JP6051980B2 - Method for producing 1,4-cyclohexanedimethanol - Google Patents

Method for producing 1,4-cyclohexanedimethanol Download PDF

Info

Publication number
JP6051980B2
JP6051980B2 JP2013052184A JP2013052184A JP6051980B2 JP 6051980 B2 JP6051980 B2 JP 6051980B2 JP 2013052184 A JP2013052184 A JP 2013052184A JP 2013052184 A JP2013052184 A JP 2013052184A JP 6051980 B2 JP6051980 B2 JP 6051980B2
Authority
JP
Japan
Prior art keywords
contact time
pressure
chdm
trans isomer
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013052184A
Other languages
Japanese (ja)
Other versions
JP2014177422A (en
Inventor
田中 善幸
善幸 田中
浩哉 香川
浩哉 香川
明史 宇田
明史 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2013052184A priority Critical patent/JP6051980B2/en
Publication of JP2014177422A publication Critical patent/JP2014177422A/en
Application granted granted Critical
Publication of JP6051980B2 publication Critical patent/JP6051980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明はシクロアルカンジカルボン酸を水素化して、シクロアルカンジメタノールを製造する方法に関し、詳しくは1,4−シクロヘキサンジカルボン酸(以下、1,4−CHDAと略記することがある。)を触媒の存在下で液相で水素化して、1,4−シクロヘキサンジメタノール(以下、1,4−CHDMと略記することがある。)を製造する方法に関するものである。   The present invention relates to a process for producing cycloalkanedimethanol by hydrogenating cycloalkanedicarboxylic acid. Specifically, 1,4-cyclohexanedicarboxylic acid (hereinafter sometimes abbreviated as 1,4-CHDA) is used as a catalyst. The present invention relates to a process for producing 1,4-cyclohexanedimethanol (hereinafter sometimes abbreviated as 1,4-CHDM) by hydrogenation in the liquid phase in the presence.

1,4−CHDM等のシクロアルカンジメタノールは、ポリエステル系塗料やポリエステル系の合成繊維、合成樹脂として有用であり、特に耐熱性、耐候性、物理的強度等の優れた樹脂や繊維の原料として用いられている。
従来、1,4−CHDMを製造する方法としては、エステルを水素化する方法が知られている。例えば、特許文献1には、ジメチルテレフタレートをRu又はPdをアルミナに担持させた触媒を用い、核水素化してシクロヘキサンジカルボン酸ジメチルを生成させ、次いでこの得られたエステルの側鎖をCu−Zn酸化物触媒の存在下に水素化反応させて1,4−CHDMを製造する方法が記載されている。また、特許文献2には、テレフタル酸ジアルキルを核水素化して1,4−シクロヘキサンジメチルエステルを得、次いでRuとSuを含む触媒を用いて側鎖を水素化して1,4−CHDMを製造する方法が開示されている。
Cycloalkanedimethanol such as 1,4-CHDM is useful as a polyester-based paint, polyester-based synthetic fiber and synthetic resin, and particularly as a raw material for resins and fibers having excellent heat resistance, weather resistance, physical strength, etc. It is used.
Conventionally, as a method for producing 1,4-CHDM, a method for hydrogenating an ester is known. For example, in Patent Document 1, using a catalyst in which dimethyl terephthalate is supported on Ru or Pd on alumina, nuclear hydrogenation is performed to produce dimethyl cyclohexanedicarboxylate, and then the side chain of the obtained ester is Cu-Zn oxidized. A method for producing 1,4-CHDM by hydrogenation in the presence of a product catalyst is described. In Patent Document 2, 1,4-CHDM is produced by hydrogenating a dialkyl terephthalate to obtain 1,4-cyclohexanedimethyl ester, and then hydrogenating a side chain using a catalyst containing Ru and Su. A method is disclosed.

一方、上記の方法以外にも、シクロアルカンジカルボン酸を直接水素化してシクロアルカンジメタノールを得る方法もある。例えば、特許文献3には、1,4−CHDAのカルボキシル基を水素化することで1,4−CHDMを得る方法が記載されており、触媒としてはスズを含むルテニウム触媒などが記載されている。また、水素化を溶液状態で行った場合、生成した溶液からの1,4−CHDMの精製は、蒸留又は抽出などにより行うことができる。   On the other hand, in addition to the above method, there is also a method of obtaining cycloalkanedimethanol by directly hydrogenating cycloalkanedicarboxylic acid. For example, Patent Document 3 describes a method of obtaining 1,4-CHDM by hydrogenating a carboxyl group of 1,4-CHDA, and a ruthenium catalyst containing tin is described as a catalyst. . Moreover, when hydrogenation is performed in a solution state, purification of 1,4-CHDM from the produced solution can be performed by distillation or extraction.

1,4−CHDMには、トランス体とシス体があるが、工業的規模での製造において、1,4−CHDMを製造する場合においては、1,4−シクロヘキサンジメチルエステルを水素化する方法を用いても、1,4−CHDAのカルボキシル基を直接水素化する方法を用いても、結果として得られる1,4−CHDMはある一定の割合でトランス体とシス体とが含まれる混合物である。   1,4-CHDM has a trans isomer and a cis isomer. In the production of 1,4-CHDM on an industrial scale, a method of hydrogenating 1,4-cyclohexanedimethyl ester is used. The resulting 1,4-CHDM is a mixture containing a trans isomer and a cis isomer at a certain ratio regardless of whether it is used or a method in which the carboxyl group of 1,4-CHDA is directly hydrogenated. .

1,4−CHDMのシス体は、融点43℃で、1,4−CHDMのトランス体は、融点67℃である。1,4−CHDMの誘導体として、高融点のポリエステルやポリエステルアミドを製造する場合には、原料として1,4−CHDMのトランス体の含有率が高いものが好ましく使用される。また、常温において、トランス体の含有率が60wt%以上の1,4−CHDMは固体であるが、トランス体含有率55wt%付近の1,4−CHDMは流動状態にある。   The cis form of 1,4-CHDM has a melting point of 43 ° C., and the trans form of 1,4-CHDM has a melting point of 67 ° C. As a 1,4-CHDM derivative, when a high melting point polyester or polyester amide is produced, a raw material having a high content of 1,4-CHDM trans isomer is preferably used. At normal temperature, 1,4-CHDM having a trans isomer content of 60 wt% or more is solid, but 1,4-CHDM having a trans isomer content of 55 wt% is in a fluid state.

1,4−CHDMを水素化反応で製造する方法において、水素化反応と異性化反応が同時に進行する。そのため、そのため、異性化反応において、トランス体含有率は、ある決まった平衡値に向かう傾向があり、1,4−CHDMのトランス体含有率の平衡値については72%〜75%の間にあることが知られている。
工業的にも需要の多いトランス体含有率が高い1,4−CHDMをより多く製造するには、1,4−シクロヘキサンジメチルエステルを水素化する方法であっても1,4−CHDAを水素化する方法であっても、原料の1,4−シクロヘキサンジメチルエステル又は
1,4−CHDA中のそれぞれのトランス体が多く含まれるものを原料として用いることが好ましく、また、シクロヘキサンジメタノールのシス体からそのトランス体への異性化を促進し、トランス体からそのシス体への異性化を抑制することが必要である。
In a method for producing 1,4-CHDM by a hydrogenation reaction, the hydrogenation reaction and the isomerization reaction proceed simultaneously. Therefore, in the isomerization reaction, the trans isomer content tends to a certain equilibrium value, and the equilibrium value of the 1,4-CHDM trans isomer content is between 72% and 75%. It is known.
In order to produce more 1,4-CHDM with a high trans isomer content, which is also in industrial demand, 1,4-CHDA is hydrogenated even if it is a method of hydrogenating 1,4-cyclohexanedimethyl ester. Even if it is a method to carry out, it is preferred to use as a raw material what has many trans isomers in 1,4-cyclohexane dimethyl ester of raw materials or 1,4-CHDA, and also from a cis isomer of cyclohexanedimethanol. It is necessary to promote isomerization to the trans isomer and suppress isomerization from the trans isomer to the cis isomer.

一方、シス体含有率が高い1,4−CHDMをより多く製造するには、できるだけトランス体含有率の低い原料を用いて、シス体からトランス体への異性化を抑制することが必要である。
特許文献4には、1,4−シクロヘキサンジメチルエステルを水素化する方法で、得られる1,4−CHDMにおけるトランス体含有率を制御することが記載されており、また、該特許文献4の0024段落には、1,4−シクロヘキサンジメチルエステルの水素化においては、1,4−CHDMの収率とトランス体含有率は実質的に同義であり、トランス体含有率を反応の滞留時間で制御することが記載されている。
On the other hand, in order to produce more 1,4-CHDM having a high cis isomer content, it is necessary to suppress isomerization from the cis isomer to the trans isomer by using a raw material having a low trans isomer content as much as possible. .
Patent Document 4 describes that the trans isomer content in 1,4-CHDM obtained is controlled by a method of hydrogenating 1,4-cyclohexanedimethyl ester. In the paragraph, in the hydrogenation of 1,4-cyclohexanedimethyl ester, the yield of 1,4-CHDM and the trans isomer content are substantially synonymous, and the trans isomer content is controlled by the residence time of the reaction. It is described.

