WO2010016462A1 - Methods for producing glycol from glycerin and 1-propanol - Google Patents

Methods for producing glycol from glycerin and 1-propanol Download PDF

Info

Publication number
WO2010016462A1
WO2010016462A1 PCT/JP2009/063756 JP2009063756W WO2010016462A1 WO 2010016462 A1 WO2010016462 A1 WO 2010016462A1 JP 2009063756 W JP2009063756 W JP 2009063756W WO 2010016462 A1 WO2010016462 A1 WO 2010016462A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
catalyst
production method
glycerin
heteropolyacid
Prior art date
Application number
PCT/JP2009/063756
Other languages
French (fr)
Japanese (ja)
Inventor
智司 佐藤
正樹 秋山
慶太郎 森
貫一郎 乾
正浩 横多
Original Assignee
チッソ株式会社
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チッソ株式会社, 国立大学法人 千葉大学 filed Critical チッソ株式会社
Priority to JP2010523848A priority Critical patent/JP5555867B2/en
Publication of WO2010016462A1 publication Critical patent/WO2010016462A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by elimination of -OH groups, e.g. by dehydration

Definitions

  • the present invention relates to a method for producing glycol, a method for producing glycol by using glycerol having an adjacent hydroxyl group as a raw material and using a catalyst mainly composed of copper and reacting in the presence of hydrogen under atmospheric pressure or under pressure. About.
  • the present invention also relates to a method for producing 1-propanol comprising the method for producing the glycol as one step.
  • propylene glycol Glycols typified by propylene glycol are very important substances in the chemical industry, used as polyester raw materials, organic solvents, reaction intermediates, and the like.
  • the current industrial production method of propylene glycol is mainly performed by hydration of propylene oxide.
  • propylene which is a raw material for propylene oxide, is a compound derived from a fossil resource using naphtha as a main raw material, and cannot be said to be a manufacturing method that responds to environmental problems that require recent global warming countermeasures.
  • Patent Document 1 a method for producing acetol (hydroxyacetone) by dehydration reaction of glycerin
  • Patent Document 2 a method for producing glycol via acetol
  • Is not efficient industrially a method for producing propylene glycol directly from glycerin in the presence of a catalyst and hydrogen has already been reported (Non-Patent Document 1).
  • this method has a high reaction pressure, and the reaction apparatus is a pressure apparatus. Since it was necessary, there was a problem that the capital investment increased industrially.
  • Patent Documents 3 and 4 a method of directly synthesizing propylene glycol from glycerin in the presence of hydrogen is disclosed (Patent Documents 3 and 4), it is carried out under a relatively high pressure and is not industrially preferable, and further propylene glycol. The selectivity is not satisfactory.
  • Non-patent Document 2 the method of performing reaction under atmospheric pressure is also disclosed (Non-patent Document 2), the selectivity of propylene glycol is similarly not surprising.
  • 1-propanol is used as an organic solvent, an ester raw material, a chemical intermediate, a pharmaceutical intermediate production solvent, and the like, and is an important substance in the chemical industry. It was not found.
  • 1-propanol is generally obtained by hydrogenation of propionaldehyde by a hydroformylation reaction of ethylene (Non-patent Document 3) or by hydrogenation of allyl alcohol obtained from the reaction of acetic acid and propylene. (Patent Document 5).
  • the hydroformylation reactor is a pressure reactor and requires a large capital investment for its construction.
  • Acetic acid which is the raw material for allyl alcohol, is highly corrosive to the equipment, and this is also very large for facilities with corrosion resistance.
  • BDF Bio Diesel Fuel
  • FAME methyl ester
  • the first problem of the present invention is to solve the above-mentioned conventional technical problem, and to provide a method for producing glycol from glycerin with high selectivity at atmospheric pressure or under pressure.
  • a second object of the present invention is to provide a method for producing 1-propanol with high efficiency as a method for recycling glycerol.
  • the present inventors have studied a reaction condition in detail using a catalyst mainly composed of copper, thereby producing a method for producing glycol from glycerin with high selectivity even under atmospheric pressure or under pressure. As a result, the present invention has been completed.
  • the present inventors use a heteropolyacid or a heteropolyacid and a catalyst carrier complex as a catalyst for a glycol produced from glycerin, such as 1,2-propanediol, and the adsorbing reaction is caused by a dehydration reaction of 1,2-propanediol.
  • the secondary hydroxyl group of the hydroxyl group having a hydroxyl group to be selectively dehydrated to form an enol form forms a carbonyl form (lower saturated aldehyde) by tautomerism in the reaction system.
  • the present inventors set the method for producing glycol, specifically 1,2-propanediol from glycerin as the first step, and in the first step, A process for producing 1-propanol comprising a second step of converting the produced 1,2-propanediol into propanal and a third step of converting the propanal into 1-propanol, It came to be completed.
  • the glycol production method of the present invention is defined by the following items (1) to (13).
  • heteropolyacid or the heteropolyacid of the heteropolyacid-catalyst support complex includes any one selected from silicotungstic acid, silicomolybdic acid, phosphotungstic acid, and phosphomolybdic acid.
  • the third step is performed using a hydrogenation catalyst containing at least one catalyst component selected from copper, platinum, nickel, palladium and ruthenium (14) to (17) The manufacturing method in any one of.
  • the third step is performed using a hydrogenation catalyst containing any one or more kinds of catalyst components selected from copper, nickel, and palladium.
  • the manufacturing method in any one.
  • the present invention provides a method for producing glycol from glycerin with high selectivity at atmospheric pressure or under pressure.
  • the method for producing 1-propanol of the present invention provides a method for effectively utilizing glycerin.
  • 1-propanol can be obtained from glycerin with high efficiency.
  • the glycol production method of the present invention is a method for producing glycol using glycerin as a raw material.
  • glycols produced from glycerin include 1,2-propylene glycol and 1,3-propylene glycol.
  • 1,2-propylene glycol hereinafter also referred to as 1,2-propanediol
  • 1,2-propanediol is preferable. To be manufactured.
  • the glycol production method of the present invention is characterized by being carried out under atmospheric pressure or under pressure. Production of glycol using glycerin as a raw material is carried out under a somewhat high pressure (2 to 28 MPa). It is known that if the pressure is too low, the conversion rate of glycerin is lowered and the selectivity of glycol is lowered. (For example, described in Patent Document 4).
  • the production method of the present invention can maintain a high glycol selectivity by setting specific reaction conditions under atmospheric pressure or under pressure set to a pressure lower than the pressure described in the above document. is there.
  • the atmospheric pressure in the present invention refers to about 1 atmosphere (about 0.1 MPa), but is not limited to the condition of strictly 1 atmosphere, and the range of atmospheric pressure and the range understood by those skilled in the art are within the scope of the present invention. It is the range of atmospheric pressure.
  • under pressure in the present invention means 0.2 to 0.4 MPa, and among these, pressure under pressure particularly suitable for the reaction includes 0.3 MPa.
  • the glycol production method of the present invention is characterized by reacting in the presence of hydrogen.
  • the presence of hydrogen in the glycol production method of the present invention means that hydrogen is present when glycerin as a raw material comes into contact with the catalyst. Therefore, the raw material glycerin and hydrogen can be mixed and then supplied to the reactor, and if the raw material glycerin and hydrogen are present when they are in contact with the catalyst, they are separately supplied to the device. You can also.
  • the reaction when the reaction is carried out under atmospheric pressure, it is preferable to supply a relatively large amount of hydrogen from the viewpoint of improving the selectivity. On the other hand, when the reaction is performed under pressure, a high selectivity can be obtained even with a small amount of hydrogen supply.
  • the ratio of the number of moles of hydrogen fed into the reactor to the number of moles of raw material fed into the reactor is from 150.
  • a range of 500 is preferred.
  • a more preferred molar ratio range is from 150 to 400, and even more preferably from 150 to 300.
  • the hydrogen supply amount in the present invention satisfies the above range, glycol can be produced with higher selectivity.
  • the ratio of the number of moles of hydrogen fed into the reactor to the number of moles of raw material fed into the reactor is 20 A range of from 30 to 30 is preferred.
  • the hydrogen supply amount in the present invention satisfies the above range, glycol can be produced with good selectivity, the catalyst life is extended, and more economically preferable.
  • the hydrogen supply amount in the glycol production method of the present invention is such that, when the reaction is carried out under atmospheric pressure, the hydrogen flow rate for a catalyst volume of 1 ml is 30 to 150 ml / min. It is preferable that More preferably 40 to 120 ml / min. And more preferably 50 to 90 ml / min. It is. When the hydrogen supply amount in the present invention satisfies the above range, glycol can be produced with higher selectivity, which is economically preferable.
  • the hydrogen supply amount in the glycol production method of the present invention is preferably such that, when the reaction is carried out under pressure, the hydrogen flow rate is 0.010 to 0.080 L / min with respect to 1 mL of the catalyst volume. It is particularly preferred that it is ⁇ 0.065 L / min.
  • the glycol production method of the present invention is characterized by using a catalyst containing copper as a component.
  • the catalyst containing copper as a component used in the present invention is a commercially available product, a product obtained by reducing a commercially available product, a product obtained by pyrolyzing copper oxide, hydroxide, carbonate, nitrate, acetate, or the like, or known after pyrolysis. Any form such as those reduced by the above method can be used as a catalyst.
  • the catalyst carrier in the catalyst containing copper as a component used in the glycol production method of the present invention is not particularly limited, but aluminum oxide, chromium oxide, zirconium oxide, silicon dioxide, etc. are used alone or in combination with each oxide. It is preferably used as a composite oxide.
  • the copper component can be supported on the catalyst carrier by a known method such as impregnation or coprecipitation.
  • a copper-aluminum oxide catalyst As a catalyst containing copper as a component used in the glycol production method of the present invention, a copper-aluminum oxide catalyst, a copper-chromium oxide catalyst, a copper-zirconium oxide catalyst, a copper-silicon dioxide catalyst, a copper-aluminum oxide-zirconium oxide catalyst And a copper-aluminum oxide-chromium oxide catalyst.
  • a copper-aluminum oxide catalyst, a copper-chromium oxide catalyst, or a copper-aluminum oxide-zirconium oxide catalyst it is particularly preferable to use a copper-aluminum oxide catalyst, a copper-chromium oxide catalyst, or a copper-aluminum oxide-zirconium oxide catalyst.
  • the reaction apparatus used in the glycol production method of the present invention is an apparatus capable of causing the reaction to proceed by bringing glycerol and hydrogen as raw materials into contact with the catalyst when the reaction is performed under atmospheric pressure.
  • an apparatus in which a predetermined amount of catalyst precursor is placed in a gas phase flow reaction apparatus and reduced by a known method to form an active catalyst layer in the gas phase flow reaction apparatus can be exemplified. It is possible to produce glycol by supplying glycerin and hydrogen as raw materials to such an apparatus and reacting them.
  • a gas-phase flow reaction device in which the catalyst layer is formed is used as a pressure circulation blower.
  • a fixed-bed pressurized gas-phase flow reaction apparatus in which a pressurizing means is provided and the pressure in the apparatus can be adjusted can be used.
  • the first-stage reaction in which glycerin is dehydrated to produce acetol is carried out at 150 to 260 ° C., preferably 150 to 250 ° C., and hydrogen is added to the produced acetol to produce glycol.
  • the second stage reaction is preferably carried out at 100 to 220 ° C, preferably 100 to 190 ° C.
  • the reaction temperature is set in the above range so that the reaction proceeds at two different temperatures in the upper layer part and the lower layer part of the catalyst layer. It is preferable to control. This is because the reaction in which glycol is generated from glycerin is a two-stage reaction, and there is a temperature at which each reaction easily proceeds.
  • the reaction temperature in the present invention can be measured, for example, by directly measuring the temperature of the catalyst in the case of the reaction apparatus having the catalyst layer as described above.
  • the first stage reaction is performed at the upper part of the catalyst layer as described above, and the reaction temperature of the first stage reaction is measured by measuring the surface temperature of the upper part of the catalyst layer.
  • the second stage reaction is performed at the lower part of the catalyst layer as described above, and the reaction temperature of the second stage reaction can be measured by measuring the surface temperature of the lower part of the catalyst layer.
  • the two reaction temperatures are more preferably that the first stage reaction is carried out at 150 to 225 ° C. and the second stage reaction is carried out at 120 to 175 ° C. More preferably, the first stage reaction is performed at 150 to 200 ° C., and the second stage reaction is performed at 120 to 160 ° C.
  • the reaction is performed under pressure, it is more preferable that the first stage reaction is performed at 230 to 260 ° C., and the second stage reaction is performed at 150 to 220 ° C. More preferably, the reaction is performed at 240 to 250 ° C., and the second-stage reaction is performed at 150 to 175 ° C.
  • the first-stage reaction temperature and the second-stage reaction temperature of the present invention satisfy the above ranges, the reaction is sufficiently advanced and glycol can be produced with good selectivity, which is economically preferable.
  • the above two reaction temperature regions preferably have a temperature difference. This is because there is a temperature suitable for each reaction.
  • it preferably has a temperature difference of 10 ° C. to 80 ° C., more preferably 20 ° C. to 40 ° C.
  • it preferably has a temperature difference of 20 ° C. to 100 ° C., more preferably 30 ° C. to 90 ° C.
  • the amount of the catalyst when the reaction is carried out under pressure, the amount of the catalyst may be a catalyst amount that can be usually provided in the reaction apparatus, but the fixed bed pressurized gas phase flow reaction apparatus.
  • WHSV weight Hourly Space Velocity; units, h -1
  • the WHSV value is preferably in the range of 0.1 to 0.3 h ⁇ 1 , more preferably the WHSV value is 0.2 to 0.3 h ⁇ 1. It is preferable that it is the range of these.
  • the temperature can be controlled by using an electric furnace, a hot air furnace, a heat medium furnace or the like.
  • the contact time during which the raw glycol and hydrogen are in contact with the catalyst is 1 to 200 seconds. More preferably, it is 5 to 150 seconds.
  • the raw material glycerin may contain water, and the amount of water in the glycerin can be applied in an arbitrary range, preferably in the range of 0 to 98% by weight, and more preferably in the range of 20 to 80% by weight.
  • the method for producing 1-propanol of the present invention includes the above-described method for producing glycol as a production step (first step) of 1,2-propanediol. Furthermore, the method for producing 1-propanol of the present invention comprises a second step of converting 1,2-propanediol produced in the first step to propanal, and conversion of the propanal to 1-propanol. And a third step.
  • the first step is a step of converting glycol to 1,2-propanediol using the glycol production method described above.
  • the conditions used in the glycol production method described above can be used as they are.
  • the second step is a step of converting 1,2-propanediol produced in the first step into propanal.
  • a heteropolyacid or a heteropolyacid-catalyst support complex as a catalyst.
  • Heteropoly acids are composed of heteroatoms such as silicon, phosphorus and arsenic and metal oxyacid skeletons such as tungsten, vanadium and molybdenum.
  • a preferred example is silicotungstic acid, more preferred.
  • the heteropolyacid may be a free heteropolyacid, and may be used as a salt of the heteropolyacid by replacing some or all of the protons with other cations. Accordingly, the heteropolyacid referred to in the present invention includes salts of these heteropolyacids. Examples of cations that can be substituted with protons include ammonium, alkali metals, alkaline earth metals, and the like.
  • the heteropolyacid may be an anhydride or a crystal water-containing product, but the anhydride is preferred because the reaction is faster and the formation of by-products is suppressed.
  • effects similar to those of the anhydride can be obtained by performing dehydration treatment such as drying under reduced pressure or azeotropic dehydration with a solvent in advance.
  • heteropolyacid By using a heteropolyacid as a catalyst, both 1,2-propanediol conversion and propanal selectivity are higher than those of commonly used catalysts such as aluminum oxide, silicon dioxide, and silica-alumina. Numerical values are shown, and as a result, propanal can be produced in good yield. In particular, when silicotungstic acid is used as a catalyst, higher propanal selectivity is exhibited. Note that a plurality of heteropolyacids can be used as the catalyst.
  • the heteropolyacid-catalyst carrier complex is obtained by supporting the heteropolyacid on a catalyst carrier that is usually used as a catalyst carrier.
  • the catalyst carrier include aluminum oxide, silicon dioxide, activated carbon and the like. In the present invention, it is more preferable to use silicon dioxide as the catalyst support. A plurality of the above catalyst carriers can be used.
  • the heteropolyacid since the heteropolyacid has a large molecular size, it is often used by being physically immobilized on a stable support. In the examples described later, the heteropolyacid is used as a heteropolyacid-catalyst support complex.
  • the catalytic activity does not depend on the presence or absence of the catalyst carrier, and the same effect can be obtained even if the heteropolyacid is used without being supported on the carrier.
  • heteropolyacid-catalyst support complex examples include silicotungstic acid-aluminum oxide complex, silicotungstic acid-silicon dioxide complex, silicotungstic acid-activated carbon complex, silicomolybdic acid-aluminum oxide complex, silicomolybdenum.
  • Acid-silicon dioxide complex, silicomolybdic acid-activated carbon complex, phosphotungstic acid-aluminum oxide complex, phosphotungstic acid-silicon dioxide complex, phosphotungstic acid-activated carbon complex, phosphomolybdic acid-aluminum oxide complex examples thereof include a phosphomolybdic acid-silicon dioxide complex and a phosphomolybdic acid-activated carbon complex.
