JP6051437B2 - Electronic device manufacturing method by laser heating method - Google Patents

Electronic device manufacturing method by laser heating method Download PDF

Info

Publication number
JP6051437B2
JP6051437B2 JP2012132995A JP2012132995A JP6051437B2 JP 6051437 B2 JP6051437 B2 JP 6051437B2 JP 2012132995 A JP2012132995 A JP 2012132995A JP 2012132995 A JP2012132995 A JP 2012132995A JP 6051437 B2 JP6051437 B2 JP 6051437B2
Authority
JP
Japan
Prior art keywords
particles
solder
mass
melting point
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012132995A
Other languages
Japanese (ja)
Other versions
JP2013258254A (en
Inventor
利典 柏木
利典 柏木
軌人 田中
軌人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Co Ltd
Original Assignee
Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koki Co Ltd filed Critical Koki Co Ltd
Priority to JP2012132995A priority Critical patent/JP6051437B2/en
Publication of JP2013258254A publication Critical patent/JP2013258254A/en
Application granted granted Critical
Publication of JP6051437B2 publication Critical patent/JP6051437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、レーザー加熱工法により電子デバイスを製造する方法に関する。より詳しくは、本発明は、レーザー光によりはんだ接合材を溶融、冷却、硬化して形成される接合部を有する電子デバイスの製造方法において、照射したレーザー光が、はんだ溶融時に生じる鏡面状のはんだ表面で反射され、被照射領域外にある基板や近接して配置された電子部品等に焼け焦げを生じさせることのないはんだ接合材を用いることを特徴とする電子デバイスの製造方法に関する。   The present invention relates to a method of manufacturing an electronic device by a laser heating method. More specifically, the present invention relates to a method of manufacturing an electronic device having a joint formed by melting, cooling, and curing a solder joint material with laser light. The present invention relates to a method for manufacturing an electronic device characterized by using a solder bonding material that is reflected on the surface and does not cause scorching on a substrate outside the irradiated region, an electronic component disposed in the vicinity, or the like.

近年、多種多様な電子部品が高密度に実装された高密度実装基板の製造が盛んに行われている。電子部品は、通常、自動印刷機、部品実装マウンター、リフロー炉等から構成される自動実装工程によって基板へ実装される。しかしながら、特殊な形状をしている電子部品や自動実装工程の温度に耐えられない耐熱性の低い電子部品、リペアの必要のある電子部品等は、自動実装工程では実装できないので、局所はんだ付け工法による後工程で実装される。   2. Description of the Related Art In recent years, high-density mounting substrates on which various electronic components are mounted at high density have been actively produced. Electronic components are usually mounted on a substrate by an automatic mounting process including an automatic printing machine, a component mounting mounter, a reflow furnace, and the like. However, since the electronic parts with special shapes, electronic parts with low heat resistance that cannot withstand the temperature of the automatic mounting process, and electronic parts that require repair cannot be mounted in the automatic mounting process, the local soldering method It is mounted in a later process.

局所はんだ付け工法の1つとして、レーザー光を用いるレーザー加熱工法があり、レーザー光による加熱処理のみで加熱する場合と、熱風等を併用して加熱する場合とがある。使用されるレーザー光としては大きなエネルギー密度が得られ、制御しやすいYAGレーザーやパルスレーザー等が用いられる。これらのレーザー光は単波長かつコヒーレントな光のため、現状では最小φ0.2mm程度まで光束を絞ることができ、局所的な加熱に適している。また、はんだ付けの雰囲気を不活性ガス雰囲気や還元性ガス雰囲気にすることによってフラックスを使用しないレーザー加熱工法もある。   As one of the local soldering methods, there is a laser heating method using a laser beam, and there are a case where heating is performed only by heat treatment using a laser beam and a case where heating is performed using hot air or the like in combination. As a laser beam to be used, a YAG laser, a pulse laser, or the like that can obtain a large energy density and is easy to control is used. Since these laser lights are single-wavelength and coherent light, the light flux can be narrowed down to about φ0.2 mm at the present and is suitable for local heating. There is also a laser heating method that does not use flux by making the soldering atmosphere an inert gas atmosphere or a reducing gas atmosphere.

これらのレーザー加熱工法を用いることにより、今日、微細ピッチの部品実装や、実装部周辺への熱影響を最小限に抑えることが可能となっている。ワーク形状に左右されるものの、レーザー加熱工法を採用することで手作業や従来の工法と比べ、生産数の増加や品質の向上が見込まれる。   By using these laser heating methods, it is now possible to minimize the effect of heat on the component mounting of fine pitches and the periphery of the mounting part. Although it depends on the shape of the workpiece, the use of the laser heating method is expected to increase production and improve quality compared to manual methods and conventional methods.

レーザー加熱工法を必要とする電子部品としては、自動実装工程を経た後、後工程で実装することが必要な低耐熱な電子部品がある。それらの中で特に、プリント基板上の挿入実装部品、各種センサー類、表面実装部品(SMD)、チップ部品、 COMSセンサーIC、狭ピッチ表面実装コネクター、ウレタン線、光ピックアップ、プローブカード、小型スピーカー、実装基板接合等に、上述したレーザー加熱工法が採用されている。これらの電子部品を短時間で確実に実装するためには、レーザー光の出力を高く設定し、エネルギー密度の高いレーザー光を照射する必要がある。   As an electronic component that requires a laser heating method, there is a low heat resistant electronic component that needs to be mounted in a subsequent process after an automatic mounting process. Among them, in particular, insertion mounting parts on printed circuit boards, various sensors, surface mounting parts (SMD), chip parts, COMS sensor ICs, narrow pitch surface mounting connectors, urethane wires, optical pickups, probe cards, small speakers, The laser heating method described above is employed for mounting substrate bonding and the like. In order to reliably mount these electronic components in a short time, it is necessary to set the output of the laser beam high and irradiate the laser beam with a high energy density.

しかしながら、レーザー出力を高く設定することには、以下のような問題がある。
図3は、従来技術によるレーザーはんだ付け工法の問題点を説明するためのはんだ付け箇所近傍の概念図であり、図4は図3の主要部の拡大図である。これらの図を参照すれば、通常、レーザー光をはんだ付け部分に照射すると、レーザー照射部であるはんだ付け部分がレーザー光を吸収して温度が上昇し、そこに供給されたはんだペースト又は糸はんだ等が溶融して、基板ランド電極やスルーホール、電子部品のリード部分等に濡れ広がっていく。はんだが溶融して、濡れ広がる過程では、はんだ表面は鏡面状となり、照射されているレーザー光を反射する。図3、4においては、はんだ付けされる電子部品は、挿入実装部品2であり、レーザー光5の照射により、供給されたはんだペースト又は糸はんだ等が溶融して、挿入実装基板2のリードピン21及び基板1のランド電極11に濡れ広がって、濡れ広がった溶融はんだ41の表面でレーザー光5が反射され、反射光52の一部がすでに実装されている表面実装部品3の側面に照射されている。図3、4においては、表面実装部品3に照射されている反射光52のみを図示しているが、反射光は他の方向にも照射される。
レーザー光5のエネルギー密度が高い場合には、レーザー光周辺部にすでに実装されている表面実装部品3等に反射光が照射されると、反射光のエネルギーにより表面実装部品3等が焼損されてしまうことがある。また、反射光が人体に照射されると人体を損傷する恐れもある。
However, setting the laser output high has the following problems.
FIG. 3 is a conceptual diagram of the vicinity of a soldering location for explaining the problems of the laser soldering method according to the prior art, and FIG. 4 is an enlarged view of the main part of FIG. Referring to these figures, normally, when a soldering part is irradiated with laser light, the soldering part that is the laser irradiation part absorbs the laser light and the temperature rises, and the solder paste or thread solder supplied thereto And the like melt and spread on the substrate land electrode, the through hole, and the lead portion of the electronic component. In the process where the solder melts and spreads, the solder surface becomes mirror-like and reflects the irradiated laser beam. 3 and 4, the electronic component to be soldered is the insertion mounting component 2, and the supplied solder paste or thread solder is melted by the irradiation of the laser beam 5, and the lead pin 21 of the insertion mounting substrate 2. And the laser beam 5 is reflected on the surface of the molten solder 41 that has spread and wetted on the land electrode 11 of the substrate 1, and a part of the reflected light 52 is irradiated on the side surface of the surface-mounted component 3 that is already mounted. Yes. 3 and 4 show only the reflected light 52 applied to the surface-mounted component 3, the reflected light is applied in other directions.
When the energy density of the laser beam 5 is high, when the reflected light is irradiated to the surface mount component 3 or the like already mounted on the periphery of the laser beam, the surface mount component 3 or the like is burned out by the energy of the reflected light. May end up. In addition, if the human body is irradiated with reflected light, the human body may be damaged.

このような照射レーザー光の反射光による他の電子部品等の焼損を防ぐために、以下の特許文献1には、レーザー光照射部から照射されたレーザー光が電子部品の被照射領域において反射された反射光の光路を遮る遮蔽部を設けて焼損を防ぐレーザー加熱装置が開示されている。   In order to prevent burnout of other electronic components and the like due to the reflected light of the irradiated laser light, the following Patent Document 1 discloses that the laser light irradiated from the laser light irradiation portion is reflected in the irradiated region of the electronic component. A laser heating device is disclosed in which a shielding portion that blocks an optical path of reflected light is provided to prevent burning.

また、以下の特許文献2には、焼損を防ぐために温度計測に用いる温度センサと、加熱に用いるレーザー発振器と、前記レーザー発振器から出力されたレーザー光をはんだ付け対象物に集光する出射ヘッドと、前記赤外線センサの計測結果に基づいて電子部品が焼損しないようにレーザー発振器の出力を制御する制御装置を備えたレーザー加熱装置が開示されている。   Patent Document 2 below discloses a temperature sensor used for temperature measurement in order to prevent burning, a laser oscillator used for heating, and an emission head for condensing the laser light output from the laser oscillator onto a soldering object. A laser heating device is disclosed that includes a control device that controls the output of a laser oscillator so that electronic components are not burned out based on the measurement result of the infrared sensor.

特開2012−655号公報JP 2012-655 A 特開2010−260093号公報JP 2010-260093 A

しかしながら、特許文献1では、プローブカードのピン等のレーザー光はんだ付けに対し、焼損抑制効果が明示されているものの、レーザー光の照射角度や反射光の光路を遮る遮蔽部を設けるスペースが必要であるなどの点から、使用できる電子部品が限定されることや表面実装部品からなる高密度実装への適用が困難である。   However, although Patent Document 1 clearly shows the effect of suppressing burning against laser light soldering of probe card pins or the like, a space for providing a shielding portion that blocks the irradiation angle of laser light and the optical path of reflected light is required. For some reasons, electronic components that can be used are limited, and it is difficult to apply to high-density mounting made of surface-mounted components.

また、特許文献2では、レーザー光加熱部分の温度をリアルタイムで検知して最適な温度条件になるようにレーザーの出力を制御することで、焼損抑制効果が奏されるものの、レーザー出力の制御やその制御装置を旧来の装置に組み込む必要があり、装置が複雑化するという問題がある。   Moreover, in patent document 2, although the laser output is controlled by detecting the temperature of the laser beam heating part in real time so as to obtain an optimum temperature condition, the burnout suppression effect is achieved. There is a problem that the control device needs to be incorporated into an old device, and the device becomes complicated.

本発明は、上記問題を鑑みて成されたものであり、本発明が解決しようとする課題は、レーザー光による加熱処理時に装置上の特別な対応をすることなく、反射光による電子部品、基板等の焼損を防ぐことができる電子デバイスの製造方法を提供することである。   The present invention has been made in view of the above problems, and the problem to be solved by the present invention is that an electronic component or a substrate by reflected light without any special measures on the apparatus during heat treatment by laser light. It is an object of the present invention to provide a method for manufacturing an electronic device that can prevent burning and the like.

本願発明者らは、上記課題を解決すべく鋭意検討し実験を重ねた結果、レーザー加熱工法に使用するはんだ材の接合部表面に対し5度入射した光の500〜1000nmにおける平均正反射率が特定範囲にある場合に、上記課題を解決しうることを予想外に見出し、本発明を完成するに至った。   As a result of intensive studies and repeated experiments to solve the above problems, the present inventors have found that the average regular reflectance at 500 to 1000 nm of light incident on the joint surface of the solder material used in the laser heating method is 5 degrees. When it was in the specific range, it was unexpectedly found that the above-mentioned problems could be solved, and the present invention was completed.

すなわち、本発明は以下の通りのものである。
[1]レーザー光で加熱し、溶融させた接合材で、少なくとも2つの部材同士を、接合するステップを含む電子デバイスの製造方法であって、該接合材を250℃に昇温し、室温まで冷却して形成された接合部の、表面に対し5度入射した光線の500nm〜1000nmにおける平均正反射率が40%以下である、前記方法。
That is, the present invention is as follows.
[1] A method of manufacturing an electronic device including a step of bonding at least two members to each other with a bonding material heated and melted with a laser beam, the temperature of the bonding material being raised to 250 ° C. until the temperature reaches room temperature The said method whose average regular reflectance in 500 nm-1000 nm of the light which injected 5 degree | times with respect to the surface of the junction part formed by cooling is 40% or less.

[2]前記接合材は、はんだ成分と該はんだ成分よりも融点の高い高融点粒子を含むはんだ接合材である、前記[1]に記載の方法。   [2] The method according to [1], wherein the bonding material is a solder bonding material including a solder component and high melting point particles having a higher melting point than the solder component.

[3]前記はんだ成分は、はんだ粒子である、前記[2]に記載の方法。   [3] The method according to [2], wherein the solder component is solder particles.

[4]前記高融点粒子の融点は、前記レーザー光による加熱温度よりも高い、前記[2]又は[3]に記載の方法。   [4] The method according to [2] or [3], wherein a melting point of the high melting point particles is higher than a heating temperature by the laser beam.

[5]前記はんだ粒子は、Sn粒子、又はAg、Bi、Cu、Ge、In、Sb、Ni、Zn、Pb、及びAuからなる金属群から選ばれる少なくとも1種の金属を含むSn合金粒子である、前記[3]又は[4]に記載の方法。   [5] The solder particles are Sn particles or Sn alloy particles containing at least one metal selected from the metal group consisting of Ag, Bi, Cu, Ge, In, Sb, Ni, Zn, Pb, and Au. The method according to [3] or [4] above.

[6]前記はんだ粒子は、Bi、In又はZnのいずれかを含む、融点200℃以下のSn合金粒子である、前記[5]に記載の方法。   [6] The method according to [5], wherein the solder particles are Sn alloy particles having a melting point of 200 ° C. or lower, including any of Bi, In, or Zn.