特表平8−510686号 公報JP-T 8-510686 特開平6−228028号 公報Japanese Patent Laid-Open No. 6-228028 特開2000−80053号 公報JP 2000-80053 A 特開平7−196559号 公報JP-A-7-196559

近年、1,4−CHDMのニーズの多様化にともない、一定の生産量を維持しつつ、運転を継続させながら、トランス体含有率を変更することが要求されている。上記特許文献1〜4には、1,4−CHDMを製造する際に、1,4−CHDMの生産量(原料の転化率)を一定とし、1,4−CHDM中のトランス体含有率を制御する方法については記載されていない。特許文献4に記載の方法は、気相下での反応であり、1,4−CHDMの生産量(原料の転化率)と異性化率を独立で制御することは記載されておらず、所望のトランス体含有率の1,4−CHDMを得るためには滞留時間を変更せねばならない。それにより1,4−CHDMの生産量も同時に変化するため、工業的に好ましい方法とは言えなかった。   In recent years, with the diversification of needs for 1,4-CHDM, it is required to change the trans isomer content rate while maintaining a constant production amount and continuing operation. In the above Patent Documents 1 to 4, when 1,4-CHDM is produced, the production amount of 1,4-CHDM (conversion rate of raw material) is constant, and the trans isomer content in 1,4-CHDM is set as follows. It does not describe how to control. The method described in Patent Document 4 is a reaction under a gas phase, and it is not described that the production amount of 1,4-CHDM (conversion rate of raw material) and the isomerization rate are independently controlled. In order to obtain 1,4-CHDM having a trans isomer content of 1, the residence time must be changed. As a result, the production amount of 1,4-CHDM also changes at the same time, which is not an industrially preferable method.

すなわち本発明の課題は、従来の技術では達成できなかった、転化率を維持しつつ、トランス体含有率を制御することができる1,4−CHDMの製造方法を提供することにある。   That is, the subject of this invention is providing the manufacturing method of 1, 4-CHDM which can control trans-isomer content rate, maintaining the conversion rate which was not able to be achieved with the prior art.

本発明者らは、上記課題について鋭意研究を重ねた結果、触媒の存在下に液相下で1,4−CHDAを水素化して1,4−CHDMを製造する方法において、水素化工程の反応温度と反応全圧を操作することにより、所望の転化率を維持しつつ、任意のトランス体含有率を持つ製品1,4−CHDMを製造することができることを見出し、本発明をなすに至った。   As a result of intensive research on the above problems, the present inventors have conducted a hydrogenation step reaction in a method for producing 1,4-CHDM by hydrogenating 1,4-CHDA in the liquid phase in the presence of a catalyst. By manipulating the temperature and the total reaction pressure, it was found that a product 1,4-CHDM having an arbitrary trans isomer content can be produced while maintaining a desired conversion rate, and the present invention has been made. .

即ち、本発明の要旨は以下の[1]、[2]に存する。
[1] トランス体含有率が10〜50wt%の1,4−シクロヘキサンジカルボン酸を原料化合物として、少なくともルテニウム、スズ、及び白金を含有する固体触媒の存在下で液相にて水素化反応を行うことにより、トランス体含有率が30〜75wt%の1,4−シクロヘキサンジメタノールを得るに際し、前記原料化合物の転化率を保持しつつ、水
素化反応温度を200〜240℃の範囲、水素化反応全圧を7〜12MPaの範囲、及び接触時間を0.5〜1.5時間の範囲とし、かつ水素化反応温度及び/又は接触時間を操作することにより、所望のトランス体含有率を有する1,4−シクロヘキサンジメタノールを得ることを特徴とする1,4−シクロヘキサンジメタノールの製造方法。
[2] 更に水素化反応全圧を操作する請求項1に記載の1,4−シクロヘキサンジメタノールの製造方法。
(以上)
That is, the gist of the present invention resides in the following [1] and [2] .
[1] Using 1,4-cyclohexanedicarboxylic acid having a trans isomer content of 10 to 50 wt% as a raw material compound, a hydrogenation reaction is performed in the liquid phase in the presence of a solid catalyst containing at least ruthenium, tin, and platinum. Thus, when obtaining 1,4-cyclohexanedimethanol having a trans isomer content of 30 to 75 wt%, the hydrogenation reaction temperature is in the range of 200 to 240 ° C. while maintaining the conversion rate of the raw material compound. 1 having a desired trans isomer content by controlling the hydrogenation reaction temperature and / or the contact time by setting the total pressure in the range of 7-12 MPa and the contact time in the range of 0.5-1.5 hours. , 4-Cyclohexanedimethanol is obtained, A method for producing 1,4-cyclohexanedimethanol,
[2] The method for producing 1,4-cyclohexanedimethanol according to claim 1, wherein the total pressure of the hydrogenation reaction is further manipulated.
(that's all)

本発明によれば、1,4−CHDAから1,4−CHDMを製造する際に、1,4−CHDM中のトランス含有率を自由に制御することが可能となる。また、従来の方法では工業的に製造することが困難であったトランス含有率が30%以下である1,4−CHDMを製造することも可能となる。   According to the present invention, when 1,4-CHDM is produced from 1,4-CHDA, the trans content in 1,4-CHDM can be freely controlled. Moreover, it is also possible to produce 1,4-CHDM having a trans content of 30% or less, which was difficult to produce industrially by conventional methods.

本発明の実施例の結果から、1,4−CHDMのトランス含有率を温度と接触時間の関数として表現した図である。It is the figure which expressed the trans content of 1, 4-CHDM as a function of temperature and contact time from the result of the Example of this invention. 本発明の実施例で1,4−CHDAの水素化を行う装置を示す概略図である。It is the schematic which shows the apparatus which performs the hydrogenation of 1, 4-CHDA in the Example of this invention.

本発明における、シクロアルカンジメタノールの製造に用いられる原料化合物は、シクロアルカンジカルボン酸であり、シクロアルカンジカルボン酸のシクロアルカンの炭素原子数としては、好ましくは3〜12、更に好ましくは3〜8である。中でも、特に炭素数が6の1,4−CHDAが好適に用いられる。このシクロアルカンジカルボン酸中のトランス体の含有率は特に限定されないが、好ましくは、トランス体の含有率が1〜99wt%であり、より好ましくは、5〜80wt%であり、特に好ましくは10〜50wt%である。原料化合物のシクロアルカンジカルボン酸のトランス含有率が大きくなるほど、溶解性が低く、十分に加熱しないと溶解せず、配管等で閉塞する恐れがある。   In the present invention, the raw material compound used for the production of cycloalkanedimethanol is cycloalkanedicarboxylic acid, and the number of carbon atoms of cycloalkane of cycloalkanedicarboxylic acid is preferably 3-12, more preferably 3-8. It is. Among these, 1,4-CHDA having 6 carbon atoms is particularly preferably used. The trans isomer content in the cycloalkanedicarboxylic acid is not particularly limited, but the trans isomer content is preferably 1 to 99 wt%, more preferably 5 to 80 wt%, and particularly preferably 10 to 10 wt%. 50 wt%. As the trans content of the cycloalkanedicarboxylic acid of the raw material compound increases, the solubility becomes lower, and if it is not heated sufficiently, it will not dissolve and may be clogged with piping or the like.

本発明の水素化反応は液相での水素化反応であり、通常は溶媒の存在下で行われる。溶媒としては、反応工程において原料及び生成物等と反応しないものであり、触媒を被毒しない等反応に悪影響を与えない種類のものであれば特に制限されないが、例えば、水、メタノールやエタノールなどのアルコール類、テトラヒドロフランやジオキサンなどのエーテル類、ヘキサン、デカリンなどの炭化水素類などの溶媒を単独であるいは必要とあれば混合溶媒として用いることができる。中でも本発明では、水を含む水性溶媒を用いるのが好ましい。   The hydrogenation reaction of the present invention is a hydrogenation reaction in a liquid phase and is usually performed in the presence of a solvent. The solvent is not particularly limited as long as it does not react with the raw materials and products in the reaction step, and is not particularly limited as long as it does not adversely affect the reaction such as not poisoning the catalyst, for example, water, methanol, ethanol, etc. Solvents such as alcohols, ethers such as tetrahydrofuran and dioxane, hydrocarbons such as hexane and decalin can be used alone or as a mixed solvent if necessary. Among these, in the present invention, it is preferable to use an aqueous solvent containing water.

