JP6049181B2 - Hydrodynamic planar bearing structure and planar polishing apparatus - Google Patents

Hydrodynamic planar bearing structure and planar polishing apparatus Download PDF

Info

Publication number
JP6049181B2
JP6049181B2 JP2012229993A JP2012229993A JP6049181B2 JP 6049181 B2 JP6049181 B2 JP 6049181B2 JP 2012229993 A JP2012229993 A JP 2012229993A JP 2012229993 A JP2012229993 A JP 2012229993A JP 6049181 B2 JP6049181 B2 JP 6049181B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
rotating body
surface plate
internal gear
bearing structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012229993A
Other languages
Japanese (ja)
Other versions
JP2014079858A (en
Inventor
芳幸 赤木
芳幸 赤木
章 中山
章 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamai Co Ltd
Original Assignee
Hamai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamai Co Ltd filed Critical Hamai Co Ltd
Priority to JP2012229993A priority Critical patent/JP6049181B2/en
Publication of JP2014079858A publication Critical patent/JP2014079858A/en
Application granted granted Critical
Publication of JP6049181B2 publication Critical patent/JP6049181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、回転体の回転支持を行う動圧平面軸受構造、および、この動圧平面軸受構造により定盤等の回転体の回転支持を行う平面研磨装置に関する。   The present invention relates to a dynamic pressure planar bearing structure for rotating and supporting a rotating body, and a planar polishing apparatus for rotating and supporting a rotating body such as a surface plate by the dynamic pressure planar bearing structure.

平面研磨装置は、研磨中の加工物に振動が加えられることを極度に嫌う。そこで、加工物を支持する定盤の軸受けとして動圧平面軸受構造を採用している。このような動圧平面軸受構造について図を参照しつつ説明する。動圧平面軸受は、図8で示すように、断面凹状である流体軸受皿101の中に、下定盤支持部102の回転体103が位置し、下定盤104を支持している。また、断面凹状である流体軸受皿105の中に、内歯歯車支持部106の回転体107が位置し、内歯歯車108を支持している。このように、流体軸受皿101,105の底面109および外周壁内面110がそれぞれ対向して直接的に動圧平面軸受構造を形成していた。   Planar polishing equipment is extremely reluctant to apply vibrations to the workpiece being polished. Therefore, a dynamic pressure planar bearing structure is adopted as a bearing for the surface plate that supports the workpiece. Such a dynamic pressure planar bearing structure will be described with reference to the drawings. As shown in FIG. 8, in the dynamic pressure planar bearing, the rotating body 103 of the lower surface plate support portion 102 is positioned in the hydrodynamic bearing plate 101 having a concave cross section, and supports the lower surface plate 104. In addition, the rotating body 107 of the internal gear support 106 is positioned in the hydrodynamic bearing plate 105 having a concave cross section, and supports the internal gear 108. In this way, the bottom surface 109 and the outer peripheral wall inner surface 110 of the fluid bearing plates 101 and 105 are opposed to each other to directly form a dynamic pressure planar bearing structure.

流体軸受皿101の底面には、図9で示すように、スラスト用の底面動圧発生部111が複数配置されている。底面動圧発生部111は、図10の従来構造の流体軸受皿101の底部に形成された底面動圧発生部111の断面拡大図で示すように、中央の軸受部111aと、この軸受部111aの両側の傾斜部111bと、この傾斜部111bに隣接する凹部111cを備え、凹部111cや傾斜部111bから軸受部111aに流入した流体により回転体103を浮上させる力が加えられる。両側の傾斜部111bにより回転体103の回転方向113がどちらの方向でも回転体103に動圧を発生させることができる。なお、流体軸受皿105にも同様の底面動圧発生部(スラスト用)111が形成される。   As shown in FIG. 9, a plurality of bottom surface dynamic pressure generating portions 111 for thrust are arranged on the bottom surface of the hydrodynamic bearing plate 101. As shown in the enlarged cross-sectional view of the bottom surface dynamic pressure generating portion 111 formed at the bottom of the conventional fluid bearing tray 101 of FIG. 10, the bottom surface dynamic pressure generating portion 111 includes a central bearing portion 111a and the bearing portion 111a. And a concave portion 111c adjacent to the inclined portion 111b, and a force for floating the rotating body 103 is applied by the fluid flowing into the bearing portion 111a from the concave portion 111c or the inclined portion 111b. Due to the inclined portions 111b on both sides, dynamic pressure can be generated in the rotating body 103 in either direction of the rotating direction 113 of the rotating body 103. A similar bottom dynamic pressure generating portion (for thrust) 111 is also formed in the fluid bearing plate 105.

また、流体軸受皿101の側面には、図9で示すように、ラジアル用の側面動圧発生部112が複数配置されている。側面動圧発生部112は、図11の従来構造の流体軸受皿101の外側部に形成された側面動圧発生部112の断面拡大図で示すように、中央の軸受部112aと、この軸受部112aの両側の傾斜部112bを備え、傾斜部112bから軸受部112aに流入した流体により回転体103を半径方向で中心側へ向けて動圧が作用する。回転方向113がどちらの方向でも回転体103に動圧を発生させることができる。なお、流体軸受皿105にも同様の側面動圧発生部(ラジアル用)112が形成される。   Further, as shown in FIG. 9, a plurality of radial side dynamic pressure generators 112 are arranged on the side surface of the hydrodynamic bearing plate 101. The side surface dynamic pressure generating portion 112 includes a central bearing portion 112a and the bearing portion as shown in the enlarged cross-sectional view of the side surface dynamic pressure generating portion 112 formed on the outer side of the conventional fluid bearing plate 101 of FIG. Inclined portions 112b on both sides of 112a are provided, and dynamic pressure acts on the rotating body 103 toward the center side in the radial direction by the fluid flowing into the bearing portion 112a from the inclined portions 112b. The dynamic pressure can be generated in the rotating body 103 regardless of the rotation direction 113. A similar side dynamic pressure generating portion (for radial use) 112 is also formed in the hydrodynamic bearing plate 105.

また、このような動圧平面軸受構造を採用する平面研磨装置の従来技術の他の例として、特許文献1(特開昭52−56489号公報、「精密ラップ盤」)が開示されている。この従来技術は、回転するラップ下定盤のスラスト方向およびラジアル方向の負荷をそれぞれ支持する動圧平面軸受としてラップ下定盤における振動を少なくし、高速、高ラップ圧加工を可能とした精密ラップ盤に関するものである。   Further, as another example of the prior art of a planar polishing apparatus employing such a dynamic pressure planar bearing structure, Patent Document 1 (Japanese Patent Laid-Open No. 52-56489, “Precision Lapping Machine”) is disclosed. This prior art relates to a precision lapping machine that reduces high-speed and high lapping pressure processing by reducing vibration in the lapping platen as a dynamic pressure plane bearing that supports the thrust and radial loads of the rotating lapping platen respectively. Is.

このようにラップ盤回転軸のスラスト方向およびラジアル方向の負荷を動圧平面軸受で受けることにより、高い負荷力に対しても大きな剛性を確保し、高速回転時にも振動を発生せず、かつ外部の振動をラップ下定盤等に伝達しないようにして、高精度で安定したラップ運動を保証でき、ラップ面形状が正確にワーク加工面に転写されて高い精度の加工面を得ることができる。   In this way, by receiving the thrust and radial loads on the rotation axis of the lapping machine with the hydrodynamic plane bearing, large rigidity is secured even for high load forces, no vibration is generated even at high speed rotation, and external Therefore, high-precision and stable lap motion can be ensured, and the shape of the lap surface is accurately transferred to the workpiece processing surface, so that a highly accurate processing surface can be obtained.

また、動圧平面軸受構造を採用する平面研磨装置の従来技術の他の例として、特許文献2(特開平8−174408号公報、「平面研磨装置」)が開示されている。この従来技術は、ワークを保持するワークキャリアを遊星運動させる回転自在の太陽歯車および内歯歯車のうち、少なくとも内歯歯車を流体軸受け構造とすることで加工中の振動を防止し、その結果キャリアのうねりを生じないようにしてキャリアの変形や破損等を防止すると同時に、ワークの加工精度の向上を実現する構造としている。   Further, as another example of the prior art of a planar polishing apparatus that employs a dynamic pressure planar bearing structure, Patent Document 2 (Japanese Patent Laid-Open No. 8-174408, “planar polishing apparatus”) is disclosed. This prior art prevents vibration during machining by making at least the internal gear a fluid bearing structure among the rotatable sun gear and internal gear that planetarily moves the work carrier holding the work, and as a result, the carrier This structure prevents the carrier from being deformed or damaged, and at the same time, improves the machining accuracy of the workpiece.