[7]前記高融点粒子は、Ag、Bi、Cu、Ge、In、Sn、Sb、Ni、Zn、Pb、及びAuからなる群から選ばれる少なくとも1種の金属を含む、融点300℃以上の高融点金属粒子である、前記[2]〜[6]のいずれかに記載の方法。   [7] The high melting point particles include at least one metal selected from the group consisting of Ag, Bi, Cu, Ge, In, Sn, Sb, Ni, Zn, Pb, and Au, and have a melting point of 300 ° C. or higher. The method according to any one of [2] to [6] above, which is a refractory metal particle.

[8]前記高融点金属粒子は、Cu粒子、Cu合金粒子、Ni粒子、又はNi合金粒子である、前記[7]に記載の方法。   [8] The method according to [7], wherein the refractory metal particles are Cu particles, Cu alloy particles, Ni particles, or Ni alloy particles.

[9]前記Cu合金粒子は、Cuを50〜99質量%含む、前記[8]に記載の方法。   [9] The method according to [8], wherein the Cu alloy particles include 50 to 99% by mass of Cu.

[10]前記Cu合金粒子は、Cu50〜99質量%と、Sn、Ag、Bi、In、及びGeからなる群から選ばれる少なくとも1種の元素1〜50質量%を含む、前記[9]に記載の方法。   [10] In the above [9], the Cu alloy particles include 50 to 99% by mass of Cu and 1 to 50% by mass of at least one element selected from the group consisting of Sn, Ag, Bi, In, and Ge. The method described.

[11]前記Cu合金粒子は、Sn13.5〜16.5質量%、Ag0.1〜11質量%、Bi4.5〜5.5質量%、In0.1〜5質量%、残部にCuを含むCu合金粒子、又はAg0.11〜25質量%、残部にCuを含むCu合金粒子、又はSn1〜10質量%、残部にCuを含むCu合金粒子である、前記[10]に記載の方法。   [11] The Cu alloy particles contain Sn 13.5 to 16.5% by mass, Ag 0.1 to 11% by mass, Bi 4.5 to 5.5% by mass, In 0.1 to 5% by mass, and the balance containing Cu. The method according to [10], wherein the Cu alloy particles are Ag 0.11 to 25% by mass, Cu alloy particles containing Cu in the balance, or Sn 1 to 10% by mass and Cu alloy particles containing Cu in the balance.

[12]前記高融点粒子は、金属元素又は半金属元素と非金属元素とからなる化合物のセラミックスからなる高融点セラミックス粒子である、前記[2]〜[6]のいずれかに記載の方法。   [12] The method according to any one of [2] to [6], wherein the high-melting-point particles are high-melting-point ceramic particles made of a ceramic of a compound composed of a metal element or a metalloid element and a nonmetal element.

[13]前記高融点セラミックス粒子は、Si、Al、Ca、Ti、B、Ba、Bi、P、Sr、Mg、Y、及びZrからなる群から選ばれる少なくとも1種の元素の酸化物粒子、窒化物粒子、炭化物粒子、硼化物粒子、又は珪化物粒子のいずれかである、前記[12]に記載の方法。   [13] The refractory ceramic particles are oxide particles of at least one element selected from the group consisting of Si, Al, Ca, Ti, B, Ba, Bi, P, Sr, Mg, Y, and Zr, The method according to [12] above, which is any one of nitride particles, carbide particles, boride particles, or silicide particles.

[14]電子部品が既に実装されている基板に対して実施する、前記[1]〜[13]のいずれかに記載の電子デバイスの製造方法。   [14] The method for manufacturing an electronic device according to any one of [1] to [13], which is performed on a substrate on which electronic components are already mounted.

[15]前記はんだ接合材を少なくとも2つの部材間に供給する方法は、スクリーン印刷工法、ディスペンス印刷工法、ジェットディスペンス印刷工法、又は転写工法のいずれかである、前記[2]〜[14]のいずれかに記載の方法。   [15] The method of [2] to [14], wherein the method of supplying the solder bonding material between at least two members is any one of a screen printing method, a dispense printing method, a jet dispense printing method, or a transfer method. The method according to any one.

[16]前記電子デバイスは、表面実装基板、挿入型電子部品実装基板、狭ピッチ表面実装コネクター、光ピックアップ部品、プローブカード、小型スピーカー、カメラモジュール、又はPoP(パッケージオンパッケージ)のいずれかである、前記[1]〜[15]のいずれかに記載の方法。   [16] The electronic device is any one of a surface mounting board, an insertion type electronic component mounting board, a narrow pitch surface mounting connector, an optical pickup component, a probe card, a small speaker, a camera module, or a PoP (package on package). The method according to any one of [1] to [15].

本発明の製造方法により、レーザー光線の反射光によって発生する電子部品、基板等の焼損を回避することができる。従って、本発明の製造方法により、多様な電子部品の実装にレーザー加熱工法を用いることができ、電子デバイス製造の自由度を高めることができる。   According to the manufacturing method of the present invention, it is possible to avoid burning of electronic parts, substrates and the like generated by reflected light of a laser beam. Therefore, according to the manufacturing method of the present invention, a laser heating method can be used for mounting various electronic components, and the degree of freedom in manufacturing electronic devices can be increased.

本実施の形態に係るレーザー光はんだ付け工法を説明するための概念図である。It is a conceptual diagram for demonstrating the laser beam soldering construction method which concerns on this Embodiment. 図1の主要部拡大図である。It is a principal part enlarged view of FIG. 従来技術によるレーザー光はんだ付け工法の問題点を説明するための概念図である。It is a conceptual diagram for demonstrating the problem of the laser beam soldering method by a prior art. 図3の主要部拡大図である。It is a principal part enlarged view of FIG. 表1に示す実施例1〜5、比較例1〜6の5度正反射率と波長との関係を示すグラフである。It is a graph which shows the relationship between the 5-degree regular reflectance of Examples 1-5 shown in Table 1, and Comparative Examples 1-6, and a wavelength. 実施例1のレーザー光加熱処理後の部品接合部の図面に代わる写真である。4 is a photograph replacing a drawing of a component bonding portion after laser light heat treatment in Example 1. FIG. 比較例1のレーザー加熱処理後の焼損した部品接合部の図面に代わる写真である。4 is a photograph replacing a drawing of a burned-out component joint portion after laser heat treatment in Comparative Example 1;

以下、本発明を実施するための形態(以下、「実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, modes for carrying out the present invention (hereinafter abbreviated as “embodiments”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

本実施の形態は、レーザー光で加熱し、溶融させた接合材で、少なくとも2つの部材同士を、接合するステップを含む電子デバイスの製造方法であって、該接合材を250℃に昇温し、室温まで冷却して形成された接合部の、表面に対し5度入射した光線の500nm〜1000nmにおける平均正反射率が40%以下である、前記方法である。前記少なくとも2つの部材は、例えば、基板電極と電子部品電極、又は電子部品電極と電子部品電極、又は基板電極と基板電極であることができる。また、前記接合材は、はんだ成分と該はんだ成分よりも融点の高い高融点粒子を含むはんだ接合材であることができ、前記はんだ成分は、はんだ粒子であることができる。また、前記高融点粒子の融点は、前記レーザー光による加熱温度よりも高いものであることができる。   The present embodiment is a method for manufacturing an electronic device including a step of bonding at least two members to each other with a bonding material heated and melted with a laser beam, and the bonding material is heated to 250 ° C. In the above method, the average regular reflectance at 500 nm to 1000 nm of the light beam incident on the surface of the bonded portion formed by cooling to room temperature is 40% or less. The at least two members may be, for example, a substrate electrode and an electronic component electrode, or an electronic component electrode and an electronic component electrode, or a substrate electrode and a substrate electrode. The bonding material may be a solder bonding material including a solder component and high melting point particles having a higher melting point than the solder component, and the solder component may be a solder particle. Further, the melting point of the high melting point particles may be higher than the heating temperature by the laser beam.

以下、接合部を形成するはんだ接合材の各成分の好ましい態様について説明する。
<はんだ接合材>
本実施の形態のはんだ接合材は、250℃に昇温し、室温まで冷却して形成された接合部の、表面に対し5度入射した光線の500〜1000nmにおける平均正反射率が40%以下となるものである。平均正反射率が40%以下であることは、照射されるレーザー光が乱反射されることを指標する。照射されるレーザー光が乱反射されることにより、被照射領域にある加熱された電子部品等の近傍に配置された電子部品、基板等が焼損されることを回避することができる。
Hereinafter, the preferable aspect of each component of the solder joint material which forms a junction part is demonstrated.
<Solder joint material>
In the solder bonding material of the present embodiment, the average regular reflectance at 500 to 1000 nm of light incident on the surface of the bonded portion formed by heating to 250 ° C. and cooling to room temperature is 40% or less. It will be. An average regular reflectance of 40% or less indicates that the irradiated laser light is irregularly reflected. By irradiating the irradiated laser light irregularly, it is possible to avoid burning an electronic component, a substrate, or the like disposed in the vicinity of the heated electronic component in the irradiated region.

以下に説明するように、レーザー光によりはんだ接合材を溶融、冷却、硬化して形成される接合部を有する電子デバイスの製造方法において、照射したレーザー光が、はんだ溶融時に生じる鏡面状のはんだ表面で反射され、被照射領域にある基板や近接して配置され電子部品等に焼け焦げを生じさせることを回避するためには、はんだ溶融時に生じる鏡面状のはんだ表面での反射率を規定すべきであるが、はんだ溶融時の反射率を測定することは困難である。そこで、本実施の形態においては、かかるはんだ溶融時の反射率を指標するものとして、便宜的に、加熱硬化後の接合部の表面に対し5度入射した光線の500〜1000nmにおける平均正反射率を用いている。但し、以下の実施例に説明するように、かかる加熱硬化後の反射率と焼損発生は、明らかな関係がある。   As described below, in a method of manufacturing an electronic device having a joint formed by melting, cooling, and curing a solder bonding material with a laser beam, the irradiated laser beam is a mirror-like solder surface generated when the solder melts In order to avoid scorching scorching on the substrate in the irradiated area and electronic components that are placed in close proximity to the irradiated area, the reflectivity on the mirror-like solder surface that occurs during solder melting should be specified However, it is difficult to measure the reflectance when the solder is melted. Therefore, in this embodiment, as an index of the reflectance at the time of melting the solder, for convenience, the average regular reflectance at 500 to 1000 nm of the light incident on the surface of the bonded portion after heat curing at 5 degrees. Is used. However, as will be described in the following examples, the reflectivity after heat curing and the occurrence of burnout have a clear relationship.

ここで、正反射率とは完全な光の反射であり、一方向からの光が別の一方向に反射されて出て行くことである。反射の法則により、光の入射角と反射角は反射面に対して同じ角度となる。一方、拡散反射率は、全反射光から正反射光を光トラップにより取り除いた反射光量について、拡散反射率が既知の標準反射板からの拡散光量をもとに得られるものである。これらの反射率は、例えば積分球ユニットを備えた市販の紫外可視近赤外分光光度計によって測定することができる。   Here, the regular reflectance is complete light reflection, and is that light from one direction is reflected in one other direction and goes out. According to the law of reflection, the incident angle of light and the reflection angle are the same with respect to the reflecting surface. On the other hand, the diffuse reflectance is obtained based on the amount of diffused light from a standard reflector with a known diffuse reflectance, with respect to the amount of reflected light obtained by removing specularly reflected light from the total reflected light by an optical trap. These reflectances can be measured by, for example, a commercially available ultraviolet-visible near-infrared spectrophotometer equipped with an integrating sphere unit.

本実施の形態において、レーザー照射光の反射により電子部品等の焼損を抑制するには、レーザー加熱装置が通常使用しているレーザー光源の波長808nm、980nmを含む、500〜1000nmの平均正反射率が40%以下であることが好ましく、より好ましくは20%以下、さらに好ましくは10%以下である。レーザー反射光により電子部品の焼損を防止することができるのは、正反射率が下がることにより、全反射光に占める拡散反射光が増大し、正反射光の光エネルギーが減少することで周囲の電子部品に当該反射光が照射されても、焼損を起こすほどの光エネルギーではなくなるためであると考えられる。一方で平均正反射率が40%超であると、正反射光の光エネルギーを十分に弱めることができず、反射光が周囲にある電子部品、基板等の焼損させてしまう。   In this embodiment, in order to suppress burning of electronic components and the like by reflection of laser irradiation light, an average regular reflectance of 500 to 1000 nm, including wavelengths 808 nm and 980 nm of a laser light source normally used by a laser heating apparatus. Is preferably 40% or less, more preferably 20% or less, and still more preferably 10% or less. The reason why the laser reflected light can prevent the electronic parts from being burned out is that the specular reflectance decreases, the diffuse reflected light in the total reflected light increases, and the light energy of the specular reflected light decreases, so that It is considered that even when the reflected light is irradiated to the electronic component, the light energy is not enough to cause burning. On the other hand, if the average regular reflectance is more than 40%, the light energy of the regular reflection light cannot be sufficiently reduced, and the reflected light burns out the surrounding electronic components, substrates, and the like.

はんだ接合材の加熱硬化後の接合部において、接合部表面に対し5度入射した光の500〜1000nmにおける平均正反射率を40%以下に抑える手段としては、はんだ粒子と該はんだ粒子よりも融点の高い高融点粒子を少なくとも1種以上含むはんだ接合材の使用が挙げられる。本実施の形態のはんだ接合材の形態としては、板状、線状、はんだペースト、ペースト状の導電性接着剤が揚げられるが、電子部品の形状・高さや電子部品の間隔に関係無く、基板電極にはんだ接合材の追加供給が容易に行える電子部品の実装を提供する観点から、はんだペーストが好ましい。   As a means for suppressing the average specular reflectance at 500 to 1000 nm of light incident on the surface of the joint at 5 degrees in the joint after the heat curing of the solder joint material to 40% or less, the melting point is higher than that of the solder particles and the solder particles. Use of a solder bonding material containing at least one kind of high melting point particles having a high melting point. As a form of the solder bonding material of the present embodiment, a plate-like, linear, solder paste, paste-like conductive adhesive is fried, but regardless of the shape / height of the electronic component and the interval between the electronic components, the substrate A solder paste is preferable from the viewpoint of providing mounting of an electronic component in which additional supply of a solder bonding material to the electrode can be easily performed.