本発明の液相下での水素化反応は、溶媒に1,4−CHDA等の原料化合物及び触媒を存在させ、所定の反応条件下に維持することで、100%に近い転化率で水素化反応を進行させることができる。溶媒に対する原料化合物の割合は、原料化合物が溶媒に溶解し得る限度で、できるだけ高くするのが好ましい。
この割合が小さいと反応装置の生産効率が低下し、かつ後の工程で1,4−CHDM等
の生成物溶液から製品1,4−CHDMを分離回収する際の装置の効率低下や消費エネルギーの増加などを招くので好ましくない。また、この割合が大きくても、生成物溶液から生成物を分離した後の溶媒は、再び水素化工程に循環して使用することができる。例えば、水を溶媒として使用する場合には、反応前の原料化合物濃度が5〜50重量%となるように使用するのが好ましく、より好ましくは10〜40重量%である。
In the hydrogenation reaction under the liquid phase of the present invention, the raw material compound such as 1,4-CHDA and a catalyst are present in a solvent and maintained under a predetermined reaction condition, whereby the hydrogenation reaction is performed at a conversion rate close to 100%. The reaction can proceed. The ratio of the raw material compound to the solvent is preferably as high as possible as long as the raw material compound can be dissolved in the solvent.
If this ratio is small, the production efficiency of the reaction apparatus will decrease, and the efficiency of the apparatus and the consumption energy will be reduced when the product 1,4-CHDM is separated and recovered from the product solution such as 1,4-CHDM in the subsequent process. This is not preferable because it causes an increase. Even if this ratio is large, the solvent after separating the product from the product solution can be recycled and used in the hydrogenation step again. For example, when water is used as a solvent, it is preferably used so that the concentration of the raw material compound before the reaction is 5 to 50% by weight, more preferably 10 to 40% by weight.

本発明の触媒としては、シクロアルカンジカルボン酸の側鎖を直接水素化反応させることが可能な触媒であれば、特に制限はないが、反応後の触媒と製品溶液の分離の観点から、固体触媒が好適に使用される。本発明の固体触媒としては、担体に触媒活性を持つ金属が担持された触媒が好ましく、具体的には、担体としては、活性炭、アルミナ、シリカ、珪藻土、チタニア、ジルコニアなどの多孔質担体が挙げられ、単独または2種類以上組み合わせて用いてもよい。好ましい担体としては、活性炭である。また、触媒金属としては、ルテニウムおよびスズを含み、場合によってロジウム、白金の中から選ばれる少なくとも1種の金属を含んでいてもよく、より好ましくは、ルテニウム、白金、およびスズの組み合わせからなる触媒金属である。   The catalyst of the present invention is not particularly limited as long as the side chain of cycloalkanedicarboxylic acid can be directly hydrogenated, but from the viewpoint of separation of the catalyst after the reaction and the product solution, a solid catalyst Are preferably used. The solid catalyst of the present invention is preferably a catalyst in which a metal having catalytic activity is supported on a carrier. Specifically, examples of the carrier include porous carriers such as activated carbon, alumina, silica, diatomaceous earth, titania, and zirconia. These may be used alone or in combination of two or more. A preferred carrier is activated carbon. The catalyst metal includes ruthenium and tin, and may optionally include at least one metal selected from rhodium and platinum, more preferably a catalyst comprising a combination of ruthenium, platinum and tin. It is a metal.

また、触媒金属を担持させる割合としては、全触媒活性金属の重量と担体の重量の合計値に対して、通常0.5〜50重量%が好ましく、1〜20重量%がより好ましい。スズはルテニウムに対して、触媒中で0.3〜10モル倍、更には0.5〜5モル倍存在させるのが生成物の選択性向上の観点から好ましい。また、白金またはロジウムはルテニウムに対して触媒中で0.05〜2.5モル倍、特に0.1〜0.4モル倍で存在させるのが活性向上の観点から好ましい。   Moreover, as a ratio which carries a catalyst metal, 0.5-50 weight% is preferable normally with respect to the total value of the weight of all the catalyst active metals, and the support | carrier, and 1-20 weight% is more preferable. From the viewpoint of improving the selectivity of the product, tin is preferably present in the catalyst in an amount of 0.3 to 10 mol times, more preferably 0.5 to 5 mol times relative to ruthenium. Further, platinum or rhodium is preferably present in the catalyst in an amount of 0.05 to 2.5 moles, particularly 0.1 to 0.4 moles, relative to ruthenium from the viewpoint of improving the activity.

以下、触媒を調製する方法について記す。担体への触媒成分の担持は、浸漬法、イオン交換法、含浸法など担持触媒の調製に常用されている任意の方法で行うことができる。中でも特に簡便で好ましいのは浸漬法である。浸漬法によるときは、担持する金属成分の化合物を溶媒、例えば、水に溶解して金属化合物の水溶液とし、この水溶液に担体を浸漬して担体に金属成分を担持させる。担体に各金属成分を担持させる順序については特に制限はなく、全ての金属成分を同時に担持しても、各成分を個別に担持してもよいが、操作の簡便さという点からは、全ての金属成分を同時に担持する方が好ましい。また所望ならば各成分を複数回に分けて担持してもよい。なお、担体を用いない非担持型の触媒の場合は、C.S.Narasimhan;Journal of Catalyst,121,1,165(1990)に記載されているように、還元剤で還元する方法や共沈法により調製することができる。   Hereinafter, a method for preparing the catalyst will be described. The catalyst component can be supported on the carrier by any method commonly used for the preparation of a supported catalyst, such as an immersion method, an ion exchange method, and an impregnation method. Among them, the immersion method is particularly simple and preferable. When the immersion method is used, the metal component compound to be supported is dissolved in a solvent, for example, water, to form an aqueous solution of the metal compound, and the carrier is immersed in this aqueous solution to support the metal component on the carrier. There is no particular limitation on the order in which each metal component is supported on the carrier, and all the metal components may be supported simultaneously or each component may be individually supported. It is preferable to carry the metal component simultaneously. Further, if desired, each component may be carried in a plurality of times. In the case of a non-supported catalyst that does not use a carrier, C.I. S. As described in Narasiman; Journal of Catalyst, 121, 1,165 (1990), it can be prepared by a reducing method or a coprecipitation method.

触媒調製に用いる各触媒金属成分の化合物としては、触媒の調製法にもよるが、通常は硝酸塩、硫酸塩、塩酸塩などの鉱酸塩が用いられる。また、これら以外にも酢酸塩などの有機酸塩、水酸化物、酸化物、更には有機金属化合物や錯塩なども用いることができる
が、中でも塩酸塩を用いるのが特に好ましい。塩酸塩を用いた場合には、場合によっては含新触媒を一旦乾燥させた後に炭酸水素アンモニウム水溶液で洗浄することで塩素成分を除いてもよい。
As the compound of each catalytic metal component used for catalyst preparation, although depending on the method for preparing the catalyst, mineral salts such as nitrates, sulfates and hydrochlorides are usually used. In addition to these, organic acid salts such as acetates, hydroxides, oxides, organic metal compounds, complex salts, and the like can be used. Of these, hydrochlorides are particularly preferable. In the case of using the hydrochloride, the chlorine component may be removed by drying the fresh catalyst once and then washing with an aqueous ammonium hydrogen carbonate solution.

担体に金属成分を担持したならば乾燥し、次いで所望により焼成、還元して触媒とする。乾燥は通常は200℃以下、好ましくは50〜150の温度で、減圧下に保持するか又は空気などの乾燥ガスを流通させればよい。触媒金属成分の担持を複数回に分けて行う場合には、担持を行う毎に乾燥するのが好ましい。焼成は通常100〜600℃、好ましくは200〜500℃の温度で、空気や窒素などを通気しながら行えばよい。また還元は液相還元又は気相還元のいずれで行ってもよい。通常は水素やメタノールなどを還元ガスとして、100〜700℃、好ましくは300〜600℃で気相還元する。   If the metal component is supported on the support, it is dried, and then calcined and reduced as desired to form a catalyst. Drying is usually performed at a temperature of 200 ° C. or lower, preferably 50 to 150, under reduced pressure, or a dry gas such as air may be circulated. In the case where the catalyst metal component is loaded in a plurality of times, it is preferable to dry each time the catalyst metal component is loaded. Firing is usually performed at a temperature of 100 to 600 ° C., preferably 200 to 500 ° C. while aerating air or nitrogen. The reduction may be performed by either liquid phase reduction or gas phase reduction. Usually, gas phase reduction is performed at 100 to 700 ° C., preferably 300 to 600 ° C., using hydrogen or methanol as a reducing gas.

