However, it may be set to a value larger than 1 in consideration of a possibility that the timing of performing the additional boiling operation is shifted. The corrected allowable simultaneous operation number Kub · Nub is further rounded off or rounded off to a natural number. In the following description, the value of the corrected allowable simultaneous operation number Kub / Nub, which is thus made a natural number, is simply referred to as the allowable simultaneous operation number Kub / Nub. The total number Nall> the allowable simultaneous operation number Kub · Nub> 1.

本実施の形態1では、全台数Nallの貯湯式給湯機8うち、許容同時運転台数Kub・Nubの貯湯式給湯機8については、集中負荷時間帯に追加沸き上げ運転を実施することを許容する。一方、残りの台数(Nall−Kub・Nub)の貯湯式給湯機8については、後述する集中負荷時間帯事前沸き上げ運転を実施することにより、集中負荷時間帯に追加沸き上げ運転を実施しないように抑制する。   In the first embodiment, out of the total number Nall of the hot water storage water heaters 8, the allowable hot water storage water heaters 8 of the allowable simultaneous operation number Kub / Nub are allowed to perform the additional boiling operation during the concentrated load time zone. . On the other hand, with respect to the remaining number (Nall-Kub / Nub) of hot water storage type hot water heaters 8, the additional boiling operation is not performed during the concentrated load time zone by performing the pre-boiling operation during the concentrated load time zone described later. To suppress.

全台数Nallの貯湯式給湯機8のうちから、集中負荷時間帯の追加沸き上げ運転を許容する、許容同時運転台数Kub・Nubの貯湯式給湯機8を選定する方法について以下に説明する。貯湯式給湯システム1では、各々の貯湯式給湯機8について、集中負荷時間帯に発生する負荷をまかなう蓄熱量をタンク10に確保することの難易度を評価する。この難易度を以下「集中負荷蓄熱難易度」と称する。本実施の形態1では、集中負荷蓄熱難易度を評価する指標(評価関数)として、集中負荷蓄熱容易性なる数値を算出する。集中負荷蓄熱容易性の値が大きいほど、集中負荷蓄熱難易度が低いこと、すなわち集中負荷時間帯に発生する負荷をまかなう蓄熱量をタンク10に蓄熱することが容易であること、を意味する。逆に、集中負荷蓄熱容易性の値が小さいほど、集中負荷蓄熱難易度が高いこと、すなわち集中負荷時間帯に発生する負荷をまかなう蓄熱量をタンク10に蓄熱することが容易でないこと、を意味する。   A method for selecting the hot water storage type hot water heater 8 of the allowable simultaneous operation number Kub / Nub that allows the additional boiling operation during the concentrated load time period from the total number Nall of the hot water storage type hot water heaters 8 will be described below. In the hot water storage hot water supply system 1, for each hot water storage hot water heater 8, the degree of difficulty in securing in the tank 10 a heat storage amount that covers the load generated during the concentrated load time zone is evaluated. This difficulty level is hereinafter referred to as “concentrated load heat storage difficulty level”. In the first embodiment, a numerical value indicating the ease of concentrated load heat storage is calculated as an index (evaluation function) for evaluating the concentrated load heat storage difficulty level. The larger the concentrated load heat storage ease value, the lower the concentrated load heat storage difficulty level, that is, the easier it is to store in the tank 10 the amount of heat stored to cover the load generated in the concentrated load time zone. Conversely, the smaller the value of the concentrated load heat storage ease, the higher the concentrated load heat storage difficulty level, that is, it is not easy to store the heat storage amount that covers the load generated in the concentrated load time zone in the tank 10. To do.

集中コントローラ7は、各々の貯湯式給湯機8の個別制御手段100との通信により取得した情報に基づいて、各々の貯湯式給湯機8についての集中負荷蓄熱容易性の値を算出し、それらの集中負荷蓄熱容易性の値を比較する。そして、集中コントローラ7は、集中負荷蓄熱容易性の値の低い方から順に、許容同時運転台数Kub・Nubと同数の貯湯式給湯機8を選定する。この選定された許容同時運転台数Kub・Nubと同数の貯湯式給湯機8を集中負荷蓄熱困難機と呼ぶ。集中負荷蓄熱困難機に選定された許容同時運転台数Kub・Nubと同数の貯湯式給湯機8は、集中負荷蓄熱難易度の高いグループに相当する。また、全台数Nallの貯湯式給湯機8のうち、集中負荷蓄熱困難機に選定されていない台数(Nall−Kub・Nub)の貯湯式給湯機8を集中負荷蓄熱容易機と呼ぶ。台数(Nall−Kub・Nub)の貯湯式給湯機8は、集中負荷蓄熱難易度の低いグループに相当する。   The centralized controller 7 calculates the value of the centralized load heat storage ease for each hot water storage type hot water heater 8 based on the information acquired by communication with the individual control means 100 of each hot water storage type hot water heater 8. Compare the values of the concentrated load heat storage ease. Then, the centralized controller 7 selects the same number of hot water storage type hot water heaters 8 as the allowable simultaneous operation number Kub / Nub in order from the lowest centralized load heat storage value. The same number of hot water storage hot water heaters 8 as the selected allowable simultaneous operation number Kub · Nub are referred to as a concentrated load heat storage difficult machine. The same number of hot water storage type hot water heaters 8 as the allowable simultaneous operation number Kub / Nub selected as the concentrated load heat storage difficult machine corresponds to a group having a high concentrated load heat storage difficulty level. Of all the Nall hot water storage hot water heaters 8, the number of hot water storage water heaters 8 (Nall-Kub · Nub) not selected as the central load heat storage difficult machine is called a central load heat storage easy machine. The number (Nall-Kub · Nub) of hot water storage type water heaters 8 corresponds to a group having a low degree of concentrated load heat storage difficulty.

集中コントローラ7は、集中負荷蓄熱容易機とされた貯湯式給湯機8の個別制御手段100に対し、集中負荷時間帯の前に行う沸き上げ運転である集中負荷時間帯事前沸き上げ運転を実施するように、指令を出す。図5は、追加沸き上げ運転および集中負荷時間帯事前沸き上げ運転の概要を説明する図である。図5中の上段は、集中負荷蓄熱困難機とされた貯湯式給湯機8の一日の貯湯状態の変化を示し、図5中の下段は、集中負荷蓄熱容易機とされた貯湯式給湯機8の一日の貯湯状態の変化を示す。図5に示すように、集中負荷蓄熱容易機とされた貯湯式給湯機8において、沸き上げ制御手段105は、必要熱量予測手段104により学習された負荷パターンに基づき、集中負荷時間帯に発生すると予測される負荷をまかなう蓄熱量を集中負荷時間帯の開始時までにタンク10に確保するように、集中負荷時間帯事前沸き上げ運転を行うよう制御する。   The centralized controller 7 performs a pre-boiling operation in a centralized load time period, which is a boiling operation performed before the centralized load time period, with respect to the individual control means 100 of the hot water storage type water heater 8 that is a centralized load heat storage device. To issue a command. FIG. 5 is a diagram for explaining the outline of the additional boiling operation and the concentrated load time period preliminary boiling operation. The upper part of FIG. 5 shows changes in the hot water storage state of the hot water storage type water heater 8 that is considered to be a concentrated load heat storage difficult machine, and the lower part of FIG. 8 shows changes in hot water storage status for one day. As shown in FIG. 5, in the hot water storage type water heater 8 which is a concentrated load heat storage device, the boiling control means 105 is generated in the concentrated load time zone based on the load pattern learned by the necessary heat quantity prediction means 104. Control is performed so as to perform the pre-boiling operation in the concentrated load time period so as to ensure the amount of heat storage for the predicted load in the tank 10 by the start of the concentrated load time period.