<はんだペースト>
(はんだ粒子)
本実施の形態に使用する接合材であるはんだペーストに用いるはんだ粒子とは、Snを含む融点300℃以下の金属粒子を意味するが、一般的な鉛フリーはんだペーストと同等の熱処理ピーク温度で熱処理する観点から、はんだ粒子の融点は、240℃以下であることが好ましい。接合材を熱処理した際に、該接合材中に含まれる金属粒子間でSnを含む金属間化合物を形成させる観点から、該はんだ粒子は、Sn粒子、又は、Snと、Ag、Au、Bi、Cu、Ge、In、Sb、Ni、Zn及びPbからなる群から選択される金属の少なくとも1種とを含むSn合金粒子であることが好ましい。
<Solder paste>
(Solder particles)
The solder particles used in the solder paste, which is a bonding material used in the present embodiment, mean metal particles containing Sn and having a melting point of 300 ° C. or less, and heat treatment is performed at a heat treatment peak temperature equivalent to that of a general lead-free solder paste. From this viewpoint, the melting point of the solder particles is preferably 240 ° C. or lower. From the viewpoint of forming an intermetallic compound containing Sn between the metal particles contained in the bonding material when the bonding material is heat-treated, the solder particles are Sn particles, or Sn and Ag, Au, Bi, Sn alloy particles containing at least one metal selected from the group consisting of Cu, Ge, In, Sb, Ni, Zn and Pb are preferable.

具体的には、Sn−Bi系、Sn−In系、Sn−Cu系、Sn−Zn系、Sn−Ag系、Sn−Au系、Sn−Pb系、Sn−Sb系、Sn−Bi−Ag系、Sn−Ag−Cu系、Sn−Bi−Cu系、Sn−Zn−Bi系、Sn−Bi−In系、Sn−Ag−In系、Sn−Ag−In−Bi系、Sn−Cu−Ni系、Sn−Cu−Ni−Ge系、Sn−Ag−Cu−Ni−Ge系のはんだ粒子が例示できる。接合材であるはんだペーストの推奨熱処理ピーク温度が、230℃以上のはんだとしては、Sn−Ag−Cu(例えば、Sn−3.0Ag−0.5Cu)系やSn−Ag(例えば、Sn−3.5Ag)系やSnが好ましい。また、リフローピーク温度が200℃以下推奨の鉛フリーはんだとしては、Snを含み、かつ、Bi又はIn又はZnのいずれかを含む融点200℃以下のSn合金粒子が好ましい。中でも、Sn−58BiやSn−57Bi−1Agが好ましい。ここで、特定の元素が不可避的不純物の濃度で混入することはあり得る。
なお、本明細書中、融点は、示差走査熱量計(DSC)による測定における吸熱ピークトップの温度を意味する。
Specifically, Sn-Bi system, Sn-In system, Sn-Cu system, Sn-Zn system, Sn-Ag system, Sn-Au system, Sn-Pb system, Sn-Sb system, Sn-Bi-Ag Type, Sn-Ag-Cu type, Sn-Bi-Cu type, Sn-Zn-Bi type, Sn-Bi-In type, Sn-Ag-In type, Sn-Ag-In-Bi type, Sn-Cu- Examples thereof include Ni-based, Sn-Cu-Ni-Ge-based, and Sn-Ag-Cu-Ni-Ge-based solder particles. As a solder having a recommended heat treatment peak temperature of a solder paste as a bonding material of 230 ° C. or higher, Sn—Ag—Cu (for example, Sn-3.0Ag-0.5Cu) series or Sn—Ag (for example, Sn-3) is used. .5Ag) and Sn are preferred. Moreover, as the lead-free solder whose reflow peak temperature is 200 ° C. or lower, Sn alloy particles containing Sn and containing either Bi, In, or Zn and having a melting point of 200 ° C. or lower are preferable. Among these, Sn-58Bi and Sn-57Bi-1Ag are preferable. Here, it is possible that a specific element is mixed at an inevitable impurity concentration.
In the present specification, the melting point means the temperature of the endothermic peak top in the measurement with a differential scanning calorimeter (DSC).

使用するはんだ粒子は1種に限定されるものではない。例えば、Sn粒子、又は、Snと、Ag、Au、Bi、Cu、Ge、In、Sb、Ni、Zn及びPbからなる群から選択される金属の少なくとも1種とを含むSn合金粒子を、別の組成のはんだ粒子と組合せて使用できる。例えば、42Sn/58Biである第1のはんだ粒子に、第2のはんだ粒子としてSn粒子又はSn合金粒子を組合せることによって、リフロー後の接合部のBi組成を低減させることが可能である。一般的に、Biは機械的に脆い特性を示すため、前記のSn粒子又はSn合金粒子をさらに用いることによってリフロー後のBi組成を低減させることが可能となり、脆性改善に繋がる。   The solder particles used are not limited to one type. For example, Sn particles or Sn alloy particles containing Sn and at least one metal selected from the group consisting of Ag, Au, Bi, Cu, Ge, In, Sb, Ni, Zn, and Pb are separated. It can be used in combination with solder particles having the following composition. For example, by combining Sn particles or Sn alloy particles as the second solder particles with the first solder particles of 42Sn / 58Bi, the Bi composition of the joint after reflow can be reduced. In general, Bi exhibits mechanically fragile characteristics, so that the Bi composition after reflow can be reduced by further using the Sn particles or Sn alloy particles, which leads to improvement in brittleness.

(高融点金属粒子)
はんだ粒子よりも融点の高い高融点粒子として用いる高融点金属粒子は、融点300℃以上の金属粒子を少なくとも1種含むことが好ましい。これにより、前述のはんだ粒子と高融点金属粒子との間で金属結合を適度に形成させて良好な導電性を得ることができる。高融点金属粒子の融点は、より好ましくは350℃以上、さらに好ましくは400℃以上である。また該融点は、高融点金属粒子をアトマイズ等で製造する過程において、必要な熱処理温度を下げる観点から、好ましくは2000℃以下であり、より好ましくは1500℃以下である。
(High melting point metal particles)
The refractory metal particles used as the refractory particles having a melting point higher than that of the solder particles preferably include at least one metal particle having a melting point of 300 ° C. or higher. Thereby, a metal bond can be appropriately formed between the solder particles and the refractory metal particles, and good conductivity can be obtained. The melting point of the refractory metal particles is more preferably 350 ° C. or higher, and further preferably 400 ° C. or higher. The melting point is preferably 2000 ° C. or less, more preferably 1500 ° C. or less, from the viewpoint of lowering the necessary heat treatment temperature in the process of producing high melting point metal particles by atomization or the like.

該高融点金属粒子は、Ag、Bi、Cu、Ge、In、Sn、Sb、Ni、Zn、Pb、及びAuからなる群から選択される金属の少なくとも1種を含み、融点が300℃以上であることが好ましい。溶融したはんだ粒子と高融点金属粒子との金属拡散性の観点から、高融点金属粒子としては、Cu粒子、Ni粒子、又はCu若しくはNiを含有する合金粒子(それぞれCu合金粒子及びNi合金粒子ともいう)が好ましい。   The refractory metal particles contain at least one metal selected from the group consisting of Ag, Bi, Cu, Ge, In, Sn, Sb, Ni, Zn, Pb, and Au, and have a melting point of 300 ° C. or higher. Preferably there is. From the viewpoint of metal diffusibility between molten solder particles and refractory metal particles, the refractory metal particles include Cu particles, Ni particles, or alloy particles containing Cu or Ni (both Cu alloy particles and Ni alloy particles, respectively). Is preferred).

Cu合金粒子としては、Cuと、In、Ni、Sn、Bi、Ag及びGeからなる群から選択される金属の少なくとも1種とを含むCu合金粒子が好ましい。In及びNiは、溶融したはんだとCu合金粒子との界面で形成するCu−Sn系の金属間化合物の結晶粒を微細化する効果を有することから、Cu合金粒子にIn又はNiが含まれることが好ましい。Cu合金粒子中のIn、Niの合計含有率は、安定した合金相を形成する観点から、0.10〜10質量%が好ましく、より好ましくは0.50〜8.0質量%、さらに好ましくは1.0〜6.0質量%である。Sn及びBiは、溶融したはんだとの濡れ性が良いため、Cu合金粒子に、Sn及び/又はBiを、これらの合計で50質量%以下の量で含有させることが好ましい。濡れ性を良好に得る観点から、Sn及びBiの合計含有率は、好ましくは10質量%以上、より好ましくは15質量%以上である。また、Agは、溶融したはんだのSn成分と融点の高い金属間化合物を形成しやすいため、耐熱性を有する接合部を形成する観点から、好ましい。   The Cu alloy particles are preferably Cu alloy particles containing Cu and at least one metal selected from the group consisting of In, Ni, Sn, Bi, Ag and Ge. In and Ni have the effect of refining the crystal grains of the Cu-Sn intermetallic compound formed at the interface between the melted solder and the Cu alloy particles, so that the Cu alloy particles contain In or Ni. Is preferred. From the viewpoint of forming a stable alloy phase, the total content of In and Ni in the Cu alloy particles is preferably 0.10 to 10% by mass, more preferably 0.50 to 8.0% by mass, and still more preferably. It is 1.0-6.0 mass%. Since Sn and Bi have good wettability with molten solder, it is preferable to contain Sn and / or Bi in an amount of 50% by mass or less in total in the Cu alloy particles. From the viewpoint of obtaining good wettability, the total content of Sn and Bi is preferably 10% by mass or more, more preferably 15% by mass or more. Moreover, Ag is preferable from the viewpoint of forming a joint having heat resistance because it easily forms an Sn component of molten solder and an intermetallic compound having a high melting point.

はんだ接合部の抵抗を低くし電気特性を向上させる観点から、Cu合金粒子は95質量%以下でAgを含有することが好ましい。この場合のCu合金粒子中のAgの含有率は、コスト面から50質量%以下であることが好ましい。Agの含有率は、電気特性の向上効果を良好に得る観点から、好ましくは2質量%以上、より好ましくは5質量%以上である。Geは、はんだ溶融時に優先的に酸化して、Sn等の他のはんだ成分の酸化を抑制する効果を有するため、Cu合金粒子中に0.10質量%以上含まれていることが好ましい。酸化物がはんだ流動を阻害し、接合性に悪影響を与えることを防ぐ観点から、Geの含有率は5.0質量%以下であることが好ましい。より好ましい態様において、Cu合金粒子は、Ag0.1〜11質量%、Bi4.5〜5.5質量%、In0.1〜5質量%、Sn13.5〜16.5質量%、及び残部にCuを含むものであることができる。   From the viewpoint of reducing the resistance of the solder joint and improving the electrical characteristics, the Cu alloy particles preferably contain 95% by mass or less and contain Ag. In this case, the content of Ag in the Cu alloy particles is preferably 50% by mass or less from the viewpoint of cost. The content of Ag is preferably 2% by mass or more, more preferably 5% by mass or more, from the viewpoint of obtaining a favorable effect of improving electrical characteristics. Since Ge is preferentially oxidized when the solder is melted and has an effect of suppressing oxidation of other solder components such as Sn, it is preferably contained in Cu alloy particles by 0.10% by mass or more. From the viewpoint of preventing the oxide from inhibiting the solder flow and adversely affecting the bondability, the Ge content is preferably 5.0% by mass or less. In a more preferred embodiment, the Cu alloy particles are composed of Ag 0.1 to 11% by mass, Bi 4.5 to 5.5% by mass, In 0.1 to 5% by mass, Sn 13.5 to 16.5% by mass, and the balance Cu. Can be included.

また、Ni合金粒子は、溶融したはんだとの濡れ性を向上させる観点から、Snを含むことが好ましい。さらに、Ni合金粒子は、低温での接合性を向上させる観点から、Niと、In又はBiとを含有する合金粒子であることが好ましい。なお、特定の元素が不可避的不純物の濃度で混入することはあり得る。   Moreover, it is preferable that Ni alloy particle contains Sn from a viewpoint of improving the wettability with the molten solder. Furthermore, the Ni alloy particles are preferably alloy particles containing Ni and In or Bi from the viewpoint of improving the bondability at a low temperature. It is possible that a specific element is mixed in at an inevitable impurity concentration.

はんだ粒子と高融点金属粒子の混合粉において、高融点金属粒子100質量部に対してはんだ粒子の混合比は、接合部表面に対し5度入射した光線の500〜1000nmにおける平均正反射率の観点から、はんだ粒子が500質量部以下であり、一方、初期の接合状態の観点から、下限は55質量部以上であることが好ましい。   In the mixed powder of solder particles and refractory metal particles, the mixing ratio of the solder particles with respect to 100 parts by mass of the refractory metal particles is the viewpoint of the average regular reflectance at 500 to 1000 nm of the light beam incident on the joint surface 5 degrees. From the viewpoint of the initial joining state, the lower limit is preferably 55 parts by mass or more.

はんだ粒子及び高融点金属粒子の形状とサイズは、用途に応じて定めることができる。はんだペースト用途では、印刷性を重視して、平均粒径で2〜40μmの比較的真球度の高い粒子を使うことが好ましい。また、導電性接着剤用途では、粒子の接触面積を増やすため、異形粒子を使うことが好ましい。なお、本明細書における「平均粒径」とは、レーザー回折式粒度分布測定装置で測定される値をいう。   The shape and size of the solder particles and refractory metal particles can be determined according to the application. In solder paste applications, it is preferable to use particles having a relatively high sphericity with an average particle diameter of 2 to 40 μm in consideration of printability. For conductive adhesive applications, it is preferable to use irregularly shaped particles in order to increase the contact area of the particles. In addition, the “average particle diameter” in the present specification means a value measured by a laser diffraction particle size distribution measuring device.

はんだ粒子及び高融点金属粒子の粒度分布は、ペースト用途に応じて定めることができる。例えば、スクリーン印刷用途では、版抜け性を重視して、粒度分布はブロードにするのが好ましく、ディスペンス用途では、吐出流動性を重視して、粒度分布をシャープにするのが好ましい。   The particle size distribution of the solder particles and the refractory metal particles can be determined according to the paste application. For example, in screen printing applications, emphasis is placed on plate loss and the particle size distribution is preferably broad. In dispensing applications, it is preferable to emphasize discharge fluidity and sharpen the particle size distribution.