本発明では、原料化合物のシクロアルカンジカルボン酸の転化率を保持しつつ、水素化反応温度と水素化反応全圧を操作することで、所望のトランス体含有率を有するシクロアルカンジメタノールを得ることができる。これにより、シクロアルカンジメタノールの生産量を下げることなく、且つ連続的にシクロアルカンジメタノールのトランス含有率を制御することができる。また、本発明のシクロアルカンジメタノールの製造において、生成物として得られるシクロアルカンジメタノールのトランス含有率を1〜99wt%に制御することが好ましく、より好ましくは、5〜80wt%であり、更に好ましくは、30〜75wt%である。シクロアルカンジメタノールが、1,4−CHDMの場合は、トランス含有率が50wt%程度であれば、常温で流動化した1,4−CHDMが得られ後段の誘導品を製造する上で、効率よく後段のプロセスに供給することができる。また、一方で、トランス含有率が高くなるほど、工業的な需要が多い誘導体を得る原料として使用されるため好ましいが、常温で固形化しやすくなるため、融解させて移送するのに熱エネルギーを加える必要があり、また、時としてプロセス工程での閉塞などが懸念されるケースもある。   In the present invention, a cycloalkanedimethanol having a desired trans isomer content is obtained by controlling the hydrogenation reaction temperature and the total hydrogenation reaction pressure while maintaining the conversion rate of the raw material cycloalkanedicarboxylic acid. Can do. Thereby, the trans content of cycloalkanedimethanol can be continuously controlled without lowering the production amount of cycloalkanedimethanol. In the production of cycloalkanedimethanol of the present invention, the trans content of cycloalkanedimethanol obtained as a product is preferably controlled to 1 to 99 wt%, more preferably 5 to 80 wt%, Preferably, it is 30 to 75 wt%. When cycloalkanedimethanol is 1,4-CHDM, if the trans content is about 50 wt%, 1,4-CHDM fluidized at room temperature can be obtained, and the subsequent derivative can be manufactured efficiently. It can be well supplied to subsequent processes. On the other hand, the higher the trans content, the more preferable because it is used as a raw material for obtaining derivatives with much industrial demand. However, since it becomes easier to solidify at room temperature, it is necessary to add heat energy to melt and transport it. There are also cases where there is a concern about blockage in process steps.

本発明の水素化反応は通常、水素加圧下で実施するが、水素化反応温度、水素化反応全圧等の反応条件は、選択される触媒、溶媒、反応形式又は原料等に依存するものであるため、好適な条件を各々の場合に応じて決定並びに操作すればよいが、本発明においては、反応速度及び副反応の抑制の点から、水素化反応温度としては、50〜350℃の範囲で操作することが好ましく、より好ましくは150〜300℃の範囲であり、特に好ましくは180〜270℃の範囲である。水素化反応温度が高過ぎるとシクロヘキサンメタノールやメチルシクロヘキサンメタノール等の副生が増加する恐れがあり、一方で水素化反応温度が低すぎると反応速度が低下する恐れがある。水素化反応全圧は、0.1〜30MPaの範囲で操作することが好ましく、より好ましくは1〜25MPaの範囲であり、特に好ましくは7〜15MPaの範囲である。水素化反応全圧が低くなるにつれ反応速度が低下する恐れがあり、逆に高くなるにつれて、副生物が増加する恐れがある。   The hydrogenation reaction of the present invention is usually carried out under hydrogen pressure, but the reaction conditions such as the hydrogenation reaction temperature and the total hydrogenation reaction pressure depend on the selected catalyst, solvent, reaction type, or raw material. Therefore, suitable conditions may be determined and operated according to each case, but in the present invention, the hydrogenation reaction temperature is in the range of 50 to 350 ° C. from the viewpoint of reaction rate and suppression of side reactions. It is preferable to operate at 150, more preferably in the range of 150-300 ° C, particularly preferably in the range of 180-270 ° C. If the hydrogenation reaction temperature is too high, by-products such as cyclohexanemethanol and methylcyclohexanemethanol may increase. On the other hand, if the hydrogenation reaction temperature is too low, the reaction rate may decrease. The total hydrogenation reaction pressure is preferably operated in the range of 0.1 to 30 MPa, more preferably in the range of 1 to 25 MPa, and particularly preferably in the range of 7 to 15 MPa. The reaction rate may decrease as the total hydrogenation reaction pressure decreases, and by-product may increase as it increases.

本発明において、生成物である1,4−CHDM等のシクロアルカンジメタノールのトランス体含有率は、原料化合物である1,4−CHDA等のシクロアルカンジカルボン酸のトランス体含有率に応じて、目的とする原料化合物の転化率を達成するための接触時間を決定すれば、水素化反応温度と水素化反応全圧で制御することができる。
本発明の接触時間とは、完全混合槽型反応器では滞留時間と同義であり、また管型反応器であれば空塔体積基準の滞留時間であり、すなわち空間速度の逆数である。接触時間は、本発明では、好ましくは0.5〜3時間、より好ましくは、0.7〜2時間の範囲で、目標とする原料化合物の転化率(1〜100%)を達成させる。
In the present invention, the trans isomer content of cycloalkane dimethanol such as 1,4-CHDM which is a product depends on the trans isomer content of cycloalkane dicarboxylic acid such as 1,4-CHDA which is a raw material compound. If the contact time for achieving the target conversion rate of the raw material compound is determined, the hydrogenation reaction temperature and the total hydrogenation reaction pressure can be controlled.
The contact time in the present invention is synonymous with the residence time in the complete mixing tank reactor, and is the residence time based on the empty volume in the case of a tubular reactor, that is, the reciprocal of the space velocity. In the present invention, the contact time is preferably 0.5 to 3 hours, more preferably 0.7 to 2 hours to achieve the target conversion rate (1 to 100%) of the raw material compound.

本発明では、上述の水素化反応全圧の範囲で全圧の設定値を操作するが、設定値を高い値にすることにより反応器内の反応液中への水素溶解量が上昇し、その結果、水素化反応速度は上昇するので、原料化合物である1,4−CHDA等のシクロアルカンジカルボン酸のほぼ全量を1,4−CHDM等のシクロアルカンジメタノールに水素化させることが可能であり、なおかつ生成物のトランス体含有率は維持される。これは、本反応は液相下での水素化反応であることから、水素化反応全圧の設定値によって反応液の密度はほとんど変化しないため、反応器に対して、反応器へ供給する液の流量を維持すれば、接触時間は変化せず、生成物の生産量は変化しない。   In the present invention, the set value of the total pressure is manipulated within the range of the total hydrogenation reaction pressure described above, but by increasing the set value, the amount of dissolved hydrogen in the reaction liquid in the reactor increases, As a result, the hydrogenation reaction rate increases, so that it is possible to hydrogenate almost the entire amount of the raw material cycloalkanedicarboxylic acid such as 1,4-CHDA to cycloalkanedimethanol such as 1,4-CHDM. In addition, the trans isomer content of the product is maintained. Since this reaction is a hydrogenation reaction under a liquid phase, the density of the reaction liquid hardly changes depending on the set value of the total hydrogenation reaction pressure. If the flow rate is maintained, the contact time does not change and the product output does not change.

したがって、生成物の1,4−CHDM等のシクロアルカンジメタノールの生産量を保ちながらトランス体含有率のみを変更したい場合には、水素化反応温度を適切に設定することで所望のトランス体含有率をもつ生成物を製造できる。その上で、所望の原料化合物の転化率を達成できるような適切な水素化反応全圧を設定すればよい。
生成物の所望のトランス体含有率を維持するのであれば、そのような水素化反応温度と
接触時間が設定できるので、そのうえで同一の転化率を達成できるような適切な全圧を与えることで、生産量を操作することも可能である。
Therefore, when it is desired to change only the trans isomer content while maintaining the production of cycloalkanedimethanol such as 1,4-CHDM as the product, the desired trans isomer content can be obtained by appropriately setting the hydrogenation reaction temperature. A product with a rate can be produced. In addition, an appropriate total hydrogenation reaction pressure may be set so as to achieve a desired conversion rate of the raw material compound.
If the desired trans isomer content of the product is to be maintained, such a hydrogenation reaction temperature and contact time can be set, and then by providing an appropriate total pressure to achieve the same conversion rate, It is also possible to manipulate the production volume.

水素化反応は連続法、回分法のいずれで行ってもよいが、操作の簡便性及び経済性の点から連続法の方が好ましい。また、反応型式としては液相懸濁反応、固定床流通反応のいずれをも採用することができるが、触媒分離の容易さの点からは固定床流通反応の方が好ましい。
水素化反応終了後の生成液からは必要に応じて触媒を固液分離する。反応溶液中に溶媒を用いた場合、最終的に純粋な1,4−CHDM等のシクロアルカンジメタノールの生成物を得るための生成物と溶媒を分離する機構については蒸留、抽出などで良い。1,4−CHDM等のシクロアルカンジメタノールは水素化触媒と接していない状態では、触媒水素化反応に必要な程度の高温条件に置いてもトランス体からシス体又はシス体からトランス体に異性化する異性化反応の反応速度は非常に遅い。よって、蒸留精製のように熱を必要とする分離プロセスにおいても、1,4−CHDM等のシクロアルカンジメタノールのトランス体含有率は変化する量は通常少量であり、反応器出口で溶液として得られる1,4−CHDM等のシクロアルカンジメタノールとほぼ同じトランス体含有率を持つ純粋な1,4−CHDM等のシクロアルカンジメタノールを最終製品として得ることが可能である。
The hydrogenation reaction may be carried out by either a continuous method or a batch method, but the continuous method is preferred from the viewpoint of easy operation and economical efficiency. As the reaction type, either a liquid phase suspension reaction or a fixed bed flow reaction can be employed, but the fixed bed flow reaction is preferred from the viewpoint of ease of catalyst separation.
If necessary, the catalyst is solid-liquid separated from the product solution after the hydrogenation reaction is completed. When a solvent is used in the reaction solution, the mechanism for separating the product and the solvent to finally obtain a pure product of cycloalkanedimethanol such as 1,4-CHDM may be distillation or extraction. In a state where cycloalkanedimethanol such as 1,4-CHDM is not in contact with the hydrogenation catalyst, the trans isomer is converted to the cis isomer or the cis isomer to the trans isomer even under high temperature conditions necessary for the catalytic hydrogenation reaction. The reaction rate of the isomerization reaction is very slow. Therefore, even in a separation process that requires heat, such as distillation purification, the trans isomer content of cycloalkanedimethanol such as 1,4-CHDM is usually small and can be obtained as a solution at the reactor outlet. It is possible to obtain pure cycloalkanedimethanol such as 1,4-CHDM having almost the same trans isomer content as cycloalkanedimethanol such as 1,4-CHDM.