特に装置が大型化して内歯歯車の径が大きくなるとこのような傾向が顕著となることから、内歯歯車を流体軸受け構造とすることはキャリアの保護と研磨精度の向上を図るうえで非常に有効であるとしている。   In particular, when the size of the internal gear increases and the diameter of the internal gear increases, this tendency becomes more prominent.Therefore, the internal gear has a fluid bearing structure in order to improve carrier protection and polishing accuracy. It is said to be effective.

また、動圧平面軸受構造を採用する平面研磨装置の従来技術の他の例として、特許文献3(特開2002−66910号公報、「研磨装置」)が開示されている。この従来技術は、平面研磨装置の各回転体の軸受構造をラジアルおよびスラスト方向の両方で一体化した流体軸受とし、加工中の割れや欠け及び加工後の精度の低下をきたさないように装置の振動及び回転むらを発生させない構造としている。
従来技術の動圧平面軸受構造や平面研磨装置はこのようなものである。
Further, as another example of the prior art of a planar polishing apparatus that employs a dynamic pressure planar bearing structure, Patent Document 3 (Japanese Patent Laid-Open No. 2002-66910, “Polishing apparatus”) is disclosed. In this conventional technology, the bearing structure of each rotating body of the planar polishing apparatus is a fluid bearing in which both the radial and thrust directions are integrated, so that cracks and chips during processing and accuracy after processing are not reduced. It has a structure that does not generate vibration and rotation unevenness.
The conventional hydrodynamic planar bearing structure and planar polishing apparatus are such.

特開昭52−56489号公報JP 52-56489 A 特開平8−174408号公報JP-A-8-174408 特開2002−66910号公報JP 2002-66910 A

一般的な動圧平面軸受構造の機能としては、回転体と軸受面が相対すべり運動によって、軸受隙間に介在する潤滑流体膜に圧力(動圧)を発生させ、これによって比較的大きな荷重を支持することである。この時、回転体側(スラスト方向にフリーな方)が僅かに浮上するが、この浮上量は回転体の回転速度に比例して増加する傾向となる。なお、回転体が停止しているときは略接触状態といってもよい状態となっている。   As a function of a general dynamic pressure planar bearing structure, the rotating body and the bearing surface generate a pressure (dynamic pressure) in the lubricating fluid film interposed in the bearing gap by relative sliding motion, thereby supporting a relatively large load. It is to be. At this time, the rotator side (the one free in the thrust direction) floats slightly, but the flying height tends to increase in proportion to the rotational speed of the rotator. It should be noted that when the rotating body is stopped, it can be said to be in a substantially contact state.

従って、動圧平面軸受構造を平面研磨装置の軸受として適用する場合には、鉛直方向すなわちスラスト方向の荷重を支持する構造としては適用が比較的容易であるが、回転体の半径方向すなわちラジアル方向の荷重を支持する構造あるいは回転体の軸心を一定に保持する構造としては適用が困難であった。   Therefore, when the dynamic pressure planar bearing structure is applied as a bearing of a planar polishing apparatus, it can be applied relatively easily as a structure for supporting a load in the vertical direction, that is, in the thrust direction, but in the radial direction of the rotating body, that is, in the radial direction. It has been difficult to apply as a structure that supports the load of the above or a structure that keeps the axis of the rotating body constant.

これは、ラジアル方向の回転体と軸受面の隙間は各部材の設計値および製作精度で決まる量であり、回転体が停止しているときはこの隙間は軸受面からみて回転体のガタとなるので、極力この隙間は小さくなる方向で設計および製作することになる。   This is because the clearance between the rotating body and the bearing surface in the radial direction is an amount determined by the design value and manufacturing accuracy of each member. When the rotating body is stopped, this gap becomes a backlash of the rotating body when viewed from the bearing surface. Therefore, this gap is designed and manufactured in a direction to make it as small as possible.

一方、回転体が回転している時は、軸受面との隙間量および回転体の回転速度等により軸受隙間に介在する潤滑流体膜に発生する動圧力の大きさが決まるので、不確定要素が大きい。つまり、この隙間量が小さかったり、あるいは回転体の回転速度が小さかったりした場合(もちろん軸受面の作り方や配置数とも相関あるが)、圧力が十分に上がらなければラジアル方向の軸受として機能せず、回転体に横揺れが発生することになり、これが振動源になったりワークの加工精度が低下したりする懸念があった。   On the other hand, when the rotating body is rotating, the magnitude of the dynamic pressure generated in the lubricating fluid film interposed in the bearing gap is determined by the gap amount with the bearing surface, the rotational speed of the rotating body, etc. large. In other words, if this gap is small or the rotational speed of the rotating body is low (of course there is also a correlation with how to make the bearing surface and the number of arrangements), it will not function as a radial bearing if the pressure does not rise sufficiently. As a result, rolls are generated in the rotating body, which may cause a vibration source and decrease the machining accuracy of the workpiece.

しかるに、例えば下定盤下部にある円環状リングを軸受台に設けられた環状溝内に挿入して嵌合する時、円環状リングの外周面と軸受台上の環状溝の内周面との隙間が小さいと、互いに干渉して嵌合自身ができないことになり、一方、この隙間が大きいと嵌合作業は問題ないが流体軸受としての機能が不十分となり、下定盤のラジアル方向への横ずれや振動が発生するなど、ラジアル方向での流体軸受性能を確保することは従来から大きな課題であった。特に大型の平面研磨装置の動圧平面軸受構造の場合、各部材の組立後の円環状リング外周面の外径精度や環状溝内周面の内径精度を其々確保することは困難な状況であった。   Thus, for example, when the annular ring at the lower part of the lower platen is inserted and fitted into the annular groove provided in the bearing base, the clearance between the outer peripheral surface of the annular ring and the inner peripheral surface of the annular groove on the bearing base is If this is small, it will interfere with each other and the fitting itself will not be possible.On the other hand, if this gap is large, there will be no problem with the fitting work, but the function as a fluid bearing will be insufficient, and the lateral displacement of the lower surface plate in the radial direction will not be possible. Ensuring the hydrodynamic bearing performance in the radial direction, such as vibration, has been a major issue. In particular, in the case of a dynamic pressure planar bearing structure of a large surface polishing apparatus, it is difficult to ensure the outer diameter accuracy of the annular ring outer peripheral surface and the inner diameter accuracy of the annular groove inner peripheral surface after assembly of each member. there were.

さらに、動圧発生部の形状(切込み・斜面・水平面)を回転体の円環状リング側に形成するか、軸受台上の環状溝側に形成するか、いずれの場合においても、大きな構造体に微細な追加工を施すことになるので加工作業自身が煩雑で多大な加工時間を要したり、加工精度の確保が難しいという加工工程に係る問題があった。   Furthermore, the shape of the dynamic pressure generation part (cut, slope, horizontal plane) is formed on the annular ring side of the rotating body or on the annular groove side of the bearing stand. Since fine additional machining is performed, the machining operation itself is complicated, requiring a lot of machining time, and it is difficult to ensure machining accuracy.

さらに、以上のような方法では、特にラジアル方向に対して隙間調整が全くできないので、流体軸受性能の確保が難しいという問題があった。   Furthermore, the above-described method has a problem that it is difficult to ensure the fluid bearing performance because the gap cannot be adjusted at all in the radial direction.

上記の特許文献1では、下定盤軸受部のスラスト方向およびラジアル方向ともに動圧平面軸受構造とする記載があるが、特にラジアル方向への軸受機能を発現させるための記述は見られない。   In the above-mentioned Patent Document 1, there is a description that the dynamic pressure plane bearing structure is used in both the thrust direction and the radial direction of the lower surface plate bearing part, but there is no description for expressing the bearing function in the radial direction.

さらに特許文献2では、少なくとも内歯歯車の軸受を流体軸受とする記載はあるが、前記と同様にラジアル方向への軸受機能を発現させるための記述は見られない。   Further, in Patent Document 2, there is a description that at least the bearing of the internal gear is a fluid bearing, but no description for expressing the bearing function in the radial direction is seen as in the above.