  • silicotungstic acid-aluminum oxide complex silicotungstic acid-silicon dioxide complex, silicotungstic acid-activated carbon complex, silicomolybdic acid-silicon dioxide complex, phosphotungstic acid-silicon dioxide complex, phosphomolybdic acid A silicon dioxide composite, more preferably a silicotungstic acid-silicon dioxide composite.
  • the heteropolyacid can be used as a catalyst in any form such as a commercially available product or a compound prepared by a known method.
  • the above heteropolyacid-catalyst carrier complex can be used as a catalyst in any form, such as a commercially available product, a commercially available product of the heteropolyacid, or a product prepared by a known method supported on a catalyst carrier. Is possible.
  • a known method such as an impregnation method or a coprecipitation method can be used.
  • a composite obtained by drying a solid obtained by impregnating silicon dioxide as a catalyst carrier component with a heteropolyacid such as silicotungstic acid can be used as the catalyst.
  • the content ratio of the heteropolyacid: catalyst support in the heteropolyacid-catalyst support complex is preferably 0.5: 99.5 to 50:50 by weight.
  • catalyst content of the heteropolyacid in the catalyst support is 0.5 to 50, sufficient catalytic activity can be obtained, and the catalytic activity can be prevented from decreasing in a short time.
  • 1,2-propanediol having an adjacent hydroxyl group is used as a catalyst for the heteropolyacid or heteropolyacid-catalyst support complex, so that only the secondary hydroxyl group of 1,2-propanediol is obtained. It is characterized in that propanal is produced by selective elimination and isomerization of the produced enol intermediate to a carbonyl form by tautomerism.
  • the 1,2-propanediol used in the second step may contain moisture.
  • the water content in the raw material containing 1,2-propanediol is preferably in the range of 0 to 95% by weight, more preferably in the range of 0 to 70% by weight, and most preferably in the range of 0 to 30% by weight.
  • the reaction apparatus used in the second step is not particularly limited, but industrially, an apparatus capable of performing a gas phase flow reaction in which the raw material is gasified and passed through an appropriate catalyst layer is preferable.
  • a gas-phase flow reaction apparatus for example, a predetermined amount of catalyst is put into the gas-phase flow reaction apparatus and pretreated by a known method to form an active catalyst layer in the gas-phase flow reaction apparatus.
  • the catalyst pretreatment can be performed by a known method that can activate the catalyst layer.
  • the catalyst layer is activated by heat treatment at 200 ° C. for about 1 hour in a nitrogen stream. Can be mentioned.
  • the reaction temperature in the second step is preferably a temperature range of 140 ° C. to 300 ° C., that is, a temperature at which 1,2-propanediol exists as a gas phase.
  • 140 ° C. or higher is preferable, and in order to keep the product selectivity favorable, 300 ° C. or lower is preferable.
  • a more preferable temperature range is 160 ° C. to 240 ° C., and since the yield is higher, a range of 180 ° C. to 240 ° C. is further preferable, and a range of 200 ° C. to 220 ° C. is most preferable.
  • the amount of catalyst used in the second step and the reaction time of the step are represented by the feed weight of 1,2-propanediol per unit time relative to the catalyst weight (WHSV: Weight Hourly Space Velocity; unit, h ⁇ 1 ).
  • WHSV value are available in the range of 20h -1 from 0.1, preferably WHSV value in terms of life and yield of the catalyst is in the range of 7h -1 from 0.5, more preferably Is the WHSV value, ranging from 1 to 6h ⁇ 1 .
  • the reaction time in the catalyst layer in the reactor in which this second step is carried out is within the above range. It is preferable to adjust the feed amount of the raw material and the supply amount of hydrogen in the first step.
  • the third step is a step of converting the propanal produced in the second step to 1-propanol, and a known method can be used for this step without any particular limitation.
  • a known method can be used for this step without any particular limitation.
  • the process using the hydrogenation catalyst containing any one or more types of catalyst components chosen from copper, platinum, nickel, palladium, and ruthenium as a catalyst can be used.
  • a reaction apparatus for performing such a process a known apparatus can be used without any particular limitation, and an apparatus capable of a gas phase flow reaction used in the second process is preferable.
  • a gas-phase flow reactor for example, a predetermined amount of a hydrogenation catalyst is placed in the gas-phase flow reactor and pretreated by a known method to form an active catalyst layer in the gas-phase flow reactor. Let Thereby, it is possible to produce 1-propanol by converting propanal.
  • a catalyst containing at least one selected from copper, nickel and palladium as a component is preferably used.
  • a specific example of a catalyst containing copper as a component is a commercial product, a product obtained by reducing a commercial product, a product obtained by thermally decomposing copper oxide, hydroxide, carbonate, nitrate, acetate, or the like, or Any form such as those reduced by a known method after thermal decomposition can be used as a catalyst.
  • the catalyst carrier in the hydrogenation catalyst is not particularly limited, but aluminum oxide, chromium oxide, zirconium oxide, silicon dioxide, etc. are suitably used alone or as a composite oxide in which respective oxides are combined.
  • a method for supporting a component such as copper on a catalyst carrier can be performed by a known method such as impregnation or coprecipitation.
  • Catalysts preferably used as the hydrogenation catalyst include copper-aluminum oxide catalyst, copper-chromium oxide catalyst, copper-zirconium oxide catalyst, copper-silicon dioxide catalyst, copper-aluminum oxide-zirconium oxide catalyst, copper-aluminum oxide-oxidation A chromium catalyst etc. are mentioned. Among these, copper-aluminum oxide catalyst, copper-chromium oxide catalyst, copper-aluminum oxide-zirconium oxide catalyst, or Raney nickel catalyst, Raney cobalt catalyst, Raney copper catalyst, palladium-activated carbon catalyst, platinum-activated carbon catalyst, etc. .
  • the amount of the catalyst may be an amount of catalyst that can be usually provided in the reaction apparatus.
  • the feed weight of propanal per unit time with respect to the catalyst weight (WHSV: Weight) Hourly Space Velocity; unit, h ⁇ 1 ), which can be used in the range of 0.1 to 20 h ⁇ 1 in terms of WHSV value, and preferably in terms of catalyst life and yield, in terms of WHSV value of 0. in the range of from 5 7h -1, more preferably at WHSV value is preferably in the range from 1 to 6h -1.
  • the reaction temperature is preferably set to 100 to 240 ° C, particularly preferably set to 120 ° C to 200 ° C.
  • the amount of hydrogen supplied in the third step is preferably such that the ratio of the number of moles of hydrogen supplied into the reactor to the number of moles of raw material (propanal) supplied into the reactor is in the range of 0.1 to 500. .
  • a more preferred molar ratio range is from 0.1 to 400, and even more preferably from 0.1 to 300.
  • the hydrogen supply amount in the present invention satisfies the above range, 1-propanol can be produced with higher selectivity, which is economically preferable.
  • the supply amount of propanal and hydrogen in the catalyst layer in which the third step is performed is within the above range. It is preferable to adjust the feed amount of the raw material and the supply amount of hydrogen in the first step.
  • the method for producing 1-propanol of the present invention includes three steps as described above, but each step may be performed in a separate reaction apparatus, or the reaction may be performed in one reaction apparatus.
  • the reactor used in the method for producing 1-propanol of the present invention is not particularly limited as described above. For example, three gas phase flow reactors are used, each for conversion of glycerin to 1,2-propanediol, conversion of 1,2-propanediol to propanal, and conversion of propanal to 1-propanol.
  • 1-propanol can be produced from glycerin.
  • a method of producing 1-propanal with one reactor such as a gas phase reactor can be mentioned.
  • three catalyst layers are provided in the reaction apparatus, a catalyst for converting glycerin to 1,2-propanediol is filled in the upper part of the reaction apparatus, and 1,2- A catalyst for converting propanediol to propanal is charged, and a catalyst for converting propanal to 1-propanol is charged at the bottom of the reactor.
  • 1-propanol can be produced from glycerin by simultaneously supplying glycerin and hydrogen as raw materials from the upper part of the reactor.
  • the reaction time of the 1-propanol production method in this case is represented by a raw material feed volume (WHSV: Weight Hourly Space Velocity; unit, h ⁇ 1 ) per unit time with respect to the catalyst layer volume, and a WHSV value of 0.1 to available in a range of 20h -1, preferably WHSV value in the range of 0.5 ⁇ 7h -1, more preferably at WHSV values, in the range of 1 ⁇ 6h -1. It is preferable to adjust the feed amount of the raw material and the supply amount of hydrogen so as to be within such a range in each catalyst layer.
  • the conditions described in each of the above steps can be used as the catalyst type and temperature conditions of each catalyst layer.
  • the water content of the glycol used as a raw material can be the same as that described in the above-mentioned glycol production method.
  • a method using two reactors such as a gas phase reactor shown below can be used.
  • the first reactor is provided with two catalyst layers, the top of the reactor is filled with a catalyst for converting glycerin to 1,2-propanediol, and the bottom of the reactor is 1,2-propanediol. Is charged with a catalyst for converting to propanal.
  • the catalyst layer of the second reactor is filled with a catalyst for converting propanal to 1-propanol. Then, it is possible to produce 1-propanol by supplying glycerin and hydrogen to the first reactor and supplying the propanal and hydrogen obtained in the first reactor to the second reactor. .
  • a catalyst for converting glycerin into 1,2-propanediol is charged in the first reactor, and a catalyst for converting 1,2-propanediol into propanal is provided in the upper part of the second reactor.
  • the catalyst for charging and converting propanal into 1-propanol is charged at the bottom of the reactor.
  • 1-propanol is also produced by supplying glycerin and hydrogen to the first reactor, and supplying 1,2-propanediol and hydrogen obtained in the first reactor to the second reactor. It is possible.
  • the ratio of the feed amount of raw material to the supply amount of hydrogen and the supply amount of hydrogen when using two reactors as described above are described in the glycol production method, the second step, and the third step.
  • the conditions described in the above steps can be used as the catalyst type and temperature condition of each catalyst layer.
  • the above-mentioned conditions can be used for the water content of the raw material.
  • the reactor has a reaction crude liquid collection container (cooling device) having a carrier gas inlet and a raw material inlet at the upper end and a gas outlet at the lower end.
  • the reaction crude liquid collected in the collection container as a result of the reaction was measured by gas chromatography, and after calibration curve correction, the remaining amount of raw materials such as glycerin and products such as 1,2-propanediol
  • the yield was determined, and the conversion (mol%) and selectivity (mol%) were determined from this value.
  • a commercially available catalyst having a particle size of 1.00 to 1.70 mm was used as the copper-based catalyst.
  • Example 1 (Influence of hydrogen flow rate) A copper-aluminum oxide catalyst (NGC 242 manufactured by JGC Chemical Co., Ltd.) was used to flow hydrogen at a predetermined flow rate from the top of the reactor using a fixed bed atmospheric pressure gas flow reactor set to a length of 30 mm in the reactor. Then, a 30 wt% glycerin aqueous solution as a raw material was supplied to the catalyst layer at a rate of 1.8 g h ⁇ 1 and the influence of the hydrogen flow rate on the reaction was observed.
  • NTC 242 manufactured by JGC Chemical Co., Ltd.
  • Table 1 shows the glycerol conversion rate and 1,2-propanediol selectivity when the reaction temperature is controlled at 210 ° C for the upper surface of the catalyst layer in the reactor and 175 ° C for the lower surface. Under the reaction conditions where the glycerin conversion is 100%, the selectivity for 1,2-propanediol is approximately 85%, indicating that there are very few by-products.
  • Example 2 (Influence of reaction temperature) A copper-aluminum oxide catalyst (NGC 242 manufactured by JGC Chemical Co., Ltd.) added 1.8 g h of a 30 wt% glycerin aqueous solution as a raw material from the top of a fixed bed atmospheric pressure gas flow reactor set to a length of 30 mm in the reactor. -1 rate, hydrogen was fed to the flow 360 ml min. catalyst layer-1 speed, saw the influence on the reaction of the temperature change of the catalyst layer. The ratio of the number of moles of hydrogen supplied to the number of moles of raw material supplied is 164. Table 2 shows the glycerol conversion and 1,2-propanediol selectivity when the reaction temperature is changed.
  • the 1,2-propanediol selectivity generally exceeds 90% in the reaction where the temperature at the lower part of the catalyst layer is 175 ° C. or lower, and is relatively high in the reaction at 190 ° C. It showed selectivity for the desired product.
  • Example 3 (Reactions with various catalysts) Various commercially available catalysts were used, an aqueous glycerin solution having a glycerin concentration of 80% was used as a reaction raw material, the hydrogen flow rate was 240 ml min.- 1 , the upper surface of the catalyst layer in the reactor was 210 ° C., and the lower surface was 170 ° C. . Other conditions were the same as in Example 2. The ratio of the number of moles of hydrogen supplied to the number of moles of raw material supplied is 41. Table 3 shows glycerin conversion and 1,2-propanediol selectivity. Whether the glycerin concentration was as high as 80% by weight or the catalyst containing copper was used, the selectivity of the target product could exceed 80% under high conversion conditions.
  • the fixed bed atmospheric pressure gas flow reactor used in the following examples and comparative examples is a reactor having an inner diameter of 17 mm and an overall length of 300 mm, similar to that used in the glycol production method described above. It has a reaction crude liquid collection container (cooling device) having a mouth and a raw material inlet and having a gas outlet at the lower end.
  • the catalyst used in the following Examples and Comparative Examples will be described.
  • the catalyst for converting glycerin to 1,2-propanediol is a copper-aluminum oxide catalyst, and 1,2-propanediol is converted to propanal.
  • the catalyst is silicon dioxide-supported phosphotungstic acid
  • the reaction catalyst from propanal to 1-propanol is a copper-aluminum oxide catalyst.
  • the copper-aluminum oxide catalyst is a commercially available product (trade name: N-242, manufactured by JGC Chemical Co., Ltd.), and the silicon dioxide-supported phosphotungstic acid is dissolved in commercially available phosphotungstic acid (manufactured by Wako Pure Chemicals, special grade) in water.
  • a catalyst supported on a commercially available silicon dioxide (trade name: Caractect Q10, manufactured by Fuji Silysia Chemical Co., Ltd.) by an impregnation method so as to have a supported amount of 30% by weight was used.
  • the reaction crude liquid collected in the collection container is analyzed by gas chromatography, and after calibration curve correction, the yield of 1-propanol and the like and the remaining amount of raw materials such as glycerin are determined, and the conversion rate ( Mol%) and selectivity (mol%).
  • Example 4> Synthesis of 1-propanol from 1,2-propanediol Reaction temperature 1
  • a reaction apparatus in which 0.3 g of a silicon dioxide catalyst supporting a heteropoly acid is placed on the upper part of the catalyst layer and 0.5 g of a copper-aluminum oxide catalyst (N242 manufactured by JGC Chemical Co., Ltd.) is placed on the lower part of the catalyst layer
  • the raw material A 30 wt% aqueous solution of 1,2-propanediol was supplied at a rate of 1.8 g h ⁇ 1 at a rate of 30 ml per minute, and the reaction was carried out at different reaction temperatures.
  • the 1,2-propanediol conversion rate, 1-propanol selectivity, and 1-propanol yield were as shown in Table 6 below.
  • the ratio of moles of hydrogen to moles of raw material was 11.3.
  • Example 5 Synthesis of 1-propanol from 1,2-propanediol, catalytic amount
  • the reaction was carried out at a reaction temperature of 200 ° C. while changing the amount of catalyst in the lower catalyst layer described in Example 4.
  • the 1,2-propanediol conversion, 1-propanol selectivity, and 1-propanol yield were as shown in Table 7 below.
  • Example 6> Synthesis of 1-propanol from 1,2-propanediol, reaction temperature 2
  • the reaction was performed according to Example 4 except that the reaction temperature at the upper part of the catalyst layer and the lower part of the catalyst layer was changed.
  • the 1,2-propanediol conversion, 1-propanol selectivity, and 1-propanol yield were as shown in Table 8 below.
  • Example 7 Synthesis of 1-propanol from 1,2-propanediol, hydrogen flow rate
  • the reaction was carried out according to Example 4 except that the hydrogen flow rate was changed and the reaction temperature was fixed at 200 ° C.
  • the conversion rate of 1,2-propanediol, 1-propanol selectivity, and 1-propanol yield were as shown in Table 9 below.
  • Example 8> Synthesis of 1-propanol from glycerin
  • N242 copper-aluminum oxide catalyst
  • the reaction was carried out at a rate of -1 while changing the temperature of the upper and lower surfaces of the upper part of the catalyst layer, the reaction temperature of the middle part of the catalyst layer and the lower part of the catalyst layer.
  • the ratio of the number of moles of hydrogen supplied to the number of moles of raw material supplied was 164.
  • the glycerin conversion, 1-propanol selectivity, and 1-propanol yield were as shown in Table 10 below.
  • the reactor has a carrier gas inlet and a raw material inlet at the upper end, and a reaction crude liquid collection container (cooling device) from which gas is discharged via a back pressure valve at the lower end.
  • the reaction crude liquid collected in the collection container as a result of the reaction was measured by gas chromatography, and after calibration curve correction, the remaining amount of raw materials such as glycerin and products such as 1,2-propanediol
  • the yield was determined, and the conversion (mol%) and selectivity (mol%) were determined from this value.
  • a commercially available catalyst having a particle size of 1/8 inch tablet (Cu-0825T, manufactured by NE Chemcat Corp.) was used as the copper-based catalyst.
  • the raw material glycerin was 80% in concentration (the rest was water). Hydrogen was supplied from the upper part of the reactor at each supply amount shown in Table 11, and raw material glycerin was supplied by WHSV described in Table 11.
  • Table 11 shows the reaction rate, the selectivity for acetol (HA), the selectivity for propylene glycol (PG), and the yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided are a glycol production method from glycerin that is characterized by reacting glycerin under atmospheric pressure or increased pressure in the presence of hydrogen by using a copper-containing catalyst and a 1-propanol production method that includes said production method as one step.