本発明の方法により得られたシクロアルカンジメタノールは、常法によりポリエステル、ポリウレタン、ポリカーボネート等の重合モノマー若しくは共重合モノマーに好適に使用される。更に、このポリエステル、ポリウレタン、ポリカーボネート等は特に耐熱性、耐候性、物理的強度等に優れた樹脂や繊維の原料として用いられる。
すなわち上記した方法により、同一の反応器を用いて、完全に近い転化率で、生産量を維持したまま、所望のトランス体含有率の純粋な1,4−CHDMを得ることを可能である。
The cycloalkanedimethanol obtained by the method of the present invention is suitably used as a polymerization monomer or copolymerization monomer such as polyester, polyurethane and polycarbonate by a conventional method. Furthermore, the polyester, polyurethane, polycarbonate and the like are used as raw materials for resins and fibers particularly excellent in heat resistance, weather resistance, physical strength and the like.
That is, by the above-described method, it is possible to obtain pure 1,4-CHDM having a desired trans isomer content while maintaining the production amount with a nearly complete conversion rate using the same reactor.

以下、本発明について実施例を挙げて更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。
[製造例]
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to these Examples, unless the summary is exceeded.
[Production example]

<水素化反応触媒の製造(調製)>
本発明の実施例で用いた触媒は、特開2000−80053号特許の実施例を参考に以下のように製造した。
活性炭(長さ:約4mm×径:約1mmφ)を30%硝酸水溶液で95℃、3時間加熱処理して濾過し、pHが3になるまで水洗した後、120℃の箱型乾燥器の中で一晩乾燥させた。得られた活性炭にRuCl3・3H2O、H2PtCl6・6H2O、SnCl2・2H2Oを含む水溶液を加え、3時間、室温下でゆっくり攪拌した。なお、本操作において金属原料の濃度は、全金属原料中の金属のみの重量と活性炭重量の合計値に対して、Ru、Pt、Snの重量割合がそれぞれ6重量%、3重量%、7重量%となるように調整した。また、水の量は予め細孔容積を測定しておき、使用する全活性炭の細孔容積と同じ量の水を用いた。金属成分の含浸後、減圧下、110℃に2時間ほど保ち、乾燥させた。
<Production (preparation) of hydrogenation reaction catalyst>
The catalyst used in the examples of the present invention was produced as follows with reference to the examples of Japanese Patent Application Laid-Open No. 2000-80053.
Activated charcoal (length: approx. 4 mm x diameter: approx. 1 mmφ) is filtered with a 30% aqueous nitric acid solution at 95 ° C. for 3 hours, washed with water until the pH is 3 and then placed in a 120 ° C. box-type dryer. And dried overnight. An aqueous solution containing RuCl3 · 3H2O, H2PtCl6 · 6H2O and SnCl2 · 2H2O was added to the obtained activated carbon, and the mixture was slowly stirred at room temperature for 3 hours. In this operation, the concentration of the metal raw material is such that the weight ratio of Ru, Pt, and Sn is 6% by weight, 3% by weight, and 7% by weight with respect to the total value of the weight of only the metal in all the metal raw materials and the weight of the activated carbon, respectively. % Was adjusted. Moreover, the amount of water measured the pore volume beforehand, and used the water of the same quantity as the pore volume of all the activated carbon to be used. After impregnation with the metal component, it was kept under reduced pressure at 110 ° C. for about 2 hours and dried.

続いて、全金属原料中に含まるCl量の1.2倍モルの炭酸水素アンモニウムを含む水溶液(濃度11%)を調製し、室温下で攪拌しながらゆっくりと加え、一晩静置させた。その後、70℃にて触媒を水洗(触媒4.5kgに対し、水18Lで10回洗浄)し、コニカルドライヤーにて110℃下で3時間掛けて真空乾燥させた。
得られた金属含浸触媒を水素気流下、550℃で1時間還元させた。更に還元した触媒
は7%の酸素を含有する窒素ガスにて攪拌させながらゆっくりと酸化させ、6%Ru−3%Pt−7%Sn/活性炭触媒を得た。
Subsequently, an aqueous solution (concentration 11%) containing 1.2 times moles of ammonium hydrogen carbonate as the amount of Cl contained in all metal raw materials was prepared, slowly added with stirring at room temperature, and allowed to stand overnight. . Thereafter, the catalyst was washed with water at 70 ° C. (10 times with 18 L of water for 4.5 kg of catalyst), and vacuum-dried at 110 ° C. for 3 hours with a conical dryer.
The obtained metal-impregnated catalyst was reduced at 550 ° C. for 1 hour in a hydrogen stream. Further, the reduced catalyst was slowly oxidized while being stirred with nitrogen gas containing 7% oxygen to obtain 6% Ru-3% Pt-7% Sn / activated carbon catalyst.

<実施例1>
1,4−CHDAから1,4CHDMの製造
図2に示す流通式管型反応器を用いて、1,4−CHDAの水素化反応による1,4−CHDMの製造を行った。内径25mmの管内に、上記の調製例で製造した触媒を充填高さ855mmとなるように充填した。原料化合物は、溶解槽にて1,4−CHDA(東京化成工業株式会社製、純度99%、トランス体含有率:25%)と蒸留水(和光純薬工業株式会社製、純度100%)を混合し、150℃に昇温して1,4−CHDAを水に全て溶解させ、1,4−CHDAの濃度が20重量%の水溶液を調製した。この水溶液の温度を150℃に維持したまま、移送ラインよりフィード槽へ移送し、送液ポンプで反応器へ150℃で送液した。
<Example 1>
Production of 1,4-CHDM from 1,4-CHDA 1,4-CHDM was produced by hydrogenation of 1,4-CHDA using a flow-through tubular reactor shown in FIG. The catalyst produced in the above preparation example was filled in a tube having an inner diameter of 25 mm so as to have a filling height of 855 mm. The raw material compound was 1,4-CHDA (Tokyo Chemical Industry Co., Ltd., purity 99%, trans isomer content: 25%) and distilled water (Wako Pure Chemical Industries, Ltd., purity 100%) in a dissolution tank. The mixture was heated to 150 ° C., and 1,4-CHDA was completely dissolved in water to prepare an aqueous solution having a concentration of 1,4-CHDA of 20% by weight. While maintaining the temperature of this aqueous solution at 150 ° C., the solution was transferred from a transfer line to a feed tank, and was sent to the reactor at 150 ° C. by a liquid feed pump.