また、特許文献3では、各回転体のスラスト方向およびラジアル方向の両方を一体化した流体軸受とする記載はあるが、前記と同様にラジアル方向への軸受機能を発現させるための記述は見られない。   Further, in Patent Document 3, although there is a description that the fluid bearing is formed by integrating both the thrust direction and the radial direction of each rotating body, there is a description for expressing the bearing function in the radial direction as described above. Absent.

そして、いずれの場合でも、ラジアル方向に対して下定盤の横揺れや振動、または、内歯歯車の横揺れや振動が発生すればスラスト方向に流体軸受構造を適用してもその効果は減殺されてしまう懸念があり、キャリアやワークの損傷防止やワークの加工精度を確保することは困難であった。   In either case, if the rolling and vibration of the lower platen in the radial direction, or the rolling and vibration of the internal gear occur, the effect is reduced even if the hydrodynamic bearing structure is applied in the thrust direction. Therefore, it has been difficult to prevent damage to the carrier and the workpiece and to secure the machining accuracy of the workpiece.

そこで、本発明は上記した問題に鑑みてなされたものであり、その目的は、スラスト方向およびラジアル方向への振動に強い動圧平面軸受構造、および、この動圧平面軸受構造を採用して下定盤や内歯歯車の振動を抑制して研磨精度を向上させた平面研磨装置を提供することにある。   Therefore, the present invention has been made in view of the above-described problems, and an object of the present invention is to adopt a dynamic pressure planar bearing structure that is resistant to vibration in the thrust direction and the radial direction, and to adopt this dynamic pressure plane bearing structure. An object of the present invention is to provide a planar polishing apparatus that improves the polishing accuracy by suppressing the vibration of the disc and the internal gear.

上記目的を達成するため、請求項1に記載した動圧平面軸受構造は、回転体を支持する動圧平面軸受構造において、
回転体の環状の水平面に対して垂直に動圧を発生し、前記回転体の鉛直方向負荷を支持する複数の第1動圧発生部と、
前記回転体の外周側に形成された環状の傾斜面に対して垂直に動圧を発生し、前記回転体の鉛直方向負荷および半径方向負荷を支持する複数の第2動圧発生部と、
を備え
前記複数の第1動圧発生部を共通の部品として製作すると共に流体軸受皿内において前記回転体の回転方向に沿って互いに一定間隔で着脱自在に配置し、かつ、前記複数の第2動圧発生部を共通の部品として製作すると共に前記流体軸受皿内において前記回転体の回転方向に沿って互いに一定間隔で着脱自在に配置し、
前記回転体と前記第1動圧発生部および前記第2動圧発生部との面当たり状態を調整可能としたことを特徴とする
In order to achieve the above object, the dynamic pressure planar bearing structure according to claim 1 is a dynamic pressure planar bearing structure that supports a rotating body.
The dynamic pressure generated perpendicularly to the annular horizontal surface of the rotating body, a first dynamic pressure generating portion a plurality of supporting the vertical load of the rotating body,
And said dynamic pressure generated perpendicular to the annular inclined surface formed on the outer peripheral side of the rotating body, a second dynamic pressure generating portion a plurality of supporting the vertical load and radial load of the rotating body,
Equipped with a,
The plurality of first dynamic pressure generating portions are manufactured as a common part, and are detachably arranged at regular intervals along the rotation direction of the rotating body in a fluid bearing plate, and the plurality of second dynamic pressures The generating part is manufactured as a common part and is detachably disposed at regular intervals along the rotational direction of the rotating body in the fluid bearing plate,
The surface contact state between the rotating body, the first dynamic pressure generating unit, and the second dynamic pressure generating unit can be adjusted .

請求項2に記載した動圧平面軸受構造は、請求項1に記載した動圧平面軸受構造において、前記回転体と、前記複数の第1動圧発生部および前記複数の第2動圧発生部との間の隙間を、前記回転体の停止状態において略ゼロとなるように設定したことを特徴とする。The dynamic pressure planar bearing structure according to claim 2 is the dynamic pressure planar bearing structure according to claim 1, wherein the rotating body, the plurality of first dynamic pressure generating portions, and the plurality of second dynamic pressure generating portions. Is set to be substantially zero when the rotating body is stopped.

請求項3に記載した平面研磨装置は、下定盤にワークを押し付けると共に内歯歯車および太陽歯車に噛み合うワークキャリアがワークを相対的に回転させてワークを研磨する平面研磨装置であって、The plane polishing apparatus according to claim 3 is a plane polishing apparatus that presses a work against a lower surface plate and polishes the work by rotating a work relative to a work carrier meshing with an internal gear and a sun gear,
請求項1または請求項2に記載した前記動圧平面軸受構造における前記回転体が、下定盤および/または内歯歯車の一部であることを特徴とする。The rotating body in the dynamic pressure planar bearing structure according to claim 1 or 2 is a part of a lower surface plate and / or an internal gear.

このような本発明によれば、スラスト方向およびラジアル方向への振動に強い動圧平面軸受構造、および、この動圧平面軸受構造を採用して下定盤や内歯歯車の振動を抑制して研磨精度を向上させた平面研磨装置を提供することができる。   According to the present invention as described above, the dynamic pressure planar bearing structure that is resistant to vibration in the thrust direction and the radial direction, and the dynamic pressure planar bearing structure are employed to suppress the vibration of the lower surface plate and the internal gear and perform polishing. A planar polishing apparatus with improved accuracy can be provided.

本発明を実施するための形態の動圧平面軸受構造および平面研磨装置の縦断面図である。1 is a longitudinal sectional view of a dynamic pressure planar bearing structure and a planar polishing apparatus according to an embodiment for carrying out the present invention. 本発明を実施するための形態の動圧平面軸受構造の平面図である。It is a top view of the dynamic pressure plane bearing structure of the form for implementing this invention. 本発明を実施するための形態の動圧平面軸受構造に係る下定盤用動圧平面軸受構造のA部拡大図である。It is the A section enlarged view of the dynamic pressure plane bearing structure for lower surface plates concerning the dynamic pressure plane bearing structure of the form for implementing this invention. 本発明を実施するための形態の動圧平面軸受構造に係る内歯歯車用動圧平面軸受構造のB部拡大図である。It is the B section enlarged view of the dynamic pressure plane bearing structure for internal gears which concerns on the dynamic pressure plane bearing structure of the form for implementing this invention. 第1動圧発生部のC−C断面拡大図である。It is CC sectional enlarged view of a 1st dynamic pressure generation part. 第2動圧発生部のD−D断面拡大図である。It is a DD sectional enlarged view of the 2nd dynamic pressure generating part. 本発明を実施するための他の形態の内歯歯車用動圧平面軸受構造の断面拡大図である。It is a cross-sectional enlarged view of the dynamic pressure plane bearing structure for internal gears of the other form for implementing this invention. 従来技術の平面研磨装置の縦断面図である。It is a longitudinal cross-sectional view of the planar polishing apparatus of a prior art. 流体軸受皿を表す平面図である。It is a top view showing a fluid bearing tray. 底面動圧発生部のE−E断面拡大図であるIt is an EE cross-sectional enlarged view of a bottom surface dynamic pressure generating part. 側面動圧発生部を表すF部拡大図である。It is the F section enlarged view showing a side dynamic pressure generating part.

続いて、本発明の動圧平面軸受構造および平面研磨装置を実施するための形態について、図1〜図5を参照しつつ説明する。
平面研磨装置1は、図1の平面研磨装置の要部の縦断面図や図2の動圧平面軸受構造を上部からみた配置図で示すように、下定盤10、下定盤受け11、下定盤駆動軸12、内歯歯車13、内歯歯車受け14、内歯歯車駆動用歯車15、歯車駆動シャフト16、太陽歯車17、太陽歯車駆動軸18、キャリア19、ワーク20、ベース部21、中間ベース部22、下定盤用動圧平面軸受構造23、内歯歯車用動圧平面軸受構造24を備えている。
Then, the form for implementing the dynamic-pressure planar bearing structure and planar polishing apparatus of this invention is demonstrated, referring FIGS. 1-5.
The surface polishing apparatus 1 includes a lower surface plate 10, a lower surface plate receiver 11, a lower surface plate, as shown in a longitudinal sectional view of a main part of the surface polishing apparatus in FIG. Drive shaft 12, internal gear 13, internal gear receiver 14, internal gear drive gear 15, gear drive shaft 16, sun gear 17, sun gear drive shaft 18, carrier 19, work 20, base portion 21, intermediate base A portion 22, a dynamic pressure planar bearing structure 23 for lower surface plate, and a dynamic pressure planar bearing structure 24 for internal gears are provided.