Description

グリセリンからのグリコール及び1-プロパノールの製造方法Process for producing glycol and 1-propanol from glycerin
 本発明は、グリコールの製造方法に関し、隣接する水酸基を持つグリセリンを原料とし、銅を主成分とした触媒を用い、大気圧下又は加圧下で水素を共存させて反応させ、グリコールを製造する方法に関する。また、本発明は、該グリコールを製造する方法を一工程として含む1-プロパノールを製造する方法に関する。 The present invention relates to a method for producing glycol, a method for producing glycol by using glycerol having an adjacent hydroxyl group as a raw material and using a catalyst mainly composed of copper and reacting in the presence of hydrogen under atmospheric pressure or under pressure. About. The present invention also relates to a method for producing 1-propanol comprising the method for producing the glycol as one step.
 プロピレングリコールに代表されるグリコール類はポリエステル原料、有機溶媒、反応中間体などとして用いられ化学工業上非常に重要な物質である。現在のプロピレングリコールの工業的製造法は、プロピレンオキサイドの水和による方法が主として行われている。しかし、プロピレンオキサイドの原料であるプロピレンはナフサを主原料とした化石資源由来の化合物であり、昨今の地球温暖化対策が求められる環境問題に対応した製造方法であるとは言えない。 Glycols typified by propylene glycol are very important substances in the chemical industry, used as polyester raw materials, organic solvents, reaction intermediates, and the like. The current industrial production method of propylene glycol is mainly performed by hydration of propylene oxide. However, propylene, which is a raw material for propylene oxide, is a compound derived from a fossil resource using naphtha as a main raw material, and cannot be said to be a manufacturing method that responds to environmental problems that require recent global warming countermeasures.
 近年、グリセリンの脱水反応によりアセトール(ヒドロキシアセトン)を製造する方法(特許文献1)や、アセトールを経由しグリコールを製造する方法(特許文献2)が開示されているが、これらの製造方法は反応が2段階であるため工業的には効率的でない。一方、グリセリンから直接プロピレングリコールを、触媒および水素共存下で製造する方法はこれまでにもすでに報告されている(非特許文献1)が、当該方法は反応圧力が高く反応装置が耐圧装置である必要があることから工業的には設備投資が増大するという問題点を有していた。また、同様に水素共存下でグリセリンから直接プロピレングリコールを合成する方法が開示されているが(特許文献3、4)、比較的高い圧力下で行われており工業的に好ましくなく、更にプロピレングリコールの選択率が満足のいくものではない。他方、大気圧下での反応を行う方法も開示されているが(非特許文献2)、同様にプロピレングリコールの選択率は思わしくない。 In recent years, a method for producing acetol (hydroxyacetone) by dehydration reaction of glycerin (Patent Document 1) and a method for producing glycol via acetol (Patent Document 2) have been disclosed. Is not efficient industrially. On the other hand, a method for producing propylene glycol directly from glycerin in the presence of a catalyst and hydrogen has already been reported (Non-Patent Document 1). However, this method has a high reaction pressure, and the reaction apparatus is a pressure apparatus. Since it was necessary, there was a problem that the capital investment increased industrially. Similarly, although a method of directly synthesizing propylene glycol from glycerin in the presence of hydrogen is disclosed (Patent Documents 3 and 4), it is carried out under a relatively high pressure and is not industrially preferable, and further propylene glycol. The selectivity is not satisfactory. On the other hand, although the method of performing reaction under atmospheric pressure is also disclosed (Non-patent Document 2), the selectivity of propylene glycol is similarly not surprising.
 一方、1-プロパノールは有機溶剤、エステル原料、化成品中間体、医薬品中間体製造用溶媒などとして用いられ、化学工業上重要な物質であるが、これまで低コストで、効率的な製造方法が見つけられていなかった。従来、1-プロパノールは、エチレンのヒドロホルミル化反応によるプロピオンアルデヒドの水添によって得るか(非特許文献3)、あるいは酢酸とプロピレンとの反応から得られるアリルアルコールの水添により得るのが一般的であった(特許文献5)。しかしながら、ヒドロホルミル化反応装置は加圧反応装置でありその建設には大きな設備投資が必要であり、アリルアルコールの原料である酢酸は装置に対する腐食が大きく、耐食性を持たせた設備にはこれも大きな投資が必要であるという問題を有していた。更にこれらの製造方法における原料物質はいずれも化石資源である石油を原料としているため製品の最終形態は二酸化炭素となり近年特に問題となっている地球の気候変動に与える要因の一つとなっている。 On the other hand, 1-propanol is used as an organic solvent, an ester raw material, a chemical intermediate, a pharmaceutical intermediate production solvent, and the like, and is an important substance in the chemical industry. It was not found. Conventionally, 1-propanol is generally obtained by hydrogenation of propionaldehyde by a hydroformylation reaction of ethylene (Non-patent Document 3) or by hydrogenation of allyl alcohol obtained from the reaction of acetic acid and propylene. (Patent Document 5). However, the hydroformylation reactor is a pressure reactor and requires a large capital investment for its construction. Acetic acid, which is the raw material for allyl alcohol, is highly corrosive to the equipment, and this is also very large for facilities with corrosion resistance. There was a problem that investment was necessary. Furthermore, since the raw materials used in these production methods are made from petroleum, which is a fossil resource, the final form of the product is carbon dioxide, which is one of the factors affecting the global climate change, which has become a particular problem in recent years.
 これについて、再生可能エネルギーとして近年注目を浴びているBDF(Bio Diesel Fuel)は油脂である動植物油をメタノールと触媒によりメチルエステル(FAME)にエステル交換して製造されるが、その際多量にグリセリンが副生する。現在この副生グリセリンを有効利用する決定的な手段は見つかっておらず、資源の有効利用という観点から非常に大きな問題であり、当該グリセリンを有効利用する方法が求められている。 In this regard, BDF (Bio Diesel Fuel), which has been attracting attention as a renewable energy in recent years, is produced by transesterifying animal and vegetable oils, which are fats and oils, to methyl ester (FAME) using methanol and a catalyst. Is a by-product. At present, no definitive means for effectively using the by-product glycerin has been found, and this is a very big problem from the viewpoint of effective use of resources, and a method for effectively using the glycerin is required.
特開平5-255157号公報JP-A-5-255157 米国特許第5426249号明細書US Pat. No. 5,426,249 国際公開第2007/053705号パンフレットInternational Publication No. 2007/053705 Pamphlet 特開2007-283175号公報JP 2007-283175 A 特許第2662965号公報Japanese Patent No. 2663965
 本発明の第一の課題は、上記従来の技術課題を解決することであり、大気圧下、又は加圧下において高い選択率でグリセリンからグリコールを製造する方法を提供することである。また、本発明の第二の課題は、グリセリンの再生利用方法として1-プロパノールを高効率で製造する方法を提供することにある。 The first problem of the present invention is to solve the above-mentioned conventional technical problem, and to provide a method for producing glycol from glycerin with high selectivity at atmospheric pressure or under pressure. A second object of the present invention is to provide a method for producing 1-propanol with high efficiency as a method for recycling glycerol.
 本発明者らは鋭意検討の結果、銅を主成分とする触媒を用い反応条件を詳細に検討することにより、大気圧下、又は加圧下においても高い選択率でグリセリンからグリコールを製造する方法を見いだし、本発明を完成するに至った。
 また、本発明者らは、グリセリンから製造したグリコール、例えば1,2-プロパンジオールについて、ヘテロポリ酸あるいはヘテロポリ酸および触媒担体複合体を触媒として用いると、1,2-プロパンジオールの脱水反応により隣接する水酸基を持つ水酸基の二級水酸基を選択的に脱水し、エノール体となったものが反応系内で互変異性によりカルボニル体(低級飽和アルデヒド)を生成することを見いだした。
 そして、本発明者らはこのような知見に基づき鋭意検討の結果、上記のグリセリンからグリコール、具体的には1,2-プロパンジオールを製造する方法を第一の工程とし、第一の工程で製造された1,2-プロパンジオールをプロパナールに転化する第二の工程と、該プロパナールを1-プロパノールに転化する第三の工程とを含む1-プロパノールの製造方法を見出し、本発明を完成するに至った。
As a result of intensive studies, the present inventors have studied a reaction condition in detail using a catalyst mainly composed of copper, thereby producing a method for producing glycol from glycerin with high selectivity even under atmospheric pressure or under pressure. As a result, the present invention has been completed.
In addition, the present inventors use a heteropolyacid or a heteropolyacid and a catalyst carrier complex as a catalyst for a glycol produced from glycerin, such as 1,2-propanediol, and the adsorbing reaction is caused by a dehydration reaction of 1,2-propanediol. It was found that the secondary hydroxyl group of the hydroxyl group having a hydroxyl group to be selectively dehydrated to form an enol form forms a carbonyl form (lower saturated aldehyde) by tautomerism in the reaction system.
As a result of intensive studies based on such knowledge, the present inventors set the method for producing glycol, specifically 1,2-propanediol from glycerin as the first step, and in the first step, A process for producing 1-propanol comprising a second step of converting the produced 1,2-propanediol into propanal and a third step of converting the propanal into 1-propanol, It came to be completed.
 本発明のグリコール製造方法は、以下の項(1)から(13)で定義される。
(1) グリセリンからグリコールを製造する方法であって、銅を成分として含有する触媒を用い、大気圧下又は加圧下、水素共存下で反応させることを特徴とする、グリコール製造方法。
The glycol production method of the present invention is defined by the following items (1) to (13).
(1) A method for producing glycol from glycerin, characterized by using a catalyst containing copper as a component and reacting under atmospheric pressure or under pressure in the presence of hydrogen.
(2)前記反応が大気圧下で行われる(1)に記載の製造方法。 (2) The production method according to (1), wherein the reaction is performed under atmospheric pressure.
(3) 反応に供給される原料モル数に対する反応に供給される水素のモル数の比が、150から500である(2)に記載の製造方法。 (3) The production method according to (2), wherein the ratio of the number of moles of hydrogen supplied to the reaction to the number of moles of raw material supplied to the reaction is 150 to 500.
(4) 反応器内に供給される原料モル数に対する反応器内に供給される水素のモル数の比が、150から400である(2)に記載の製造方法。 (4) The production method according to (2), wherein the ratio of the number of moles of hydrogen supplied into the reactor to the number of moles of raw material supplied into the reactor is 150 to 400.
(5) 反応器内に供給される原料モル数に対する反応器内に供給される水素のモル数の比が、150から300である(2)に記載の製造方法。 (5) The production method according to (2), wherein the ratio of the number of moles of hydrogen supplied into the reactor to the number of moles of raw material supplied into the reactor is 150 to 300.
(6) 前記反応が加圧下で行われる(1)に記載の製造方法。 (6) The production method according to (1), wherein the reaction is performed under pressure.
(7) 反応に供給される原料モル数に対する反応に供給される水素のモル数の比が、20から30である(6)に記載の製造方法。 (7) The production method according to (6), wherein the ratio of the number of moles of hydrogen supplied to the reaction to the number of moles of raw material supplied to the reaction is 20 to 30.
(8) グリセリンが脱水されアセトールが生成される第一段反応が150~260℃で行われ、生成されたアセトールに水素が添加されグリコールが生成する第二段反応が100~220℃で行われることを特徴とする(1)から(7)のいずれか1つに記載の製造方法。 (8) The first stage reaction in which glycerin is dehydrated and acetol is generated is performed at 150 to 260 ° C., and the second stage reaction in which hydrogen is added to the generated acetol to generate glycol is performed at 100 to 220 ° C. The manufacturing method according to any one of (1) to (7), wherein:
(9) 前記第一段反応が150~225℃で行われ、前記第二段反応が120~175℃で行われることを特徴とする(8)に記載の製造方法。 (9) The production method according to (8), wherein the first stage reaction is performed at 150 to 225 ° C., and the second stage reaction is performed at 120 to 175 ° C.
(10) 前記第一段反応が150~200℃で行われ、前記第二段反応が120~160℃で行われることを特徴とする(8)に記載の製造方法。 (10) The production method according to (8), wherein the first stage reaction is performed at 150 to 200 ° C., and the second stage reaction is performed at 120 to 160 ° C.
(11) 前記第一段反応が230~260℃で行われ、前記第二段反応が150~220℃で行われることを特徴とする(8)に記載の製造方法。 (11) The production method according to (8), wherein the first stage reaction is performed at 230 to 260 ° C., and the second stage reaction is performed at 150 to 220 ° C.
(12) 前記第一段反応が240~250℃で行われ、前記第二段反応が150~175℃で行われることを特徴とする(8)に記載の製造方法。 (12) The production method according to (8), wherein the first-stage reaction is performed at 240 to 250 ° C., and the second-stage reaction is performed at 150 to 175 ° C.
(13) 前記グリコールが1,2-プロピレングリコールである(1)から(12)のいずれかに記載の製造方法。 (13) The production method according to any one of (1) to (12), wherein the glycol is 1,2-propylene glycol.
(14) (13)に記載の製造方法を用いてグリセリンを1,2-プロピレングリコールに転化する第一の工程と、第一の工程で製造された1,2-プロピレングリコールをプロパナールに転化する第二の工程と、第二の工程で製造されたプロパナールを1-プロパノールに転化する第三の工程とを含む、1-プロパノールの製造方法。 (14) First step of converting glycerin to 1,2-propylene glycol using the production method described in (13), and conversion of 1,2-propylene glycol produced in the first step to propanal And a third step of converting the propanal produced in the second step to 1-propanol.
(15) 前記第二の工程が、ヘテロポリ酸あるいは、ヘテロポリ酸-触媒担体複合体からなる触媒を用いて行われることを特徴とする(14)に記載の製造方法。 (15) The production method according to (14), wherein the second step is performed using a catalyst comprising a heteropolyacid or a heteropolyacid-catalyst support complex.
(16) 前記ヘテロポリ酸あるいは、ヘテロポリ酸-触媒担体複合体のヘテロポリ酸がケイタングステン酸、ケイモリブデン酸、リンタングステン酸及びリンモリブデン酸から選ばれるいずれかを含む(15)に記載の製造方法。 (16) The production method according to (15), wherein the heteropolyacid or the heteropolyacid of the heteropolyacid-catalyst support complex includes any one selected from silicotungstic acid, silicomolybdic acid, phosphotungstic acid, and phosphomolybdic acid.
(17) 前記ヘテロポリ酸あるいは、ヘテロポリ酸-触媒担体複合体のヘテロポリ酸がケイタングステン酸である(15)に記載の製造方法。 (17) The production method according to (15), wherein the heteropolyacid or the heteropolyacid of the heteropolyacid-catalyst support complex is silicotungstic acid.
(18) 前記第三の工程が、銅、白金、ニッケル、パラジウム及びルテニウムから選ばれるいずれか1種類以上の触媒成分を含有する水素化触媒を用いて行われることを特徴とする(14)~(17)のいずれかに記載の製造方法。 (18) The third step is performed using a hydrogenation catalyst containing at least one catalyst component selected from copper, platinum, nickel, palladium and ruthenium (14) to (17) The manufacturing method in any one of.
(19) 前記第三の工程が、銅、ニッケル、パラジウムから選ばれるいずれか1種類以上の触媒成分を含有する水素化触媒を用いて行われることを特徴とする(14)~(17)のいずれかに記載の製造方法。 (19) The third step is performed using a hydrogenation catalyst containing any one or more kinds of catalyst components selected from copper, nickel, and palladium. The manufacturing method in any one.
 本発明により、大気圧下、又は加圧下において高い選択率でグリセリンからグリコールを製造する方法が提供される。また、本発明の1-プロパノールの製造方法により、グリセリンを有効利用する方法が提供される。さらに、本発明の1-プロパノールの製造方法によれば、グリセリンから1-プロパノールを高効率で得ることができる。 The present invention provides a method for producing glycol from glycerin with high selectivity at atmospheric pressure or under pressure. In addition, the method for producing 1-propanol of the present invention provides a method for effectively utilizing glycerin. Furthermore, according to the method for producing 1-propanol of the present invention, 1-propanol can be obtained from glycerin with high efficiency.
 本発明のグリコール製造方法は、グリセリンを原料としてグリコールを製造する方法である。グリセリンから製造されるグリコールは、1,2-プロピレングリコールや1,3-プロピレングリコールが挙げられるが、本発明では、1,2-プロピレングリコール(以下、1,2-プロパンジオールともいう)が好適に製造される。 The glycol production method of the present invention is a method for producing glycol using glycerin as a raw material. Examples of glycols produced from glycerin include 1,2-propylene glycol and 1,3-propylene glycol. In the present invention, 1,2-propylene glycol (hereinafter also referred to as 1,2-propanediol) is preferable. To be manufactured.
 本発明のグリコール製造方法は、大気圧下、又は加圧下で行うことを特徴としている。グリセリンを原料としたグリコールの製造においては、ある程度高い圧力下(2~28MPa)で行われるものであり、圧力が低すぎるとグリセリンの転化率が低くなりグリコールの選択率が低くなることが知られている(例えば特許文献4に記載)。本発明の製造方法は、大気圧下、又は上記文献に記載された圧力よりも低い圧力に設定された加圧下においても特定の反応条件とすることにより、高いグリコールの選択率を維持できるものである。 The glycol production method of the present invention is characterized by being carried out under atmospheric pressure or under pressure. Production of glycol using glycerin as a raw material is carried out under a somewhat high pressure (2 to 28 MPa). It is known that if the pressure is too low, the conversion rate of glycerin is lowered and the selectivity of glycol is lowered. (For example, described in Patent Document 4). The production method of the present invention can maintain a high glycol selectivity by setting specific reaction conditions under atmospheric pressure or under pressure set to a pressure lower than the pressure described in the above document. is there.
 本発明における大気圧とは、おおよそ1気圧(約0.1MPa)をいうが、厳密に1気圧のみの条件に限られるものではなく、大気圧の範囲と当業者が理解する範囲は、本発明でいう大気圧の範囲である。
 一方、本発明における加圧下とは、0.2~0.4MPaを意味し、この中でも、反応に特に適している加圧下の圧力としては0.3MPaが挙げられる。
The atmospheric pressure in the present invention refers to about 1 atmosphere (about 0.1 MPa), but is not limited to the condition of strictly 1 atmosphere, and the range of atmospheric pressure and the range understood by those skilled in the art are within the scope of the present invention. It is the range of atmospheric pressure.
On the other hand, under pressure in the present invention means 0.2 to 0.4 MPa, and among these, pressure under pressure particularly suitable for the reaction includes 0.3 MPa.
 本発明のグリコール製造方法は、水素共存下で反応させることを特徴としている。本発明のグリコール製造方法における水素共存下とは、原料であるグリセリンが触媒に接する際に、水素が存在していることをいう。したがって、原料であるグリセリンと水素を混合した上で反応装置に供給することもでき、触媒に接する際に原料であるグリセリンと水素が存在している状態であれば、それぞれ別々に装置に供給することもできる。本発明では、反応を大気圧下で行う場合には、選択率を向上させる観点から、比較的多量の水素を供給させることが好ましい。一方、反応を加圧下で行う場合には、少量の水素供給量でも高い選択率を得ることができる。 The glycol production method of the present invention is characterized by reacting in the presence of hydrogen. The presence of hydrogen in the glycol production method of the present invention means that hydrogen is present when glycerin as a raw material comes into contact with the catalyst. Therefore, the raw material glycerin and hydrogen can be mixed and then supplied to the reactor, and if the raw material glycerin and hydrogen are present when they are in contact with the catalyst, they are separately supplied to the device. You can also. In the present invention, when the reaction is carried out under atmospheric pressure, it is preferable to supply a relatively large amount of hydrogen from the viewpoint of improving the selectivity. On the other hand, when the reaction is performed under pressure, a high selectivity can be obtained even with a small amount of hydrogen supply.