集中負荷蓄熱容易機とされた貯湯式給湯機8では、集中負荷時間帯事前沸き上げ運転を実施することにより、集中負荷時間帯の開始に先立って、集中負荷時間帯に発生すると予測される負荷をまかなう蓄熱量が事前にタンク10に確保された状態となる。このため、集中負荷蓄熱容易機とされた貯湯式給湯機8では、集中負荷時間帯に追加沸き上げ運転が必要になることを確実に抑制することができるので、集中負荷時間帯に追加沸き上げ運転を実施することが回避される。ゆえに、集中負荷時間帯には、集中負荷蓄熱困難機とされた貯湯式給湯機8のみが追加沸き上げ運転を実施することになる。よって、集中負荷時間帯に追加沸き上げ運転を実施する貯湯式給湯機8の台数は、集中負荷蓄熱困難機の台数である許容同時運転台数Kub・Nubに抑制される。その結果、集中負荷時間帯に貯湯式給湯システム1が消費する合計電力を許容合計電力Wub以内に確実に抑制することが可能となる。   In the hot water storage type water heater 8 that is regarded as a central load heat storage device, a load expected to be generated in the central load time zone prior to the start of the central load time zone by performing a pre-boiling operation in the central load time zone. The amount of stored heat that covers the condition is secured in the tank 10 in advance. For this reason, in the hot water storage type water heater 8 that is regarded as a central load heat storage device, it is possible to reliably suppress the need for additional boiling operation during the concentrated load time zone, and therefore additional boiling during the concentrated load time zone. Carrying out driving is avoided. Therefore, only the hot water storage type water heater 8 that is considered to be a concentrated load heat storage difficult machine performs the additional boiling operation during the concentrated load time zone. Therefore, the number of the hot water storage type hot water heaters 8 that perform the additional boiling operation in the concentrated load time zone is suppressed to the allowable simultaneous operation number Kub / Nub that is the number of the concentrated load heat storage difficult machines. As a result, the total power consumed by the hot water storage hot water supply system 1 during the concentrated load time period can be reliably suppressed within the allowable total power Wub.

なお、集中負荷蓄熱容易機とされた複数の貯湯式給湯機8において、集中負荷時間帯事前沸き上げ運転を実施する順序は自由に定めて問題ないが、蓄熱量の少ない方から順に集中負荷時間帯事前沸き上げ運転を実施することが好ましい。これにより、加熱手段20への入水温度を低下させる可能性が高いので、貯湯式給湯システム1全体の省エネルギー性能が向上する。   In addition, in the plurality of hot water storage hot water heaters 8 that are regarded as the concentrated load heat storage devices, the order of performing the pre-boiling operation in the concentrated load time zone can be freely determined, but the concentrated load time in order from the smaller heat storage amount. It is preferable to carry out the band pre-boiling operation. Thereby, since there is a high possibility of lowering the temperature of water entering the heating means 20, the energy saving performance of the entire hot water storage hot water supply system 1 is improved.

一方、集中負荷蓄熱困難機とされた貯湯式給湯機8では、集中負荷時間帯事前沸き上げ運転を実施しない。図5に示すように、集中負荷蓄熱困難機とされた貯湯式給湯機8では、集中負荷時間帯開始時の蓄熱量が、集中負荷時間帯に発生すると予測される負荷をまかなう蓄熱量に比べて、低くされている。しかしながら、集中負荷蓄熱困難機とされた貯湯式給湯機8では、集中負荷時間帯に追加沸き上げ運転を実施することにより、湯切れを確実に回避することができる。集中負荷蓄熱困難機とされた貯湯式給湯機8は、集中負荷蓄熱容易機とされた貯湯式給湯機8に比べて、集中負荷時間帯の負荷が大きいものである。本実施の形態1によれば、そのような集中負荷時間帯の負荷が大きい貯湯式給湯機8(集中負荷蓄熱困難機)において、集中負荷時間帯開始時の蓄熱量を低くするので、集中負荷時間帯の開始前に大きな蓄熱量をタンク10に長時間保持することが抑制される。このため、タンク10からの放熱ロスを抑制することができ、貯湯式給湯システム1全体としての省エネルギー性能を向上することができる。   On the other hand, in the hot water storage type hot water heater 8 that is regarded as a concentrated load heat storage difficult machine, the pre-boiling operation in the concentrated load time zone is not performed. As shown in FIG. 5, in the hot water storage type water heater 8 that is considered to be a concentrated load heat storage difficult machine, the heat storage amount at the start of the concentrated load time zone is compared with the heat storage amount that covers the load expected to occur in the concentrated load time zone. And low. However, in the hot water storage type water heater 8 that is regarded as a concentrated load heat storage difficult machine, it is possible to reliably avoid running out of hot water by performing the additional boiling operation during the concentrated load time period. The hot water storage type hot water heater 8 that is regarded as a concentrated load heat storage difficult machine has a larger load in the concentrated load time zone than the hot water storage type hot water heater 8 that is regarded as a concentrated load heat storage easy machine. According to the first embodiment, in such a hot water storage type hot water heater 8 (a machine with difficulty in concentrated load heat storage) having a large load in the concentrated load time zone, the amount of heat stored at the start of the concentrated load time zone is reduced. Holding a large amount of heat storage in the tank 10 for a long time before the start of the time zone is suppressed. For this reason, the heat dissipation loss from the tank 10 can be suppressed, and the energy saving performance as the hot water storage type hot water supply system 1 as a whole can be improved.

次に、集中負荷蓄熱容易性の値を算出する方法について説明する。集中コントローラ7は、以下の(1)〜(5)のうちの、1つの方法で、または二つ以上の方法を組み合わせて、集中負荷蓄熱容易性の値を算出する。   Next, a method for calculating the concentrated load heat storage ease value will be described. The centralized controller 7 calculates the value of the centralized load heat storage ease by using one of the following methods (1) to (5) or by combining two or more methods.

(1)個別制御手段100は、過去所定期間(例えば2週間)の集中負荷時間帯に発生した湯栓負荷および追焚き負荷の合計である集中負荷の実績値を学習している。ここで、学習する集中負荷の実績値は、例えば、過去所定期間の平均値、最大値、平均+標準偏差などであり、これらの何れでも良い。集中コントローラ7は、各貯湯式給湯機8の個別制御手段100から、当該貯湯式給湯機8の学習された集中負荷の実績値を通信により取得する。そして、集中コントローラ7は、各貯湯式給湯機8の集中負荷蓄熱容易性の値を算出する場合に、当該貯湯式給湯機8の学習された集中負荷の実績値が大きいほど集中負荷蓄熱容易性の値を低下させるように演算する。例えば、集中負荷の実績値が大きくなるにつれて小さい値となる補正係数を予め用意しておき、補正前の集中負荷蓄熱容易性の基準値に当該補正係数を乗算することにより、集中負荷蓄熱容易性の値を演算する。上記の場合、集中負荷の実績値が大きいほど集中負荷蓄熱難易度を高く評価することに相当する。   (1) The individual control means 100 learns the actual value of the concentrated load, which is the sum of the tap load and the renewal load generated during the concentrated load time period in the past predetermined period (for example, two weeks). Here, the actual value of the concentrated load to be learned is, for example, an average value, a maximum value, an average + standard deviation in the past predetermined period, and any of these may be used. The centralized controller 7 acquires from the individual control means 100 of each hot water storage type hot water heater 8 the actual value of the concentrated load learned by the hot water storage type hot water heater 8 through communication. When the centralized controller 7 calculates the value of the concentrated load heat storage ease of each hot water storage type hot water heater 8, the larger the actual value of the learned concentrated load of the hot water storage type hot water heater 8 is, the easier the concentrated load heat storage is. To reduce the value of. For example, by preparing in advance a correction coefficient that decreases as the actual value of the concentrated load increases, multiplying the reference value of the concentrated load heat storage ease before correction by the correction coefficient, the concentrated load heat storage ease The value of is calculated. In the above case, the greater the concentrated load actual value, the higher the concentrated load heat storage difficulty level.