(高融点セラミックス粒子)
はんだ粒子よりも融点の高い高融点粒子として用いる高融点セラミックス粒子は、金属元素又は半金属元素と非金属元素との化合物からなる。金属元素としては、セラミックスの形成可能なものであれば特に制限されず、例えば、Al、Ti、Zr、Cr、Ta、Nbなどを用いることができる。これらの金属元素は1種又は2種以上を組み合わせて用いることができる。半金属元素としても、セラミックスの形成可能なものであれば特に制限されず、例えば、Si、Bなどを用いることができる。一方、これら金属元素又は半金属元素と化合物を形成する非金属元素としては、例えば、C、N、Oなどが挙げられる。これら金属元素又は半金属元素と非金属元素との化合物の具体例としては、アルミナ(酸化アルミニウム)、チタニア(酸化チタン)、ジルコニア(酸化ジルコニウム)、酸化クロム、酸化タンタル、酸化ニオブ、シリカ(酸化ケイ素)、酸化ホウ素等の酸化物;窒化チタン、窒化ジルコニウム、窒化ホウ素、窒化ケイ素等の窒化物、炭化チタン、炭化ジルコニウム、炭化クロム、炭化タンタル、炭化ニオブ、炭化ケイ素、炭化ホウ素等の炭化物などが挙げられる。
(High melting point ceramic particles)
The high-melting-point ceramic particles used as the high-melting-point particles having a melting point higher than that of the solder particles are composed of a compound of a metal element or a semimetal element and a nonmetal element. The metal element is not particularly limited as long as it can form ceramics. For example, Al, Ti, Zr, Cr, Ta, Nb, and the like can be used. These metal elements can be used alone or in combination of two or more. The metalloid element is not particularly limited as long as it can form ceramics. For example, Si, B, or the like can be used. On the other hand, examples of nonmetallic elements that form compounds with these metal elements or metalloid elements include C, N, and O. Specific examples of compounds of these metal elements or metalloid elements and nonmetal elements include alumina (aluminum oxide), titania (titanium oxide), zirconia (zirconium oxide), chromium oxide, tantalum oxide, niobium oxide, and silica (oxidation). Silicon), oxides such as boron oxide; nitrides such as titanium nitride, zirconium nitride, boron nitride, silicon nitride; carbides such as titanium carbide, zirconium carbide, chromium carbide, tantalum carbide, niobium carbide, silicon carbide, boron carbide, etc. Is mentioned.

以上の各化合物はその種類によっては、異なる結晶系を有するものがあるが(例えば、アルミナ、チタニア等)、本実施の形態においては、いずれの結晶系のものでも用いることができる。例えば、アルミナにはαアルミナ、βアルミナ、γアルミナ等があるが、そのいずれも用いることができる。また、前記の各化合物からなるセラミックスには、その安定性を高める目的として、他の化合物が含まれていてもよい。例えば、セラミックスとして窒化ケイ素セラミックスを用いる場合には、助剤としてアルミナ、イットリアを添加してもよい。また、前記の各化合物からなるセラミックス粒子表面には、凝集防止のため分散剤をあらかじめコーティングしてもよい。分散剤の種類としては、高分子型分散剤、界面活性剤型分散剤(低分子型分散剤)、無機型分散剤等があるが、これらを単独で又は複数の成分を合わせて用いてもよい。高分子型分散剤の具体例としては、ポリカルボン酸系、ナフタレンスルホン酸ホルマリン縮合系、ポリエチレングリコール、ポリカルボン酸部分アルキルエステル系、ポリエーテル系、ポリアルキレンポリアミン系などが挙げられる。界面活性剤型分散剤(低分子型分散剤)の具体例としては、アルキルスルホン酸系、四級アンモニウム系、高級アルコールアルキレンオキサイド系、多価アルコールエステル系、アルキルポリアミン系などが挙げられる。無機分散剤の具体例としては、ポリリン酸塩系のトリポリリン酸ナトリウムなどが挙げられる。   Although each of the above compounds has a different crystal system depending on the type (for example, alumina, titania, etc.), any crystal system can be used in the present embodiment. For example, alumina includes α-alumina, β-alumina, γ-alumina, etc., any of which can be used. Moreover, the ceramic which consists of said each compound may contain the other compound for the purpose of improving the stability. For example, when silicon nitride ceramics is used as the ceramic, alumina or yttria may be added as an auxiliary agent. The surface of the ceramic particles made of each of the above compounds may be coated in advance with a dispersant to prevent aggregation. As the types of dispersants, there are polymer type dispersants, surfactant type dispersants (low molecular type dispersants), inorganic type dispersants, etc., but these may be used alone or in combination with a plurality of components. Good. Specific examples of the polymeric dispersant include polycarboxylic acid, naphthalene sulfonic acid formalin condensation, polyethylene glycol, polycarboxylic acid partial alkyl ester, polyether, polyalkylene polyamine, and the like. Specific examples of the surfactant type dispersant (low molecular weight type dispersant) include alkyl sulfonic acid type, quaternary ammonium type, higher alcohol alkylene oxide type, polyhydric alcohol ester type, alkyl polyamine type and the like. Specific examples of the inorganic dispersant include polyphosphate sodium tripolyphosphate.

はんだ粒子と高融点セラミックス粒子の混合粉において、高融点セミラックス粒子100質量部に対してはんだ粒子の混合比は、接合部表面に対し5度入射した光の500〜1000nmにおける平均正反射率の観点から、はんだ粒子が400質量部以下であり、一方、初期の接合状態の観点から下限は55質量部以上であることができる。   In the mixed powder of solder particles and high melting point ceramic particles, the mixing ratio of solder particles with respect to 100 parts by weight of high melting point semi-lux particles is the average regular reflectance at 500 to 1000 nm of light incident on the joint surface 5 degrees. From the viewpoint, the solder particles are 400 parts by mass or less, while the lower limit can be 55 parts by mass or more from the viewpoint of the initial bonded state.

はんだ粒子及び高融点セラミックス粒子の形状とサイズは、用途に応じて定めることができる。はんだペースト用途では、印刷性を重視して、平均粒径で2〜40μmの比較的真球度の高い粒子を使うことが好ましい。なお、本明細書における「平均粒径」とは、レーザー回折式粒度分布測定装置で測定される値をいう。   The shape and size of the solder particles and the high melting point ceramic particles can be determined according to the application. In solder paste applications, it is preferable to use particles having a relatively high sphericity with an average particle diameter of 2 to 40 μm in consideration of printability. In addition, the “average particle diameter” in the present specification means a value measured by a laser diffraction particle size distribution measuring device.

はんだ粒子及び高融点セラミックス粒子の粒度分布は、ペースト用途に応じて定めることができる。例えば、スクリーン印刷用途では、版抜け性を重視して、粒度分布はブロードにするのが好ましく、ディスペンス用途では、吐出流動性を重視して、粒度分布をシャープにするのが好ましい。   The particle size distribution of the solder particles and the high melting point ceramic particles can be determined according to the paste application. For example, in screen printing applications, emphasis is placed on plate loss and the particle size distribution is preferably broad. In dispensing applications, it is preferable to emphasize discharge fluidity and sharpen the particle size distribution.

(その他の成分)
はんだ接合材は、はんだ粒子、高融点粒子、フラックスに加えて、ペースト特性を向上させるための各種の任意成分をさらに含むことができる。そのような成分としては、チクソ剤、消泡剤、酸化防止剤、溶剤、ハロゲン化合物の活性剤、無機フィラー等が挙げられる。
(Other ingredients)
The solder bonding material may further include various optional components for improving paste characteristics in addition to the solder particles, the high melting point particles, and the flux. Examples of such components include thixotropic agents, antifoaming agents, antioxidants, solvents, halogen compound activators, inorganic fillers, and the like.

(チクソ剤)
チクソ剤としては、従来からPbフリーはんだのフラックスとして使用されている任意のチクソ剤を使用することができ、ヒマシ油、水添ヒマシ油、ソルビトール系のチクソ剤等が挙げられる。
(Thixotropic agent)
As the thixotropic agent, any thixotropic agent conventionally used as a flux of Pb-free solder can be used, and examples thereof include castor oil, hydrogenated castor oil, and sorbitol-based thixotropic agents.

(無機フィラー)
はんだ接合材は、高融点粒子に用いる高融点セラミック粒子とは別に無機フィラーを更に含んでもよい。無機フィラーとしては、シリカ粒子等のセラミック粒子が挙げられる。無機フィラーを添加することによって、例えば、はんだ接合材で電子部品と基板とを接合する際に、電子部品と接合部との間等の線膨張係数の差異を低減できる。
(Inorganic filler)
The solder bonding material may further contain an inorganic filler separately from the high melting point ceramic particles used for the high melting point particles. Examples of the inorganic filler include ceramic particles such as silica particles. By adding the inorganic filler, for example, when the electronic component and the substrate are bonded with a solder bonding material, the difference in linear expansion coefficient between the electronic component and the bonding portion can be reduced.

<本実施の形態の製造方法を用いた電子デバイス>
本実施の形態の製造方法で製造することができる電子デバイスは、基板電極と電子部品電極を接合した部品搭載基板、電子部品電極と電子部品電極を接合した積層型電子部品、又は基板電極と基板電極を接合した積層基板を含む。
<Electronic Device Using Manufacturing Method of the Present Embodiment>
The electronic device that can be manufactured by the manufacturing method of the present embodiment includes a component mounting substrate in which a substrate electrode and an electronic component electrode are bonded, a stacked electronic component in which an electronic component electrode and an electronic component electrode are bonded, or a substrate electrode and a substrate It includes a laminated substrate to which electrodes are joined.

本実施の形態に係る電子デバイスの製造方法は、製造中でのレーザー反射光による基板、電子部品等の焼損を回避することができる。かかる電子デバイスには、センサーモジュール、光電気モジュール、ユニポーラトランジスタ、MOS、FET、CMOS、メモリーセル、FC(Field Copleentary)のチップ、それらの集積回路部品(IC)、各種スケールのLSI等、凡そ、電子回路を機能要素とするほとんどのものが含まれる。
より具体的な電子デバイスとしては、表面実装基板、挿入型電子部品実装基板、狭ピッチ表面実装コネクター、光ピックアップ部品、プローブカード、小型スピーカー、カメラモジュール、PoP(パッケージオンパッケージ)が挙げられる。
The electronic device manufacturing method according to the present embodiment can avoid burning of a substrate, an electronic component, or the like due to laser reflected light during manufacturing. Such electronic devices include sensor modules, photoelectric modules, unipolar transistors, MOS, FET, CMOS, memory cells, FC (Field Complementary) chips, their integrated circuit components (IC), LSIs of various scales, etc. Most of them include electronic circuits as functional elements.
More specific electronic devices include a surface mount substrate, an insertion type electronic component mounting substrate, a narrow pitch surface mount connector, an optical pickup component, a probe card, a small speaker, a camera module, and PoP (package on package).

また、本実施の形態の製造方法は、通常の電子部品を通常の250℃ピークのリフロー熱処理により1次実装した後に、耐熱性の低い光学部品等をレーザー加熱処理により2次実装する場合に電子部品や基板等の焼損防止の作用効果を奏することができる。   In addition, the manufacturing method according to the present embodiment is an electronic device in which a normal electronic component is primarily mounted by reflow heat treatment at a normal 250 ° C. peak, and then an optical component having low heat resistance is secondarily mounted by laser heat treatment. The effect of preventing burning of components and boards can be achieved.

本実施の形態の製造方法で接合材としてはんだペーストを用いる場合の塗布方法としては、スクリーン印刷工法、ディスペンス工法、ジェットディスペンス工法、転写工法等の一般的な公知の技術を用いることができる。ディスペンス工法、ジェットディスペンス工法は、1次実装済みの既実装基板上に、耐熱性の低い光学部品等をレーザー加熱処理により2次実装するためにはんだペーストを塗布する方法として好適であり、本実施の形態の製造方法で用いられる接合材と組み合わせることで、レーザー加熱により発生する電子部品、基板等の焼損を防ぎながら、耐熱性の低い光学部品等を2次実装で歩留りよく製造できる。   As a coating method in the case of using a solder paste as a bonding material in the manufacturing method of the present embodiment, general known techniques such as a screen printing method, a dispensing method, a jet dispensing method, and a transfer method can be used. Dispensing method and jet dispensing method are suitable as methods for applying solder paste to secondary mounting of optical components with low heat resistance on an already mounted substrate that has already been mounted by laser heat treatment. By combining with the bonding material used in the manufacturing method of this form, it is possible to manufacture an optical component having low heat resistance with a high yield with secondary mounting while preventing burning of electronic components, substrates and the like generated by laser heating.

以下、本発明を実施例によって具体的に説明するが、本発明はこれに限定されるものではない。
尚、各金属粒子の平均粒径は、Sympatec社(ドイツ)製レーザー回折式粒子径分布測定装置「HELOS&RODOS」により体積積算平均値を測定し、平均粒径値として求めた。
はんだ粒子の融点は、島津製作所株式会社製「DSC−60」を用い、窒素雰囲気下、昇温10℃/分の条件で測定し、最低温の吸熱ピークについてJIS Z3198−1に従って求められる融点とした。尚、吸熱量を定量した際、1.5J/g以上あるものを測定対象物由来のピークとし、それ未満のピークは分析精度の観点から除外した。
加熱硬化後のはんだ表面の正反射率は、朝日分光株式会社製の5度反射測定ユニットを用い、はんだ表面に対し5度で入射した正反射光を受光ファイバーに取り込み、クロスドツェルニーターナー分光方式の朝日分光株式会社製の高速分光ユニットHSU−100Sを用いることで測定した。なお、光源にはハロゲン光源を用いた。実際の測定では、サンプルの測定に先立ち、正反射基準板を用いて参照光を測定し、次に、サンプルと交換して、500〜1000nmの範囲で正反射率を測定し、また、500〜1000nmの平均正反射率を算出した。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to this.
The average particle diameter of each metal particle was determined as an average particle diameter value by measuring a volume integrated average value with a laser diffraction particle size distribution measuring device “HELOS & RODOS” manufactured by Sympatec (Germany).
The melting point of the solder particles was measured using “DSC-60” manufactured by Shimadzu Corporation under a nitrogen atmosphere at a temperature increase of 10 ° C./min, and the melting point obtained according to JIS Z3198-1 for the lowest endothermic peak. did. When the endothermic amount was quantified, those with 1.5 J / g or more were regarded as peaks derived from the measurement object, and peaks less than that were excluded from the viewpoint of analysis accuracy.
The specular reflectance of the solder surface after heat-curing is measured using a 5-degree reflection measurement unit made by Asahi Spectrometer Co., Ltd. The measurement was performed by using a high-speed spectroscopic unit HSU-100S manufactured by Asahi Spectroscopic Co., Ltd. A halogen light source was used as the light source. In actual measurement, prior to measurement of the sample, the reference light is measured using a specular reflection standard plate, and then the specular reflectance is measured in the range of 500 to 1000 nm by exchanging with the sample. The average regular reflectance at 1000 nm was calculated.