 本発明のグリコール製造方法おける水素供給量は、反応を大気圧下で行う場合には、反応器内に供給される原料モル数に対する反応器内に供給される水素のモル数の比が150から500の範囲が好ましい。より好ましいモル数比の範囲としては150から400の範囲であり、さらに好ましくは150から300の範囲である。本発明における水素供給量が上記範囲を満たすことで、更に選択率良くグリコールを製造することが可能となる。
  一方、本発明のグリコール製造方法おける水素供給量は、反応を加圧下で行う場合には、反応器内に供給される原料モル数に対する反応器内に供給される水素のモル数の比が20から30の範囲が好ましい。本発明における水素供給量が上記範囲を満たすことで、選択率良くグリコールを製造することが可能となること、触媒寿命が延びること、さらに経済的にも好ましい。
In the glycol production method of the present invention, when the reaction is carried out under atmospheric pressure, the ratio of the number of moles of hydrogen fed into the reactor to the number of moles of raw material fed into the reactor is from 150. A range of 500 is preferred. A more preferred molar ratio range is from 150 to 400, and even more preferably from 150 to 300. When the hydrogen supply amount in the present invention satisfies the above range, glycol can be produced with higher selectivity.
On the other hand, in the glycol production method of the present invention, when the reaction is carried out under pressure, the ratio of the number of moles of hydrogen fed into the reactor to the number of moles of raw material fed into the reactor is 20 A range of from 30 to 30 is preferred. When the hydrogen supply amount in the present invention satisfies the above range, glycol can be produced with good selectivity, the catalyst life is extended, and more economically preferable.
 また、本発明のグリコール製造方法における水素供給量は、反応を大気圧下で行う場合には、触媒の体積1mlに対する水素流量が30~150ml/min.であることが好ましい。より好ましくは40~120ml/min.であり更に好ましくは50~90ml/min.である。本発明における水素供給量が上記の範囲を満たすことで、更に選択率良くグリコールを製造することが可能となり、経済的にも好ましい。一方、本発明のグリコール製造方法における水素供給量は、反応を加圧下で行う場合には、触媒の体積1mLに対する水素流量が0.010~0.080L/minであることが好ましく、0.022~0.065L/minであることが特に好ましい。 The hydrogen supply amount in the glycol production method of the present invention is such that, when the reaction is carried out under atmospheric pressure, the hydrogen flow rate for a catalyst volume of 1 ml is 30 to 150 ml / min. It is preferable that More preferably 40 to 120 ml / min. And more preferably 50 to 90 ml / min. It is. When the hydrogen supply amount in the present invention satisfies the above range, glycol can be produced with higher selectivity, which is economically preferable. On the other hand, the hydrogen supply amount in the glycol production method of the present invention is preferably such that, when the reaction is carried out under pressure, the hydrogen flow rate is 0.010 to 0.080 L / min with respect to 1 mL of the catalyst volume. It is particularly preferred that it is ˜0.065 L / min.
 本発明のグリコール製造方法は、銅を成分として含有する触媒を用いることを特徴としている。本発明に用いる銅を成分として含有する触媒は市販品、市販品を還元したもの、銅の酸化物、水酸化物、炭酸塩、硝酸塩、酢酸塩などを熱分解したもの、あるいは熱分解後に公知の方法にて還元したもの等、いずれの形態でも触媒として使用することが可能である。 The glycol production method of the present invention is characterized by using a catalyst containing copper as a component. The catalyst containing copper as a component used in the present invention is a commercially available product, a product obtained by reducing a commercially available product, a product obtained by pyrolyzing copper oxide, hydroxide, carbonate, nitrate, acetate, or the like, or known after pyrolysis. Any form such as those reduced by the above method can be used as a catalyst.
 また、本発明のグリコール製造方法に用いる銅を成分として含有する触媒における触媒の担体は特に限定されないが、酸化アルミニウム、酸化クロム、酸化ジルコニウム、二酸化ケイ素等が単独で或いは各々の酸化物を複合した複合酸化物として好適に使用される。また、銅成分の触媒担体への担持方法は、含浸、共沈等公知の方法で行うことが可能である。 Further, the catalyst carrier in the catalyst containing copper as a component used in the glycol production method of the present invention is not particularly limited, but aluminum oxide, chromium oxide, zirconium oxide, silicon dioxide, etc. are used alone or in combination with each oxide. It is preferably used as a composite oxide. In addition, the copper component can be supported on the catalyst carrier by a known method such as impregnation or coprecipitation.
 本発明のグリコール製造方法に用いる銅を成分として含有する触媒としては、銅-酸化アルミニウム触媒、銅-酸化クロム触媒、銅-酸化ジルコニウム触媒、銅-二酸化ケイ素触媒、銅-酸化アルミニウム-酸化ジルコニウム触媒、銅-酸化アルミニウム-酸化クロム触媒等が挙げられる。その中でも特に銅-酸化アルミニウム触媒、銅-酸化クロム触媒または、銅-酸化アルミニウム-酸化ジルコニウム触媒を用いることが好ましい。 As a catalyst containing copper as a component used in the glycol production method of the present invention, a copper-aluminum oxide catalyst, a copper-chromium oxide catalyst, a copper-zirconium oxide catalyst, a copper-silicon dioxide catalyst, a copper-aluminum oxide-zirconium oxide catalyst And a copper-aluminum oxide-chromium oxide catalyst. Among these, it is particularly preferable to use a copper-aluminum oxide catalyst, a copper-chromium oxide catalyst, or a copper-aluminum oxide-zirconium oxide catalyst.
 本発明のグリコール製造方法で使用される反応装置は、反応を大気圧下で行わせる場合には、原料となるグリセリンと水素を触媒に接触させ、反応を進行させることができる装置であれば、特に限定されない。たとえば、気相流通反応装置に所定量の触媒前駆体を入れ、これを公知の方法で還元することにより活性な触媒層を気相流通反応装置内に形成させた装置が例示できる。このような装置に、原料のグリセリンと水素を供給し、反応させることによりグリコールを製造することが可能である。
 一方、本発明のグリコール製造方法で使用される反応装置は、反応を加圧下で行わせる場合には、例えば、上記の触媒層が形成された気相流通反応装置に加圧循環ブロワのような加圧手段が設けられ、装置内の圧力が調整可能な固定床加圧気相流通反応装置を用いることができる。
The reaction apparatus used in the glycol production method of the present invention is an apparatus capable of causing the reaction to proceed by bringing glycerol and hydrogen as raw materials into contact with the catalyst when the reaction is performed under atmospheric pressure. There is no particular limitation. For example, an apparatus in which a predetermined amount of catalyst precursor is placed in a gas phase flow reaction apparatus and reduced by a known method to form an active catalyst layer in the gas phase flow reaction apparatus can be exemplified. It is possible to produce glycol by supplying glycerin and hydrogen as raw materials to such an apparatus and reacting them.
On the other hand, in the reactor used in the glycol production method of the present invention, when the reaction is carried out under pressure, for example, a gas-phase flow reaction device in which the catalyst layer is formed is used as a pressure circulation blower. A fixed-bed pressurized gas-phase flow reaction apparatus in which a pressurizing means is provided and the pressure in the apparatus can be adjusted can be used.
 本発明のグリコール製造方法では、グリセリンが脱水されアセトールが生成される第一段反応が150~260℃、好ましくは150~250℃で行われ、生成されたアセトールに水素が添加されグリコールが生成する第二段反応が100~220℃、好ましくは100~190℃で行われることが好ましい。 In the glycol production method of the present invention, the first-stage reaction in which glycerin is dehydrated to produce acetol is carried out at 150 to 260 ° C., preferably 150 to 250 ° C., and hydrogen is added to the produced acetol to produce glycol. The second stage reaction is preferably carried out at 100 to 220 ° C, preferably 100 to 190 ° C.
 上記のような気相流通反応装置の場合には装置内に触媒層ができるが、触媒層の上層部と下層部で異なった2つの温度で反応が進行するように、反応温度を上記の範囲に制御することが好ましい。これは、グリセリンからグリコールが生成する反応は2段階の反応であり、それぞれの反応が進みやすい温度が存在するためである。 In the case of the gas phase flow reaction apparatus as described above, a catalyst layer is formed in the apparatus, but the reaction temperature is set in the above range so that the reaction proceeds at two different temperatures in the upper layer part and the lower layer part of the catalyst layer. It is preferable to control. This is because the reaction in which glycol is generated from glycerin is a two-stage reaction, and there is a temperature at which each reaction easily proceeds.
 本発明における反応温度は、例えば上記のような触媒層を有する反応装置の場合には、触媒の温度を直接測定することにより測定することが可能である。原料が触媒を下向きに通過する装置の場合、触媒層の上部では上述のとおり第一段反応が行われており、触媒層の上部の表面温度を測定することにより、第一段反応の反応温度を測定することができる。また、触媒層の下部では上述のとおり第二段反応が行われており、触媒層の下部の表面温度を測定することにより、第二段反応の反応温度を測定することができる。 The reaction temperature in the present invention can be measured, for example, by directly measuring the temperature of the catalyst in the case of the reaction apparatus having the catalyst layer as described above. In the case of a device in which the raw material passes through the catalyst downward, the first stage reaction is performed at the upper part of the catalyst layer as described above, and the reaction temperature of the first stage reaction is measured by measuring the surface temperature of the upper part of the catalyst layer. Can be measured. In addition, the second stage reaction is performed at the lower part of the catalyst layer as described above, and the reaction temperature of the second stage reaction can be measured by measuring the surface temperature of the lower part of the catalyst layer.
 上記2つの反応温度は、反応を大気圧下で行う場合には、前記第一段反応が150~225℃で行われ、前記第二段反応が120~175℃で行われることがより好ましく、前記第一段反応が150~200℃で行われ、前記第二段反応が120~160℃で行われることがさらに好ましい。
 一方、反応を加圧下で行う場合には、前記第一段反応が230~260℃で行われ、前記第二段反応が150~220℃で行われることがより好ましく、前記第一段反応が240~250℃で行われ、前記第二段反応が150~175℃で行われることがさらに好ましい。
 本発明の第一段反応温度、第二段反応温度が上記の範囲を満たすことで、十分に反応が進み選択率良くグリコールを製造することが可能となり、経済的にも好ましい。
When the reaction is carried out at atmospheric pressure, the two reaction temperatures are more preferably that the first stage reaction is carried out at 150 to 225 ° C. and the second stage reaction is carried out at 120 to 175 ° C. More preferably, the first stage reaction is performed at 150 to 200 ° C., and the second stage reaction is performed at 120 to 160 ° C.
On the other hand, when the reaction is performed under pressure, it is more preferable that the first stage reaction is performed at 230 to 260 ° C., and the second stage reaction is performed at 150 to 220 ° C. More preferably, the reaction is performed at 240 to 250 ° C., and the second-stage reaction is performed at 150 to 175 ° C.
When the first-stage reaction temperature and the second-stage reaction temperature of the present invention satisfy the above ranges, the reaction is sufficiently advanced and glycol can be produced with good selectivity, which is economically preferable.
 上記2つの反応温度領域は、温度差を有していることが好ましい。それぞれの反応に適した温度が存在するためである。反応を大気圧下で行わせる場合には、10℃~80℃の温度差を有していることが好ましく、20℃~40℃の温度差を有していることが更に好ましい。反応を加圧下で行わせる場合には、20℃~100℃の温度差を有していることが好ましく、30℃~90℃の温度差を有していることが更に好ましい。 The above two reaction temperature regions preferably have a temperature difference. This is because there is a temperature suitable for each reaction. When the reaction is carried out under atmospheric pressure, it preferably has a temperature difference of 10 ° C. to 80 ° C., more preferably 20 ° C. to 40 ° C. When the reaction is carried out under pressure, it preferably has a temperature difference of 20 ° C. to 100 ° C., more preferably 30 ° C. to 90 ° C.
 本発明のグリコール製造法において、反応を加圧下で行う場合には、上記触媒の量は、通常反応装置内に設けることができる触媒量であれば良いが、上記固定床加圧気相流通反応装置の場合には、触媒重量に対する単位時間当たりのグリセリンのフィード重量(WHSV:Weight Hourly Space Velocity;単位、h-1)で代表され、WHSV値で、0.05から0.3h-1の範囲で利用可能であり、触媒の寿命及び収率の観点から好ましくはWHSV値で、0.1から0.3h-1の範囲であり、更に好ましくはWHSV値で、0.2から0.3h-1の範囲であることが好ましい。 In the glycol production method of the present invention, when the reaction is carried out under pressure, the amount of the catalyst may be a catalyst amount that can be usually provided in the reaction apparatus, but the fixed bed pressurized gas phase flow reaction apparatus. in the case of the feed by weight glycerin per unit relative to the catalyst weight hourly (WHSV: weight Hourly Space Velocity; units, h -1) is represented by at WHSV values, in the range of 0.3h -1 0.05 In view of the life and yield of the catalyst, the WHSV value is preferably in the range of 0.1 to 0.3 h −1 , more preferably the WHSV value is 0.2 to 0.3 h −1. It is preferable that it is the range of these.
 上記反応温度領域を制御する方法としては、電気炉、熱風炉、熱媒炉等を用いることにより温度制御することができる。 As a method for controlling the reaction temperature region, the temperature can be controlled by using an electric furnace, a hot air furnace, a heat medium furnace or the like.
 また、本発明のグリコール製造方法では、原料の反応を十分に行う観点から、原料であるグリコールと水素が触媒に触れている接触時間が、1~200秒であることが好ましい。さらに好ましくは5~150秒である。 In the glycol production method of the present invention, from the viewpoint of sufficiently reacting the raw materials, it is preferable that the contact time during which the raw glycol and hydrogen are in contact with the catalyst is 1 to 200 seconds. More preferably, it is 5 to 150 seconds.
 原料のグリセリンは水分を含んでいても良く、グリセリン中の水分量は任意の範囲で適用可能であり、0~98重量%の範囲が好ましく、20から80重量%の範囲が更に好ましい。 The raw material glycerin may contain water, and the amount of water in the glycerin can be applied in an arbitrary range, preferably in the range of 0 to 98% by weight, and more preferably in the range of 20 to 80% by weight.
 次に、本発明の1-プロパノールの製造方法について説明する。本発明の1-プロパノールの製造方法は、上記したグリコールの製造方法を1,2-プロパンジオールの製造工程(第一の工程)として含む。さらに、本発明の1-プロパノールの製造方法は、上記第一の工程で製造された1,2-プロパンジオールをプロパナールに転化する第二の工程と、該プロパナールから、1-プロパノールに転化する第三の工程とを含む。 Next, the method for producing 1-propanol of the present invention will be described. The method for producing 1-propanol of the present invention includes the above-described method for producing glycol as a production step (first step) of 1,2-propanediol. Furthermore, the method for producing 1-propanol of the present invention comprises a second step of converting 1,2-propanediol produced in the first step to propanal, and conversion of the propanal to 1-propanol. And a third step.
 上記第一の工程は、上述したグリコールの製造方法を用いてグリコールを1,2-プロパンジオールに転化する工程である。該工程は上述したグリコールの製造方法で用いる条件をそのまま使用することができる。 The first step is a step of converting glycol to 1,2-propanediol using the glycol production method described above. In this step, the conditions used in the glycol production method described above can be used as they are.
 上記第二の工程は、第一の工程で製造される1,2-プロパンジオールをプロパナールに転化する工程である。この工程では、ヘテロポリ酸あるいは、ヘテロポリ酸-触媒担体複合体を触媒として用いることが好ましい。ヘテロポリ酸は、ケイ素、リン、ヒ素などのヘテロ原子と、タングステン、バナジウム、モリブデンなどの金属酸素酸骨格からなり、具体的にはケイタングステン酸、ケイモリブデン酸、リンタングステン酸、リンモリブデン酸などが好ましく例示でき、ケイタングステン酸であることがより好ましい。 The second step is a step of converting 1,2-propanediol produced in the first step into propanal. In this step, it is preferable to use a heteropolyacid or a heteropolyacid-catalyst support complex as a catalyst. Heteropoly acids are composed of heteroatoms such as silicon, phosphorus and arsenic and metal oxyacid skeletons such as tungsten, vanadium and molybdenum. A preferred example is silicotungstic acid, more preferred.
 また、ヘテロポリ酸は、遊離のヘテロポリ酸であってもよく、プロトンの一部もしくはすべてを他のカチオンで置き換えて、ヘテロポリ酸の塩として使用することもできる。従って、本発明で言うヘテロポリ酸とはこれらのヘテロポリ酸の塩も含まれる。プロトンと置換可能なカチオンとしては、例えば、アンモニウム、アルカリ金属、アルカリ土類金属などが挙げられる。 The heteropolyacid may be a free heteropolyacid, and may be used as a salt of the heteropolyacid by replacing some or all of the protons with other cations. Accordingly, the heteropolyacid referred to in the present invention includes salts of these heteropolyacids. Examples of cations that can be substituted with protons include ammonium, alkali metals, alkaline earth metals, and the like.
 ヘテロポリ酸は無水物であってもよく、結晶水含有物であってもよいが、無水物の方がより反応が早く、また副生成物の生成が抑制され好ましい。結晶水含有物の場合、予め減圧乾燥や溶媒との共沸脱水等の脱水処理を行なうことにより無水物と同様の効果を得ることができる。 The heteropolyacid may be an anhydride or a crystal water-containing product, but the anhydride is preferred because the reaction is faster and the formation of by-products is suppressed. In the case of a crystal water-containing material, effects similar to those of the anhydride can be obtained by performing dehydration treatment such as drying under reduced pressure or azeotropic dehydration with a solvent in advance.
 ヘテロポリ酸を触媒として用いることで、一般的に用いられる触媒である酸化アルミニウム、二酸化ケイ素、シリカ-アルミナなどの触媒と比較して、1,2-プロパンジオールの転化率、プロパナール選択率ともに高い数値を示し、結果としてプロパナールを良好な収率で製造することができる。特にケイタングステン酸を触媒に用いた場合には、更に高いプロパナール選択率を示す。なお、上記触媒として、ヘテロポリ酸を複数種用いることもできる。 By using a heteropolyacid as a catalyst, both 1,2-propanediol conversion and propanal selectivity are higher than those of commonly used catalysts such as aluminum oxide, silicon dioxide, and silica-alumina. Numerical values are shown, and as a result, propanal can be produced in good yield. In particular, when silicotungstic acid is used as a catalyst, higher propanal selectivity is exhibited. Note that a plurality of heteropolyacids can be used as the catalyst.
 上記ヘテロポリ酸-触媒担体複合体は、上記ヘテロポリ酸を、通常触媒担体として用いられる触媒担体に担持させたものである。上記触媒担体としては、酸化アルミニウム、二酸化ケイ素、活性炭などが好ましく例示できる。本発明では触媒担体として二酸化ケイ素を用いることがより好ましい。また、上記触媒担体を複数種用いることもできる。なお、ヘテロポリ酸はその分子サイズが大きいため、安定な担体に物理的に固定して使用する場合が多く、後述の実施例でもヘテロポリ酸-触媒担体複合体として用いているが、ヘテロポリ酸自体の触媒活性は、触媒担体の有無に左右されるものではなく、ヘテロポリ酸を担体に担持させることなく使用しても、同様の効果を奏する。 The heteropolyacid-catalyst carrier complex is obtained by supporting the heteropolyacid on a catalyst carrier that is usually used as a catalyst carrier. Preferred examples of the catalyst carrier include aluminum oxide, silicon dioxide, activated carbon and the like. In the present invention, it is more preferable to use silicon dioxide as the catalyst support. A plurality of the above catalyst carriers can be used. In addition, since the heteropolyacid has a large molecular size, it is often used by being physically immobilized on a stable support. In the examples described later, the heteropolyacid is used as a heteropolyacid-catalyst support complex. The catalytic activity does not depend on the presence or absence of the catalyst carrier, and the same effect can be obtained even if the heteropolyacid is used without being supported on the carrier.