続いて各構成について説明する。
下定盤10は、環状円板であり、上面にワーク20を研磨するラップ面/ポリッシュ面を有する。なお、図示しないが、下定盤10の上面に図示しない研磨布を貼り付け、研磨布によりワークを研磨することもある。また、図示しないが上定盤を備える構成とすることもあり、この場合に下定盤10および上定盤は、共通回転軸を回転中心として回転するように支持される。
Next, each configuration will be described.
The lower surface plate 10 is an annular disk and has a lap surface / polish surface for polishing the workpiece 20 on the upper surface. Although not shown, a polishing cloth (not shown) may be attached to the upper surface of the lower surface plate 10 and the workpiece may be polished with the polishing cloth. Although not shown, the upper surface plate may be provided. In this case, the lower surface plate 10 and the upper surface plate are supported so as to rotate around the common rotation axis.

下定盤受け11は、上側で下定盤10が固定されており、自らの回転とともに下定盤10を回転させる。下定盤受け11は、本発明の動圧平面軸受構造である下定盤用動圧平面軸受構造23により下側から支持されており、円滑に回転するようになされている。   The lower surface plate receiver 11 has the lower surface plate 10 fixed on the upper side, and rotates the lower surface plate 10 with its own rotation. The lower surface plate receiver 11 is supported from the lower side by the lower surface plate dynamic pressure planar bearing structure 23 which is the dynamic pressure planar bearing structure of the present invention, and is smoothly rotated.

下定盤駆動軸12は、下定盤受け11に連結されており、下定盤受け11および下定盤10を回転させる。この下定盤駆動軸12には図示しない下定盤駆動部が設けられており、下定盤駆動軸12および下定盤受け11を介して下定盤10の回転速度や回転方向についての制御を行う。   The lower surface plate drive shaft 12 is connected to the lower surface plate receiver 11 and rotates the lower surface plate receiver 11 and the lower surface plate 10. The lower surface plate drive shaft 12 is provided with a lower surface plate drive unit (not shown), and controls the rotational speed and direction of the lower surface plate 10 via the lower surface plate drive shaft 12 and the lower surface plate receiver 11.

内歯歯車13は、下定盤10の外周側に配置されている。内歯歯車13の内周側には歯が形成されている。内歯歯車13は、内歯歯車受け14に固定されている。
内歯歯車受け14は、段状円筒体であり、本発明の動圧平面軸受構造である内歯歯車用動圧平面軸受構造24により下側から支持されており、円滑に回転するようになされている。そして内歯歯車受け14の内部で下側に内歯歯車受け14と一体に固定された内歯歯車が形成されている。
The internal gear 13 is disposed on the outer peripheral side of the lower surface plate 10. Teeth are formed on the inner peripheral side of the internal gear 13. The internal gear 13 is fixed to the internal gear receiver 14.
The internal gear receiver 14 is a stepped cylindrical body, and is supported from the lower side by a dynamic pressure planar bearing structure 24 for an internal gear that is a dynamic pressure planar bearing structure of the present invention, so that it rotates smoothly. ing. An internal gear fixed integrally with the internal gear receiver 14 is formed on the lower side of the internal gear receiver 14.

内歯歯車駆動用歯車15は、歯車駆動シャフト16の上端に一体に固定されている。内歯歯車駆動用歯車15は、内歯歯車受け14の内部下側の内歯歯車と噛み合う。
歯車駆動シャフト16は、図示しない内歯歯車駆動部により回転駆動される。
The internal gear drive gear 15 is integrally fixed to the upper end of the gear drive shaft 16. The internal gear drive gear 15 meshes with the internal gear on the lower side of the internal gear receiver 14.
The gear drive shaft 16 is rotationally driven by an internal gear drive unit (not shown).

したがって、図示しない内歯歯車駆動部、歯車駆動シャフト16、内歯歯車駆動用歯車15、内歯歯車受け14の内部下側の内歯歯車、内歯歯車受け14、内歯歯車13とトルクが伝達されるようになされており、内歯歯車駆動部が内歯歯車13の回転速度や回転方向についての制御を行う。   Therefore, the internal gear drive section, the gear drive shaft 16, the internal gear drive gear 15, the internal gear on the lower side of the internal gear receiver 14, the internal gear receiver 14, the internal gear 13 and the torque are not shown. The internal gear drive unit controls the rotational speed and direction of the internal gear 13.

太陽歯車17は、下定盤10の内周側(中心側)に配置されている。太陽歯車17の外周側には歯が形成されている。
太陽歯車駆動軸18は、先端で太陽歯車17と連結される。太陽歯車駆動軸18は、下端で図示しない太陽歯車駆動部により回転駆動される。この太陽歯車駆動軸18は、下定盤駆動軸12の中心孔に遊挿されており、下定盤駆動軸12と太陽歯車駆動軸18とはそれぞれ独立して回転するようになされている。まとめると、下定盤駆動軸12は図示しない軸支部により回転可能に支持され、さらに太陽歯車駆動軸18は下定盤駆動軸12により回転可能に支持される。
The sun gear 17 is disposed on the inner peripheral side (center side) of the lower surface plate 10. Teeth are formed on the outer peripheral side of the sun gear 17.
The sun gear drive shaft 18 is connected to the sun gear 17 at the tip. The sun gear drive shaft 18 is rotationally driven by a sun gear drive unit (not shown) at the lower end. The sun gear drive shaft 18 is loosely inserted into the center hole of the lower surface plate drive shaft 12 so that the lower surface plate drive shaft 12 and the sun gear drive shaft 18 rotate independently of each other. In summary, the lower surface plate drive shaft 12 is rotatably supported by a shaft support (not shown), and the sun gear drive shaft 18 is rotatably supported by the lower surface plate drive shaft 12.

キャリア19は、図1で示すように下定盤10上に配置されている。キャリア19は、外周に歯が形成されており、内歯歯車13および太陽歯車17と噛み合っている。キャリア19においてワーク20を保持するワーク保持孔が形成されている。キャリア19はワーク20に応じて各種用意されており、1個のキャリア19に1個のワーク保持孔が形成されるものであったり、または、複数個のワーク保持孔が形成されるものであったりする。   The carrier 19 is disposed on the lower surface plate 10 as shown in FIG. The carrier 19 has teeth formed on the outer periphery and meshes with the internal gear 13 and the sun gear 17. A work holding hole for holding the work 20 in the carrier 19 is formed. Various carriers 19 are prepared according to the workpiece 20, and one carrier holding hole is formed in one carrier 19, or a plurality of workpiece holding holes are formed. Or

下定盤駆動部、太陽歯車駆動部、内歯歯車駆動部という3台の駆動部が、そして上定盤がある場合には上定盤駆動部も含めた4台の駆動部が、いずれもモータドライバ装置に接続され、演算制御部により回転が制御されており、回転速度を調節して最適なラッピング・ポリッシングを行う。   There are three drive units, a lower platen drive unit, a sun gear drive unit, and an internal gear drive unit, and if there is an upper platen, all four drive units including the upper platen drive unit are motors. It is connected to the driver device, and the rotation is controlled by the arithmetic control unit, and the optimum wrapping and polishing is performed by adjusting the rotation speed.

ベース部21は図示しない堅牢な架台に固定されている。ベース部21の外周の上側には環状の内歯歯車用動圧平面軸受構造24が設けられている。内歯歯車用動圧平面軸受構造24は、詳しくは図4で示すような構成を有する。
中間ベース部22は環状であって、このベース部21の上側に形成されており、中間ベース部22の上側には環状の下定盤用動圧平面軸受構造23が設けられている。下定盤用動圧平面軸受構造23は、詳しくは図3で示すような構成を有する。
The base portion 21 is fixed to a solid base (not shown). An annular dynamic pressure planar bearing structure 24 for an internal gear is provided on the upper side of the outer periphery of the base portion 21. The internal pressure gear dynamic pressure planar bearing structure 24 has a configuration shown in detail in FIG.
The intermediate base portion 22 is annular and is formed on the upper side of the base portion 21, and an annular lower surface plate dynamic pressure planar bearing structure 23 is provided on the upper side of the intermediate base portion 22. The lower surface plate dynamic pressure planar bearing structure 23 has a configuration shown in detail in FIG.