〔実施例1〕
(1)はんだ粒子
はんだ粒子には、山石金属(株)社製の粒度15μm〜25μmのはんだ粉末Sn(元素組成は、Sn:100質量%)を用いた。該はんだ粒子の平均粒子径をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ平均粒径は21μmであった。また、上記はんだ粒子を、示差走査熱量計(島津製作所:DSC−50)で、窒素雰囲気下、昇温速度10℃/分の条件で、40〜200℃の範囲において測定したところ、232℃に吸熱ピーク(融点)が検出された。尚、本明細書におけるはんだの融点とは、上記DSCによる吸熱ピークの測定結果に基づく。
[Example 1]
(1) Solder particles As the solder particles, solder powder Sn having a particle size of 15 to 25 μm (element composition: Sn: 100% by mass) manufactured by Yamaishi Metal Co., Ltd. was used. When the average particle size of the solder particles was measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), the average particle size was 21 μm. The solder particles were measured with a differential scanning calorimeter (Shimadzu Corporation: DSC-50) in a nitrogen atmosphere at a temperature rising rate of 10 ° C./min. An endothermic peak (melting point) was detected. In addition, the melting point of the solder in this specification is based on the measurement result of the endothermic peak by the DSC.

(2)高融点金属粒子
高融点金属粒子の製造方法は次に示す通りであった:Cu6.5kg(純度99質量%以上)、Sn1.5kg(純度99質量%以上)、Ag1.0kg(純度99質量%以上)、Bi0.5kg(純度99質量%以上)、及びIn0.5kg(純度99質量%以上)(すなわち目標元素組成が、Cu:65質量%、Sn:15質量%、Ag:10質量%、Bi:5質量%、及びIn:5質量%)を黒鉛坩堝に入れ、99体積%以上のヘリウム雰囲気で、高周波誘導加熱装置により1400℃まで加熱、融解した。次に、この溶融金属を、坩堝の先端より、ヘリウムガス雰囲気の噴霧槽内に導入した後、坩堝先端付近に設けられたガスノズルから、ヘリウムガス(純度99体積%以上、酸素濃度0.1体積%未満、圧力2.5MPa)を噴出してアトマイズを行い、高融点金属粒子を作製した。この時の冷却速度は、2600℃/秒であった。この第1金属粒子を気流式分級機(日清エンジニアリング:TC−15N)を用いて、5μm設定で分級し、大粒子側を回収後、もう一度30μm設定で分級し、小粒子側を回収した。回収した合金粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ、平均粒径は11.2μmであった。
(2) High melting point metal particles The production method of the high melting point metal particles was as follows: Cu 6.5 kg (purity 99% by mass or more), Sn 1.5 kg (purity 99% by mass or more), Ag 1.0 kg (purity) 99 mass% or more), Bi 0.5 kg (purity 99 mass% or more), and In 0.5 kg (purity 99 mass% or more) (that is, the target element composition is Cu: 65 mass%, Sn: 15 mass%, Ag: 10 Mass%, Bi: 5 mass%, and In: 5 mass%) were placed in a graphite crucible and heated and melted to 1400 ° C. with a high-frequency induction heating apparatus in a helium atmosphere of 99 volume% or more. Next, this molten metal is introduced into the spray tank in the helium gas atmosphere from the tip of the crucible, and then helium gas (purity 99 volume% or more, oxygen concentration 0.1 volume) from a gas nozzle provided in the vicinity of the crucible tip. A high-melting-point metal particle was produced by ejecting a pressure of less than% and a pressure of 2.5 MPa). The cooling rate at this time was 2600 ° C./second. The first metal particles were classified using an airflow classifier (Nisshin Engineering: TC-15N) at a setting of 5 μm, and after collecting the large particles, they were classified again at a setting of 30 μm, and the small particles were collected. The recovered alloy particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), and the average particle size was 11.2 μm.

(3)はんだペーストの作製
前記Cu合金粒子とSn粒子とを重量比100:186で混合し、金属フィラーとした。次に、金属フィラー90.7質量%とロジン系フラックス9.3質量%とを混合し、株式会社マルコム製ソルダーソフナー「SPS−1」、松尾産業株式会社製脱泡混練機「SNB−350」に順次かけて、はんだペーストを作製した。
(3) Preparation of solder paste The Cu alloy particles and Sn particles were mixed at a weight ratio of 100: 186 to obtain a metal filler. Next, 90.7% by mass of a metal filler and 9.3% by mass of a rosin-based flux are mixed, and a solder softener “SPS-1” manufactured by Malcolm Co., Ltd., a defoaming kneader “SNB-350” manufactured by Matsuo Sangyo Co., Ltd. A solder paste was prepared in sequence.

(4)加熱硬化後の接合材表面の正反射率測定
前記はんだペーストをサイズ50mm×50mm、厚み1.0mmの高耐熱エポキシ樹脂ガラス布からなる全面Cu張り基板に30mm×30mm×0.1mmtのサイズで印刷塗布後、窒素雰囲気にて、ピーク温度250℃でリフロー熱処理してサンプルを作製した。
熱処理装置は、株式会社マルコム製リフローシミュレータ「SRS−1C」を使用した。温度プロファイルは、熱処理開始(常温)から140℃までを1.5℃/秒で昇温し、140℃から170℃までを110秒かけて徐々に昇温後、170℃から250℃までを2.0℃/秒で昇温し、ピーク温度250℃で15秒間保持する条件を採用した。
このサンプルを朝日分光株式会社製の5度反射測定ユニットを用い、はんだ表面に対し5度で入射した正反射率を500〜1000nmの範囲で測定したところ、図5に示す測定結果が得られた。このときの500〜1000nmの範囲の正反射率の平均値(平均正反射率)は6.4%であった。なお、正反射率測定結果で800〜1000nmの領域で見られた複数の正反射率のピークは、測定時の光源として用いたハロゲン光源由来の輝線であることも分かった。
(4) Regular reflectance measurement of the bonding material surface after heat-curing The solder paste is 30 mm × 30 mm × 0.1 mmt on the entire Cu-clad substrate made of a high heat-resistant epoxy resin glass cloth having a size of 50 mm × 50 mm and a thickness of 1.0 mm. After printing by size, a sample was prepared by reflow heat treatment at a peak temperature of 250 ° C. in a nitrogen atmosphere.
The heat treatment apparatus used was a reflow simulator “SRS-1C” manufactured by Malcolm Corporation. The temperature profile was raised from the start of heat treatment (room temperature) to 140 ° C. at 1.5 ° C./second, gradually increased from 140 ° C. to 170 ° C. over 110 seconds, and then from 170 ° C. to 250 ° C. The temperature was raised at a rate of 0.0 ° C./second, and the conditions were maintained at a peak temperature of 250 ° C. for 15 seconds.
When this sample was measured using a 5-degree reflection measurement unit manufactured by Asahi Spectrometer Co., Ltd., and the regular reflectance incident at 5 degrees on the solder surface was measured in the range of 500 to 1000 nm, the measurement results shown in FIG. 5 were obtained. . At this time, the average value of the regular reflectance in the range of 500 to 1000 nm (average regular reflectance) was 6.4%. In addition, it was also found that a plurality of regular reflectance peaks observed in the region of 800 to 1000 nm in the regular reflectance measurement results were bright lines derived from a halogen light source used as a light source at the time of measurement.

(5)レーザー加熱処理による部品実装と焼損の確認
上記はんだペーストを用いて1005サイズの0Ω抵抗部品(1005R)を実装し、その後、レーザー熱処理に供して、1005R、45個のデイジーチェーンを作製した。はんだペーストの印刷にはスクリーン印刷機はマイクロ・テック株式会社製(MT−320TV)を用いた。印刷マスクはメタル製であり、スキージはウレタン製である。マスクは1005R電極部分に合わせて各印刷開口サイズを400μm×500μmと設定し、厚み0.08mmとした。印刷条件は、速度50mm/秒、印圧0.1MPa、スキージ圧0.2MPa、背圧0.1MPa、アタック角度20°、クリアランス0mm、印刷回数1回とした。1005部品の実装には、ヤマハ発動機株式会社製YV100を用いた。
(5) Component mounting by laser heat treatment and confirmation of burnout 1005 size 0Ω resistance component (1005R) was mounted using the above solder paste, and then subjected to laser heat treatment to produce 1005R, 45 daisy chains. . For the printing of the solder paste, a screen printing machine manufactured by Micro Tech Co., Ltd. (MT-320TV) was used. The printing mask is made of metal, and the squeegee is made of urethane. The mask has a printing opening size of 400 μm × 500 μm and a thickness of 0.08 mm in accordance with the 1005R electrode portion. The printing conditions were a speed of 50 mm / second, a printing pressure of 0.1 MPa, a squeegee pressure of 0.2 MPa, a back pressure of 0.1 MPa, an attack angle of 20 °, a clearance of 0 mm, and a printing frequency of once. For mounting 1005 parts, YV100 manufactured by Yamaha Motor Co., Ltd. was used.

レーザー熱処理は、株式会社すばる光電子製、微細レーザーはんだ付け装置MLS−808CSを用いた。レーザーのビーム形状は四角形状とし、電極サイズを考慮して400μm×300μmの照射面積とした。また、レーザーは、808nmの半導体CWレーザーとし、電流量を8Aから19Aまで増大させながら、1.5秒間照射した。19A時のレーザー出力は2.7Wであった。
1005R実装部分の部品電極部にレーザーを照射して熱処理を施した後、実装部品の周囲に焼損箇所がないか、45個の1005Rの電極部分の合計90か所の周辺をキーエンス株式会社製マイクロスコープVHX-500で200倍に拡大して確認した。その結果、図6に示すようにレーザー加熱後の1005R電極部分には焼損が見られず、1005R部品の接合部をすべて確認したが焼損数は0個であった。評価結果を以下の表1に示す。
For laser heat treatment, a fine laser soldering apparatus MLS-808CS manufactured by Subaru Optoelectronics Co., Ltd. was used. The laser beam shape was a square shape, and the irradiation area was 400 μm × 300 μm in consideration of the electrode size. Further, the laser was a 808 nm semiconductor CW laser, and was irradiated for 1.5 seconds while increasing the amount of current from 8A to 19A. The laser output at 19 A was 2.7 W.
After irradiating the component electrode part of the 1005R mounting part with laser and performing heat treatment, there are no burnout parts around the mounting part, or a total of 90 parts of 45 1005R electrode parts are manufactured by KEYENCE CORPORATION. It was confirmed by magnifying 200 times with Scope VHX-500. As a result, as shown in FIG. 6, no burnout was observed in the 1005R electrode portion after the laser heating, and all the joint portions of 1005R parts were confirmed, but the number of burnouts was zero. The evaluation results are shown in Table 1 below.

〔比較例1〕
はんだ粒子と高融点粒子の組成を表1に示す金属種に固定し、はんだ粒子と高融点粒子の混合比を表1に示すとおりに、はんだ粒子のみのはんだペーストに代えた他は、実施例1と同様の条件で各評価を実施した。正反射率を実施例1と同様の方法で測定した結果、500〜1000nmの範囲の正反射率の平均値(平均正反射率)は84.2%であった。次いで、実施例1と同様の方法でレーザー加熱処理を行い、1005R電極部分を拡大して焼損の有無を確認したところ、図7に示すように、部品実装部分に近接した基板上に焼損が見られた。1005R部品の接合部をすべて確認したところ、焼損数は78個であり、焼損率は86.7%であった。
[Comparative Example 1]
The composition of the solder particles and the high melting point particles was fixed to the metal species shown in Table 1, and the mixing ratio of the solder particles and the high melting point particles was changed to a solder paste containing only the solder particles as shown in Table 1. Each evaluation was performed under the same conditions as in 1. As a result of measuring the regular reflectance by the same method as in Example 1, the average value of the regular reflectance (average regular reflectance) in the range of 500 to 1000 nm was 84.2%. Next, laser heat treatment was performed in the same manner as in Example 1, and the presence or absence of burnout was confirmed by enlarging the 1005R electrode portion. As shown in FIG. 7, burnout was found on the substrate close to the component mounting portion. It was. When all the joints of 1005R parts were confirmed, the number of burnouts was 78, and the burnout rate was 86.7%.

〔実施例2〜5、比較例2〜6〕
はんだ粒子と高融点粒子の組成を表1に示す金属種に固定し、はんだ粒子と高融点粒子の混合比を表1に示すとおりに変えた他は、実施例1と同様の条件で各評価を実施した。図5、表1に評価結果をに示す。
[Examples 2 to 5, Comparative Examples 2 to 6]
Each evaluation was performed under the same conditions as in Example 1 except that the composition of the solder particles and the high melting point particles was fixed to the metal species shown in Table 1 and the mixing ratio of the solder particles and the high melting point particles was changed as shown in Table 1. Carried out. FIG. 5 and Table 1 show the evaluation results.

<はんだ表面の平均正反射率とレーザー加熱処理による焼損の関係>
表1の実施例1〜5と比較例1〜6の結果から、高融点金属粒子100質量部に対して、はんだ粒子の混合比を変化させることで、加熱硬化後のはんだ表面の500〜1000nmの平均正反射率が変化し、高融点金属粒子に対し、はんだ粒子の混合比が少ないほど平均正反射率が低いことが分かる。一方で、レーザー加熱処理後の部品電極周辺の焼損部分を調べると、高融点粒子に対しはんだ粒子が多いほど焼損が発生していることが分かった。すなわち、高融点粒子に対し、はんだ粒子の混合比が少ないほど、焼損が少なくなることが分かり、高融点粒子100質量部に対して、はんだ粒子が500質量部以下であれば焼損が生じないことが分かる。これらの結果から、平均正反射率が40%以下であれば、レーザー加熱処理による焼損を防止できることが分かった。焼損が防止できる理由は、平均正反射率が低下することにより、レーザーから出力された光エネルギーが拡散することになり、拡散反射された反射光のそれぞれの光エネルギーが焼損を発生させない程度まで低下しているためであると考えられる。
<Relationship between average regular reflectance of solder surface and burnout caused by laser heat treatment>
From the results of Examples 1 to 5 and Comparative Examples 1 to 6 in Table 1, by changing the mixing ratio of the solder particles with respect to 100 parts by mass of the refractory metal particles, 500 to 1000 nm of the solder surface after heat curing. It can be seen that the average regular reflectance is lower, and the lower the mixing ratio of the solder particles to the refractory metal particles, the lower the average regular reflectance. On the other hand, when the burnout portion around the component electrode after the laser heat treatment was examined, it was found that the more solder particles with respect to the high melting point particles, the more burnout occurred. That is, it can be seen that the smaller the mixing ratio of the solder particles with respect to the high melting point particles, the less the burning damage occurs. If the solder particles are 500 parts by mass or less with respect to 100 parts by mass of the high melting point particles, no burning occurs. I understand. From these results, it was found that if the average regular reflectance is 40% or less, burning by laser heat treatment can be prevented. The reason why burnout can be prevented is that the average specular reflectance decreases, so that the light energy output from the laser diffuses, and the light energy of each diffusely reflected light is reduced to a level that does not cause burnout. It is thought that it is because it is doing.