 上記ヘテロポリ酸-触媒担体複合体の具体例は、ケイタングステン酸-酸化アルミニウム複合体、ケイタングステン酸-二酸化ケイ素複合体、ケイタングステン酸-活性炭複合体、ケイモリブデン酸-酸化アルミニウム複合体、ケイモリブデン酸-二酸化ケイ素複合体、ケイモリブデン酸-活性炭複合体、リンタングステン酸-酸化アルミニウム複合体、リンタングステン酸-二酸化ケイ素複合体、リンタングステン酸-活性炭複合体、リンモリブデン酸-酸化アルミニウム複合体、リンモリブデン酸-二酸化ケイ素複合体、リンモリブデン酸-活性炭複合体などが挙げられる。好ましくは、ケイタングステン酸-酸化アルミニウム複合体、ケイタングステン酸-二酸化ケイ素複合体、ケイタングステン酸-活性炭複合体、ケイモリブデン酸-二酸化ケイ素複合体、リンタングステン酸-二酸化ケイ素複合体、リンモリブデン酸-二酸化ケイ素複合体であり、より好ましくはケイタングステン酸-二酸化ケイ素複合体である。 Specific examples of the heteropolyacid-catalyst support complex include silicotungstic acid-aluminum oxide complex, silicotungstic acid-silicon dioxide complex, silicotungstic acid-activated carbon complex, silicomolybdic acid-aluminum oxide complex, silicomolybdenum. Acid-silicon dioxide complex, silicomolybdic acid-activated carbon complex, phosphotungstic acid-aluminum oxide complex, phosphotungstic acid-silicon dioxide complex, phosphotungstic acid-activated carbon complex, phosphomolybdic acid-aluminum oxide complex, Examples thereof include a phosphomolybdic acid-silicon dioxide complex and a phosphomolybdic acid-activated carbon complex. Preferably, silicotungstic acid-aluminum oxide complex, silicotungstic acid-silicon dioxide complex, silicotungstic acid-activated carbon complex, silicomolybdic acid-silicon dioxide complex, phosphotungstic acid-silicon dioxide complex, phosphomolybdic acid A silicon dioxide composite, more preferably a silicotungstic acid-silicon dioxide composite.
 上記ヘテロポリ酸は市販品あるいは公知の方法にて調合したもの等、いずれの形態のものでも触媒として使用することが可能である。同様に上記ヘテロポリ酸-触媒担体複合体についても市販品、当該ヘテロポリ酸の市販品あるいは公知の方法にて調合したものなどを触媒担体に担持させたもの等、いずれの形態のものでも触媒として使用することが可能である。 The heteropolyacid can be used as a catalyst in any form such as a commercially available product or a compound prepared by a known method. Similarly, the above heteropolyacid-catalyst carrier complex can be used as a catalyst in any form, such as a commercially available product, a commercially available product of the heteropolyacid, or a product prepared by a known method supported on a catalyst carrier. Is possible.
 ヘテロポリ酸-触媒担体複合体における触媒担体へのヘテロポリ酸成分の担持方法は含浸法、共沈法等公知の方法を用いることが可能である。例えば、ケイタングステン酸等のヘテロポリ酸を触媒担体成分である二酸化ケイ素に含浸することによって得られる固体を乾燥して得られる複合体が触媒として使用可能である。 As a method for supporting the heteropolyacid component on the catalyst carrier in the heteropolyacid-catalyst carrier complex, a known method such as an impregnation method or a coprecipitation method can be used. For example, a composite obtained by drying a solid obtained by impregnating silicon dioxide as a catalyst carrier component with a heteropolyacid such as silicotungstic acid can be used as the catalyst.
 また、ヘテロポリ酸-触媒担体複合体における、ヘテロポリ酸:触媒担体の含有比は、重量比で0.5:99.5から、50:50とすることが好ましい。ヘテロポリ酸:触媒担体中のヘテロポリ酸の含有比が0.5から50である場合、十分な触媒活性を得ることができ、触媒活性が短時間で低下することを防げる。 The content ratio of the heteropolyacid: catalyst support in the heteropolyacid-catalyst support complex is preferably 0.5: 99.5 to 50:50 by weight. When the heteropolyacid: catalyst content of the heteropolyacid in the catalyst support is 0.5 to 50, sufficient catalytic activity can be obtained, and the catalytic activity can be prevented from decreasing in a short time.
 上記第二の工程は、隣接する水酸基を持つ1,2-プロパンジオールを上記ヘテロポリ酸あるいは、ヘテロポリ酸-触媒担体複合体を触媒として用いることで、1,2-プロパンジオールの二級水酸基のみを選択的に脱離させ、生成したエノール中間体が互変異性によりカルボニル体に異性化することによってプロパナールが生成することが特徴である。 In the second step, 1,2-propanediol having an adjacent hydroxyl group is used as a catalyst for the heteropolyacid or heteropolyacid-catalyst support complex, so that only the secondary hydroxyl group of 1,2-propanediol is obtained. It is characterized in that propanal is produced by selective elimination and isomerization of the produced enol intermediate to a carbonyl form by tautomerism.
 上記第二の工程に供される1,2-プロパンジオールには、水分が含まれていてもよい。1,2-プロパンジオールを含む原料中の水分含有量は、0~95重量%の範囲が好ましく、0~70重量%の範囲がより好ましく、0~30重量%の範囲が最も好ましい。 The 1,2-propanediol used in the second step may contain moisture. The water content in the raw material containing 1,2-propanediol is preferably in the range of 0 to 95% by weight, more preferably in the range of 0 to 70% by weight, and most preferably in the range of 0 to 30% by weight.
 上記第二の工程で使用される反応装置は特に限定されないが、工業的には、原料をガス化して適当な触媒層を通過させておこなう形式の気相流通反応が可能な装置が好ましい。気相流通反応装置を用いる場合、たとえば、気相流通反応装置に所定量の触媒を入れ、これを公知の方法で前処理することにより活性な触媒層を気相流通反応装置内に形成させる。これにより、1,2-プロパンジオールをガス化し、供給することによりプロパナールを製造することが可能である。 The reaction apparatus used in the second step is not particularly limited, but industrially, an apparatus capable of performing a gas phase flow reaction in which the raw material is gasified and passed through an appropriate catalyst layer is preferable. When using a gas-phase flow reaction apparatus, for example, a predetermined amount of catalyst is put into the gas-phase flow reaction apparatus and pretreated by a known method to form an active catalyst layer in the gas-phase flow reaction apparatus. Thus, it is possible to produce propanal by gasifying and supplying 1,2-propanediol.
 また、上記触媒の前処理は、触媒層を活性化させることができる公知の方法を用いることができ、例えば、窒素気流中、200℃で1時間程度熱処理することにより、触媒層を活性化させることが挙げられる。 The catalyst pretreatment can be performed by a known method that can activate the catalyst layer. For example, the catalyst layer is activated by heat treatment at 200 ° C. for about 1 hour in a nitrogen stream. Can be mentioned.
 上記第二の工程の反応温度は、140℃~300℃の温度範囲、すなわち、1,2-プロパンジオールが気相状態として存在する温度が好適である。反応を十分に進行させるためには140℃以上が好ましく、生成物選択率を良好に保つためには300℃以下が好ましい。より好ましい温度範囲としては160℃~240℃の範囲であり、より収率が高くなることから、180℃~240℃の範囲が更に好ましく、200℃~220℃の範囲が最も好ましい。 The reaction temperature in the second step is preferably a temperature range of 140 ° C. to 300 ° C., that is, a temperature at which 1,2-propanediol exists as a gas phase. In order to sufficiently advance the reaction, 140 ° C. or higher is preferable, and in order to keep the product selectivity favorable, 300 ° C. or lower is preferable. A more preferable temperature range is 160 ° C. to 240 ° C., and since the yield is higher, a range of 180 ° C. to 240 ° C. is further preferable, and a range of 200 ° C. to 220 ° C. is most preferable.
 上記第二の工程で用いる触媒の量及び該工程の反応時間は、触媒重量に対する単位時間当たりの1,2-プロパンジオールのフィード重量(WHSV:Weight Hourly Space Velocity;単位、h-1)で代表され、WHSV値で、0.1から20h-1の範囲で利用可能であり、触媒の寿命及び収率の観点から好ましくはWHSV値で、0.5から7h-1の範囲であり、更に好ましくはWHSV値で、1から6h-1の範囲である。後述するように、本発明の1-プロパノールの製造方法を一つの反応装置で行う場合には、この第二の工程が行われる反応装置内の触媒層における反応時間が上記の範囲に収まるように第一の工程における原料のフィード量と水素の供給量を調節することが好ましい。 The amount of catalyst used in the second step and the reaction time of the step are represented by the feed weight of 1,2-propanediol per unit time relative to the catalyst weight (WHSV: Weight Hourly Space Velocity; unit, h −1 ). is, in WHSV value are available in the range of 20h -1 from 0.1, preferably WHSV value in terms of life and yield of the catalyst is in the range of 7h -1 from 0.5, more preferably Is the WHSV value, ranging from 1 to 6h −1 . As will be described later, when the production method of 1-propanol of the present invention is carried out in one reactor, the reaction time in the catalyst layer in the reactor in which this second step is carried out is within the above range. It is preferable to adjust the feed amount of the raw material and the supply amount of hydrogen in the first step.
 上記第三の工程は、第二の工程で製造されるプロパナールを1-プロパノールに転化する工程であり、この工程は公知の方法を特段の限定なく用いることができる。例えば触媒として銅、白金、ニッケル、パラジウム、ルテニウムから選ばれるいずれか1種類以上の触媒成分を含有する水素化触媒を用いる工程を用いることができる。
 このような工程を行わせる反応装置としては、特段の限定なく公知のものを用いることができ、上記第二の工程で用いられる気相流通反応が可能な装置が好ましい。気相流通反応装置を用いる場合、たとえば、気相流通反応装置に所定量の水素化触媒を入れ、これを公知の方法で前処理することにより活性な触媒層を気相流通反応装置内に形成させる。これにより、プロパナールを転化して1-プロパノールを製造することが可能である。
The third step is a step of converting the propanal produced in the second step to 1-propanol, and a known method can be used for this step without any particular limitation. For example, the process using the hydrogenation catalyst containing any one or more types of catalyst components chosen from copper, platinum, nickel, palladium, and ruthenium as a catalyst can be used.
As a reaction apparatus for performing such a process, a known apparatus can be used without any particular limitation, and an apparatus capable of a gas phase flow reaction used in the second process is preferable. When using a gas-phase flow reactor, for example, a predetermined amount of a hydrogenation catalyst is placed in the gas-phase flow reactor and pretreated by a known method to form an active catalyst layer in the gas-phase flow reactor. Let Thereby, it is possible to produce 1-propanol by converting propanal.
 上記の水素化触媒としては、銅、ニッケル及びパラジウムから選ばれるいずれか1種類以上を成分として含有する触媒が好ましく用いられる。銅を成分として含有する触媒を一例として具体的に説明すると、市販品、市販品を還元したもの、銅の酸化物、水酸化物、炭酸塩、硝酸塩、酢酸塩などを熱分解したもの、あるいは熱分解後に公知の方法にて還元したもの等、いずれの形態でも触媒として使用することが可能である。 As the hydrogenation catalyst, a catalyst containing at least one selected from copper, nickel and palladium as a component is preferably used. A specific example of a catalyst containing copper as a component is a commercial product, a product obtained by reducing a commercial product, a product obtained by thermally decomposing copper oxide, hydroxide, carbonate, nitrate, acetate, or the like, or Any form such as those reduced by a known method after thermal decomposition can be used as a catalyst.
 また、水素化触媒における触媒の担体は特に限定されないが、酸化アルミニウム、酸化クロム、酸化ジルコニウム、二酸化ケイ素等が単独で或いは各々の酸化物を複合した複合酸化物として好適に使用される。また、銅などの成分の触媒担体への担持方法は、含浸、共沈等公知の方法で行うことが可能である。 Further, the catalyst carrier in the hydrogenation catalyst is not particularly limited, but aluminum oxide, chromium oxide, zirconium oxide, silicon dioxide, etc. are suitably used alone or as a composite oxide in which respective oxides are combined. In addition, a method for supporting a component such as copper on a catalyst carrier can be performed by a known method such as impregnation or coprecipitation.
 水素化触媒として好ましく用いられる触媒としては、銅-酸化アルミニウム触媒、銅-酸化クロム触媒、銅-酸化ジルコニウム触媒、銅-二酸化ケイ素触媒、銅-酸化アルミニウム-酸化ジルコニウム触媒、銅-酸化アルミニウム-酸化クロム触媒等が挙げられる。その中でも特に銅-酸化アルミニウム触媒、銅-酸化クロム触媒、銅-酸化アルミニウム-酸化ジルコニウム触媒、または、ラネーニッケル触媒、ラネーコバルト触媒、ラネー銅触媒、パラジウム-活性炭触媒、白金-活性炭触媒等が挙げられる。 Catalysts preferably used as the hydrogenation catalyst include copper-aluminum oxide catalyst, copper-chromium oxide catalyst, copper-zirconium oxide catalyst, copper-silicon dioxide catalyst, copper-aluminum oxide-zirconium oxide catalyst, copper-aluminum oxide-oxidation A chromium catalyst etc. are mentioned. Among these, copper-aluminum oxide catalyst, copper-chromium oxide catalyst, copper-aluminum oxide-zirconium oxide catalyst, or Raney nickel catalyst, Raney cobalt catalyst, Raney copper catalyst, palladium-activated carbon catalyst, platinum-activated carbon catalyst, etc. .
 上記触媒の量は、通常反応装置内に設けることができる触媒量であれば良いが、上記気相流通反応装置の場合には、触媒重量に対する単位時間当たりのプロパナールのフィード重量(WHSV:Weight Hourly Space Velocity;単位、h-1)で代表され、WHSV値で、0.1から20h-1の範囲で利用可能であり、触媒の寿命及び収率の観点から好ましくはWHSV値で、0.5から7h-1の範囲であり、更に好ましくはWHSV値で、1から6h-1の範囲であることが好ましい。
 上記第三の工程は、反応温度を100~240℃に設定することが好ましく、120℃~200℃に設定することが特に好ましい。
The amount of the catalyst may be an amount of catalyst that can be usually provided in the reaction apparatus. However, in the case of the gas-phase flow reaction apparatus, the feed weight of propanal per unit time with respect to the catalyst weight (WHSV: Weight) Hourly Space Velocity; unit, h −1 ), which can be used in the range of 0.1 to 20 h −1 in terms of WHSV value, and preferably in terms of catalyst life and yield, in terms of WHSV value of 0. in the range of from 5 7h -1, more preferably at WHSV value is preferably in the range from 1 to 6h -1.
In the third step, the reaction temperature is preferably set to 100 to 240 ° C, particularly preferably set to 120 ° C to 200 ° C.
 上記第三の工程における水素供給量は、反応器内に供給される原料(プロパナール)のモル数に対する反応器内に供給される水素のモル数の比が0.1~500の範囲が好ましい。より好ましいモル数比の範囲としては0.1~400の範囲であり、さらに好ましくは0.1~300の範囲である。本発明における水素供給量が上記範囲を満たすことで、更に選択率良く1-プロパノールを製造することが可能となり、経済的にも好ましい。本発明の1-プロパノールの製造方法を後述する一つの反応装置を用いて行う場合には、この第三の工程が行われる触媒層におけるプロパナールと水素の供給量が上記の範囲に収まるように第一の工程における原料のフィード量と水素の供給量を調節することが好ましい。 The amount of hydrogen supplied in the third step is preferably such that the ratio of the number of moles of hydrogen supplied into the reactor to the number of moles of raw material (propanal) supplied into the reactor is in the range of 0.1 to 500. . A more preferred molar ratio range is from 0.1 to 400, and even more preferably from 0.1 to 300. When the hydrogen supply amount in the present invention satisfies the above range, 1-propanol can be produced with higher selectivity, which is economically preferable. When the 1-propanol production method of the present invention is carried out using one reactor described later, the supply amount of propanal and hydrogen in the catalyst layer in which the third step is performed is within the above range. It is preferable to adjust the feed amount of the raw material and the supply amount of hydrogen in the first step.
 本発明の1-プロパノールの製造方法は、上記の通り3つの工程を含むが、各工程はそれぞれ別の反応装置で行われてもよいし、一つの反応装置で反応を行わせてもよい。
 本発明の1-プロパノールの製造方法で使用される反応装置は上記の通り特に限定されない。たとえば、気相流通反応装置を3基用い、各々、グリセリンの1,2-プロパンジオールへの転化、1,2-プロパンジオールのプロパナールへの転化、プロパナールの1-プロパノールへの転化に用いることにより、グリセリンから1-プロパノールを製造することが可能である。
The method for producing 1-propanol of the present invention includes three steps as described above, but each step may be performed in a separate reaction apparatus, or the reaction may be performed in one reaction apparatus.
The reactor used in the method for producing 1-propanol of the present invention is not particularly limited as described above. For example, three gas phase flow reactors are used, each for conversion of glycerin to 1,2-propanediol, conversion of 1,2-propanediol to propanal, and conversion of propanal to 1-propanol. Thus, 1-propanol can be produced from glycerin.
 また他法としては、例えば気相反応装置のような反応装置1基で1-プロパナールを製造する方法も挙げられる。具体的には、反応装置内に触媒層を3層設け、該反応装置の上部にグリセリンを1,2-プロパンジオールに転化するための触媒を充填し、該反応装置の中部に1,2-プロパンジオールをプロパナールに転化するための触媒を充填し、該反応装置の下部にプロパナールを1-プロパノールに転化するための触媒を充填する。そして、該反応装置の上部から原料であるグリセリン及び水素を同時に供給することによってグリセリンから1-プロパノールを製造することが可能である。 As another method, for example, a method of producing 1-propanal with one reactor such as a gas phase reactor can be mentioned. Specifically, three catalyst layers are provided in the reaction apparatus, a catalyst for converting glycerin to 1,2-propanediol is filled in the upper part of the reaction apparatus, and 1,2- A catalyst for converting propanediol to propanal is charged, and a catalyst for converting propanal to 1-propanol is charged at the bottom of the reactor. Then, 1-propanol can be produced from glycerin by simultaneously supplying glycerin and hydrogen as raw materials from the upper part of the reactor.
 この場合の1-プロパノール製造方法の反応時間は、触媒層体積に対する単位時間当たりの原料フィード体積(WHSV:Weight Hourly Space Velocity;単位、h-1)で代表され、WHSV値で、0.1~20h-1の範囲で利用可能であり、好ましくはWHSV値で、0.5~7h-1の範囲であり、更に好ましくはWHSV値で、1~6h-1の範囲である。各触媒層においてこのような範囲に収まるように、原料のフィード量及び水素の供給量を調整することが好ましい。また、各触媒層の触媒の種類や温度条件は上記の各工程で記載した条件を用いることができる。さらに、原料として用いるグリコールの水分含有量も上記のグリコールの製造方法で記載した条件を用いることができる。 The reaction time of the 1-propanol production method in this case is represented by a raw material feed volume (WHSV: Weight Hourly Space Velocity; unit, h −1 ) per unit time with respect to the catalyst layer volume, and a WHSV value of 0.1 to available in a range of 20h -1, preferably WHSV value in the range of 0.5 ~ 7h -1, more preferably at WHSV values, in the range of 1 ~ 6h -1. It is preferable to adjust the feed amount of the raw material and the supply amount of hydrogen so as to be within such a range in each catalyst layer. Moreover, the conditions described in each of the above steps can be used as the catalyst type and temperature conditions of each catalyst layer. Furthermore, the water content of the glycol used as a raw material can be the same as that described in the above-mentioned glycol production method.
 さらに別の方法として、以下に示す気相反応装置のような反応装置を2つ用いる方法も挙げられる。第1の反応装置には触媒層を2層設け、該反応装置の上部にグリセリンを1,2-プロパンジオールに転化するための触媒を充填し、該反応装置の下部に1,2-プロパンジオールをプロパナールに転化するための触媒を充填する。第2の反応装置の触媒層にはプロパナールを1-プロパノールに転化するための触媒を充填する。そして、第1の反応装置にグリセリンと水素を供給し、第一の反応装置で得られたプロパナールと水素を第2の反応装置に供給することによって1-プロパノールを製造することが可能である。 As yet another method, a method using two reactors such as a gas phase reactor shown below can be used. The first reactor is provided with two catalyst layers, the top of the reactor is filled with a catalyst for converting glycerin to 1,2-propanediol, and the bottom of the reactor is 1,2-propanediol. Is charged with a catalyst for converting to propanal. The catalyst layer of the second reactor is filled with a catalyst for converting propanal to 1-propanol. Then, it is possible to produce 1-propanol by supplying glycerin and hydrogen to the first reactor and supplying the propanal and hydrogen obtained in the first reactor to the second reactor. .