(2)集中コントローラ7は、各貯湯式給湯機8の個別制御手段100から、当該貯湯式給湯機8のタンク10の容量の値を通信により取得する。そして、集中コントローラ7は、各貯湯式給湯機8の集中負荷蓄熱容易性の値を算出する場合に、当該貯湯式給湯機8のタンク10の容量の値が小さいほど集中負荷蓄熱容易性の値を低下させるように演算する。例えば、タンク10の容量の値が小さくなるにつれて小さい値となる補正係数を予め用意しておき、補正前の集中負荷蓄熱容易性の基準値に当該補正係数を乗算することにより、集中負荷蓄熱容易性の値を演算する。上記の場合、タンク10の容量の値が小さいほど集中負荷蓄熱難易度を高く評価することに相当する。   (2) The centralized controller 7 acquires the value of the capacity of the tank 10 of the hot water storage type hot water heater 8 from the individual control means 100 of each hot water storage type hot water heater 8 by communication. When the centralized controller 7 calculates the value of the concentrated load heat storage ease of each hot water storage type hot water heater 8, the smaller the value of the capacity of the tank 10 of the hot water storage type hot water heater 8, the greater the value of the concentrated load heat storage capacity. To reduce For example, a correction coefficient that becomes smaller as the capacity value of the tank 10 becomes smaller is prepared in advance, and by multiplying the reference value of the concentrated load heat storage ease before correction by the correction coefficient, the concentrated load heat storage is easy. Calculate the sex value. In the above case, the smaller the capacity value of the tank 10, the higher the concentrated load heat storage difficulty level is evaluated.

また、上記(1)および(2)の方法を組み合わせる場合、次のようにして、集中負荷蓄熱容易性の値を算出しても良い。集中コントローラ7は、各貯湯式給湯機8の集中負荷蓄熱容易性の値を算出する場合に、当該貯湯式給湯機8の学習された集中負荷の実績値をタンク10の容量の値で除算した値が大きいほど集中負荷蓄熱容易性の値を低下させるように演算する。例えば、集中負荷の実績値をタンク10の容量の値で除算した値が大きくなるにつれて小さい値となる補正係数を予め用意しておき、補正前の集中負荷蓄熱容易性の基準値に当該補正係数を乗算することにより、集中負荷蓄熱容易性の値を演算する。   Further, when the methods (1) and (2) are combined, the value of the concentrated load heat storage ease may be calculated as follows. The centralized controller 7 divides the learned actual load value of the stored hot water heater 8 by the capacity value of the tank 10 when calculating the concentrated load heat storage ease value of each hot water heater 8. It calculates so that the value of concentrated load heat storage ease may fall, so that a value is large. For example, a correction coefficient that decreases as the value obtained by dividing the actual value of the concentrated load by the capacity value of the tank 10 is prepared in advance, and the correction coefficient is used as the reference value of the concentrated load heat storage ease before correction. Is multiplied to calculate the concentrated load heat storage ease value.

(3)集中コントローラ7は、各貯湯式給湯機8の個別制御手段100から、当該貯湯式給湯機8を使用する世帯の人数を通信により取得する。そして、集中コントローラ7は、各貯湯式給湯機8の集中負荷蓄熱容易性の値を算出する場合に、当該貯湯式給湯機8を使用する世帯の人数が多いほど集中負荷蓄熱容易性の値を低下させるように演算する。例えば、貯湯式給湯機8を使用する世帯の人数が多くなるにつれて小さい値となる補正係数を予め用意しておき、補正前の集中負荷蓄熱容易性の基準値に当該補正係数を乗算することにより、集中負荷蓄熱容易性の値を演算する。上記の場合、世帯の人数が多いほど集中負荷蓄熱難易度を高く評価することに相当する。   (3) The centralized controller 7 acquires the number of households using the hot water storage type hot water heater 8 from the individual control means 100 of each hot water storage type hot water heater 8 by communication. When the centralized controller 7 calculates the value of the concentrated load heat storage ease of each hot water storage type hot water heater 8, the centralized controller 7 calculates the value of the concentrated load heat storage ease as the number of households using the hot water storage type hot water heater 8 increases. Calculate to decrease. For example, by preparing in advance a correction coefficient that becomes a smaller value as the number of households using the hot water storage type hot water heater 8 increases, multiply the reference value of the concentrated load heat storage ease before correction by the correction coefficient. Then, the value of the concentrated load heat storage ease is calculated. In the above case, the larger the number of households, the higher the concentrated load heat storage difficulty level.

(4)集中コントローラ7は、各貯湯式給湯機8の個別制御手段100から、当該貯湯式給湯機8を使用する世帯の浴槽6のサイズ(容量)を通信により取得する。そして、集中コントローラ7は、各貯湯式給湯機8の集中負荷蓄熱容易性の値を算出する場合に、当該貯湯式給湯機8を使用する世帯の浴槽6のサイズ(容量)が大きいほど集中負荷蓄熱容易性の値を低下させるように演算する。例えば、浴槽6のサイズ(容量)が大きくなるにつれて小さい値となる補正係数を予め用意しておき、補正前の集中負荷蓄熱容易性の基準値に当該補正係数を乗算することにより、集中負荷蓄熱容易性の値を演算する。上記の場合、浴槽6のサイズ(容量)が大きいほど集中負荷蓄熱難易度を高く評価することに相当する。   (4) The centralized controller 7 acquires the size (capacity) of the bathtub 6 of the household using the hot water storage type hot water heater 8 from the individual control means 100 of each hot water type hot water heater 8 by communication. When the centralized controller 7 calculates the value of the concentrated load heat storage ease of each hot water storage type hot water heater 8, the larger the size (capacity) of the bathtub 6 of the household using the hot water storage type hot water heater 8, the higher the concentrated load. It calculates so that the value of heat storage ease may be reduced. For example, a correction coefficient that decreases as the size (capacity) of the bathtub 6 increases in advance, and the concentrated load heat storage is obtained by multiplying the reference value of the concentrated load heat storage ease before correction by the correction coefficient. Calculate the ease value. In the above case, the larger the size (capacity) of the bathtub 6, the higher the concentrated load heat storage difficulty level.

また、上記(3)および(4)の方法を組み合わせる場合、次のようにして、集中負荷蓄熱容易性の値を算出しても良い。集中コントローラ7は、(浴槽6の容量+入浴人数×シャワー80L/人)の値を世帯ごとに算出する。入浴人数は、世帯の人数に等しいものとする。また、ここでは、一人当たりのシャワー使用量を80Lとしている。または、浴槽温度を維持する自動保温時間Hrを更に考慮して、(浴槽6の容量+入浴人数×シャワー80L/人+Hr×単位時間当たりの浴槽放熱)の値を世帯ごとに算出する。集中コントローラ7は、各貯湯式給湯機8の集中負荷蓄熱容易性の値を算出する場合に、上述した(浴槽6の容量+入浴人数×シャワー80L/人)または(浴槽6の容量+入浴人数×シャワー80L/人+Hr×単位時間当たりの浴槽放熱)の値が大きいほど集中負荷蓄熱容易性の値を低下させるように演算する。   Further, when the methods (3) and (4) are combined, the concentrated load heat storage ease value may be calculated as follows. The centralized controller 7 calculates the value of (the capacity of the bathtub 6 + the number of bathers × the shower 80L / person) for each household. The number of bathers shall be equal to the number of households. Here, the shower usage per person is 80L. Or, further considering the automatic heat retention time Hr for maintaining the bath temperature, the value of (capacity of bath 6 + number of bathers × shower 80L / person + Hr × tub heat dissipation per unit time) is calculated for each household. When the centralized controller 7 calculates the value of the centralized load heat storage ease of each hot water storage type hot water heater 8, the above-mentioned (capacity of bathtub 6 + number of bathers × 80L / person of shower) or (capacity of bathtub 6 + number of bathers) It is calculated so that the value of the concentrated load heat storage ease decreases as the value of x shower 80L / person + Hr x bathtub heat dissipation per unit time increases.