続いて本発明の特徴をなす動圧平面軸受構造について説明する。まずは、下定盤用動圧平面軸受構造23について説明する。
下定盤用動圧平面軸受構造23は、図3で示すように、下定盤用流体軸受皿231、回転体232、複数(本形態では図2で示すように8個)の下定盤用第1動圧発生部233、複数(本形態では図2で示すように8個)の下定盤用第2動圧発生部234を備えている。
Next, a dynamic pressure planar bearing structure that characterizes the present invention will be described. First, the dynamic pressure planar bearing structure 23 for the lower surface plate will be described.
As shown in FIG. 3, the lower surface plate dynamic pressure planar bearing structure 23 includes a lower surface plate hydrodynamic bearing plate 231, a rotating body 232, and a plurality of (8 in this embodiment, as shown in FIG. 2) lower surface plate first. There are provided a plurality of dynamic pressure generating units 233 and a plurality of (8 in this embodiment, as shown in FIG. 2) second dynamic pressure generating units 234 for the lower surface plate.

下定盤用流体軸受皿231は、図2で示すように平面視環状でありかつ図3で示すように断面凹状に形成されて、内部に下定盤用油槽231aが形成される。下定盤用油槽231a内には潤滑油が貯留されている。   The lower surface plate hydrodynamic bearing plate 231 has an annular shape in plan view as shown in FIG. 2 and is formed in a concave cross section as shown in FIG. 3, and an oil tank 231a for the lower surface plate is formed therein. Lubricating oil is stored in the lower surface plate oil tank 231a.

回転体232は、平面視環状であって下定盤受け11の下側で一体に固定されているリング体232aと、リング体232aの下面内周側に設けられる円環状の回転体水平部232bと、リング体232aの下面外周側に設けられ、外周側に向けて上昇する正の傾きを有する円錐台形外周面状の回転体傾斜部232cと、を有する。   The rotator 232 has a ring shape in plan view and is integrally fixed on the lower side of the lower surface plate receiver 11, and an annular rotator horizontal portion 232b provided on the inner peripheral side of the lower surface of the ring body 232a. And a rotating body inclined portion 232c having a frustoconical outer peripheral surface which is provided on the outer peripheral side of the lower surface of the ring body 232a and has a positive inclination rising toward the outer peripheral side.

複数の下定盤用第1動圧発生部233は、図2で示すように、下定盤用流体軸受皿231の下定盤用油槽231a内の円環状の水平面である底面上にあって内周側に沿って配置されており、回転円周方向に一定間隔で複数(本形態では8個)設けられている。   As shown in FIG. 2, the plurality of lower surface plate first dynamic pressure generating portions 233 are on the bottom surface, which is an annular horizontal surface in the lower surface plate oil tank 231 a of the lower surface plate fluid bearing tray 231. And a plurality (eight in this embodiment) are provided at regular intervals in the rotation circumferential direction.

下定盤用第1動圧発生部233は、図5のC−C断面を表す拡大図で示すような基本構造を有している。下定盤用第1動圧発生部233は、さらに軸受部233a、両側の傾斜部233b、両側の切込部233cを備え、左右対称に形成してなる断面視で多段の面である。一方向に回転させる場合には左右対称に形成する必要はないが、本形態では回転体の回転方向が正転および逆転してもいずれでも動圧軸受として機能するように左右対称に構成している。   The first dynamic pressure generating section 233 for the lower surface plate has a basic structure as shown in an enlarged view showing a CC cross section of FIG. The lower surface plate first dynamic pressure generating portion 233 further includes a bearing portion 233a, inclined portions 233b on both sides, and cut portions 233c on both sides, and is a multi-stage surface in a cross-sectional view formed symmetrically. In the case of rotating in one direction, it is not necessary to form it symmetrically, but in this embodiment, it is configured symmetrically so that it functions as a hydrodynamic bearing regardless of whether the rotating direction of the rotating body is normal or reverse. Yes.

軸受部233aは各流体軸受皿の底面を基準として最大高さに位置する平坦面であり、また、両側の傾斜部233bはこの平坦面である軸受部233aへ向けて上昇するように傾斜する。切込部233cは傾斜部233bの端部よりもさらに下側に底面があるように形成されている。なお、切込部233cにはボルト取り付け孔があり、下定盤用第1動圧発生部233を流体軸受皿231の底面に固定ボルト(鉛直方向)235にて固定する。   The bearing portion 233a is a flat surface located at the maximum height with respect to the bottom surface of each fluid bearing tray, and the inclined portions 233b on both sides are inclined so as to rise toward the bearing portion 233a which is the flat surface. The cut portion 233c is formed so that the bottom surface is further below the end portion of the inclined portion 233b. The notch 233c has a bolt mounting hole, and the first dynamic pressure generating part 233 for the lower surface plate is fixed to the bottom surface of the fluid bearing plate 231 with a fixing bolt (vertical direction) 235.

複数の下定盤用第1動圧発生部233が有するそれぞれの軸受部233aの上面は、環状である同一の水平面に位置しており、図5で示すように回転体232の回転体水平部232bに対向する。停止時には回転体232の回転体水平部232bと軸受部233aとが接触して停止する。このような下定盤用第1動圧発生部233は、回転体232が回転すると水平に形成された上側の軸受部233aに対して垂直方向の動圧を発生させ、回転体232の鉛直方向負荷(スラスト荷重)を支持する。下定盤用第1動圧発生部233はこのようなものとなる。   The upper surfaces of the respective bearing portions 233a of the plurality of first dynamic pressure generating portions 233 for the lower surface plate are located on the same horizontal plane that is annular, and as shown in FIG. 5, the rotating body horizontal portion 232b of the rotating body 232 Opposite to. At the time of stopping, the rotating body horizontal portion 232b of the rotating body 232 and the bearing portion 233a come into contact with each other and stop. When the rotating body 232 rotates, the first dynamic pressure generating unit 233 for the lower surface plate generates a vertical dynamic pressure with respect to the upper bearing part 233a formed horizontally, and the vertical load of the rotating body 232 is generated. (Thrust load) is supported. The first dynamic pressure generating unit 233 for the lower surface plate is as described above.

複数の下定盤用第2動圧発生部234は、図2で示すように、下定盤用流体軸受皿231の下定盤用油槽231a内の外周側に回転円周方向に一定間隔で複数(本形態では8個)設けられている。   As shown in FIG. 2, a plurality of lower surface plate second dynamic pressure generators 234 are arranged at regular intervals in the rotational circumferential direction on the outer peripheral side of the lower surface plate oil tank 231a. Eight in the form) are provided.

下定盤用第2動圧発生部234は、図6のD−D断面を表す拡大図で示すような基本構造を有している。下定盤用第2動圧発生部234は、さらに軸受部234a、両側の傾斜部234bを備え、断面視で円弧面を中央として左右対称の多段な形状である。軸受部234aは回転体の静止時に回転体232の回転体傾斜部232cと接触する円弧面であり、その両側の傾斜部234bはこの円弧面である軸受部234aへ向けて上昇するように傾斜しており、潤滑油導入面として機能する。   The second dynamic pressure generating unit 234 for the lower surface plate has a basic structure as shown in an enlarged view showing a DD cross section of FIG. The lower surface plate second dynamic pressure generating portion 234 further includes a bearing portion 234a and inclined portions 234b on both sides, and has a multi-stage shape that is symmetrical with respect to a circular arc surface in the cross-sectional view. The bearing portion 234a is an arc surface that comes into contact with the rotating body inclined portion 232c of the rotating body 232 when the rotating body is stationary, and the inclined portions 234b on both sides thereof are inclined so as to rise toward the bearing portion 234a that is the arc surface. And functions as a lubricant introduction surface.

下定盤用第2動圧発生部234は、各流体軸受皿の底面および外周壁円弧面にそれぞれ沿って固定される。本部材も一方向に回転させる場合には左右対称に形成する必要はないが、本形態では回転体の回転方向が正転および逆転してもいずれでも動圧軸受として機能するように左右対称に構成している。   The lower surface plate second dynamic pressure generating section 234 is fixed along the bottom surface and the outer peripheral wall arc surface of each fluid bearing plate. When this member is also rotated in one direction, it is not necessary to form it symmetrically, but in this embodiment, it is symmetrical so that it can function as a hydrodynamic bearing regardless of whether the rotating body is rotating forward or reverse. It is composed.