 また、第1の反応装置にグリセリンを1,2-プロパンジオールに転化するための触媒を充填し、第2の反応装置の上部に1,2-プロパンジオールをプロパナールに転化するための触媒を充填し、反応装置の下部にプロパナールを1-プロパノールに転化するための触媒を各々充填する方法も挙げられる。そして、第1の反応装置にグリセリンと水素を供給し、第一の反応装置で得られた1,2-プロパンジオールと水素を第2の反応装置に供給することによっても1-プロパノールを製造することが可能である。
 上記のように2基の反応装置を用いる場合の原料のフィード量と水素の供給量の比や水素の供給量は、上記グリコールの製造方法、上記第二の工程、上記第三の工程で記載した条件を用いることができ、各触媒層の触媒の種類や温度条件は上記の各工程で記載した条件を用いることができる。また、原料の含水量についても上記した条件を用いることができる。
In addition, a catalyst for converting glycerin into 1,2-propanediol is charged in the first reactor, and a catalyst for converting 1,2-propanediol into propanal is provided in the upper part of the second reactor. There is also a method in which the catalyst for charging and converting propanal into 1-propanol is charged at the bottom of the reactor. 1-propanol is also produced by supplying glycerin and hydrogen to the first reactor, and supplying 1,2-propanediol and hydrogen obtained in the first reactor to the second reactor. It is possible.
The ratio of the feed amount of raw material to the supply amount of hydrogen and the supply amount of hydrogen when using two reactors as described above are described in the glycol production method, the second step, and the third step. The conditions described in the above steps can be used as the catalyst type and temperature condition of each catalyst layer. Moreover, the above-mentioned conditions can be used for the water content of the raw material.
 以下、実施例により本発明の効果を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the effects of the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
 実施例、比較例で用いた固定床常圧気相流通反応装置としては、内径17mm、全長300mmの反応器を用いた。触媒層の長さは30mmに設定した。従って、反応器内における触媒層の占める体積は約6.8cm3となった。該反応器は、上端にキャリアガス導入口と原料流入口を有し、下端にガス抜け口を有する反応粗液捕集容器(冷却装置)を有するものである。反応を行った結果捕集容器に捕集された反応粗液は、ガスクロマトグラフィーにて測定し、検量線補正後、グリセリンなどの原料の残量、1,2-プロパンジオールなどの生成物の収量を決定し、この値から転化率(モル%)、選択率(モル%)を求めた。触媒である銅系触媒は、粒径1.00から1.70mmの市販の触媒を用いた。 As the fixed bed atmospheric pressure gas flow reactor used in Examples and Comparative Examples, a reactor having an inner diameter of 17 mm and a total length of 300 mm was used. The length of the catalyst layer was set to 30 mm. Therefore, the volume occupied by the catalyst layer in the reactor was about 6.8 cm 3 . The reactor has a reaction crude liquid collection container (cooling device) having a carrier gas inlet and a raw material inlet at the upper end and a gas outlet at the lower end. The reaction crude liquid collected in the collection container as a result of the reaction was measured by gas chromatography, and after calibration curve correction, the remaining amount of raw materials such as glycerin and products such as 1,2-propanediol The yield was determined, and the conversion (mol%) and selectivity (mol%) were determined from this value. A commercially available catalyst having a particle size of 1.00 to 1.70 mm was used as the copper-based catalyst.
<実施例1>
 (水素流量の影響)
 銅-酸化アルミニウム触媒(日揮化学製 N-242)が、反応装置中30mmの長さに設定された固定床常圧気相流通反応装置を用い、該反応装置の上部から水素を所定の流速で流し、原料である30wt%グリセリン水溶液を1.8g h-1の速度で触媒層へ供給し水素流量の反応に与える影響を見た。反応温度を、反応装置中の触媒層の上部表面を210℃、下部表面を175℃に制御した状態でのグリセリン転化率、1,2-プロパンジオール選択率を表1に示す。
 グリセリン転化率は100%である反応条件下において、1,2-プロパンジオール選択率はおおよそ85%と、副生成物が非常に少ないことが分かる。
<Example 1>
(Influence of hydrogen flow rate)
A copper-aluminum oxide catalyst (NGC 242 manufactured by JGC Chemical Co., Ltd.) was used to flow hydrogen at a predetermined flow rate from the top of the reactor using a fixed bed atmospheric pressure gas flow reactor set to a length of 30 mm in the reactor. Then, a 30 wt% glycerin aqueous solution as a raw material was supplied to the catalyst layer at a rate of 1.8 g h −1 and the influence of the hydrogen flow rate on the reaction was observed. Table 1 shows the glycerol conversion rate and 1,2-propanediol selectivity when the reaction temperature is controlled at 210 ° C for the upper surface of the catalyst layer in the reactor and 175 ° C for the lower surface.
Under the reaction conditions where the glycerin conversion is 100%, the selectivity for 1,2-propanediol is approximately 85%, indicating that there are very few by-products.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例2>
 (反応温度の影響)
 銅-酸化アルミニウム触媒(日揮化学製 N-242)が、反応装置中30mmの長さに設定された固定床常圧気相流通反応装置の上部から、原料である30wt%グリセリン水溶液を1.8g h-1の速度で、水素を流量360ml min. -1の速度で触媒層へ供給し、触媒層の温度変化の反応に与える影響を見た。原料供給モル数に対する水素供給モル数比は164となる。反応温度を変えた場合のグリセリン転化率、1,2-プロパンジオール選択率を表2に示す。
 グリセリン転化率は100%である反応条件下において、触媒層下部の温度が175℃以下の反応では1,2-プロパンジオール選択率は概ね90%を超え、190℃での反応においても比較的高い目的生成物への選択性を示した。
<Example 2>
(Influence of reaction temperature)
A copper-aluminum oxide catalyst (NGC 242 manufactured by JGC Chemical Co., Ltd.) added 1.8 g h of a 30 wt% glycerin aqueous solution as a raw material from the top of a fixed bed atmospheric pressure gas flow reactor set to a length of 30 mm in the reactor. -1 rate, hydrogen was fed to the flow 360 ml min. catalyst layer-1 speed, saw the influence on the reaction of the temperature change of the catalyst layer. The ratio of the number of moles of hydrogen supplied to the number of moles of raw material supplied is 164. Table 2 shows the glycerol conversion and 1,2-propanediol selectivity when the reaction temperature is changed.
Under the reaction conditions in which the glycerin conversion is 100%, the 1,2-propanediol selectivity generally exceeds 90% in the reaction where the temperature at the lower part of the catalyst layer is 175 ° C. or lower, and is relatively high in the reaction at 190 ° C. It showed selectivity for the desired product.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例3>
 (種々の触媒による反応)
 種々の市販触媒を用い、反応原料にグリセリン濃度80%のグリセリン水溶液を用い、水素流量を240ml min. -1とし、反応装置中の触媒層の上部表面を210℃、下部表面を170℃とした。
 それ以外の条件は実施例2に準じた。原料供給モル数に対する水素供給モル数比は41となる。グリセリン転化率、1,2-プロパンジオール選択率を表3に示す。
 グリセリン濃度80重量%という高濃度のグリセリンを用いても、銅を含有する触媒を用いても、高転化率条件下で目的生成物の選択率は80%を超えることが可能であった。
<Example 3>
(Reactions with various catalysts)
Various commercially available catalysts were used, an aqueous glycerin solution having a glycerin concentration of 80% was used as a reaction raw material, the hydrogen flow rate was 240 ml min.- 1 , the upper surface of the catalyst layer in the reactor was 210 ° C., and the lower surface was 170 ° C. .
Other conditions were the same as in Example 2. The ratio of the number of moles of hydrogen supplied to the number of moles of raw material supplied is 41. Table 3 shows glycerin conversion and 1,2-propanediol selectivity.
Whether the glycerin concentration was as high as 80% by weight or the catalyst containing copper was used, the selectivity of the target product could exceed 80% under high conversion conditions.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<比較例1>
 原料供給モル数に対する水素供給モル数比が30以下での条件で反応を行った。水素流量を25ml min.-1として反応を行ったため、触媒層体積に対する水素流量比は11であった。その他の条件は実施例1に準じた。結果を表4に示す。
<Comparative Example 1>
The reaction was carried out under the condition that the molar ratio of hydrogen supply to the raw material supply was 30 or less. Hydrogen flow rate is 25 ml min. Since the reaction was carried out as -1 , the hydrogen flow rate ratio to the catalyst layer volume was 11. Other conditions were the same as in Example 1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<比較例2>
 反応温度を変えて、触媒層の温度変化が反応に与える影響を見た。その他の条件は実施例2に準じた。結果を表5に示す。
<Comparative example 2>
By changing the reaction temperature, the effect of the temperature change of the catalyst layer on the reaction was observed. Other conditions were the same as in Example 2. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以下の実施例及び比較例では、1-プロパノールの製造例を具体的に説明する。
 以下の実施例及び比較例で用いた固定床常圧気相流通反応装置は、上記のグリコール製造方法で用いたものと同様に、内径17mm、全長300mmの反応器であり、その上端にキャリアガス導入口と原料流入口があり、下端にガス抜け口を有する反応粗液捕集容器(冷却装置)を有するものである。
In the following Examples and Comparative Examples, production examples of 1-propanol will be specifically described.
The fixed bed atmospheric pressure gas flow reactor used in the following examples and comparative examples is a reactor having an inner diameter of 17 mm and an overall length of 300 mm, similar to that used in the glycol production method described above. It has a reaction crude liquid collection container (cooling device) having a mouth and a raw material inlet and having a gas outlet at the lower end.
 以下の実施例及び比較例で用いた触媒について説明すると、グリセリンを1,2-プロパンジオールに転化するときの触媒は銅-酸化アルミニウム触媒であり、1,2-プロパンジオールをプロパナールに転化するときの触媒は二酸化ケイ素担持リンタングステン酸であり、プロパナールからの1-プロパノールへの反応触媒は銅-酸化アルミニウム触媒である。銅-酸化アルミニウム触媒は市販のもの(商品名:N-242、日揮化学製)を、二酸化ケイ素担持リンタングステン酸は市販のリンタングステン酸(和光純薬製、特級グレード)を水に溶解し、市販の二酸化ケイ素(商品名:キャリアクトQ10、富士シリシア化学製)に30重量%の担持量となるように含浸法にて担持した触媒を用いた。
 捕集容器に捕集された反応粗液は、ガスクロマトグラフィーにて分析し、検量線補正後、1-プロパノールなどの収量、グリセリンなどの原料の残量を決定し、この値から転化率(モル%)、選択率(モル%)を求めた。
The catalyst used in the following Examples and Comparative Examples will be described. The catalyst for converting glycerin to 1,2-propanediol is a copper-aluminum oxide catalyst, and 1,2-propanediol is converted to propanal. Sometimes the catalyst is silicon dioxide-supported phosphotungstic acid, and the reaction catalyst from propanal to 1-propanol is a copper-aluminum oxide catalyst. The copper-aluminum oxide catalyst is a commercially available product (trade name: N-242, manufactured by JGC Chemical Co., Ltd.), and the silicon dioxide-supported phosphotungstic acid is dissolved in commercially available phosphotungstic acid (manufactured by Wako Pure Chemicals, special grade) in water. A catalyst supported on a commercially available silicon dioxide (trade name: Caractect Q10, manufactured by Fuji Silysia Chemical Co., Ltd.) by an impregnation method so as to have a supported amount of 30% by weight was used.
The reaction crude liquid collected in the collection container is analyzed by gas chromatography, and after calibration curve correction, the yield of 1-propanol and the like and the remaining amount of raw materials such as glycerin are determined, and the conversion rate ( Mol%) and selectivity (mol%).
<実施例4>
(1,2-プロパンジオールからの1-プロパノールの合成 反応温度1)
 触媒層上部にヘテロポリ酸を担持した二酸化ケイ素触媒0.3gを設置し、触媒層下部に銅-酸化アルミニウム触媒(日揮化学株式会社製 N242)0.5gを設置した反応装置を用い、原料である30wt%1,2-プロパンジオール水溶液を1.8g h-1の速度で、水素を毎分30mlで供給し、反応温度を変えて反応を行った。1,2-プロパンジオール転化率、1-プロパノール選択率、1-プロパノール収率は以下の表6に示す通りであった。原料供給モル数に対する水素供給モル数比は11.3であった。
<Example 4>
(Synthesis of 1-propanol from 1,2-propanediol Reaction temperature 1)
Using a reaction apparatus in which 0.3 g of a silicon dioxide catalyst supporting a heteropoly acid is placed on the upper part of the catalyst layer and 0.5 g of a copper-aluminum oxide catalyst (N242 manufactured by JGC Chemical Co., Ltd.) is placed on the lower part of the catalyst layer, the raw material A 30 wt% aqueous solution of 1,2-propanediol was supplied at a rate of 1.8 g h −1 at a rate of 30 ml per minute, and the reaction was carried out at different reaction temperatures. The 1,2-propanediol conversion rate, 1-propanol selectivity, and 1-propanol yield were as shown in Table 6 below. The ratio of moles of hydrogen to moles of raw material was 11.3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<実施例5>
(1,2-プロパンジオールからの1-プロパノールの合成、触媒量)
 実施例4に記載の下部触媒層の触媒量を変えて反応温度200℃で反応を行った。1,2-プロパンジオール転化率、1-プロパノール選択率、1-プロパノール収率は以下の表7に示す通りであった。
<Example 5>
(Synthesis of 1-propanol from 1,2-propanediol, catalytic amount)
The reaction was carried out at a reaction temperature of 200 ° C. while changing the amount of catalyst in the lower catalyst layer described in Example 4. The 1,2-propanediol conversion, 1-propanol selectivity, and 1-propanol yield were as shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<実施例6>
(1,2-プロパンジオールからの1-プロパノールの合成、反応温度2)
 触媒層上部と触媒層下部の反応温度を変えた以外は実施例4に則って反応を行った。1,2-プロパンジオール転化率、1-プロパノール選択率、1-プロパノール収率は以下の表8に示す通りであった。
<Example 6>
(Synthesis of 1-propanol from 1,2-propanediol, reaction temperature 2)
The reaction was performed according to Example 4 except that the reaction temperature at the upper part of the catalyst layer and the lower part of the catalyst layer was changed. The 1,2-propanediol conversion, 1-propanol selectivity, and 1-propanol yield were as shown in Table 8 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<実施例7>
(1,2-プロパンジオールからの1-プロパノールの合成、水素流量)
 水素流量を変え、反応温度を200℃に固定した以外は実施例4に則って反応を行った。1,2-プロパンジオール転化率、1-プロパノール選択率、1-プロパノール収率は以下の表9に示す通りであった。
<Example 7>
(Synthesis of 1-propanol from 1,2-propanediol, hydrogen flow rate)
The reaction was carried out according to Example 4 except that the hydrogen flow rate was changed and the reaction temperature was fixed at 200 ° C. The conversion rate of 1,2-propanediol, 1-propanol selectivity, and 1-propanol yield were as shown in Table 9 below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<実施例8>
(グリセリンからの1-プロパノールの合成)
 触媒層上部に銅-酸化アルミニウム触媒(日揮化学株式会社製 N242)8.7gを設置し、触媒層中部にヘテロポリ酸を担持した二酸化ケイ素触媒0.3gを設置し、更に触媒層下部に銅-酸化アルミニウム触媒(日揮化学株式会社製 N242)0.5gを設置した反応装置を用い、原料であるグリセリン30wt%水溶液を1.8g h-1の速度で、水素を360mlmin.-1の速度で供給し、触媒層上部の上表面と下表面の温度と、触媒層中部と、触媒層下部の反応温度を変えて反応を行った。原料供給モル数に対する水素供給モル数比は164であった。グリセリン転化率、1-プロパノール選択率、1-プロパノール収率は以下の表10に示す通りであった。
<Example 8>
(Synthesis of 1-propanol from glycerin)
8.7 g of a copper-aluminum oxide catalyst (N242 manufactured by JGC Chemical Co., Ltd.) is placed on the upper part of the catalyst layer, 0.3 g of a silicon dioxide catalyst supporting a heteropoly acid is placed on the middle part of the catalyst layer, and copper- Using a reactor equipped with 0.5 g of an aluminum oxide catalyst (N242 manufactured by JGC Chemical Co., Ltd.), a 30 wt% aqueous solution of glycerin as a raw material at a rate of 1.8 g h −1 and hydrogen at 360 ml min. The reaction was carried out at a rate of -1 while changing the temperature of the upper and lower surfaces of the upper part of the catalyst layer, the reaction temperature of the middle part of the catalyst layer and the lower part of the catalyst layer. The ratio of the number of moles of hydrogen supplied to the number of moles of raw material supplied was 164. The glycerin conversion, 1-propanol selectivity, and 1-propanol yield were as shown in Table 10 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 以下の表11に結果が示される実験で用いた固定床加圧気相流通反応装置としては、内径28mm、全長1000mmの反応器を用いた。触媒層の長さは150mmに設定した。従って、反応器内における触媒層の占める体積は約92.4cm3となった。該反応器は、上端にキャリアガス導入口と原料流入口を有し、下端に背圧弁を介してガスが排出される反応粗液捕集容器(冷却装置)を有するものである。反応を行った結果捕集容器に捕集された反応粗液は、ガスクロマトグラフィーにて測定し、検量線補正後、グリセリンなどの原料の残量、1,2-プロパンジオールなどの生成物の収量を決定し、この値から転化率(モル%)、選択率(モル%)を求めた。触媒である銅系触媒は、粒径1/8インチタブレットの市販の触媒(N.E.ケムキャット社製、Cu-0825T)を用いた。原料グリセリンは80%の濃度のものを用いた(残りは水)。
 上記反応装置の上部から水素を表11に記載の各供給量で供給し、原料グリセリンを表11に記載に記載されるWHSVで供給した。
 反応率、アセトール(HA)の選択率、プロピレングリコール(PG)の選択率及び収率を表11に示す。
As the fixed bed pressurized gas phase flow reactor used in the experiments whose results are shown in Table 11 below, a reactor having an inner diameter of 28 mm and a total length of 1000 mm was used. The length of the catalyst layer was set to 150 mm. Therefore, the volume occupied by the catalyst layer in the reactor was about 92.4 cm 3 . The reactor has a carrier gas inlet and a raw material inlet at the upper end, and a reaction crude liquid collection container (cooling device) from which gas is discharged via a back pressure valve at the lower end. The reaction crude liquid collected in the collection container as a result of the reaction was measured by gas chromatography, and after calibration curve correction, the remaining amount of raw materials such as glycerin and products such as 1,2-propanediol The yield was determined, and the conversion (mol%) and selectivity (mol%) were determined from this value. A commercially available catalyst having a particle size of 1/8 inch tablet (Cu-0825T, manufactured by NE Chemcat Corp.) was used as the copper-based catalyst. The raw material glycerin was 80% in concentration (the rest was water).
Hydrogen was supplied from the upper part of the reactor at each supply amount shown in Table 11, and raw material glycerin was supplied by WHSV described in Table 11.
Table 11 shows the reaction rate, the selectivity for acetol (HA), the selectivity for propylene glycol (PG), and the yield.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 上記表11に示された結果を見ると、例えば、上記実験No.7及び8の結果を比較すると、大気圧下での反応に比べ、加圧下の反応では、PG(プロピレングリコール)の選択率が高く、HA(アセトール)の選択率が低いことが分かった。また、水素-グリセリンのモル比が大気圧下でのそれよりも小さい条件下で反応を行ってもPGへの選択率が高いということは水素の消費量がより少なく、経済的にも有利であることを示している。
上記実験No.11及び12の比較や、14及び15の比較でも同様の結果が得られた。
Looking at the results shown in Table 11, for example, the experiment No. Comparing the results of 7 and 8, it was found that the selectivity of PG (propylene glycol) was higher and the selectivity of HA (acetol) was lower in the reaction under pressure than in the reaction under atmospheric pressure. Further, even when the reaction is carried out under a condition where the molar ratio of hydrogen to glycerin is smaller than that under atmospheric pressure, the high selectivity to PG means less hydrogen consumption, which is economically advantageous. It shows that there is.
In the above experiment No. Similar results were obtained by comparing 11 and 12 and comparing 14 and 15.