(5)貯湯式給湯機8は、蓄熱量が異なる複数の沸き上げ制御モードのうちから一つをユーザーが選択可能に構成されている。例えば、沸き上げ制御モードとして、蓄熱量の少ない順に、「少なめ」モード、「多め」モード、「満タン維持」モードが用意されており、このうちの一つをユーザーが選択する。集中コントローラ7は、各貯湯式給湯機8の個別制御手段100から、何れの沸き上げ制御モードが選択されているかについての情報を通信により取得する。そして、集中コントローラ7は、各貯湯式給湯機8の集中負荷蓄熱容易性の値を算出する場合に、蓄熱量を多めにする沸き上げ制御モードが選択されている場合には蓄熱量を少なめにする沸き上げ制御モードが選択されている場合に比べて集中負荷蓄熱容易性の値を低下させるように演算する。例えば、集中コントローラ7は、学習された集中負荷の実績値に基づいて集中負荷蓄熱容易性の値を演算する際に、「少なめ」モードの場合にはプラス0L、「多め」モードの場合にはプラス100L、「満タン維持」モードの場合にはプラス200L、を集中負荷の実績値に加算して演算を行う。上記の場合、蓄熱量を多めにする沸き上げ制御モードが選択されている場合には蓄熱量を少なめにする沸き上げ制御モードが選択されている場合に比べて集中負荷蓄熱難易度を高く評価することに相当する。また、「満タン維持」モードが選択されている貯湯式給湯機8については、必ず集中負荷蓄熱困難機に選定するようにしても良い。   (5) The hot water storage type water heater 8 is configured such that the user can select one of a plurality of boiling control modes having different heat storage amounts. For example, as the boiling-up control mode, a “less” mode, a “more” mode, and a “full tank maintenance” mode are prepared in ascending order of the heat storage amount, and the user selects one of them. The centralized controller 7 acquires information about which boiling-up control mode is selected from the individual control means 100 of each hot water storage type hot water heater 8 by communication. When the central controller 7 calculates the value of the concentrated load heat storage ease of each hot water storage type hot water heater 8, if the heating control mode for increasing the heat storage amount is selected, the heat storage amount is decreased. It calculates so that the value of concentrated load heat storage ease may be reduced compared with the case where the heating control mode to be selected is selected. For example, when the centralized controller 7 calculates the centralized load heat storage ease value based on the learned actual value of the concentrated load, it is plus 0 L in the “less” mode, and in the “more” mode. In the case of the plus 100 L, in the “full tank maintenance” mode, plus 200 L is added to the actual value of the concentrated load to perform the calculation. In the above case, when the heating control mode for increasing the heat storage amount is selected, the concentrated load heat storage difficulty level is evaluated higher than when the heating control mode for decreasing the heat storage amount is selected. It corresponds to that. Further, the hot water storage type water heater 8 for which the “full tank maintenance” mode is selected may be selected as a concentrated load heat storage difficult machine.

上述した(1)〜(5)のうちの、1つの方法で、または二つ以上の方法を組み合わせて、各貯湯式給湯機8の集中負荷蓄熱容易性の値を算出することにより、各貯湯式給湯機8の集中負荷蓄熱難易度を精度良く評価することができる。   Each hot water storage is calculated by calculating the value of the concentrated load heat storage ease of each hot water storage type hot water heater 8 by one of the methods (1) to (5) described above or by combining two or more methods. The concentrated load heat storage difficulty level of the water heater 8 can be accurately evaluated.

≪作用・効果≫
以上説明したように、本実施の形態1によれば、複数の貯湯式給湯機8が設置される集合住宅等の施設において、集中負荷時間帯に、各貯湯式給湯機8で湯切れを回避しつつ、全体の貯湯式給湯機8が消費する合計電力を確実に抑制することができる。また、全体の貯湯式給湯機8のうち、集中負荷時間帯の負荷が大きい世帯の貯湯式給湯機8を集中負荷蓄熱困難機に選定し、集中負荷時間帯における沸き上げ運転を許容する。このため、集中負荷蓄熱困難機に選定された、集中負荷時間帯の負荷が大きい貯湯式給湯機8においては、集中負荷時間帯の負荷に対応する大きな蓄熱量を集中負荷時間帯の前にタンク10に確保しておく必要がない。よって、タンク10からの放熱ロスを削減するとともに、加熱手段20による沸き上げ温度を低下させることが可能となるので、貯湯式給湯システム1全体としての省エネルギーを向上することができる。
≪Action ・ Effect≫
As described above, according to the first embodiment, in a facility such as an apartment house where a plurality of hot water storage hot water heaters 8 are installed, hot water is avoided in each hot water storage hot water heater 8 during a concentrated load period. However, the total power consumed by the entire hot water storage type hot water heater 8 can be reliably suppressed. Moreover, the hot water storage type hot water supply machine 8 of the household with a heavy load of the concentrated load time zone is selected as the concentrated load heat storage difficulty machine among the entire hot water storage type hot water supply machine 8 and the boiling operation in the concentrated load time zone is allowed. For this reason, in the hot water storage type water heater 8 selected as a concentrated load heat storage difficult machine having a large load in the concentrated load time zone, a large amount of heat storage corresponding to the load in the concentrated load time zone is stored in the tank before the concentrated load time zone. It is not necessary to secure 10. Therefore, it is possible to reduce the heat dissipation loss from the tank 10 and to lower the boiling temperature by the heating means 20, so that the energy saving of the hot water storage type hot water supply system 1 as a whole can be improved.

なお、本実施の形態1では、集中コントローラ7が各貯湯式給湯機8の集中負荷蓄熱容易性の値を算出する(すなわち集中負荷蓄熱難易度を評価する)が、このような構成に限らず、各貯湯式給湯機8の個別制御手段100が自身の集中負荷蓄熱容易性の値を算出する(すなわち集中負荷蓄熱難易度を評価する)ようにし、集中コントローラ7が通信によってそれらの情報を取得して比較するように構成しても良い。   In the first embodiment, the concentrated controller 7 calculates the value of the concentrated load heat storage ease of each hot water storage type hot water heater 8 (that is, evaluates the concentrated load heat storage difficulty level), but is not limited to such a configuration. The individual control means 100 of each hot water storage type water heater 8 calculates its own concentrated load heat storage ease value (that is, evaluates the concentrated load heat storage difficulty level), and the centralized controller 7 obtains the information by communication. And may be configured to be compared.

実施の形態2.
次に、図6を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同様の事項については説明を省略する。本発明の実施の形態2の貯湯式給湯システム1のハードウェア構成は、図1乃至図3に示す実施の形態1の構成と同様であり、説明を省略する。図6は、本実施の形態2の貯湯式給湯システム1が備える貯湯式給湯機における追加沸き上げ運転の概要を説明する図である。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIG. 6. The description will focus on the differences from the first embodiment described above, and a description of the same matters will be omitted. The hardware configuration of the hot water storage type hot water supply system 1 according to the second embodiment of the present invention is the same as the configuration of the first embodiment shown in FIGS. FIG. 6 is a diagram for explaining the outline of the additional boiling operation in the hot water storage type hot water heater provided in the hot water storage type hot water supply system 1 of the second embodiment.