水素化反応に使用する水素(純度99.9%以上)は、水素ボンベより全圧自動調整器と昇圧器を用いて、いったん蓄圧器に反応圧力以上の圧力で蓄圧した。蓄圧器に蓄圧された水素は圧力自動調整器によって水素圧を調整し、反応器へ供給する際には、供給ラインに流量制御計を設け反応器に供給される水素流量を制御しながら供給した。
表−1に示す反応条件で水素化反応を行った。即ち、反応温度を200℃(反応器内の触媒充填層の最上部から250mm下の位置に測温点を設置し、この温度が所定温度となるように、反応器の外部に熱媒を循環して温度調整を行なった。)、反応器内の全圧は12MPaとし、原料化合物(20重量%の1,4−CHDA含有水溶液)を反応器へ250mL/hrで供給し、水素流量は165NL/hrとした。このときの接触時間は1.
5hrであった。なお、本接触時間は触媒充填層体積を1,4−CHDA水溶液流量で除することで算出した、いわゆる空塔ベースでの滞留時間である。反応開始から8時間後(定常状態)、反応器出口において、生成物である1,4−CHDM含有液を抜き出し、ガスクロマトグラフィーおよび液体クロマトグラフィーで分析することで、1,4−CHDAの転化率並びに1,4−CHDMの収率を算出した。また、生成物である1,4−CHDM中のトランス体含有率はガスクロマトグラフィーで測定した。結果を表−1に示す。
Hydrogen (purity 99.9% or more) used for the hydrogenation reaction was once stored in the pressure accumulator at a pressure higher than the reaction pressure by using a total pressure automatic regulator and a booster from a hydrogen cylinder. The hydrogen pressure accumulated in the pressure accumulator was adjusted while adjusting the hydrogen pressure with an automatic pressure regulator, and was supplied while controlling the flow rate of hydrogen supplied to the reactor by installing a flow rate controller in the supply line. .
The hydrogenation reaction was performed under the reaction conditions shown in Table-1. That is, the reaction temperature is 200 ° C. (a temperature measuring point is installed at a position 250 mm below the uppermost part of the catalyst packed bed in the reactor, and a heat medium is circulated outside the reactor so that this temperature becomes a predetermined temperature. The total pressure in the reactor was 12 MPa, the raw material compound (20 wt% 1,4-CHDA-containing aqueous solution) was supplied to the reactor at 250 mL / hr, and the hydrogen flow rate was 165 NL. / Hr. The contact time at this time is 1.
It was 5 hours. In addition, this contact time is a residence time on a so-called empty base calculated by dividing the catalyst packed bed volume by the 1,4-CHDA aqueous solution flow rate. After 8 hours from the start of the reaction (steady state), 1,4-CHDM-containing liquid as a product is extracted at the outlet of the reactor and analyzed by gas chromatography and liquid chromatography to convert 1,4-CHDA. The rate and the yield of 1,4-CHDM were calculated. The trans isomer content in the product 1,4-CHDM was measured by gas chromatography. The results are shown in Table-1.

<実施例2>
実施例1において、反応温度を210℃、圧力を10MPa、水素流量を165NL/hr、液接触時間を1.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例3>
実施例1において、反応温度を210℃、圧力を12MPa、水素流量を165NL/hr、液接触時間を1.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 2>
In Example 1, all were carried out in the same manner except that the reaction temperature was 210 ° C., the pressure was 10 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 1.50 hr. The results are shown in Table-1.
<Example 3>
In Example 1, all were carried out in the same manner except that the reaction temperature was 210 ° C., the pressure was 12 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 1.50 hr. The results are shown in Table-1.

<実施例4>
実施例1において、反応温度を220℃、圧力を12MPa、水素流量を110NL/hr、液接触時間を1.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例5>
実施例1において、反応温度を220℃、圧力を12MPa、水素流量を165NL/hr、液接触時間を1.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 4>
In Example 1, all were carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 12 MPa, the hydrogen flow rate was 110 NL / hr, and the liquid contact time was 1.50 hr. The results are shown in Table-1.
<Example 5>
In Example 1, all were carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 12 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 1.50 hr. The results are shown in Table-1.

<実施例6>
実施例1において、反応温度を220℃、圧力を12MPa、水素流量を220NL/hr、液接触時間を1.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例7>
実施例1において、反応温度を230℃、圧力を12MPa、水素流量を165NL/hr、液接触時間を1.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 6>
In Example 1, all were carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 12 MPa, the hydrogen flow rate was 220 NL / hr, and the liquid contact time was 1.50 hr. The results are shown in Table-1.
<Example 7>
In Example 1, all were carried out in the same manner except that the reaction temperature was 230 ° C., the pressure was 12 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 1.50 hr. The results are shown in Table-1.

<実施例8>
実施例1において、反応温度を240℃、圧力を7MPa、水素流量を165NL/hr、液接触時間を1.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例9>
実施例1において、反応温度を240℃、圧力を8MPa、水素流量を165NL/hr、液接触時間を1.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 8>
In Example 1, all were carried out in the same manner except that the reaction temperature was 240 ° C., the pressure was 7 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 1.50 hr. The results are shown in Table-1.
<Example 9>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 240 ° C., the pressure was 8 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 1.50 hr. The results are shown in Table-1.

<実施例10>
実施例1において、反応温度を240℃、圧力を10MPa、水素流量を165NL/hr、液接触時間を1.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例11>
実施例1において、反応温度を240℃、圧力を12MPa、水素流量を165NL/hr、液接触時間を1.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
(以上)
<Example 10>
In Example 1, all were carried out in the same manner except that the reaction temperature was 240 ° C., the pressure was 10 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 1.50 hr. The results are shown in Table-1.
<Example 11>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 240 ° C., the pressure was 12 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 1.50 hr. The results are shown in Table-1.
(that's all)

<実施例12>
実施例1において、反応温度を200℃、圧力を12MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例13>
実施例1において、反応温度を210℃、圧力を10MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 12>
In Example 1, all were carried out in the same manner except that the reaction temperature was 200 ° C., the pressure was 12 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.
<Example 13>
In Example 1, all were carried out in the same manner except that the reaction temperature was 210 ° C., the pressure was 10 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.

<実施例14>
実施例1において、反応温度を210℃、圧力を12MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例15>
実施例1において、反応温度を220℃、圧力を8MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 14>
In Example 1, all were carried out in the same manner except that the reaction temperature was 210 ° C., the pressure was 12 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.
<Example 15>
In Example 1, all were carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 8 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.

<実施例16>
実施例1において、反応温度を220℃、圧力を10MPa、水素流量を110NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例17>
実施例1において、反応温度を220℃、圧力を10MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1
に示す。
<Example 16>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 10 MPa, the hydrogen flow rate was 110 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.
<Example 17>
In Example 1, all were carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 10 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. Table 1 shows the results.
Shown in

<実施例18>
実施例1において、反応温度を220℃、圧力を10MPa、水素流量を220NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例19>
実施例1において、反応温度を220℃、圧力を11MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 18>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 10 MPa, the hydrogen flow rate was 220 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.
<Example 19>
In Example 1, all were carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 11 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.

<実施例20>
実施例1において、反応温度を220℃、圧力を12MPa、水素流量を110NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例21>
実施例1において、反応温度を220℃、圧力を12MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 20>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 12 MPa, the hydrogen flow rate was 110 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.
<Example 21>
In Example 1, all were carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 12 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.

<実施例22>
実施例1において、反応温度を220℃、圧力を12MPa、水素流量を220NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例23>
実施例1において、反応温度を230℃、圧力を8MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 22>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 12 MPa, the hydrogen flow rate was 220 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.
<Example 23>
In Example 1, all were carried out in the same manner except that the reaction temperature was 230 ° C., the pressure was 8 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.

<実施例24>
実施例1において、反応温度を230℃、圧力を10MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例25>
実施例1において、反応温度を230℃、圧力を12MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 24>
In Example 1, all were carried out in the same manner except that the reaction temperature was 230 ° C., the pressure was 10 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.
<Example 25>
In Example 1, all were carried out in the same manner except that the reaction temperature was 230 ° C., the pressure was 12 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.

<実施例26>
実施例1において、反応温度を240℃、圧力を6MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例27>
実施例1において、反応温度を240℃、圧力を7MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 26>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 240 ° C., the pressure was 6 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.
<Example 27>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 240 ° C., the pressure was 7 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.

<実施例28>
実施例1において、反応温度を240℃、圧力を8MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に
示す。
<実施例29>
実施例1において、反応温度を240℃、圧力を10MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 28>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 240 ° C., the pressure was 8 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.
<Example 29>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 240 ° C., the pressure was 10 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.

<実施例30>
実施例1において、反応温度を240℃、圧力を12MPa、水素流量を165NL/hr、液接触時間を0.75hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例31>
実施例1において、反応温度を220℃、圧力を12MPa、水素流量を110NL/hr、液接触時間を0.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 30>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 240 ° C., the pressure was 12 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.75 hr. The results are shown in Table-1.
<Example 31>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 12 MPa, the hydrogen flow rate was 110 NL / hr, and the liquid contact time was 0.50 hr. The results are shown in Table-1.

<実施例32>
実施例1において、反応温度を220℃、圧力を12MPa、水素流量を165NL/hr、液接触時間を0.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例33>
実施例1において、反応温度を220℃、圧力を12MPa、水素流量を220NL/hr、液接触時間を0.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 32>
In Example 1, all were carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 12 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.50 hr. The results are shown in Table-1.
<Example 33>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 220 ° C., the pressure was 12 MPa, the hydrogen flow rate was 220 NL / hr, and the liquid contact time was 0.50 hr. The results are shown in Table-1.

<実施例34>
実施例1において、反応温度を240℃、圧力を8MPa、水素流量を165NL/hr、液接触時間を0.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<実施例35>
実施例1において、反応温度を240℃、圧力を10MPa、水素流量を165NL/hr、液接触時間を0.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
<Example 34>
In Example 1, all were carried out in the same manner except that the reaction temperature was 240 ° C., the pressure was 8 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.50 hr. The results are shown in Table-1.
<Example 35>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 240 ° C., the pressure was 10 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.50 hr. The results are shown in Table-1.