Claims (19)

  1.  グリセリンからグリコールを製造する方法であって、銅を成分として含有する触媒を用い、大気圧下又は加圧下、水素共存下で反応させることを特徴とする、グリコール製造方法。 A method for producing glycol from glycerin, characterized by using a catalyst containing copper as a component and reacting under atmospheric pressure or under pressure in the presence of hydrogen.
  2.  前記反応が大気圧下で行われる請求項1に記載の製造方法。 The production method according to claim 1, wherein the reaction is performed under atmospheric pressure.
  3.  反応に供給される原料モル数に対する反応に供給される水素のモル数の比が、150から500である請求項2に記載の製造方法。 The method according to claim 2, wherein the ratio of the number of moles of hydrogen supplied to the reaction to the number of moles of raw material supplied to the reaction is 150 to 500.
  4.  反応に供給される原料モル数に対する反応に供給される水素のモル数の比が、150から400である請求項2に記載の製造方法。 The method according to claim 2, wherein the ratio of the number of moles of hydrogen supplied to the reaction to the number of moles of raw material supplied to the reaction is 150 to 400.
  5.  反応に供給される原料モル数に対する反応に供給される水素のモル数の比が、150から300である請求項2に記載の製造方法。 The method according to claim 2, wherein the ratio of the number of moles of hydrogen supplied to the reaction to the number of moles of raw material supplied to the reaction is 150 to 300.
  6.  前記反応が加圧下で行われる請求項1に記載の製造方法。 The production method according to claim 1, wherein the reaction is carried out under pressure.
  7.  反応に供給される原料モル数に対する反応に供給される水素のモル数の比が、20から30である請求項6に記載の製造方法。 The method according to claim 6, wherein the ratio of the number of moles of hydrogen supplied to the reaction to the number of moles of raw material supplied to the reaction is 20 to 30.
  8.  グリセリンが脱水されアセトールが生成される第一段反応が150~260℃で行われ、生成されたアセトールに水素が添加されグリコールが生成する第二段反応が100~220℃で行われることを特徴とする請求項1から7のいずれか1項に記載の製造方法。 The first stage reaction in which glycerin is dehydrated and acetol is generated is performed at 150 to 260 ° C., and the second stage reaction in which hydrogen is added to the generated acetol to generate glycol is performed at 100 to 220 ° C. The manufacturing method according to any one of claims 1 to 7.
  9.  前記第一段反応が150~225℃で行われ、前記第二段反応が120~175℃で行われることを特徴とする請求項8に記載の製造方法。 The production method according to claim 8, wherein the first-stage reaction is performed at 150 to 225 ° C, and the second-stage reaction is performed at 120 to 175 ° C.
  10.  前記第一段反応が150~200℃で行われ、前記第二段反応が120~160℃で行われることを特徴とする請求項8に記載の製造方法。 The production method according to claim 8, wherein the first stage reaction is performed at 150 to 200 ° C, and the second stage reaction is performed at 120 to 160 ° C.
  11.  前記第一段反応が230~260℃で行われ、前記第二段反応が150~220℃で行われることを特徴とする請求項8に記載の製造方法。 The production method according to claim 8, wherein the first stage reaction is performed at 230 to 260 ° C, and the second stage reaction is performed at 150 to 220 ° C.
  12.  前記第一段反応が240~250℃で行われ、前記第二段反応が150~175℃で行われることを特徴とする請求項8に記載の製造方法。 The production method according to claim 8, wherein the first stage reaction is performed at 240 to 250 ° C, and the second stage reaction is performed at 150 to 175 ° C.
  13.  前記グリコールが1,2-プロピレングリコールである請求項1から12のいずれかに記載の製造方法。 The method according to any one of claims 1 to 12, wherein the glycol is 1,2-propylene glycol.
  14.  請求項13に記載の製造方法を用いてグリセリンを1,2-プロピレングリコールに転化する第一の工程と、第一の工程で製造された1,2-プロピレングリコールをプロパナールに転化する第二の工程と、第二の工程で製造されたプロパナールを1-プロパノールに転化する第三の工程とを含む、1-プロパノールの製造方法。 A first step of converting glycerin to 1,2-propylene glycol using the production method according to claim 13, and a second step of converting 1,2-propylene glycol produced in the first step to propanal. And a third step of converting the propanal produced in the second step to 1-propanol.
  15.  前記第二の工程が、ヘテロポリ酸あるいは、ヘテロポリ酸-触媒担体複合体からなる触媒を用いて行われることを特徴とする請求項14に記載の製造方法。 The method according to claim 14, wherein the second step is performed using a catalyst comprising a heteropolyacid or a heteropolyacid-catalyst support complex.
  16.  前記ヘテロポリ酸あるいは、ヘテロポリ酸-触媒担体複合体のヘテロポリ酸がケイタングステン酸、ケイモリブデン酸、リンタングステン酸及びリンモリブデン酸から選ばれるいずれかを含む請求項15に記載の製造方法。 The production method according to claim 15, wherein the heteropolyacid or the heteropolyacid of the heteropolyacid-catalyst support complex includes any one selected from silicotungstic acid, silicomolybdic acid, phosphotungstic acid and phosphomolybdic acid.
  17.  前記ヘテロポリ酸あるいは、ヘテロポリ酸-触媒担体複合体のヘテロポリ酸がケイタングステン酸である請求項15に記載の製造方法。 The production method according to claim 15, wherein the heteropolyacid or the heteropolyacid of the heteropolyacid-catalyst support complex is silicotungstic acid.
  18.  前記第三の工程が、銅、白金、ニッケル、パラジウム及びルテニウムから選ばれるいずれか1種類以上の触媒成分を含有する水素化触媒を用いて行われることを特徴とする請求項14~17のいずれか1項に記載の製造方法。 The method according to any one of claims 14 to 17, wherein the third step is performed using a hydrogenation catalyst containing at least one catalyst component selected from copper, platinum, nickel, palladium, and ruthenium. The production method according to claim 1.
  19.  前記第三の工程が、銅、ニッケル、パラジウムから選ばれるいずれか1種類以上の触媒成分を含有する水素化触媒を用いて行われることを特徴とする請求項14~17のいずれか1項に記載の製造方法。 The method according to any one of claims 14 to 17, wherein the third step is performed using a hydrogenation catalyst containing any one or more kinds of catalyst components selected from copper, nickel, and palladium. The manufacturing method as described.
PCT/JP2009/063756 2008-08-04 2009-08-03 Methods for producing glycol from glycerin and 1-propanol WO2010016462A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010523848A JP5555867B2 (en) 2008-08-04 2009-08-03 Process for producing glycol and 1-propanol from glycerin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008200746 2008-08-04
JP2008-200746 2008-08-04
JP2009024792 2009-02-05
JP2009-024792 2009-02-05