本実施の形態2では、集中負荷時間帯の貯湯式給湯システム1全体の合計電力を抑制する方法として、集中負荷時間帯に同時に沸き上げ運転を実施する貯湯式給湯機8の台数を制限することに代えて、各貯湯式給湯機8の消費電力または加熱能力を制限する。以下の説明では、集中コントローラ7は、貯湯式給湯機8が集中負荷時間帯に沸き上げ運転を行う場合の一台当たりの消費電力の値を各貯湯式給湯機8の個別制御手段100に指示するものとする。ここで、貯湯式給湯機8の消費電力は、加熱手段20の加熱能力に概ね比例する。このため、集中コントローラ7は、貯湯式給湯機8が集中負荷時間帯に沸き上げ運転を行う場合の一台当たりの加熱能力の値を各貯湯式給湯機8の個別制御手段100に指示することで、貯湯式給湯機8の消費電力を制御するようにしてもよい。   In the second embodiment, as a method of suppressing the total power of the hot water storage hot water supply system 1 in the concentrated load time zone, the number of hot water storage hot water heaters 8 that simultaneously perform boiling operation during the concentrated load time zone is limited. Instead, the power consumption or heating capacity of each hot water storage type hot water heater 8 is limited. In the following description, the centralized controller 7 instructs the individual control means 100 of each hot water storage type hot water heater 8 about the value of the power consumption per unit when the hot water type hot water heater 8 performs the boiling operation during the concentrated load time period. It shall be. Here, the power consumption of the hot water storage type hot water heater 8 is approximately proportional to the heating capacity of the heating means 20. For this reason, the centralized controller 7 instructs the individual control means 100 of each hot water storage type hot water heater 8 to determine the value of the heating capacity per unit when the hot water type hot water heater 8 performs the boiling operation during the central load period. Thus, the power consumption of the hot water storage type water heater 8 may be controlled.

本実施の形態2の貯湯式給湯システム1において、集中コントローラ7は、集中負荷時間帯において沸き上げ運転を同時に行う貯湯式給湯機8の台数Nhpを想定する。この台数Nhpを「想定同時運転台数Nhp」と称する。想定同時運転台数Nhpは、貯湯式給湯機8の全台数Nallに等しいとしても良いし、あるいは、複数の貯湯式給湯機8の沸き上げ運転のタイミングがずれる可能性を考慮して、1より小さい所定の比率Khpを全台数Nallに乗じた値に基づいて定めても良い。   In the hot water storage type hot water supply system 1 according to the second embodiment, the centralized controller 7 assumes the number Nhp of the hot water storage type hot water heaters 8 that simultaneously perform the boiling operation in the concentrated load time zone. This number Nhp is referred to as “assumed simultaneous operation number Nhp”. The assumed simultaneous operation number Nhp may be equal to the total number Nall of the hot water storage hot water heaters 8 or is smaller than 1 in consideration of the possibility of the timing of the heating operation of the plurality of hot water storage hot water heaters 8 being shifted. The predetermined ratio Khp may be determined based on the value obtained by multiplying the total number Nall.

集中コントローラ7は、想定同時運転台数Nhpの貯湯式給湯機8が同時に沸き上げ運転を行っても全体の合計電力が許容合計電力Wubを超えないような、一台当たりの許容電力Wlmを求める。ここで一台当たりの許容電力Wlmは、許容合計電力Wubを想定同時運転台数Nhpで除算して求めることができる。集中コントローラ7は、各貯湯式給湯機8が集中負荷時間帯に沸き上げ運転を行う場合の消費電力を制限するため、各貯湯式給湯機8の個別制御手段100に対して、集中負荷時間帯における一台当たりの許容電力Wlmを指示する。個別制御手段100は、この指示に基づき、集中負荷時間帯において沸き上げ運転を実施する場合、消費電力が許容電力Wlm以下になる範囲の加熱能力になるように、加熱手段20の動作を制御する。   The centralized controller 7 obtains the permissible power Wlm per unit so that the total power does not exceed the permissible total power Wub even when the hot water storage hot water heaters 8 having the assumed simultaneous operation number Nhp simultaneously perform the boiling operation. Here, the permissible power Wlm per vehicle can be obtained by dividing the permissible total power Wub by the assumed simultaneous operation number Nhp. The centralized controller 7 restricts the power consumption when each hot water storage type hot water heater 8 performs a boiling operation during the centralized load time zone, so that the individual control means 100 of each hot water storage type hot water heater 8 has a concentrated load time zone. The permissible power Wlm per unit is indicated. Based on this instruction, the individual control unit 100 controls the operation of the heating unit 20 so that the heating power is within a range in which the power consumption is less than or equal to the allowable power Wlm when the boiling operation is performed in the concentrated load time period. .

本実施の形態2の貯湯式給湯システム1によれば、以上のようにして各貯湯式給湯機8が集中負荷時間帯に沸き上げ運転を行う場合の消費電力あるいは加熱能力を制限する。これにより、集中負荷時間帯に想定同時運転台数Nhpの貯湯式給湯機8が同時に沸き上げ運転を行った場合であっても、貯湯式給湯システム1全体で消費する電力を許容合計電力Wub以下に確実に抑えることができる。   According to the hot water storage type hot water supply system 1 of the second embodiment, the power consumption or the heating capacity when each hot water storage type hot water heater 8 performs the boiling operation during the concentrated load time period is limited as described above. As a result, even when the hot water storage type hot water heaters 8 of the assumed simultaneous operation number Nhp perform the boiling operation simultaneously during the concentrated load time period, the electric power consumed by the entire hot water storage type hot water supply system 1 is reduced to the allowable total electric power Wub or less. It can be surely suppressed.

また、本実施の形態2の貯湯式給湯システム1において、各貯湯式給湯機8は、消費電力が許容電力Wlm以下に制限される場合に、湯切れを回避するように、以下のように動作する。集中コントローラ7は、一台当たりの許容電力Wlmを、平均的なCOP(Coefficient Of Performance)の値、あるいは想定される最小のCOPの値で除算することにより、許容される制限加熱能力Qlmを求め、その求めた制限加熱能力Qlmの値を各貯湯式給湯機8の個別制御手段100に送信する。あるいは、各貯湯式給湯機8の個別制御手段100自身が、集中コントローラ7から指示された許容電力Wlmに基づき、制限加熱能力Qlmの値を算出するようにしても良い。   Further, in the hot water storage type hot water supply system 1 according to the second embodiment, each hot water storage type hot water heater 8 operates as follows so as to avoid running out of hot water when the power consumption is limited to the allowable power Wlm or less. To do. The centralized controller 7 calculates the allowable limited heating capacity Qlm by dividing the allowable power Wlm per unit by the average COP (Coefficient of Performance) value or the assumed minimum COP value. Then, the value of the obtained limited heating capacity Qlm is transmitted to the individual control means 100 of each hot water storage type hot water heater 8. Alternatively, the individual control means 100 of each hot water storage type hot water heater 8 may calculate the value of the limited heating capacity Qlm based on the allowable power Wlm instructed from the centralized controller 7.