複数の下定盤用第2動圧発生部234が有するそれぞれの軸受部234aの円弧面は、下向きに先細る円錐台形内周面に位置しており、図6で示すように回転体232の下向きに先細る円錐台形外周面状の回転体傾斜部232cに対向する。
下定盤用第2動圧発生部234は、外周側に行くに連れて上昇するように傾斜する軸受部234aに対して垂直方向の動圧を発生させ、回転体232の鉛直方向負荷(スラスト荷重)および半径方向負荷(ラジアル荷重)を支持する。
The circular arc surface of each bearing portion 234a included in the plurality of second dynamic pressure generating portions 234 for the lower surface plate is located on a frustoconical inner peripheral surface that tapers downward, and as shown in FIG. It faces a rotating body inclined portion 232c having a truncated cone-shaped outer peripheral surface that tapers in the shape of a circle.
The second dynamic pressure generating section 234 for the lower surface plate generates a vertical dynamic pressure with respect to the bearing section 234a that inclines so as to rise toward the outer peripheral side, and the vertical load (thrust load) of the rotating body 232 is generated. ) And radial loads (radial loads).

このような下定盤用動圧平面軸受構造23では、図2の平面図で示すように、下定盤用流体軸受皿231の皿内内周側で第1動圧発生部233が回転方向に一定間隔で複数個(本形態では8個)設けられ、さらに下定盤用流体軸受皿231の皿内外周側で第2動圧発生部234が回転方向に一定間隔で複数個(本形態では8個)設けられる。   In such a lower surface plate dynamic pressure planar bearing structure 23, as shown in the plan view of FIG. 2, the first dynamic pressure generating portion 233 is constant in the rotation direction on the inner peripheral side of the lower surface plate fluid bearing plate 231. A plurality of (8 in this embodiment) are provided at intervals, and a plurality of second dynamic pressure generators 234 are provided at regular intervals in the rotation direction on the inner peripheral side of the lower surface plate hydrodynamic bearing plate 231 (8 in this embodiment). ) Is provided.

そして、第1動圧発生部233および第2動圧発生部234は、複数組(本形態では8組)が回転方向に一定間隔で設けられる。複数の第1動圧発生部233は共通の一つの部品として製作され、また、第2動圧発生部234は共通の一つの部品として製作されるので加工上の制約等はない。   And the 1st dynamic pressure generation part 233 and the 2nd dynamic pressure generation part 234 are provided with a plurality of sets (8 sets in this embodiment) at regular intervals in the rotation direction. The plurality of first dynamic pressure generating parts 233 are manufactured as one common part, and the second dynamic pressure generating part 234 is manufactured as one common part, so that there are no processing restrictions.

また、下定盤受け11のリング体232aの形状は、先に説明したように、底面は回転体水平部232bと、外周角部を面取り形状にカットした回転体傾斜部232cを有する形態として、下定盤用第1動圧発生部233の軸受部233a、および、下定盤用第2動圧発生部234の軸受部234aに倣うように予め加工されている。ここで下定盤受け11の加工寸法誤差や下定盤用流体軸受皿231の加工寸法誤差や設置誤差、あるいは双方の諸変形などの影響により各々の面接触状態は必ずしも保証されないが、下定盤受け11を各動圧発生部材上にセットして面当り状態を調整(動圧発生部材の固定位置調整や追加工など)する調整作業により比較的容易に対処が可能である。   In addition, as described above, the shape of the ring body 232a of the lower surface plate receiver 11 is such that the bottom surface has the rotating body horizontal portion 232b and the rotating body inclined portion 232c with the outer peripheral corners cut into a chamfered shape. It is processed in advance so as to follow the bearing portion 233a of the first dynamic pressure generating portion for board 233 and the bearing portion 234a of the second dynamic pressure generating portion for lower surface plate 234. Here, although the surface contact state is not always guaranteed due to the processing dimension error of the lower surface plate receiver 11, the processing dimension error or installation error of the lower surface plate fluid bearing tray 231, or various deformations of both, the lower surface plate receiver 11 is not guaranteed. It is possible to deal with it relatively easily by adjustment work that adjusts the contact state with each of the dynamic pressure generating members (adjustment of the fixed position of the dynamic pressure generating member, additional machining, etc.).

このような下定盤用動圧平面軸受構造23では、回転体が停止状態において、回転体232の回転体水平部232bと第1動圧発生部233の軸受け部233aとの間、および、回転体232の回転体傾斜部232cと第2動圧発生部234の軸受け部234aとの間が、隙間を略ゼロとなるように設計した。これにより、停止時にはこれらはほぼ当接して固定される。そして、回転体232の回転時には動圧を発生させて動圧軸受けとして機能する。下定盤用動圧平面軸受構造23はこのようなものとなる。   In the lower surface plate dynamic pressure planar bearing structure 23 as described above, when the rotating body is stopped, the rotating body 232 between the rotating body horizontal portion 232b of the rotating body 232 and the bearing portion 233a of the first dynamic pressure generating portion 233, and the rotating body. The gap between the rotating body inclined portion 232c of 232 and the bearing portion 234a of the second dynamic pressure generating portion 234 is designed to be substantially zero. Thereby, at the time of a stop, these contact | abut substantially and are fixed. Then, when the rotating body 232 rotates, a dynamic pressure is generated to function as a dynamic pressure bearing. The lower surface plate dynamic pressure planar bearing structure 23 is as described above.

続いて本発明の特徴をなす動圧平面軸受構造として、内歯歯車用動圧平面軸受構造24について説明する。
内歯歯車用動圧平面軸受構造24は、図4で示すように、内歯歯車用流体軸受皿241、回転体242、複数(本形態では8個)の内歯歯車用第1動圧発生部243、複数(本形態では8個)の内歯歯車用第2動圧発生部244を備えている。
Next, a dynamic pressure planar bearing structure 24 for internal gears will be described as a dynamic pressure planar bearing structure that characterizes the present invention.
As shown in FIG. 4, the internal gear dynamic pressure planar bearing structure 24 includes an internal gear fluid bearing plate 241, a rotating body 242, and a plurality of (in this embodiment, eight) internal gear first dynamic pressure generation. Part 243 and plural (eight in this embodiment) internal gear second dynamic pressure generating parts 244 are provided.

内歯歯車用動圧平面軸受構造24は下定盤用動圧平面軸受構造23の寸法を変更したものである。内歯歯車13および内歯歯車受け14などの重量は、下定盤10や下定盤受け11の重量よりも相対的に小さいため、内歯歯車用動圧平面軸受構造24の半径方向の幅を小さくしているが流体軸受部の基本構造は相似形となっている。このように寸法が異なる以外では、内歯歯車用流体軸受皿241は下定盤用流体軸受皿231と同じ構成・機能を有し、回転体242は回転体232と同じ構成・機能を有し、内歯歯車用第1動圧発生部243は下定盤用第1動圧発生部233と同じ構成・機能を有し、内歯歯車用第2動圧発生部244は下定盤用第2動圧発生部234と同じ構成・機能を有する。このため、重複する説明を省略する。   The internal gear dynamic pressure planar bearing structure 24 is obtained by changing the size of the lower surface plate dynamic pressure planar bearing structure 23. Since the weights of the internal gear 13 and the internal gear receiver 14 are relatively smaller than the weights of the lower surface plate 10 and the lower surface plate receiver 11, the radial width of the internal pressure dynamic pressure planar bearing structure 24 is reduced. However, the basic structure of the hydrodynamic bearing is similar. Except for the differences in dimensions, the internal gear fluid bearing tray 241 has the same configuration and function as the lower surface plate fluid bearing tray 231, and the rotating body 242 has the same configuration and function as the rotating body 232. The internal gear first dynamic pressure generator 243 has the same configuration and function as the lower surface plate first dynamic pressure generator 233, and the internal gear second dynamic pressure generator 244 is the lower surface plate second dynamic pressure. The generator 234 has the same configuration and function. For this reason, the overlapping description is omitted.

このような内歯歯車用動圧平面軸受構造24では、内歯歯車13は内歯歯車受け14を介して内歯歯車用流体軸受皿241で支持されており、内歯歯車用流体軸受皿241の底面内周側には内歯歯車用第1動圧発生部243が回転方向に一定間隔で固定され、さらに内歯歯車流体軸受皿10の底面外周側には内歯歯車用第2動圧発生部24が同様に回転方向に一定間隔で固定されている。   In such an internal gear dynamic pressure planar bearing structure 24, the internal gear 13 is supported by the internal gear fluid bearing tray 241 via the internal gear receiver 14, and the internal gear fluid bearing tray 241. The first dynamic pressure generator 243 for internal gears is fixed at a constant interval in the rotational direction on the inner peripheral side of the bottom surface of the inner gear, and the second dynamic pressure for internal gears is fixed on the outer peripheral side of the bottom surface of the internal gear fluid bearing plate 10. Similarly, the generator 24 is fixed at regular intervals in the rotational direction.