<実施例36>
実施例1において、反応温度を240℃、圧力を12MPa、水素流量を165NL/hr、液接触時間を0.50hrとした以外は全て同様の方法で実施した。結果を表−1に示す。
[考察]
(トランス体含有率のガス流量依存性)
実施例4〜6は同一の反応器を用いて、温度220℃、接触時間1.5hr、全圧12MPaにおいて、ガス流量のみを110〜220NL/hrと変化させた例である。これらの実施例ではすべて転化率が十分であった。ガス流量によらず、温度と接触時間を一定に保てば、全圧の上昇によってトランス体含有率は変化しなかった。この傾向は同一の反応器を用いた実施例16〜18の比較(温度220℃、接触時間0.75hr、全圧10MPa)、実施例20〜22の比較(温度220℃、接触時間1.5hr、全圧12MPa)、実施例31〜33の比較(温度220℃、接触時間0.5hr、全圧12MPa)においても同様であった。すなわち、1,4−CHDMのトランス体含有率は接触時間と温度のみを操作することで決定され、ガス流量には依存しないことを示している。
<Example 36>
In Example 1, everything was carried out in the same manner except that the reaction temperature was 240 ° C., the pressure was 12 MPa, the hydrogen flow rate was 165 NL / hr, and the liquid contact time was 0.50 hr. The results are shown in Table-1.
[Discussion]
(Dependence of transformer content on gas flow rate)
Examples 4 to 6 are examples in which only the gas flow rate was changed to 110 to 220 NL / hr using the same reactor at a temperature of 220 ° C., a contact time of 1.5 hr, and a total pressure of 12 MPa. In all these examples, the conversion was sufficient. Regardless of the gas flow rate, if the temperature and contact time were kept constant, the trans isomer content did not change with the increase in total pressure. This tendency is a comparison of Examples 16 to 18 using the same reactor (temperature 220 ° C., contact time 0.75 hr, total pressure 10 MPa), and comparison of Examples 20 to 22 (temperature 220 ° C., contact time 1.5 hr). This was the same in the comparison of Examples 31 to 33 (temperature 220 ° C., contact time 0.5 hr, total pressure 12 MPa). That is, the trans isomer content of 1,4-CHDM is determined by manipulating only the contact time and temperature, and does not depend on the gas flow rate.

(転化率の全圧依存性)
実施例8〜11は同一の反応器を用いて、温度240℃、接触時間1.5hr、ガス流量165NL/hrを固定して、全圧のみを7〜12MPaと変化させた例である。トランス体含有率は変化せず、全圧が低い状態では転化率が十分に達せず、全圧を上げると、転化率をほぼ完全にすることができた。転化率が一定であり、同一の反応器に対して同一の接触時間であるから、生産量は変化しなかった。この傾向は同一の反応器を用いた実施例2,3の比較(温度210℃、接触時間1.5hr、全圧10〜12MPa)、実施例13,14の比較(温度210℃、接触時間0.75hr、全圧10〜12MPa)、実施例15〜22の比較(温度220℃、接触時間0.75hr、全圧8〜12MPa)、実施例23,24の比較(温度230℃、接触時間0.75hr、全圧8〜10MPa)、実施例26〜30の比較(温度240℃、接触時間0.75hr、全圧6〜12MPa)、実施例34〜36の比較(温度240℃、接触時間0.5hr、全圧8〜12MPa)においても同様であった。すなわち、適切な全圧を選択すれば転化率を高くすることができ、同一の反応器を用いて、トランス体含有率を維持したまま同一の接触時間すなわち同一の1,4−CHDMの生産量を保つことができることを示している。
(Dependence of conversion on total pressure)
Examples 8 to 11 are examples in which the same reactor is used, the temperature is 240 ° C., the contact time is 1.5 hours, the gas flow rate is 165 NL / hr, and only the total pressure is changed to 7 to 12 MPa. The trans isomer content did not change, and the conversion rate did not sufficiently reach when the total pressure was low. When the total pressure was increased, the conversion rate could be almost complete. Since the conversion was constant and the same contact time for the same reactor, the production did not change. This tendency is a comparison between Examples 2 and 3 using the same reactor (temperature 210 ° C., contact time 1.5 hr, total pressure 10 to 12 MPa), and comparison between Examples 13 and 14 (temperature 210 ° C., contact time 0). .75 hr, total pressure 10-12 MPa), comparison of Examples 15-22 (temperature 220 ° C., contact time 0.75 hr, total pressure 8-12 MPa), comparison of Examples 23 and 24 (temperature 230 ° C., contact time 0) .75 hr, total pressure 8-10 MPa), comparison of Examples 26-30 (temperature 240 ° C., contact time 0.75 hr, total pressure 6-12 MPa), comparison of Examples 34-36 (temperature 240 ° C., contact time 0) 0.5 hr, total pressure 8-12 MPa). That is, if an appropriate total pressure is selected, the conversion rate can be increased, and the same reactor is used and the same contact time, that is, the same 1,4-CHDM production amount is maintained while maintaining the trans isomer content. That you can keep.

(トランス体含有率の温度依存性)
さらに、実施例16〜22は同一の反応器を用いて、温度220℃、接触時間0.75hrにおいて、全圧のみを8〜12MPaと変化させた例である。温度と接触時間を一定に保てば、全圧の上昇によってトランス体含有率は変化しないことを示す。この傾向は同一の反応器を用いて、温度230℃で実施した実施例23〜25の比較、温度240℃で実施した実施例26〜30の比較においても同様であった。これら3つの設定温度のすべてにおいて、転化率は損なわれなかった。また、同一の反応器に対して同一の接触時間であるから、生産量は変化しなかった。すなわち、適切な全圧を選択すれば、同一の反応器を用いて、温度のみを操作することで、1,4−CHDMの生産量を保ちながら転化率を高い状態のままトランス体含有率のみを変化させることができることを示している。
(Temperature dependence of trans isomer content)
Furthermore, Examples 16 to 22 are examples in which only the total pressure was changed to 8 to 12 MPa at a temperature of 220 ° C. and a contact time of 0.75 hr using the same reactor. If the temperature and the contact time are kept constant, it indicates that the trans isomer content does not change with the increase of the total pressure. This tendency was the same in the comparison of Examples 23 to 25 performed at a temperature of 230 ° C and the comparison of Examples 26 to 30 performed at a temperature of 240 ° C using the same reactor. At all three set temperatures, conversion was not compromised. Moreover, since it was the same contact time with respect to the same reactor, the production amount did not change. That is, if an appropriate total pressure is selected, only the temperature is operated using the same reactor, and only the trans isomer content is maintained while maintaining a high conversion rate while maintaining the production amount of 1,4-CHDM. It can be changed.

(トランス体含有率の接触時間依存性)
また、同一温度で、接触時間のみを変化させた例を示す。実施例4〜6は温度220℃、接触時間1.5hrの例、実施例20〜22は温度220℃、接触時間0.75hrの例、実施例31〜33は温度220℃、接触時間0.5hrの例である。適切な全圧を選択すれば、同一温度を維持したまま、接触時間のみを操作することで、転化率を高い状態のままトランス体含有率を変化させることができることを示している。
(Dependence of trans isomer content on contact time)
Moreover, the example which changed only the contact time at the same temperature is shown. Examples 4 to 6 are examples of a temperature of 220 ° C. and a contact time of 1.5 hours, Examples 20 to 22 are examples of a temperature of 220 ° C. and a contact time of 0.75 hr, Examples 31 to 33 are a temperature of 220 ° C. and a contact time of 0. This is an example of 5 hours. It is shown that if an appropriate total pressure is selected, the trans isomer content can be changed while maintaining the same temperature and operating only the contact time while maintaining a high conversion rate.

(運転条件からのトランス体含有率の推定)
図1は、本実施例で使用した触媒について、接触時間と反応温度との2種の異なる組み合わせに対する、得られる1,4−CHDMのトランス体含有率との相関を示すグラフである。図1において、実線は接触時間0.5hrでの反応温度とトランス体含有率との相関を示し、破線は接触時間0.75hrでの反応温度とトランス体含有率との相関を示し、一点鎖線は接触時間1.5hrでの反応温度とトランス体含有率との相関を示す。他の接触時間に対しても、同様のグラフを作成することができる。このようなグラフに基づいて、トランス体含有率を実質的に一定にするために必要な適当な接触時間と反応温度を選択することができる。
(Estimation of trans isomer content from operating conditions)
FIG. 1 is a graph showing the correlation of the resulting 1,4-CHDM trans isomer content for two different combinations of contact time and reaction temperature for the catalyst used in this example. In FIG. 1, the solid line shows the correlation between the reaction temperature at the contact time of 0.5 hr and the trans isomer content, the broken line shows the correlation between the reaction temperature at the contact time of 0.75 hr and the trans isomer content, Indicates a correlation between the reaction temperature at a contact time of 1.5 hr and the trans isomer content. Similar graphs can be created for other contact times. Based on such a graph, it is possible to select an appropriate contact time and reaction temperature necessary for making the trans isomer content substantially constant.