各貯湯式給湯機8は、集中負荷時間帯においても、制限加熱能力Qlmによる沸き上げ運転を行うことが許容される。必要熱量予測手段104は、実施の形態1で説明したようにして学習した負荷パターンに基づき、集中負荷時間帯に発生すると予測される負荷をまかなう蓄熱量から、集中負荷時間帯に制限加熱能力Qlmにて沸き上げ運転を行うことで生成可能な熱量を減算した蓄熱量である集中負荷時間帯事前蓄熱量を算出する。集中負荷時間帯の開始時までにこの集中負荷時間帯事前蓄熱量がタンク10に確保されていれば、集中時間帯に発生する予測される負荷に対して、湯切れの無いようにすることができる。そこで、各貯湯式給湯機8において、沸き上げ制御手段105は、集中負荷時間帯の開始時までに集中負荷時間帯事前蓄熱量をタンク10に確保するように、集中負荷時間帯事前沸き上げ運転を行うよう制御する。このような制御によれば、集中負荷時間帯における貯湯式給湯システム1全体の合計電力を許容合計電力Wub以下に確実に抑えると共に、各貯湯式給湯機8の蓄熱量をなるべく抑制しつつ、湯切れを回避することができる。このため、貯湯式給湯システム1全体の省エネルギー性能を向上することができる。   Each hot water storage type water heater 8 is allowed to perform a boiling operation with the limited heating capacity Qlm even in the concentrated load time zone. The necessary heat quantity predicting means 104 is based on the load pattern learned as described in the first embodiment, and the limited heating capacity Qlm in the concentrated load time period from the heat storage amount that covers the load predicted to be generated in the concentrated load time period. The concentrated load time prior heat storage amount, which is the heat storage amount obtained by subtracting the heat amount that can be generated by performing the boiling operation at, is calculated. If the pre-heat storage amount of the concentrated load time zone is secured in the tank 10 before the start of the concentrated load time zone, it is possible to prevent the hot water from running out with respect to the predicted load generated in the concentrated time zone. it can. Therefore, in each hot water storage type hot water supply device 8, the boiling control means 105 performs concentrated load time zone pre-boiling operation so as to ensure the concentrated heat load time zone pre-heat storage amount in the tank 10 by the start of the concentrated load time zone. Control to do. According to such control, the total power of the entire hot water storage type hot water supply system 1 in the concentrated load time zone is surely suppressed to the allowable total power Wub or less, and the heat storage amount of each hot water storage type hot water heater 8 is suppressed as much as possible. Cutting can be avoided. For this reason, the energy saving performance of the hot water storage type hot water supply system 1 as a whole can be improved.

なお、複数の貯湯式給湯機8において、集中負荷時間帯事前沸き上げ運転を実施する順序は自由に定めて問題ないが、蓄熱量の少ない方から順に集中負荷時間帯事前沸き上げ運転を実施することが好ましい。これにより、加熱手段20への入水温度を低下させる可能性が高いので、貯湯式給湯システム1全体の省エネルギー性能が向上する。   In the plurality of hot water storage type hot water heaters 8, the order in which the concentrated load time zone pre-boiling operation is performed can be freely determined, but the concentrated load time zone pre-boiling operation is performed in order from the smaller heat storage amount. It is preferable. Thereby, since there is a high possibility of lowering the temperature of water entering the heating means 20, the energy saving performance of the entire hot water storage hot water supply system 1 is improved.

また、各貯湯式給湯機8は、消費電力が許容電力Wlm以下に制限される場合に、湯切れを回避するように、以下のように動作してもよい。必要熱量予測手段104は、通常時の加熱能力Qstの値を用いて予測した必要な蓄熱量である通常起動蓄熱量と、通常時の加熱能力Qstの値に代えて制限加熱能力Qlmの値を用いて予測した必要な蓄熱量である制限起動蓄熱量Llmとをそれぞれ算出する。沸き上げ制御手段105は、消費電力が許容電力Wlm以下に制限されることのない通常時、すなわち、集中負荷時間帯が開始するまでの時間が所定時間以上である場合には、蓄熱量が低下したときに沸き上げ運転を開始する閾値として、通常起動蓄熱量の値を用いるとともに、通常時の加熱能力Qstにて沸き上げ運転を行う。一方、沸き上げ制御手段105は、集中負荷時間帯が開始するまでの時間が上記所定時間以内である場合には、蓄熱量が低下したときに沸き上げ運転を開始する閾値として、通常起動蓄熱量と制限起動蓄熱量Llmとの大きい方の値を用いるとともに、制限加熱能力Qlmにて沸き上げ運転を行う。すなわち、沸き上げ制御手段105は、集中負荷時間帯が開始するまでの時間が上記所定時間以内である場合には、蓄熱量が、通常起動蓄熱量と制限起動蓄熱量Llmとの大きい方よりも小さくなったときに、制限加熱能力Qlmにて沸き上げ運転を開始する。このような制御によれば、集中負荷時間帯における貯湯式給湯システム1全体の合計電力を許容合計電力Wub以下に確実に抑えると共に、各貯湯式給湯機8の蓄熱量をなるべく抑制しつつ、湯切れを回避することができる。このため、貯湯式給湯システム1全体の省エネルギー性能を向上することができる。   Each hot water storage type water heater 8 may operate as follows so as to avoid running out of hot water when the power consumption is limited to the allowable power Wlm or less. The necessary heat amount predicting means 104 replaces the normal startup heat storage amount, which is a necessary heat storage amount predicted using the value of the normal heating capability Qst, and the value of the limited heating capability Qlm instead of the value of the normal heating capability Qst. The limited start heat storage amount Llm, which is the necessary heat storage amount predicted by using the respective, is calculated. The boiling-up control means 105 reduces the amount of stored heat at normal times when the power consumption is not limited to the allowable power Wlm or less, that is, when the time until the concentrated load time period starts is a predetermined time or more. As the threshold value for starting the boiling operation, the value of the normal startup heat storage amount is used, and the boiling operation is performed with the normal heating capacity Qst. On the other hand, when the time until the concentrated load time period starts is within the predetermined time, the boiling control unit 105 sets the normal startup heat storage amount as a threshold value for starting the boiling operation when the heat storage amount decreases. And the larger value of the limited startup heat storage amount Llm, and the boiling operation is performed with the limited heating capacity Qlm. That is, when the time until the concentrated load time period starts is within the predetermined time, the boiling control means 105 has a heat storage amount that is larger than the larger of the normal startup heat storage amount and the limited startup heat storage amount Llm. When it becomes smaller, the boiling operation is started at the limited heating capacity Qlm. According to such control, the total power of the entire hot water storage type hot water supply system 1 in the concentrated load time zone is surely suppressed to the allowable total power Wub or less, and the heat storage amount of each hot water storage type hot water heater 8 is suppressed as much as possible. Cutting can be avoided. For this reason, the energy saving performance of the hot water storage type hot water supply system 1 as a whole can be improved.

また、各貯湯式給湯機8は、消費電力が許容電力Wlm以下に制限される場合に、湯切れを回避するように、以下のように動作してもよい。沸き上げ制御手段105は、集中負荷時間帯の開始時までに蓄熱量が上記制限起動蓄熱量Llm以上になるように、沸き上げ運転を行う。そして、集中負荷時間帯の開始後は、沸き上げ制御手段105は、蓄熱量が制限起動蓄熱量Llmよりも小さくなったときに、制限加熱能力Qlmにて沸き上げ運転を開始する。このような制御によれば、集中負荷時間帯における貯湯式給湯システム1全体の合計電力を許容合計電力Wub以下に確実に抑えると共に、各貯湯式給湯機8の蓄熱量をなるべく抑制しつつ、湯切れを回避することができる。このため、貯湯式給湯システム1全体の省エネルギー性能を向上することができる。   Each hot water storage type water heater 8 may operate as follows so as to avoid running out of hot water when the power consumption is limited to the allowable power Wlm or less. The boiling control means 105 performs the boiling operation so that the heat storage amount becomes equal to or greater than the above-mentioned limited activation heat storage amount Llm by the start of the concentrated load time period. And after the start of the concentrated load time zone, the boiling control means 105 starts the boiling operation with the limited heating capacity Qlm when the heat storage amount becomes smaller than the limited activation heat storage amount Llm. According to such control, the total power of the entire hot water storage type hot water supply system 1 in the concentrated load time zone is surely suppressed to the allowable total power Wub or less, and the heat storage amount of each hot water storage type hot water heater 8 is suppressed as much as possible. Cutting can be avoided. For this reason, the energy saving performance of the hot water storage type hot water supply system 1 as a whole can be improved.