また、このような内歯歯車用動圧平面軸受構造24では、回転体が停止状態において、回転体242の回転体水平部242bと第1動圧発生部243の軸受部との間、および、回転体242の回転体傾斜部242cと第2動圧発生部244の軸受部との間が、隙間を略ゼロとなるように設計した。これにより、停止時にはこれらはほぼ当接して固定される。そして、回転体242の回転時には動圧を発生させて動圧軸受けとして機能する。内歯歯車用動圧平面軸受構造24はこのようなものとなる。   Further, in such a dynamic pressure planar bearing structure 24 for an internal gear, when the rotating body is in a stopped state, between the rotating body horizontal portion 242b of the rotating body 242 and the bearing portion of the first dynamic pressure generating portion 243, and The gap between the rotating body inclined portion 242c of the rotating body 242 and the bearing portion of the second dynamic pressure generating portion 244 is designed to be substantially zero. Thereby, at the time of a stop, these contact | abut substantially and are fixed. When the rotating body 242 rotates, a dynamic pressure is generated and functions as a dynamic pressure bearing. The internal pressure gear dynamic pressure planar bearing structure 24 is as described above.

続いて、本形態の平面研磨装置1の具体的な加工動作について説明する。まず、ワークキャリア19にワーク20を設置する設置工程が行われる。この設置工程については従来技術と同様であり、例えば、図1で示すように、ワークキャリア19に穿設されたワーク保持孔内に、ワーク20が装着される。この装着はワークハンドリングロボットを用いるなどしてワークキャリア19へのワーク20の装着とワークキャリア19からのワーク20の取り出しについては自動化しても良い。最終的に下定盤10の上にワークキャリア19が配置されている。ワークキャリア19に穿設されたワーク保持穴にラッピングまたはポリッシングされるワーク20が保持される。   Subsequently, a specific processing operation of the planar polishing apparatus 1 of the present embodiment will be described. First, an installation process for installing the workpiece 20 on the workpiece carrier 19 is performed. This installation process is the same as in the prior art. For example, as shown in FIG. 1, the workpiece 20 is mounted in a workpiece holding hole drilled in the workpiece carrier 19. This mounting may be automated by using a workpiece handling robot or the like to mount the workpiece 20 on the workpiece carrier 19 and to remove the workpiece 20 from the workpiece carrier 19. Finally, a work carrier 19 is disposed on the lower surface plate 10. A workpiece 20 to be lapped or polished is held in a workpiece holding hole formed in the workpiece carrier 19.

続いて、各部を動作させる。下定盤10は、下定盤回転駆動部から駆動力が伝達され、この駆動力に応じて回転する。下定盤10および下定盤受け11は、後述するが下定盤用動圧平面軸受構造23により円滑に回転動作する。そして、太陽歯車17は太陽歯車回転駆動部により回転駆動され、また、内歯歯車13が内歯歯車回転駆動部により回転駆動される。後述するが内歯歯車13は流体軸受けにより円滑に回転動作する。ワークキャリア19の外周の歯面は太陽歯車17および内歯歯車13と噛合っており、ワークキャリア19は遊星運動を開始する。この際、図示しない上定盤が着盤される。   Subsequently, each unit is operated. The lower surface plate 10 receives a driving force from the lower surface plate rotation driving unit, and rotates according to the driving force. As will be described later, the lower surface plate 10 and the lower surface plate receiver 11 rotate smoothly by a dynamic pressure planar bearing structure 23 for the lower surface plate. And the sun gear 17 is rotationally driven by the sun gear rotational drive part, and the internal gear 13 is rotationally driven by the internal gear rotational drive part. As will be described later, the internal gear 13 rotates smoothly by a fluid bearing. The tooth surface on the outer periphery of the work carrier 19 meshes with the sun gear 17 and the internal gear 13, and the work carrier 19 starts planetary motion. At this time, an upper surface plate (not shown) is placed.

続いて、ワークの加工を行う。ワーク200の加工時には、上定盤に設けられたスラリー供給穴からリンスやスラリーを供給しつつ、上定盤および下定盤10を回転させる。また、太陽歯車17および内歯歯車13を回転させることにより上定盤と下定盤10とにより挟持されるワーク20が装着されたワークキャリア19が自転しつつ公転し、ワーク20の両面が研磨される。   Subsequently, the workpiece is processed. At the time of processing the workpiece 200, the upper surface plate and the lower surface plate 10 are rotated while supplying rinse and slurry from a slurry supply hole provided in the upper surface plate. Further, by rotating the sun gear 17 and the internal gear 13, the work carrier 19 on which the work 20 sandwiched between the upper surface plate and the lower surface plate 10 is rotated and revolves, and both surfaces of the work 20 are polished. The

これら上定盤、下定盤10、太陽歯車17、内歯歯車13は、それぞれ、上定盤回転駆動部、下定盤回転駆動部、太陽歯車回転駆動部、内歯歯車回転駆動部により回転が制御されており、例えばこれら各駆動部に接続される制御装置により回転速度を調節して最適な研磨を行う。最後に、研磨が終了したワークを取り出す。加工動作はこのようなものである。   The rotation of the upper surface plate, the lower surface plate 10, the sun gear 17, and the internal gear 13 is controlled by the upper surface plate rotation drive unit, the lower surface plate rotation drive unit, the sun gear rotation drive unit, and the internal gear rotation drive unit, respectively. For example, optimal polishing is performed by adjusting the rotation speed by a control device connected to each of these driving units. Finally, the workpiece after polishing is taken out. The machining operation is like this.

この加工動作時の下定盤用動圧平面軸受構造23や内歯歯車用動圧平面軸受構造24の動作の詳細について説明する。なお、下定盤用動圧平面軸受構造23と内歯歯車用動圧平面軸受構造24とは構成・機能が共通であるため、下定盤用動圧平面軸受構造23のみを説明し、内歯歯車用動圧平面軸受構造24の説明を省略する。   Details of the operation of the lower surface plate dynamic pressure planar bearing structure 23 and the internal gear dynamic pressure planar bearing structure 24 during this machining operation will be described. The structure and function of the lower surface plate dynamic pressure planar bearing structure 23 and the internal gear dynamic pressure planar bearing structure 24 are the same, so only the lower surface plate dynamic pressure planar bearing structure 23 will be described. Description of the dynamic pressure planar bearing structure 24 is omitted.

下定盤用動圧平面軸受構造23は、定盤の回転時に定盤を浮上させるための動圧を発生させる動圧軸受けとして機能させる。なお、回転始動時において回転体232の回転体水平部232bに圧力流体(潤滑油、水、潤滑用液体など)を供給する供給孔を多数設けて下定盤10を上昇させる静圧軸受けとして機能させるようにしても良い。   The lower surface plate dynamic pressure planar bearing structure 23 functions as a dynamic pressure bearing that generates a dynamic pressure for floating the surface plate when the surface plate rotates. At the start of rotation, a large number of supply holes for supplying pressure fluid (lubricant oil, water, lubricating liquid, etc.) to the rotating body horizontal portion 232b of the rotating body 232 are provided to function as a static pressure bearing that raises the lower surface plate 10. You may do it.

回転体232の回転が所定速度を超えると、下定盤用動圧平面軸受構造23の下定盤用第1動圧発生部233では、図5で示すように、上側の回転体232の回転体水平部232bと、下定盤用第1動圧発生部233の軸受部233aとの間には傾斜部232bにより圧縮されながら潤滑油が入り込み、浮上力を回転体232に加えて回転体232を上側方向へ持ち上げるように支持し、動圧軸受けとして機能する。これにより上側の軸受面に対して垂直方向の動圧を発生させ、回転体232の鉛直方向負荷(スラスト荷重)を支持する。   When the rotation of the rotating body 232 exceeds a predetermined speed, the lower surface plate first dynamic pressure generating section 233 of the lower surface plate dynamic pressure planar bearing structure 23, as shown in FIG. Lubricating oil enters between the portion 232b and the bearing portion 233a of the first dynamic pressure generating portion 233 for the lower surface plate while being compressed by the inclined portion 232b, and the levitation force is applied to the rotator 232 so that the rotator 232 is moved upward. It is supported to lift up and functions as a dynamic pressure bearing. Thereby, a vertical dynamic pressure is generated with respect to the upper bearing surface, and the vertical load (thrust load) of the rotating body 232 is supported.