(運転条件を選択する方法の例示)
同一の反応器で同一組成の液の流通量を増加させ、同一の転化率を達成させる例を示す。所望のトランス体含有率が40%であった場合、温度を204℃、接触時間を1.5hrとすれば達成できたとする(点A)。この状態からトランス体含有率を40%に維持しながら生産量のみを増やしたいとすると、同一トランス体含有率の状態で接触時間を減らせば、流通量が増加したことと同義である。接触時間のみを0.75hrと半分にし、温度を219℃とすると(点B)、転化率が等しければ生産量は2倍となる。全圧を増せば
転化率は上昇させられるので、生産量のみを変更することも可能である。
(Example of how to select operating conditions)
An example will be shown in which the same conversion rate is achieved by increasing the flow rate of the liquid having the same composition in the same reactor. When the desired trans isomer content is 40%, it can be achieved by setting the temperature to 204 ° C. and the contact time to 1.5 hr (point A). From this state, if it is desired to increase only the production amount while maintaining the trans isomer content rate at 40%, it is synonymous with the increase in the circulation amount if the contact time is reduced with the same trans isomer content rate. When only the contact time is halved to 0.75 hr and the temperature is 219 ° C. (point B), the output is doubled if the conversion is equal. Since the conversion rate can be increased by increasing the total pressure, it is possible to change only the production volume.

Figure 0006051980
Figure 0006051980

Claims (2)

トランス体含有率が10〜50wt%の1,4−シクロヘキサンジカルボン酸を原料化合物として、少なくともルテニウム、スズ、及び白金を含有する固体触媒の存在下で液相にて水素化反応を行うことにより、トランス体含有率が30〜75wt%の1,4−シクロヘキサンジメタノールを得るに際し、前記原料化合物の転化率を保持しつつ、水素化反応温度を200〜240℃の範囲、水素化反応全圧を7〜12MPaの範囲、及び接触時間を0.5〜1.5時間の範囲とし、かつ水素化反応温度及び/又は接触時間を操作することにより、所望のトランス体含有率を有する1,4−シクロヘキサンジメタノールを得ることを特徴とする1,4−シクロヘキサンジメタノールの製造方法。 By performing a hydrogenation reaction in the liquid phase in the presence of a solid catalyst containing at least ruthenium, tin, and platinum, using 1,4-cyclohexanedicarboxylic acid having a trans isomer content of 10 to 50 wt% as a raw material compound, When obtaining 1,4-cyclohexanedimethanol having a trans isomer content of 30 to 75 wt%, the hydrogenation reaction temperature is in the range of 200 to 240 ° C. and the total hydrogenation reaction pressure is maintained while maintaining the conversion rate of the raw material compound. range 7~12MPa, and contact time in the range of 0.5 to 1.5 hours, and by operating the hydrogenation reaction temperature and / or contact time with the desired trans isomer content of 1,4 A method for producing 1,4-cyclohexanedimethanol, comprising obtaining cyclohexanedimethanol . 更に水素化反応全圧を操作する請求項1に記載の1,4−シクロヘキサンジメタノールの製造方法。 Furthermore, the manufacturing method of the 1, 4- cyclohexane dimethanol of Claim 1 which operates a hydrogenation reaction total pressure.
JP2013052184A 2013-03-14 2013-03-14 Method for producing 1,4-cyclohexanedimethanol Active JP6051980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052184A JP6051980B2 (en) 2013-03-14 2013-03-14 Method for producing 1,4-cyclohexanedimethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052184A JP6051980B2 (en) 2013-03-14 2013-03-14 Method for producing 1,4-cyclohexanedimethanol

Publications (2)

Publication Number Publication Date
JP2014177422A JP2014177422A (en) 2014-09-25
JP6051980B2 true JP6051980B2 (en) 2016-12-27

Family

ID=51697766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052184A Active JP6051980B2 (en) 2013-03-14 2013-03-14 Method for producing 1,4-cyclohexanedimethanol

Country Status (1)

Country Link
JP (1) JP6051980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4082998A4 (en) * 2019-12-27 2024-02-28 Hanwha Solutions Corp Method for producing 1,4-cyclohexanedimethanol

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102223388B1 (en) 2017-09-29 2021-03-04 한화솔루션 주식회사 Preparation method of ruthenium-platinum-tin catalyst for hydrogenation of cyclohexane dicarboxylic acid (CHDA) and method for producing cyclohexane dimethanol (CHDM) using said catalyst
KR102188755B1 (en) * 2017-12-22 2020-12-08 한화솔루션 주식회사 Preparation method of cyclohexane dimethanol having high trans contents and cyclohexane dimethanol thereof
KR102238560B1 (en) 2017-12-29 2021-04-08 한화솔루션 주식회사 Carbon based noble metal-transition metal alloy catalyst for high selectivity and preparation method of thereof
KR102446307B1 (en) 2018-12-27 2022-09-21 한화솔루션 주식회사 Method for preparation 1, 4-cyclohexanedimethanol
EP4083000A4 (en) 2019-12-27 2024-02-21 Hanwha Solutions Corp Method for preparation of 1, 4-cyclohexanedimethanol
CN114945546A (en) * 2019-12-27 2022-08-26 韩华思路信(株) Process for the preparation of 1, 4-cyclohexanedimethanol
US20230049802A1 (en) 2019-12-27 2023-02-16 Hanwha Solutions Corporation Method for producing 1,4-cyclohexane dicarboxylic acid

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843956A1 (en) * 1988-12-24 1990-06-28 Huels Chemische Werke Ag METHOD FOR PRODUCING ALIPHATIC AND CYCLOALIPHATIC DIOLS BY CATALYTIC HYDRATION OF DICARBONIC ACID ESTERS
GB9324752D0 (en) * 1993-12-02 1994-01-19 Davy Mckee London Process
JP3921877B2 (en) * 1998-06-22 2007-05-30 三菱化学株式会社 Method for producing 1,4-cyclohexanedimethanol
JP2000355564A (en) * 1999-06-15 2000-12-26 Mitsubishi Chemicals Corp Production of glycol
CN1141180C (en) * 1999-09-21 2004-03-10 旭化成株式会社 Catalysts for hydrogenation of carboxylic acid
JP2001151716A (en) * 1999-11-26 2001-06-05 Mitsubishi Chemicals Corp Method for producing trans-1,4-cyclohexanedimethanol
JP3896742B2 (en) * 1999-11-26 2007-03-22 三菱化学株式会社 Method for producing alcohols
JP2002053502A (en) * 2000-08-10 2002-02-19 Mitsubishi Chemicals Corp Method for producing dialcohol
JP2002145824A (en) * 2000-08-30 2002-05-22 Mitsubishi Chemicals Corp Method for hydrogenating terephthalic acid
JP2002069016A (en) * 2000-08-30 2002-03-08 Mitsubishi Chemicals Corp Method for hydrogenating terephthalic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4082998A4 (en) * 2019-12-27 2024-02-28 Hanwha Solutions Corp Method for producing 1,4-cyclohexanedimethanol

Also Published As

Publication number Publication date
JP2014177422A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP6051980B2 (en) Method for producing 1,4-cyclohexanedimethanol
US8338650B2 (en) Palladium catalysts for making ethanol from acetic acid
CN115806487A (en) Cyclic hydrogenation of dialkyl terephthalates with low by-product formation
AU2011213085A1 (en) Preparation and use of a catalyst for producing ethanol comprising a crystalline support modifier
WO2011056247A2 (en) Catalysts for making ethanol from acetic acid
EP3118181A1 (en) Composite metal catalyst composition, and method and apparatus for preparing 1,4-cyclohexanedimethanol using same
JP5838029B2 (en) Method for producing n-propyl acetate
TWI624463B (en) Method for producing tetrahydrofuran and use of ruthenium catalyst
JP2015054828A (en) Method of producing alcohol
JP5654399B2 (en) Process for producing hydrolyzate of glycerin
JP2018535994A (en) Isomerization of MDACH
WO2013148676A1 (en) Hydrogenation catalysts and processes for making same
JP5400148B2 (en) Continuous process for producing hexafluoroisopropanol
US9266095B2 (en) Hydrogenation catalysts with cobalt and alkaline-earth metal modified supports
US20110263910A1 (en) Copper Catalysts for Making Ethanol from Acetic Acid
TWI547478B (en) Method for producing n-propyl acetate and method for producing allyl acetate
JP3921877B2 (en) Method for producing 1,4-cyclohexanedimethanol
WO2010016462A1 (en) Methods for producing glycol from glycerin and 1-propanol
JP5562541B2 (en) Catalyst preparation method
JP6369828B2 (en) Method for reducing hydroxymethylfurfural
WO2011056248A2 (en) Processes for making ethanol or ethyl acetate from acetic acid using bimetallic catalysts
KR20120094100A (en) Method for producing n-propyl acetate
EP3212606B1 (en) Process for in situ water removal from an oxidative esterification reaction using a coupled reactor-distillation system
CN114713220A (en) Process for regenerating hydrogenation catalysts
TW202231355A (en) Process for regeneration of hydrogenation catalysts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6051980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350