〔実施例6〜10、比較例7〜11〕
(1)はんだ粒子
はんだ粒子は、実施例1と同様に山石金属(株)社製の粒度15μm〜25μのはんだ粉末Sn(元素組成は、Sn:100質量%)を用いた。
[Examples 6 to 10, Comparative Examples 7 to 11]
(1) Solder Particles As in the case of Example 1, solder powder Sn having a particle size of 15 μm to 25 μ (element composition is Sn: 100% by mass) manufactured by Yamaishi Metal Co., Ltd. was used.

(2)高融点金属粒子
高融点金属粒子の製造は実施例1と同様に行った。なお、高融点金属粒子の分級は気流式分級機(日清エンジニアリング:TC−15N)を用いて、1.6μm設定で分級し、大粒子側を回収後、もう一度10μm設定で分級し、小粒子側を回収することで目的の高融点金属粒子を得た。回収した合金粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ、平均粒径は、2.3μmであった。
(2) High melting point metal particles The high melting point metal particles were produced in the same manner as in Example 1. The high melting point metal particles are classified using an airflow classifier (Nisshin Engineering Co., Ltd .: TC-15N) at a setting of 1.6 μm, and after collecting the large particle side, it is classified again at a setting of 10 μm to obtain small particles. The target refractory metal particles were obtained by collecting the side. The collected alloy particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), and the average particle size was 2.3 μm.

(3)はんだペーストの作製
前記Cu合金粒子とSn粒子とを表2に記載の重量比で混合し、金属フィラーとした。次いで、実施例1と同様の手順で、はんだペーストを作製した。
(3) Preparation of solder paste The Cu alloy particles and Sn particles were mixed at a weight ratio shown in Table 2 to obtain a metal filler. Next, a solder paste was prepared in the same procedure as in Example 1.

(4)加熱硬化後の接合材表面の正反射率測定
作製したはんだペーストを用いて実施例1と同様の方法で正反射率を測定した。
(4) Regular reflectance measurement of bonding material surface after heat curing The regular reflectance was measured by the same method as in Example 1 using the prepared solder paste.

(5)レーザー加熱処理による部品実装と焼損の確認
作製したはんだペーストを用いて実施例1と同様の方法でレーザー加熱処理と焼損の確認を行った。結果を以下の表2に示す。
(5) Component mounting by laser heat treatment and confirmation of burnout Laser heat treatment and confirmation of burnout were performed in the same manner as in Example 1 using the prepared solder paste. The results are shown in Table 2 below.

<はんだ表面の平均正反射率とレーザー加熱処理による焼損の関係>
表2の実施例6〜10と比較例7〜11の結果から、高融点金属粒子100質量部に対して、はんだ粒子の混合比を変化させることで、加熱硬化後のはんだ表面の500−1000nmの平均正反射率が変化し、高融点金属粒子に対し、はんだ粒子の混合比が少ないほど平均正反射率が低いことが分かる。一方で、レーザー加熱処理後の部品電極周辺の焼損部分を調べると、高融点粒子に対しはんだ粒子が多いほど焼損が発生していることが分かった。すなわち、高融点粒子に対し、はんだ粒子の混合比が少ないほど、焼損が少なくなることが分かり、高融点粒子100質量部に対して、はんだ粒子が500質量部以下であれば焼損が生じないことが分かる。これらの結果から、高融点粒子の平均粒子径に依存せず平均正反射率が40%以下であれば、レーザー加熱処理による焼損を防止できることが分かった。
<Relationship between average regular reflectance of solder surface and burnout caused by laser heat treatment>
From the results of Examples 6 to 10 and Comparative Examples 7 to 11 in Table 2, by changing the mixing ratio of the solder particles with respect to 100 parts by mass of the refractory metal particles, 500 to 1000 nm of the solder surface after heat curing. It can be seen that the average regular reflectance is lower, and the lower the mixing ratio of the solder particles to the refractory metal particles, the lower the average regular reflectance. On the other hand, when the burnout portion around the component electrode after the laser heat treatment was examined, it was found that the more solder particles with respect to the high melting point particles, the more burnout occurred. That is, it can be seen that the smaller the mixing ratio of the solder particles with respect to the high melting point particles, the less the burning damage occurs. If the solder particles are 500 parts by mass or less with respect to 100 parts by mass of the high melting point particles, no burning occurs. I understand. From these results, it was found that if the average regular reflectance is 40% or less without depending on the average particle diameter of the high melting point particles, it is possible to prevent burning by laser heat treatment.

〔実施例11〜17、比較例12〜13〕
(1)はんだ粒子
はんだ粒子として、実施例1と同様に山石金属(株)社製の粒度15μm〜25μのはんだ粉末Sn(元素組成は、Sn:100質量%)を用いた。
[Examples 11 to 17, Comparative Examples 12 to 13]
(1) Solder particles As the solder particles, solder powder Sn having a particle size of 15 μm to 25 μm (element composition: Sn: 100% by mass) manufactured by Yamaishi Metal Co., Ltd. was used in the same manner as in Example 1.

(2)高融点金属粒子
高融点金属粒子の製造は実施例1と同様に行った。なお、高融点金属粒子の分級は気流式分級機(日清エンジニアリング:TC−15N)を用いて、30μm設定で分級し、大粒子側を回収後、もう一度50μm設定で分級し、小粒子側を回収することで目的の高融点金属粒子を得た。回収した合金粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ、平均粒径は、26.9μmであった。
(2) High melting point metal particles The high melting point metal particles were produced in the same manner as in Example 1. The high melting point metal particles are classified using an airflow classifier (Nisshin Engineering Co., Ltd .: TC-15N) at a setting of 30 μm. After collecting the large particles, they are classified again at a setting of 50 μm. The intended refractory metal particles were obtained by collection. When the collected alloy particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), the average particle size was 26.9 μm.

(3)はんだペーストの作製
前記Cu合金粒子とSn粒子とを表3に記載の重量比で混合し、金属フィラーとした。次いで、実施例1と同様の手順で、はんだペーストを作製した。
(3) Preparation of solder paste The Cu alloy particles and Sn particles were mixed at a weight ratio shown in Table 3 to obtain a metal filler. Next, a solder paste was prepared in the same procedure as in Example 1.

(4)加熱硬化後の接合材表面の正反射率測定
作製したはんだペーストを用いて実施例1と同様の方法で正反射率を測定した。
(4) Regular reflectance measurement of bonding material surface after heat curing The regular reflectance was measured by the same method as in Example 1 using the prepared solder paste.

(5)レーザー加熱処理による部品実装と焼損の確認
作製したはんだペーストを用いて実施例1と同様の方法でレーザー加熱処理と焼損の確認を行った。結果を以下の表3に示す。
(5) Component mounting by laser heat treatment and confirmation of burnout Laser heat treatment and confirmation of burnout were performed in the same manner as in Example 1 using the prepared solder paste. The results are shown in Table 3 below.

<はんだ表面の平均正反射率とレーザー加熱処理による焼損の関係>
表3の実施例11〜17と比較例12〜13の結果から、高融点金属粒子100質量部に対して、はんだ粒子の混合比を変化させることで、加熱硬化後のはんだ表面の500−1000nmの平均正反射率が変化し、高融点金属粒子に対し、はんだ粒子の混合比が少ないほど平均正反射率が低いことが分かる。一方で、レーザー加熱処理後の部品電極周辺の焼損部分を調べると、高融点粒子に対しはんだ粒子が多いほど焼損が発生していることが分かった。すなわち、高融点粒子に対し、はんだ粒子の混合比が少ないほど、焼損が少なくなることが分かり、高融点粒子100質量部に対して、はんだ粒子が1900質量部以下であれば焼損が生じないことが分かる。これらの結果から、高融点粒子の平均粒子径に依存せず平均正反射率が40%以下であれば、レーザー加熱処理による焼損を防止できることが分かった。
<Relationship between average regular reflectance of solder surface and burnout caused by laser heat treatment>
From the results of Examples 11 to 17 and Comparative Examples 12 to 13 in Table 3, by changing the mixing ratio of the solder particles with respect to 100 parts by mass of the refractory metal particles, 500 to 1000 nm of the solder surface after heat curing. It can be seen that the average regular reflectance is lower, and the lower the mixing ratio of the solder particles to the refractory metal particles, the lower the average regular reflectance. On the other hand, when the burnout portion around the component electrode after the laser heat treatment was examined, it was found that the more solder particles with respect to the high melting point particles, the more burnout occurred. That is, it can be seen that the smaller the mixing ratio of the solder particles with respect to the high melting point particles, the less the burning damage occurs. If the solder particles are 1900 parts by mass or less with respect to 100 parts by mass of the high melting point particles, no burning occurs. I understand. From these results, it was found that if the average regular reflectance is 40% or less without depending on the average particle diameter of the high melting point particles, it is possible to prevent burning by laser heat treatment.

〔実施例18〜21、比較例14〜18〕
(1)はんだ粒子
はんだ粒子として、実施例1と同様に山石金属(株)社製の粒度15μm〜25μのはんだ粉末Sn(元素組成は、Sn:100質量%)を用いた。
[Examples 18 to 21, Comparative Examples 14 to 18]
(1) Solder particles As the solder particles, solder powder Sn having a particle size of 15 μm to 25 μm (element composition: Sn: 100% by mass) manufactured by Yamaishi Metal Co., Ltd. was used in the same manner as in Example 1.

(2)高融点金属粒子
高融点金属粒子として福田金属箔粉株式会社製Cu粉 Cu−HWQ 15μmを用いた。このCu粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ、平均粒径は、15.0μmであった。
(2) High melting point metal particles As the high melting point metal particles, Cu powder Cu-HWQ 15 μm manufactured by Fukuda Metal Foil Powder Co., Ltd. was used. When this Cu particle was measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), the average particle size was 15.0 μm.

(3)はんだペーストの作製
前記Cu粒子とSn粒子とを以下の表4に示す重量比で混合し、金属フィラーとした。次いで、実施例1と同様の手順で、はんだペーストを作製した。
(3) Preparation of solder paste The Cu particles and Sn particles were mixed at a weight ratio shown in Table 4 below to obtain a metal filler. Next, a solder paste was prepared in the same procedure as in Example 1.

(4)加熱硬化後の接合材表面の正反射率測定
作製したはんだペーストを用いて実施例1と同様の手法で正反射率を測定した。
(4) Regular reflectance measurement on the surface of the bonding material after heat curing The regular reflectance was measured by the same method as in Example 1 using the prepared solder paste.

(5)レーザー加熱処理による部品実装と焼損の確認
作製したはんだペーストを用いて実施例1と同様の手法でレーザー加熱処理と焼損の確認を行った。結果を以下の表4に示す。
(5) Component mounting by laser heat treatment and confirmation of burnout Laser heat treatment and confirmation of burnout were performed in the same manner as in Example 1 using the prepared solder paste. The results are shown in Table 4 below.

<はんだ表面の平均正反射率とレーザー加熱処理による焼損の関係>
表4の実施例18〜21と比較例14〜18の結果から、高融点金属粒子100質量部に対して、はんだ粒子の混合比を変化させることで、加熱硬化後のはんだ表面の500−1000nmの平均正反射率が変化し、高融点金属粒子に対し、はんだ粒子の混合比が少ないほど平均正反射率が低いことが分かる。一方で、レーザー加熱処理後の部品電極周辺の焼損部分を調べると、高融点粒子に対しはんだ粒子が多いほど焼損が発生していることが分かった。すなわち、高融点粒子に対し、はんだ粒子の混合比が少ないほど、焼損が少なくなることが分かり、高融点粒子100質量部に対して、はんだ粒子が400質量部以下であれば焼損が生じないことが分かる。これらの結果から、高融点粒子の組成や平均粒子径に依存せず平均正反射率が40%以下であれば、レーザー加熱処理による焼損を防止できることが分かった。
<Relationship between average regular reflectance of solder surface and burnout caused by laser heat treatment>
From the results of Examples 18 to 21 and Comparative Examples 14 to 18 in Table 4, by changing the mixing ratio of the solder particles with respect to 100 parts by mass of the refractory metal particles, 500 to 1000 nm of the solder surface after heat curing. It can be seen that the average regular reflectance is lower, and the lower the mixing ratio of the solder particles to the refractory metal particles, the lower the average regular reflectance. On the other hand, when the burnout portion around the component electrode after the laser heat treatment was examined, it was found that the more solder particles with respect to the high melting point particles, the more burnout occurred. That is, it can be seen that the smaller the mixing ratio of the solder particles with respect to the high melting point particles, the less the burning damage occurs. If the solder particles are 400 parts by mass or less with respect to 100 parts by mass of the high melting point particles, no burning occurs. I understand. From these results, it has been found that if the average regular reflectance is 40% or less without depending on the composition of the high melting point particles and the average particle diameter, burning by laser heat treatment can be prevented.

〔実施例22〜27、比較例19〜21〕
(1)はんだ粒子
はんだ粒子として、実施例1と同様に山石金属(株)社製の粒度15μm〜25μのはんだ粉末Sn(元素組成は、Sn:100質量%)を用いた。
[Examples 22 to 27, Comparative Examples 19 to 21]
(1) Solder particles As the solder particles, solder powder Sn having a particle size of 15 μm to 25 μm (element composition: Sn: 100% by mass) manufactured by Yamaishi Metal Co., Ltd. was used in the same manner as in Example 1.

(2)高融点金属粒子
高融点金属粒子として、日本アトマイズ加工株式会社製Ni粉 SFR−Ni 10μmを用いた。このNi粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ、平均粒径は、10.1μmであった。
(2) Refractory Metal Particles Ni powder SFR-Ni 10 μm manufactured by Nippon Atomizing Co., Ltd. was used as the refractory metal particles. When this Ni particle was measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), the average particle size was 10.1 μm.

(3)はんだペーストの作製
前記Ni粒子とSn粒子とを以下の表5に示す重量比で混合し、金属フィラーとした。次いで、実施例1と同様の手順で、はんだペーストを作製した。
(3) Preparation of solder paste The Ni particles and Sn particles were mixed at a weight ratio shown in Table 5 below to obtain a metal filler. Next, a solder paste was prepared in the same procedure as in Example 1.