また、本実施の形態2の貯湯式給湯システム1において、集中コントローラ7は、集中負荷時間帯において実際に沸き上げ運転を同時に行っている貯湯式給湯機8の台数が想定同時運転台数Nhpより少ない場合には、貯湯式給湯システム1全体の合計電力が許容合計電力Wubを超えない範囲において、各貯湯式給湯機8に対する消費電力または加熱能力の制限を緩和するように制御しても良い。これにより、各貯湯式給湯機8の加熱能力を上げて早期に沸き上げ運転を完了させることができ、湯切れ耐力を更に向上させることができる。   In the hot water storage type hot water supply system 1 according to the second embodiment, the centralized controller 7 has a smaller number of hot water storage type hot water heaters 8 that are actually performing boiling operation simultaneously in the concentrated load time period than the assumed simultaneous operation number Nhp. In such a case, control may be performed so as to relax restrictions on power consumption or heating capacity for each hot water storage type hot water heater 8 as long as the total electric power of the entire hot water storage type hot water supply system 1 does not exceed the allowable total electric power Wub. Thereby, the heating capability of each hot water storage type hot water heater 8 can be raised and the boiling operation can be completed at an early stage, and the hot water resistance can be further improved.

また、各貯湯式給湯機8は、深夜沸き上げ運転とその後の追加沸き上げ運転とによって一日の負荷に足りるだけの蓄熱を行った後は、最低蓄熱量のみを維持する最低蓄熱量状態となるが、各貯湯式給湯機8が最低蓄熱量状態となったか否かの情報を集中コントローラ7が収集し、想定同時運転台数Nhpの予測に際して、最低蓄熱量状態の貯湯式給湯機8の台数が多いほど、想定同時運転台数Nhpが減少するように予測し、制限加熱能力Qlm等を逐次再計算するように制御しても良い。この場合、最低蓄熱量状態となっていない貯湯式給湯機8に対する制限加熱能力Qlmが増加するとともに制限起動蓄熱量Llmが減少し、放熱が低減することに繋がる。このため、貯湯式給湯システム1全体の省エネルギーが向上する。   In addition, each hot water storage type water heater 8 has a minimum heat storage amount state in which only the minimum heat storage amount is maintained after performing heat storage sufficient for the daily load by the midnight boiling operation and the subsequent additional boiling operation. However, the centralized controller 7 collects information on whether or not each hot water storage type hot water heater 8 is in the minimum heat storage amount state, and when predicting the assumed simultaneous operation number Nhp, the number of the hot water storage type water heaters 8 in the minimum heat storage amount state. It may be predicted that the estimated simultaneous operation number Nhp decreases as the number increases, and the limited heating capacity Qlm and the like are sequentially recalculated. In this case, the limited heating capacity Qlm for the hot water storage type hot water heater 8 that is not in the minimum heat storage amount state is increased, and the limited activation heat storage amount Llm is decreased, leading to a reduction in heat dissipation. For this reason, the energy saving of the whole hot water storage type hot water supply system 1 is improved.

1 貯湯式給湯システム、5 追焚き熱交換器、6 浴槽、7 集中コントローラ、8 貯湯式給湯機、10 タンク、20 加熱手段、31 沸き上げポンプ、32 追焚きポンプ、33 浴槽ポンプ、41 湯栓温調弁、100 個別制御手段、101 蓄熱量算出手段、104 必要熱量予測手段、105 沸き上げ制御手段、106 弁制御手段、107 目標温度設定手段、108 ポンプ制御手段、109 沸き上げモード設定手段、110 負荷設定手段、200 時刻検出手段、301a 沸き上げ往き配管、301b 沸き上げ戻り配管、302 給水配管、303 高温導出配管、304 温調配管、305 湯栓配管、306a 浴槽往き配管、306b 浴槽戻り配管、307a 追焚き往き配管、307b 追焚き戻り配管、501a〜501f 貯湯温度センサ、502 沸き上げ温度センサ、503 導出温度センサ、504 給水温度センサ、505 湯栓温度センサ、506 浴槽戻り温度センサ、507 追焚き戻り温度センサ、601 湯栓流量センサ DESCRIPTION OF SYMBOLS 1 Hot water storage type hot water supply system, 5 Reheating heat exchanger, 6 Bathtub, 7 Centralized controller, 8 Hot water storage type hot water supply machine, 10 Tank, 20 Heating means, 31 Boiling pump, 32 Reheating pump, 33 Bathtub pump, 41 Hot water tap Temperature control valve, 100 individual control means, 101 heat storage amount calculation means, 104 required heat amount prediction means, 105 boiling control means, 106 valve control means, 107 target temperature setting means, 108 pump control means, 109 boiling mode setting means, 110 Load setting means, 200 Time detection means, 301a Boiling return piping, 301b Boiling return piping, 302 Water supply piping, 303 High temperature outlet piping, 304 Temperature control piping, 305 Hot water tap piping, 306a Bathtub piping, 306b Bathtub returning piping 307a Reciprocating piping, 307b Recirculating return piping, 501a 501f stored hot water temperature sensor, 502 boiling temperature sensor, 503 derives a temperature sensor, 504 water temperature sensor, 505 hot water faucet temperature sensor, 506 bath return temperature sensor, 507 reheating return temperature sensor, 601 hot water faucet flow sensor

Claims (4)