Publications (1)

Publication Number Publication Date
WO2010016462A1 true WO2010016462A1 (en) 2010-02-11

Family

ID=41663679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063756 WO2010016462A1 (en) 2008-08-04 2009-08-03 Methods for producing glycol from glycerin and 1-propanol

Country Status (2)

Country Link
JP (1) JP5555867B2 (en)
WO (1) WO2010016462A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102731247A (en) * 2012-06-27 2012-10-17 中国科学院青岛生物能源与过程研究所 Method for preparing n-propanol from bio-base diol
JP2013521221A (en) * 2010-03-03 2013-06-10 ズードケミー インコーポレイテッド Conversion of sugars, sugar alcohols, or glycerol into valuable chemicals using active zirconium oxide supported catalysts
WO2015115410A1 (en) * 2014-01-28 2015-08-06 株式会社日本触媒 Hydrogenation reaction method
WO2019009127A1 (en) 2017-07-03 2019-01-10 東海光学株式会社 Optical plastic product, and plastic spectacle lenses and spectacles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214219A (en) * 1991-07-10 1993-05-25 Novamont S.P.A. Method of hydrogenating glycerol
WO2007010299A1 (en) * 2005-07-15 2007-01-25 Davy Process Technology Ltd Process
JP2007326849A (en) * 2006-05-09 2007-12-20 Kao Corp Method for producing polyhydric alcohol hydrogenolysis product
JP2008110931A (en) * 2006-10-30 2008-05-15 Univ Of Tsukuba Method for reducing glycerin, and catalyst for reducing glycerin
JP2008143798A (en) * 2006-12-06 2008-06-26 National Institute Of Advanced Industrial & Technology Method for preparing propanediol
JP2008163000A (en) * 2006-12-05 2008-07-17 Kao Corp Method for producing hydrocrackate of polyhydric alcohol

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4238492C2 (en) * 1992-11-14 1995-06-14 Degussa Process for the preparation of 1,2- and 1,3-propanediol
DE4442124A1 (en) * 1994-11-26 1996-05-30 Basf Ag Process for the preparation of 1,2-propanediol
US7663004B2 (en) * 2002-04-22 2010-02-16 The Curators Of The University Of Missouri Method of producing lower alcohols from glycerol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214219A (en) * 1991-07-10 1993-05-25 Novamont S.P.A. Method of hydrogenating glycerol
WO2007010299A1 (en) * 2005-07-15 2007-01-25 Davy Process Technology Ltd Process
JP2007326849A (en) * 2006-05-09 2007-12-20 Kao Corp Method for producing polyhydric alcohol hydrogenolysis product
JP2008110931A (en) * 2006-10-30 2008-05-15 Univ Of Tsukuba Method for reducing glycerin, and catalyst for reducing glycerin
JP2008163000A (en) * 2006-12-05 2008-07-17 Kao Corp Method for producing hydrocrackate of polyhydric alcohol
JP2008143798A (en) * 2006-12-06 2008-06-26 National Institute Of Advanced Industrial & Technology Method for preparing propanediol

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DASARI A. MOHANPRASAD ET AL., APPLIED CATALYSIS A:GENERAL, vol. 281, 2005, pages 225 - 231 *
KEIICHI TOMISHIGE ET AL., DAI 51 KAI THE JAPAN PETROLEUM INSTITUTE NENKAI KOEN YOSHI, 15 May 2008 (2008-05-15), pages 85 - 86 *
MASAKI AKIYAMA ET AL., DAI 102 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, 23 September 2008 (2008-09-23), pages 309 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521221A (en) * 2010-03-03 2013-06-10 ズードケミー インコーポレイテッド Conversion of sugars, sugar alcohols, or glycerol into valuable chemicals using active zirconium oxide supported catalysts
CN102731247A (en) * 2012-06-27 2012-10-17 中国科学院青岛生物能源与过程研究所 Method for preparing n-propanol from bio-base diol
WO2015115410A1 (en) * 2014-01-28 2015-08-06 株式会社日本触媒 Hydrogenation reaction method
JPWO2015115410A1 (en) * 2014-01-28 2017-03-23 株式会社日本触媒 Hydrogenation reaction method
US10106488B2 (en) 2014-01-28 2018-10-23 Nippon Shokubai Co., Ltd. Hydrogenation reaction method
WO2019009127A1 (en) 2017-07-03 2019-01-10 東海光学株式会社 Optical plastic product, and plastic spectacle lenses and spectacles

Also Published As

Publication number Publication date
JPWO2010016462A1 (en) 2012-01-26
JP5555867B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
Sato et al. Vapor-phase reaction of polyols over copper catalysts
Zhou et al. Recent advances in catalytic conversion of glycerol
US8680321B2 (en) Processes for making ethanol from acetic acid using bimetallic catalysts
CA2732359C (en) Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
CA2732366C (en) Ethanol production from acetic acid utilizing a cobalt catalyst
US8450535B2 (en) Ethanol production from acetic acid utilizing a cobalt catalyst
US8575406B2 (en) Catalysts having promoter metals and process for producing ethanol
EP2694460A1 (en) Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
AU2010313767A2 (en) Processes for making ethanol from acetic acid
AU2010313700A1 (en) Catalysts for making ethyl acetate from acetic acid
JP2007526326A (en) Process for cyclohexanedimethanol using Raney metal catalyst
US8455702B1 (en) Cobalt and tin catalysts for producing ethanol
CA2778767A1 (en) Catalysts for making ethanol from acetic acid
WO2011053366A1 (en) Processes for making ethyl acetate from acetic acid
JP2010180156A (en) Process for producing lower saturated aldehyde from 1,2-diol
JP5555867B2 (en) Process for producing glycol and 1-propanol from glycerin
US9073042B2 (en) Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter
EP2565175B1 (en) Catalytic process for the production of 1,2-propanediol from crude glycerol stream
US20130184502A1 (en) Reduced water content preparation process for hydrogenation catalysts
US9266095B2 (en) Hydrogenation catalysts with cobalt and alkaline-earth metal modified supports
WO2013096617A1 (en) Process for producing ethanol using catalyst comprising platinum, tin and secondary noble metal
EP2493611A2 (en) Processes for making ethanol or ethyl acetate from acetic acid using bimetallic catalysts
Kaszonyi et al. Bioglycerol a new platform chemical
US20140121421A1 (en) Hydrogenation Reaction Conditions To Produce Ethanol and Reduce Ethyl Acetate Formation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804945

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523848

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804945

Country of ref document: EP

Kind code of ref document: A1