(4)加熱硬化後の接合材表面の正反射率測定
作製したはんだペーストを用いて実施例1と同様の手法で正反射率を測定した。
(4) Regular reflectance measurement on the surface of the bonding material after heat curing The regular reflectance was measured by the same method as in Example 1 using the prepared solder paste.

(5)レーザー加熱処理による部品実装と焼損の確認
作製したはんだペーストを用いて実施例1と同様の手法でレーザー加熱処理と焼損の確認を行った。結果を以下の表5に示す。
(5) Component mounting by laser heat treatment and confirmation of burnout Laser heat treatment and confirmation of burnout were performed in the same manner as in Example 1 using the prepared solder paste. The results are shown in Table 5 below.

<はんだ表面の平均正反射率とレーザー加熱処理による焼損の関係>
表5の実施例22〜27と比較例19〜21の結果から、高融点金属粒子100質量部に対して、はんだ粒子の混合比を変化させることで、加熱硬化後のはんだ表面の500−1000nmの平均正反射率が変化し、高融点金属粒子に対し、はんだ粒子の混合比が少ないほど平均正反射率が低いことが分かる。一方で、レーザー加熱処理後の部品電極周辺の焼損部分を調べると、高融点粒子に対しはんだ粒子が多いほど焼損が発生していることが分かった。すなわち、高融点粒子に対し、はんだ粒子の混合比が少ないほど、焼損が少なくなることが分かり、高融点粒子100質量部に対して、はんだ粒子が900質量部以下であれば焼損が生じないことが分かる。これらの結果から、高融点粒子の組成や平均粒子径に依存せず平均正反射率が40%以下であれば、レーザー加熱処理による焼損を防止できることが分かった。
<Relationship between average regular reflectance of solder surface and burnout caused by laser heat treatment>
From the results of Examples 22 to 27 and Comparative Examples 19 to 21 in Table 5, by changing the mixing ratio of the solder particles with respect to 100 parts by mass of the refractory metal particles, 500 to 1000 nm of the solder surface after heat curing. It can be seen that the average regular reflectance is lower, and the lower the mixing ratio of the solder particles to the refractory metal particles, the lower the average regular reflectance. On the other hand, when the burnout portion around the component electrode after the laser heat treatment was examined, it was found that the more solder particles with respect to the high melting point particles, the more burnout occurred. That is, it can be seen that the smaller the mixing ratio of the solder particles with respect to the high melting point particles, the less the burning damage occurs. If the solder particles are 900 parts by mass or less with respect to 100 parts by mass of the high melting point particles, no burning occurs. I understand. From these results, it has been found that if the average regular reflectance is 40% or less without depending on the composition of the high melting point particles and the average particle diameter, burning by laser heat treatment can be prevented.

〔実施例28〜31、比較例22〜26〕
(1)はんだ粒子
はんだ粒子として、実施例1と同様に山石金属(株)社製の粒度15μm〜25μのはんだ粉末Sn(元素組成は、Sn:100質量%)を用いた。
[Examples 28 to 31, Comparative Examples 22 to 26]
(1) Solder particles As the solder particles, solder powder Sn having a particle size of 15 μm to 25 μm (element composition: Sn: 100% by mass) manufactured by Yamaishi Metal Co., Ltd. was used in the same manner as in Example 1.

(2)高融点セラミック粒子
高融点セラミック粒子として、株式会社アドマテックス製Al粉アドマファインAC9500−SIを用いた。このAl粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ、平均粒径は、8.4μmであった。
(2) High-melting-point ceramic particles As high-melting-point ceramic particles, Al 2 O 3 powder Admafine AC9500-SI manufactured by Admatechs Co., Ltd. was used. When the Al 2 O 3 particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), the average particle size was 8.4 μm.

(3)はんだペーストの作製
前記Al粒子とSn粒子とを以下の表6に示す重量比で混合し、金属フィラーとした。次いで、実施例1と同様の手順で、はんだペーストを作製した。
(3) Preparation of solder paste The Al 2 O 3 particles and Sn particles were mixed at a weight ratio shown in Table 6 below to obtain a metal filler. Next, a solder paste was prepared in the same procedure as in Example 1.

(4)加熱硬化後の接合材表面の正反射率測定
作製したはんだペーストを用いて実施例1と同様の手法で正反射率を測定した。
(4) Regular reflectance measurement on the surface of the bonding material after heat curing The regular reflectance was measured by the same method as in Example 1 using the prepared solder paste.

(5)レーザー加熱処理による部品実装と焼損の確認
作製したはんだペーストを用いて実施例1と同様の手法でレーザー加熱処理と焼損の確認を行った。結果を以下の表6に示す。
(5) Component mounting by laser heat treatment and confirmation of burnout Laser heat treatment and confirmation of burnout were performed in the same manner as in Example 1 using the prepared solder paste. The results are shown in Table 6 below.

<はんだ表面の平均正反射率とレーザー加熱処理による焼損の関係>
表6の実施例28〜31と比較例22〜26の結果から、高融点金属粒子100質量部に対して、はんだ粒子の混合比を変化させることで、加熱硬化後のはんだ表面の500−1000nmの平均正反射率が変化し、高融点金属粒子に対し、はんだ粒子の混合比が少ないほど平均正反射率が低いことが分かる。一方で、レーザー加熱処理後の部品電極周辺の焼損部分を調べると、高融点粒子に対しはんだ粒子が多いほど焼損が発生していることが分かった。すなわち、高融点粒子に対し、はんだ粒子の混合比が少ないほど、焼損が少なくなることが分かり、高融点粒子100質量部に対して、はんだ粒子が400質量部以下であれば焼損が生じないことが分かる。これらの結果から、高融点粒子の組成や平均粒子径に依存せず平均正反射率が40%以下であれば、レーザー加熱処理による焼損を防止できることが分かった。
<Relationship between average regular reflectance of solder surface and burnout caused by laser heat treatment>
From the results of Examples 28 to 31 and Comparative Examples 22 to 26 in Table 6, by changing the mixing ratio of the solder particles with respect to 100 parts by mass of the refractory metal particles, 500 to 1000 nm of the solder surface after heat curing. It can be seen that the average regular reflectance is lower, and the lower the mixing ratio of the solder particles to the refractory metal particles, the lower the average regular reflectance. On the other hand, when the burnout portion around the component electrode after the laser heat treatment was examined, it was found that the more solder particles with respect to the high melting point particles, the more burnout occurred. That is, it can be seen that the smaller the mixing ratio of the solder particles with respect to the high melting point particles, the less the burning damage occurs. If the solder particles are 400 parts by mass or less with respect to 100 parts by mass of the high melting point particles, no burning occurs. I understand. From these results, it has been found that if the average regular reflectance is 40% or less without depending on the composition of the high melting point particles and the average particle diameter, burning by laser heat treatment can be prevented.

〔実施例32〜39〕
(1)はんだ粒子
はんだ粒子は、実施例32のSn0.7Cuでは粒度10〜25μmで平均粒径が21.2μmのものを用いた。実施例33のSn0.3Ag0.7Cuでは粒度20〜38μmで平均粒径が29.8μmのものを用いた。実施例34のSn3.0Ag0.5Cuでは粒度10〜25μmで平均粒径が22.0μmのものを用いた。実施例35のSn3.5Agでは粒度10〜25μmで平均粒径が22.0μmのものを用いた。実施例36のSn4.0Ag0.5Cuでは粒度10〜25μmで平均粒径が21.8μmのものを用いた。実施例37のSn58Biでは粒度25〜38μmで平均粒径が25.6μmのものを用いた。実施例38のPb5Snでは粒度25〜38μmで平均粒径が28.9μmのものを用いた。実施例39のPb63Snでは粒度25〜38μmで平均粒径が32.5μmのものを用いた。
[Examples 32-39]
(1) Solder Particles For the Sn0.7Cu of Example 32, solder particles having a particle size of 10 to 25 μm and an average particle size of 21.2 μm were used. Sn0.3Ag0.7Cu of Example 33 having a particle size of 20 to 38 μm and an average particle size of 29.8 μm was used. For Sn3.0Ag0.5Cu of Example 34, one having a particle size of 10 to 25 μm and an average particle size of 22.0 μm was used. Sn3.5Ag of Example 35 having a particle size of 10 to 25 μm and an average particle size of 22.0 μm was used. For Sn4.0Ag0.5Cu of Example 36, one having a particle size of 10 to 25 μm and an average particle size of 21.8 μm was used. Sn58Bi of Example 37 having a particle size of 25 to 38 μm and an average particle size of 25.6 μm was used. Pb5Sn of Example 38 having a particle size of 25 to 38 μm and an average particle size of 28.9 μm was used. In Pb63Sn of Example 39, one having a particle size of 25 to 38 μm and an average particle size of 32.5 μm was used.

(2)高融点金属粒子
高融点金属粒子の製造は実施例1と同様に行った。なお、高融点金属粒子の分級は気流式分級機(日清エンジニアリング:TC−15N)を用いて、5μm設定で分級し、大粒子側を回収後、もう一度30μm設定で分級し、小粒子側を回収することで目的の高融点金属粒子を得た。回収した合金粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ、平均粒径は、11.2μmであった。
(2) High melting point metal particles The high melting point metal particles were produced in the same manner as in Example 1. The refractory metal particles are classified using an airflow classifier (Nisshin Engineering: TC-15N) at a setting of 5 μm, and after collecting the large particles, they are classified again at a setting of 30 μm, and the small particles are collected. The intended refractory metal particles were obtained by collection. When the collected alloy particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), the average particle size was 11.2 μm.

(3)はんだペーストの作製
前記高融点金属粒子とSn粒子とを以下の表7に示す重量比でそれぞれ混合し、金属フィラーとした。次いで、実施例1と同様の手順で、はんだペーストを作製した。
(3) Preparation of Solder Paste The refractory metal particles and Sn particles were mixed at the weight ratios shown in Table 7 below to obtain metal fillers. Next, a solder paste was prepared in the same procedure as in Example 1.

(4)加熱硬化後の接合材表面の正反射率測定
作製したはんだペーストを用いて実施例1と同様の手法で正反射率を測定した。
(4) Regular reflectance measurement on the surface of the bonding material after heat curing The regular reflectance was measured by the same method as in Example 1 using the prepared solder paste.

(5)レーザー加熱処理による部品実装と焼損の確認
作製したはんだペーストを用いて実施例1と同様の手法でレーザー加熱処理と焼損の確認を行った。結果を以下の表7に示す。
(5) Component mounting by laser heat treatment and confirmation of burnout Laser heat treatment and confirmation of burnout were performed in the same manner as in Example 1 using the prepared solder paste. The results are shown in Table 7 below.

<はんだ表面の平均正反射率とレーザー加熱処理による焼損の関係>
表7の実施例32〜39の結果から、高融点金属粒子100質量部に対して、はんだ粒子の混合比を186質量部に固定すると、加熱硬化後のはんだ表面の500−1000nmの平均正反射率は5%以下で、はんだ粒子の組成に依存せずほとんど変化しないことが分かった。一方で、レーザー加熱処理後の部品電極周辺の焼損部分を調べると、いずれの部品近傍にも焼損が生じていないことが分かった。これらの結果から、はんだ粒子の組成や平均粒子径に依存せず平均正反射率が40%以下であれば、レーザー加熱処理による焼損を防止できることが分かった。
<Relationship between average regular reflectance of solder surface and burnout caused by laser heat treatment>
From the results of Examples 32 to 39 in Table 7, when the mixing ratio of the solder particles is fixed to 186 parts by mass with respect to 100 parts by mass of the refractory metal particles, the average regular reflection of 500 to 1000 nm on the solder surface after heat curing. The rate was 5% or less, and it was found that there was almost no change regardless of the composition of the solder particles. On the other hand, when the burnout portion around the component electrode after the laser heat treatment was examined, it was found that no burnout occurred in the vicinity of any component. From these results, it has been found that if the average regular reflectance is 40% or less without depending on the composition of the solder particles and the average particle diameter, burning due to laser heat treatment can be prevented.

〔実施例40〜62〕
(1)はんだ粒子
はんだ粒子として、実施例1と同様に山石金属(株)社製の粒度15μm〜25μのはんだ粉末Sn(元素組成は、Sn:100質量%)を用いた。
[Examples 40 to 62]
(1) Solder particles As the solder particles, solder powder Sn having a particle size of 15 μm to 25 μm (element composition: Sn: 100% by mass) manufactured by Yamaishi Metal Co., Ltd. was used in the same manner as in Example 1.

(2)高融点金属粒子
高融点金属粒子の製造は、実施例1と同様のアトマイズ条件で行った。なお、以下の表8に示すような高融点金属粒子の組成でアトマイズを行った。高融点金属粒子の分級は気流式分級機(日清エンジニアリング:TC−15N)を用いて、5μm設定で分級し、大粒子側を回収後、もう一度30μm設定で分級し、小粒子側を回収することで目的の高融点金属粒子を得た。回収した合金粒子をレーザー回折式粒子径分布測定装置(HELOS&RODOS)で測定したところ、それぞれの平均粒径は、以下の表8に示すとおりであった。
(2) Refractory metal particles The refractory metal particles were produced under the same atomizing conditions as in Example 1. In addition, atomization was performed with the composition of refractory metal particles as shown in Table 8 below. High melting point metal particles are classified using an airflow classifier (Nisshin Engineering Co., Ltd .: TC-15N) at a setting of 5 μm. After collecting the large particles, they are classified again at a setting of 30 μm, and the small particles are collected. As a result, target high melting point metal particles were obtained. The collected alloy particles were measured with a laser diffraction particle size distribution analyzer (HELOS & RODOS), and the average particle diameters were as shown in Table 8 below.

(3)はんだペーストの作製
前記高融点金属粒子とSn粒子とを以下の表8に示す重量比でそれぞれ混合し、金属フィラーとした。次いで、実施例1と同様の手順で、はんだペーストを作製した。
(3) Production of Solder Paste The refractory metal particles and Sn particles were mixed at a weight ratio shown in Table 8 below to obtain a metal filler. Next, a solder paste was prepared in the same procedure as in Example 1.

(4)加熱硬化後の接合材表面の正反射率測定
作製したはんだペーストを用いて実施例1と同様の手法で正反射率を測定した。
(4) Regular reflectance measurement on the surface of the bonding material after heat curing The regular reflectance was measured by the same method as in Example 1 using the prepared solder paste.