複数の貯湯式給湯機と、
予め設定された集中負荷時間帯に前記複数の前記貯湯式給湯機が消費することを許容される合計の電力である許容合計電力の値と、前記集中負荷時間帯に同時に沸き上げ運転を行うと想定する前記貯湯式給湯機の台数である想定同時運転台数とに基づいて、各々の前記貯湯式給湯機が前記集中負荷時間帯に沸き上げ運転を行う場合の消費電力または加熱能力を制限する制限手段と、
を備え
前記集中負荷時間帯に沸き上げ運転を行っている前記貯湯式給湯機の台数が前記想定同時運転台数より少ない場合には、前記制限手段は、前記複数の貯湯式給湯機の合計の消費電力が前記許容合計電力を超えない範囲で、沸き上げ運転を行っている前記貯湯式給湯機の消費電力または加熱能力の制限を緩和する貯湯式給湯システム。
A plurality of hot water storage water heaters,
When performing a boiling operation at the same time during the concentrated load time period, the value of the allowable total power that is the total power allowed to be consumed by the plurality of hot water storage hot water heaters during the preset concentrated load time period Based on the assumed number of simultaneous hot water heaters, which is the number of hot water storage water heaters to be assumed, a restriction that limits power consumption or heating capacity when each of the hot water heaters performs a boiling operation during the concentrated load time period Means,
Equipped with a,
When the number of the hot water storage hot water heaters that perform the boiling operation during the concentrated load time period is smaller than the assumed simultaneous operation number, the limiting means has a total power consumption of the plurality of hot water storage water heaters. hot water storage type hot-water supply system wherein a range not exceeding the allowable total power, you alleviate the limitations of power or heating capacity of the hot water storage type water heater is performed heating operation.
複数の貯湯式給湯機と、
予め設定された集中負荷時間帯に前記複数の前記貯湯式給湯機が消費することを許容される合計の電力である許容合計電力の値と、前記集中負荷時間帯に同時に沸き上げ運転を行うと想定する前記貯湯式給湯機の台数である想定同時運転台数とに基づいて、各々の前記貯湯式給湯機が前記集中負荷時間帯に沸き上げ運転を行う場合の消費電力または加熱能力を制限する制限手段と、
を備え
各々の前記貯湯式給湯機は、
発生した負荷の大きさおよび発生した時間帯のパターンである負荷パターンを学習する手段と、
前記学習された負荷パターンと、通常の加熱能力の値とに基づいて、負荷に対して湯切れの無いように、蓄熱量が低下したときに沸き上げ運転を開始する閾値とする通常起動蓄熱量を求める手段と、
前記学習された負荷パターンと、前記制限手段により制限された加熱能力である制限加熱能力の値とに基づいて、負荷に対して湯切れの無いように、蓄熱量が低下したときに沸き上げ運転を開始する閾値とする制限起動蓄熱量を求める手段と、
前記集中負荷時間帯が開始するまでの時間が所定時間以内である場合には、蓄熱量が、前記通常起動蓄熱量と前記制限起動蓄熱量との大きい方よりも小さくなったときに、前記制限加熱能力にて沸き上げ運転を開始する制御手段と、
を有する貯湯式給湯システム。
A plurality of hot water storage water heaters,
When performing a boiling operation at the same time during the concentrated load time period, the value of the allowable total power that is the total power allowed to be consumed by the plurality of hot water storage hot water heaters during the preset concentrated load time period Based on the assumed number of simultaneous hot water heaters, which is the number of hot water storage water heaters to be assumed, a restriction that limits power consumption or heating capacity when each of the hot water heaters performs a boiling operation during the concentrated load time period Means,
Equipped with a,
Each of the hot water storage water heaters
Means for learning a load pattern which is a pattern of a generated load size and a generated time zone;
Based on the learned load pattern and the normal heating capacity value, the normal startup heat storage amount is set as a threshold value for starting the boiling operation when the heat storage amount is reduced so that the hot water does not run out with respect to the load. A means of seeking
Based on the learned load pattern and the value of the limited heating capacity that is the heating capacity limited by the limiting means, the boiling operation is performed when the amount of stored heat is reduced so that the hot water does not run out with respect to the load. Means for obtaining a limited startup heat storage amount as a threshold for starting
When the time until the concentrated load time period starts is within a predetermined time, when the heat storage amount becomes smaller than the larger of the normal start heat storage amount and the limited start heat storage amount, the limit Control means for starting boiling operation with heating capacity;
The hot-water storage type hot-water supply system that have a.
複数の貯湯式給湯機と、
予め設定された集中負荷時間帯に前記複数の前記貯湯式給湯機が消費することを許容される合計の電力である許容合計電力の値と、前記集中負荷時間帯に同時に沸き上げ運転を行うと想定する前記貯湯式給湯機の台数である想定同時運転台数とに基づいて、各々の前記貯湯式給湯機が前記集中負荷時間帯に沸き上げ運転を行う場合の消費電力または加熱能力を制限する制限手段と、
を備え
前記複数の前記貯湯式給湯機は、各世帯に1台ずつ設けられるものであり、
各々の前記貯湯式給湯機は、水を加熱する加熱手段と、湯を貯留するタンクとを備える貯湯式給湯システム。
A plurality of hot water storage water heaters,
When performing a boiling operation at the same time during the concentrated load time period, the value of the allowable total power that is the total power allowed to be consumed by the plurality of hot water storage hot water heaters during the preset concentrated load time period Based on the assumed number of simultaneous hot water heaters, which is the number of hot water storage water heaters to be assumed, a restriction that limits power consumption or heating capacity when each of the hot water heaters performs a boiling operation during the concentrated load time period Means,
Equipped with a,
The plurality of hot water storage type water heaters are provided in each household,
Each said hot-water storage type water heater, hot water storage type hot-water supply system Ru comprising a heating means, and a tank for storing hot water for heating the water.
各々の前記貯湯式給湯機は、
発生した負荷の大きさおよび発生した時間帯のパターンである負荷パターンを学習する手段と、
前記学習された負荷パターンと、前記制限手段により制限された加熱能力である制限加熱能力の値とに基づいて、負荷に対して湯切れの無いように、前記集中負荷時間帯の開始時までに蓄熱する必要のある熱量である集中負荷時間帯事前蓄熱量を算出する手段と、
前記集中負荷時間帯の開始時までに前記集中負荷時間帯事前蓄熱量を確保するように沸き上げ運転を行う制御手段と、
を有する請求項1から請求項3のいずれか1項に記載の貯湯式給湯システム。
Each of the hot water storage water heaters
Means for learning a load pattern which is a pattern of a generated load size and a generated time zone;
Based on the learned load pattern and the value of the limited heating capacity, which is the heating capacity limited by the limiting means, until the start of the concentrated load time period so as not to run out of hot water for the load. Means for calculating the prior heat storage amount of concentrated load time, which is the amount of heat that needs to be stored;
Control means for performing a boiling operation so as to secure the concentrated load time zone pre-heat storage amount by the start of the concentrated load time zone;
The hot water storage type hot water supply system according to any one of claims 1 to 3, wherein
JP2015117469A 2015-06-10 2015-06-10 Hot water storage hot water supply system Active JP6052342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015117469A JP6052342B2 (en) 2015-06-10 2015-06-10 Hot water storage hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015117469A JP6052342B2 (en) 2015-06-10 2015-06-10 Hot water storage hot water supply system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013128630A Division JP5812043B2 (en) 2013-06-19 2013-06-19 Hot water storage hot water supply system

Publications (2)

Publication Number Publication Date
JP2015158362A JP2015158362A (en) 2015-09-03
JP6052342B2 true JP6052342B2 (en) 2016-12-27

Family

ID=54182464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015117469A Active JP6052342B2 (en) 2015-06-10 2015-06-10 Hot water storage hot water supply system

Country Status (1)

Country Link
JP (1) JP6052342B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6739040B2 (en) * 2016-04-26 2020-08-12 パナソニックIpマネジメント株式会社 Management device, planning method and control program
JP6594554B2 (en) * 2016-08-31 2019-10-23 三菱電機株式会社 Hot water supply system, control device, control method and program
JP7108210B2 (en) * 2020-12-28 2022-07-28 ダイキン工業株式会社 hot water system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5084807B2 (en) * 2009-05-08 2012-11-28 三菱電機株式会社 Hot water storage hot water supply system
JP5712476B2 (en) * 2009-09-10 2015-05-07 ダイキン工業株式会社 Demand control system
JP2012032117A (en) * 2010-08-02 2012-02-16 Panasonic Electric Works Co Ltd Hot-water storage type hot-water supply system
JP5789748B2 (en) * 2010-12-17 2015-10-07 パナソニックIpマネジメント株式会社 Hot water system

Also Published As

Publication number Publication date
JP2015158362A (en) 2015-09-03

Similar Documents

Publication Publication Date Title
JP5812043B2 (en) Hot water storage hot water supply system
JP6052342B2 (en) Hot water storage hot water supply system
JP5126345B2 (en) Hot water storage hot water supply system
JP6107958B2 (en) Heat storage system
JP6340971B2 (en) Hot water storage water heater
JP6015926B2 (en) Hot water storage water heater
JP5919475B2 (en) Water heater
JP2013032863A (en) Water heater
JP7274964B2 (en) Storage hot water system
JP5106567B2 (en) Hot water storage hot water supply system
JP5454534B2 (en) Hot water storage hot water supply system
JP2013036708A (en) Water heater
JP5909637B2 (en) Water heater
JP5903654B2 (en) Water heater
JP5948602B2 (en) Water heater
JP5252021B2 (en) Hot water storage hot water supply system
JP5879504B2 (en) Water heater
JP6672978B2 (en) Hot water storage system
JP5934907B2 (en) Water heater
JP7292084B2 (en) Storage hot water system
JP2013036709A (en) Water heating apparatus
JP6111409B2 (en) Water heater
JP2013032892A (en) Hot water supply apparatus
JP2023137326A (en) Hot water storage type water heater
JP5942089B2 (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6052342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250