(5)レーザー加熱処理による部品実装と焼損の確認
作製したはんだペーストを用いて実施例1と同様の手法でレーザー加熱処理と焼損の確認を行った。結果を以下の表8に示す。
(5) Component mounting by laser heat treatment and confirmation of burnout Laser heat treatment and confirmation of burnout were performed in the same manner as in Example 1 using the prepared solder paste. The results are shown in Table 8 below.

<はんだ表面の平均正反射率とレーザー加熱処理による焼損の関係>
表8の実施例40〜62の結果から、高融点金属粒子100質量部に対して、はんだ粒子の混合比を186質量部に固定すると、加熱硬化後のはんだ表面の500−1000nmの平均正反射率は6%以下で、高融点金属粒子の組成に依存せずほとんど変化しないことが分かった。一方で、レーザー加熱処理後の部品電極周辺の焼損部分を調べると、いずれの部品近傍にも焼損が生じていないことが分かった。これらの結果から、高融点金属粒子の組成や平均粒子径に依存せず平均正反射率が40%以下であれば、レーザー加熱処理による焼損を防止できることが分かった。
<Relationship between average regular reflectance of solder surface and burnout caused by laser heat treatment>
From the results of Examples 40 to 62 in Table 8, when the mixing ratio of the solder particles is fixed to 186 parts by mass with respect to 100 parts by mass of the refractory metal particles, the average regular reflection of 500 to 1000 nm on the solder surface after heat curing. The rate was 6% or less, and it was found that there was almost no change regardless of the composition of the refractory metal particles. On the other hand, when the burnout portion around the component electrode after the laser heat treatment was examined, it was found that no burnout occurred in the vicinity of any component. From these results, it was found that if the average regular reflectance is 40% or less without depending on the composition and average particle diameter of the refractory metal particles, burning by laser heat treatment can be prevented.

本発明の製造方法により、レーザー光線の反射に伴う電子部品、基板等の焼損を回避することができる。従って、本発明の製造方法は、レーザー加熱工法を用いる多様な電子部品の実装に好適に利用でき、電子デバイス製造の自由度を高めることができる。   According to the manufacturing method of the present invention, it is possible to avoid burning of electronic parts, substrates and the like due to reflection of a laser beam. Therefore, the manufacturing method of the present invention can be suitably used for mounting various electronic components using the laser heating method, and the degree of freedom of electronic device manufacturing can be increased.

1 基板
2 挿入実装部品
3 表面実装部品
4 本実施の形態に係るはんだ材
5 照射レーザー光
11 ランド電極
21 リードピン
41 従来技術のはんだ材
51 散乱光
52 反射光
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Insertion mounting component 3 Surface mounting component 4 Solder material which concerns on this Embodiment 5 Irradiation laser beam 11 Land electrode 21 Lead pin 41 Conventional solder material 51 Scattered light 52 Reflected light

Claims (16)

レーザー光で加熱し、溶融させた接合材で、少なくとも2つの部材同士を、接合するステップを含む電子デバイスの製造方法であって、該接合材を250℃に昇温し、室温まで冷却して形成された接合部の、表面に対し5度入射した光線の500nm〜1000nmにおける平均正反射率が40%以下である、前記方法。   A method of manufacturing an electronic device comprising a step of bonding at least two members to each other with a bonding material heated and melted with a laser beam, wherein the bonding material is heated to 250 ° C. and cooled to room temperature. The said method that the average regular reflectance in 500 nm-1000 nm of the light ray which injected 5 degree | times with respect to the surface of the formed junction part is 40% or less. 前記接合材は、はんだ成分と該はんだ成分よりも融点の高い高融点粒子を含むはんだ接合材である、請求項1に記載の方法。   The method according to claim 1, wherein the bonding material is a solder bonding material including a solder component and high melting point particles having a melting point higher than that of the solder component. 前記はんだ成分は、はんだ粒子である、請求項2に記載の方法。   The method of claim 2, wherein the solder component is solder particles. 前記高融点粒子の融点は、前記レーザー光による加熱温度よりも高い、請求項2又は3に記載の方法。   The method according to claim 2 or 3, wherein a melting point of the high melting point particles is higher than a heating temperature by the laser beam. 前記はんだ粒子は、Sn粒子、又はAg、Bi、Cu、Ge、In、Sb、Ni、Zn、Pb、及びAuからなる金属群から選ばれる少なくとも1種の金属を含むSn合金粒子である、請求項3又は4に記載の方法。   The solder particles are Sn particles or Sn alloy particles containing at least one metal selected from a metal group consisting of Ag, Bi, Cu, Ge, In, Sb, Ni, Zn, Pb, and Au. Item 5. The method according to Item 3 or 4. 前記はんだ粒子は、Bi、In又はZnのいずれかを含む、融点200℃以下のSn合金粒子である、請求項5に記載の方法。   The method according to claim 5, wherein the solder particles are Sn alloy particles having a melting point of 200 ° C. or less, including any of Bi, In, and Zn. 前記高融点粒子は、Ag、Bi、Cu、Ge、In、Sn、Sb、Ni、Zn、Pb、及びAuからなる群から選ばれる少なくとも1種の金属を含む、融点300℃以上の高融点金属粒子である、請求項2〜6のいずれか1項に記載の方法。   The high melting point particles include at least one metal selected from the group consisting of Ag, Bi, Cu, Ge, In, Sn, Sb, Ni, Zn, Pb, and Au, and have a melting point of 300 ° C. or higher. The method according to claim 2, wherein the method is a particle. 前記高融点金属粒子は、Cu粒子、Cu合金粒子、Ni粒子、又はNi合金粒子である、請求項7に記載の方法。   The method according to claim 7, wherein the refractory metal particles are Cu particles, Cu alloy particles, Ni particles, or Ni alloy particles. 前記Cu合金粒子は、Cuを50〜99質量%含む、請求項8に記載の方法。   The method according to claim 8, wherein the Cu alloy particles contain 50 to 99 mass% of Cu. 前記Cu合金粒子は、Cu50〜99質量%と、Sn、Ag、Bi、In、及びGeからなる群から選ばれる少なくとも1種の元素1〜50質量%を含む、請求項9に記載の方法。   The method according to claim 9, wherein the Cu alloy particles include 50 to 99% by mass of Cu and 1 to 50% by mass of at least one element selected from the group consisting of Sn, Ag, Bi, In, and Ge. 前記Cu合金粒子は、Sn13.5〜16.5質量%、Ag0.1〜11質量%、Bi4.5〜5.5質量%、In0.1〜5質量%、残部にCuを含むCu合金粒子、又はAg0.11〜25質量%、残部にCuを含むCu合金粒子、又はSn1〜10質量%、残部にCuを含むCu合金粒子である、請求項10に記載の方法。   The Cu alloy particles are Sn 13.5 to 16.5% by mass, Ag 0.1 to 11% by mass, Bi 4.5 to 5.5% by mass, In 0.1 to 5% by mass, Cu alloy particles containing Cu in the balance. Or Ag 0.11 to 25 mass%, Cu alloy particles containing Cu in the balance, or Sn 1 to 10 mass%, Cu alloy particles containing Cu in the balance. 前記高融点粒子は、金属元素又は半金属元素と非金属元素とからなる化合物のセラミックスからなる高融点セラミックス粒子である、請求項2〜6のいずれか1項に記載の方法。   The method according to any one of claims 2 to 6, wherein the high-melting-point particles are high-melting-point ceramic particles made of a ceramic of a compound composed of a metal element or a metalloid element and a non-metal element. 前記高融点セラミックス粒子は、Si、Al、Ca、Ti、B、Ba、Bi、P、Sr、Mg、Y、及びZrからなる群から選ばれる少なくとも1種の元素の酸化物粒子、窒化物粒子、炭化物粒子、硼化物粒子、又は珪化物粒子のいずれかである、請求項12に記載の方法。   The high melting point ceramic particles include oxide particles and nitride particles of at least one element selected from the group consisting of Si, Al, Ca, Ti, B, Ba, Bi, P, Sr, Mg, Y, and Zr. The method of claim 12, wherein the method is any of carbide particles, boride particles, or silicide particles. 電子部品が既に実装されている基板に対して実施する、請求項1〜13のいずれか1項に記載の電子デバイスの製造方法。   The manufacturing method of the electronic device of any one of Claims 1-13 performed with respect to the board | substrate with which the electronic component is already mounted. 前記はんだ接合材を少なくとも2つの部材間に供給する方法は、スクリーン印刷工法、ディスペンス印刷工法、ジェットディスペンス印刷工法、又は転写工法のいずれかである、請求項2〜14のいずれか1項に記載の方法。   The method for supplying the solder bonding material between at least two members is any one of a screen printing method, a dispense printing method, a jet dispense printing method, or a transfer method. the method of. 前記電子デバイスは、表面実装基板、挿入型電子部品実装基板、狭ピッチ表面実装コネクター、光ピックアップ部品、プローブカード、小型スピーカー、カメラモジュール、又はPoP(パッケージオンパッケージ)のいずれかである、請求項1〜15のいずれか1項に記載の方法。
The electronic device is any one of a surface mounting board, an insertion type electronic component mounting board, a narrow pitch surface mounting connector, an optical pickup component, a probe card, a small speaker, a camera module, or PoP (package on package). The method according to any one of 1 to 15.
JP2012132995A 2012-06-12 2012-06-12 Electronic device manufacturing method by laser heating method Active JP6051437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012132995A JP6051437B2 (en) 2012-06-12 2012-06-12 Electronic device manufacturing method by laser heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012132995A JP6051437B2 (en) 2012-06-12 2012-06-12 Electronic device manufacturing method by laser heating method

Publications (2)

Publication Number Publication Date
JP2013258254A JP2013258254A (en) 2013-12-26
JP6051437B2 true JP6051437B2 (en) 2016-12-27

Family

ID=49954446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012132995A Active JP6051437B2 (en) 2012-06-12 2012-06-12 Electronic device manufacturing method by laser heating method

Country Status (1)

Country Link
JP (1) JP6051437B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109158722A (en) * 2018-10-08 2019-01-08 上海力声特医学科技有限公司 Welding method free of cleaning

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6464341B2 (en) * 2014-10-30 2019-02-06 国立研究開発法人産業技術総合研究所 Method for creating metal shaped object using metal powder by laser irradiation, forming material therefor, and created structure
JP6683243B2 (en) * 2016-03-07 2020-04-15 株式会社村田製作所 Method for manufacturing bonded body and bonding material
CN105734338B (en) * 2016-03-22 2017-11-24 苏州虎伏新材料科技有限公司 A kind of tin-base babbit and preparation method thereof
WO2019117041A1 (en) * 2017-12-11 2019-06-20 株式会社弘輝 Solder paste, joint structure, and method for producing joint structure
JP6540869B1 (en) 2018-03-30 2019-07-10 千住金属工業株式会社 Solder paste
KR102369108B1 (en) * 2020-04-22 2022-03-02 주식회사 아큐레이저 The processing apparatus of a device module placed on substrate
CN113644512B (en) * 2021-10-12 2021-12-24 常州市双进电子有限公司 Tin hanging mechanism for circuit board

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118498B2 (en) * 1989-06-15 1995-12-18 旭化成工業株式会社 Electrical junction
JP3385872B2 (en) * 1995-12-25 2003-03-10 三菱電機株式会社 Solder supply method and solder supply apparatus
JP2004249301A (en) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd Soldering method and soldering device
JP4396471B2 (en) * 2004-10-01 2010-01-13 株式会社デンソー Rotating electric machine for vehicle and manufacturing method thereof
JP4308124B2 (en) * 2004-11-05 2009-08-05 本田技研工業株式会社 Laser beam brazing method and laser irradiation apparatus
JP5517433B2 (en) * 2008-10-21 2014-06-11 キヤノン株式会社 Leadless electronic component mounting method and mounting structure
CN102317031B (en) * 2009-02-25 2015-09-16 株式会社弘辉 Metal packing, low temperature connect lead-free solder and connection structural bodies
JP5304514B2 (en) * 2009-07-27 2013-10-02 富士通株式会社 Lead-free solder material, electronic component mounting structure, and lead-free solder material manufacturing method
JP4772929B2 (en) * 2009-08-06 2011-09-14 新日本製鐵株式会社 Processed metal product having different strength parts by hot stamping and manufacturing method thereof
JP5533876B2 (en) * 2009-09-03 2014-06-25 株式会社村田製作所 Solder paste, bonding method using the same, and bonding structure
JP2013081966A (en) * 2011-10-06 2013-05-09 Fujitsu Ltd Conductive bonding material, conductor bonding method, and semiconductor device production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109158722A (en) * 2018-10-08 2019-01-08 上海力声特医学科技有限公司 Welding method free of cleaning

Also Published As

Publication number Publication date
JP2013258254A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP6051437B2 (en) Electronic device manufacturing method by laser heating method
KR101318454B1 (en) Lead-free solder alloy suppressed in occurrence of shrinkage cavity
KR101233926B1 (en) Solder paste
TWI308510B (en) Solder paste
US20130087605A1 (en) Conductive bonding material, conductor bonding method, and semiconductor device production method
JP6511768B2 (en) Method of forming solder bumps
JPWO2004108345A1 (en) Solder paste
JP3925554B2 (en) Lead-free solder balls
CN103692105A (en) Device and method of solder cataplasm and semiconductor
JP6706351B2 (en) Solder joining method and solder joint
WO2003064102A1 (en) Solder metal, soldering flux and solder paste
KR101125865B1 (en) Solder paste, soldered joint formed using the same, and printed circuit board having the soldered joint
JP2014072398A (en) Semiconductor device and manufacturing method of the same
JP2013163185A (en) Filler metal, solder paste, and connecting structure
JP2011167753A (en) Solder paste, substrate for pin grid array package using the same, and pin grid array package, and method for manufacturing substrate for pin grid array package
JP2005167257A (en) Soldering method
JP5652689B2 (en) Manufacturing method of electronic component bonded structure and electronic component bonded structure obtained by the manufacturing method
JP4407385B2 (en) Method of preventing shrinkage of soldered part, solder alloy and module parts for electronic equipment
KR102150263B1 (en) Lead-free solder paste
JP3864172B2 (en) Soldering composition
JP5182258B2 (en) Solder alloys and module parts for electronic devices
JP2018144076A (en) Metal powder for producing solder bump, paste for producing solder bump and production method of solder bump
JP2008027588A (en) Conductive filler, and intermediate-temperature soldering material
JP7073701B2 (en) Bonding method using Au-Sn alloy solder paste and Au-Sn alloy solder paste
KR20240041232A (en) Flux composition, solder composition, and electronic substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6051437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250