また、下定盤用動圧平面軸受構造23の下定盤用第2動圧発生部234では、図6で示すように、上側の回転体232の回転体傾斜部232cと、下定盤用第2動圧発生部234の軸受部234aとの間には、傾斜部234bにより圧縮されながら潤滑油が入り込み、浮上力を回転体232に加えて回転体232を斜め上側方向へ持ち上げるように支持し、動圧軸受けとして機能する。これにより上側の回転体傾斜部232cに対して垂直方向の動圧を発生させ、回転体232の鉛直方向負荷(スラスト荷重)および半径方向負荷(ラジアル荷重)を支持する。下定盤用動圧平面軸受構造23および内歯歯車用動圧平面軸受構造24はこのように機能する。   Further, in the lower surface plate second dynamic pressure generating portion 234 for the lower surface plate dynamic pressure planar bearing structure 23, as shown in FIG. 6, the rotating body inclined portion 232c of the upper surface rotating body 232 and the second surface plate second dynamic surface motion. Lubricating oil enters between the bearing portion 234a of the pressure generating portion 234 while being compressed by the inclined portion 234b, and supports the levitation force to be applied to the rotator 232 to lift the rotator 232 obliquely upward. It functions as a pressure bearing. Thereby, a vertical dynamic pressure is generated with respect to the upper rotating body inclined portion 232c, and the vertical load (thrust load) and radial load (radial load) of the rotating body 232 are supported. The lower surface plate dynamic pressure planar bearing structure 23 and the internal gear dynamic pressure planar bearing structure 24 function in this way.

以上説明した本形態によれば定盤の回転始動時では下定盤用第1動圧発生部233および下定盤用第2動圧発生部234に回転体232が接するため、安定している。また、定盤回転時では動圧変動による浮上力を加えた動圧軸受として機能させるため、大型の下定盤に対しても充分な浮上力を与えることができる。さらに正逆回転可能とし、研磨能力を向上させている。また、下側から流体を供給して静圧軸受として作用させて安定した回転立ち上がりとするようにしても良い。特に隙間については0近く設定できるため、動圧を確実に発生させることができる。   According to the present embodiment described above, the rotating body 232 is in contact with the lower surface plate first dynamic pressure generating section 233 and the lower surface plate second dynamic pressure generating section 234 when the surface plate starts to rotate, and is stable. In addition, when the platen is rotated, it functions as a hydrodynamic bearing to which a floating force due to dynamic pressure fluctuations is added, so that a sufficient floating force can be applied to a large lower platen. Furthermore, the forward and reverse rotation is possible, and the polishing ability is improved. Further, a fluid may be supplied from the lower side to act as a hydrostatic bearing so as to achieve a stable rotational rise. In particular, since the gap can be set to nearly zero, dynamic pressure can be generated reliably.

続いて本発明の参考形態について説明する。図7はこの形態を表す内歯歯車軸受構造部拡大図である。内歯歯車用動圧平面軸受構造25は、図7で示すように、内歯歯車用流体軸受皿251、回転体252、複数の内歯歯車用第1動圧発生部253、複数の内歯歯車用第2動圧発生部254を備えている。 Subsequently, a reference embodiment of the present invention will be described. FIG. 7 is an enlarged view of the internal gear bearing structure portion representing this embodiment. As shown in FIG. 7, the internal gear dynamic pressure planar bearing structure 25 includes an internal gear fluid bearing plate 251, a rotating body 252, a plurality of first internal gear first dynamic pressure generators 253, and a plurality of internal teeth. A gear second dynamic pressure generator 254 is provided.

内歯歯車用動圧平面軸受構造25は先に説明した内歯歯車用動圧平面軸受構造25と比較すると、回転体252のリング体252aに対し、内周側に正の傾きを持つようにして内周側に上側に先細る円錐台形内周面状の内周側傾斜面252bと、外周側に正の傾きを持つようにして下側に先細る円錐台形外周面状の外周側傾斜面252cと、を形成し、また、内歯歯車用第1動圧発生部253を、内周側に正の傾きを持つ環状の傾斜面を有し、内歯歯車用第2動圧発生部254を外周側に正の傾きを持つ環状の傾斜面を有するようにした。   As compared with the internal gear dynamic pressure planar bearing structure 25 described above, the internal gear dynamic pressure planar bearing structure 25 has a positive inclination on the inner peripheral side with respect to the ring body 252a of the rotating body 252. An inner peripheral inclined surface 252b having a truncated cone shape that tapers upward on the inner peripheral side, and an outer peripheral inclined surface having a frustoconical outer peripheral shape that tapers downward so as to have a positive inclination on the outer peripheral side. 252c, and the internal gear first dynamic pressure generating portion 253 has an annular inclined surface having a positive inclination on the inner peripheral side, and the internal gear second dynamic pressure generating portion 254. Has an annular inclined surface having a positive inclination on the outer peripheral side.

内歯歯車用第1動圧発生部253の内周側に正の傾きを持つ環状の傾斜面に対して垂直に動圧を発生し、回転体の鉛直方向負荷および半径方向負荷を支持し、また、内歯歯車用第2動圧発生部254の外周側に正の傾きを持つ環状の傾斜面に対して垂直に動圧を発生し、回転体の鉛直方向負荷および半径方向負荷を支持する。内歯歯車用第1動圧発生部253や内歯歯車用第2動圧発生部254は固定ボルト(水平方向)255により固定されている。   Generates a dynamic pressure perpendicular to the annular inclined surface having a positive inclination on the inner peripheral side of the first dynamic pressure generating portion 253 for the internal gear, and supports the vertical load and the radial load of the rotating body, Further, a dynamic pressure is generated perpendicularly to an annular inclined surface having a positive inclination on the outer peripheral side of the second gear generating portion 254 for the internal gear to support the vertical load and the radial load of the rotating body. . The internal gear first dynamic pressure generator 253 and the internal gear second dynamic pressure generator 254 are fixed by fixing bolts (horizontal direction) 255.

なお、本形態では動圧平面軸受構造25が内歯歯車用であるものとして説明したが、これに限定する趣旨ではなく、下定盤用に適用してもよく、各種適用することができる。   In this embodiment, the hydrodynamic planar bearing structure 25 has been described as being used for an internal gear. However, the present invention is not limited to this and may be applied to a lower surface plate, and various applications are possible.

以上、本発明の動圧平面軸受構造および平面研磨装置について説明した。
本発明では内歯歯車や下定盤を支持する支持部それぞれ流体軸受けを採用した構成であるものとして説明した。しかしながら、内歯歯車のみに流体軸受けを採用した構成、または、下定盤のみに流体軸受けを採用した構成としても本発明の効果を奏しうる。
The hydrodynamic planar bearing structure and planar polishing apparatus of the present invention have been described above.
In the present invention, the description has been made assuming that each of the support portions supporting the internal gear and the lower surface plate adopts a fluid bearing. However, the effects of the present invention can also be achieved by a configuration in which a fluid bearing is employed only for the internal gear, or a configuration in which a fluid bearing is employed only for the lower surface plate.

このような本発明の動圧平面軸受構造および平面研磨装置は、特にシリコン、ガラス、金属その他種々の材料により形成されたワークの片面または両面の研磨での使用が好適である。   Such a dynamic pressure planar bearing structure and a planar polishing apparatus of the present invention are particularly suitable for use in polishing one or both surfaces of a workpiece formed of silicon, glass, metal or other various materials.

1:平面研磨装置
10:下定盤
11:下定盤受け
12:下定盤駆動軸
13:内歯歯車
14:内歯歯車受け
15:内歯歯車駆動用歯車
16:歯車駆動シャフト
17:太陽歯車
18:太陽歯車駆動軸
19:キャリア
20:ワーク
21:ベース部
22:中間ベース部
23:下定盤用動圧平面軸受構造
231:下定盤用流体軸受皿
231a:下定盤用油槽
232:回転体
232a:リング体
232b:回転体水平部
232c:回転体傾斜部
233:下定盤用第1動圧発生部
233a:軸受部
233b:傾斜部
233c:切込部
234:下定盤用第2動圧発生部
234a:軸受部
234b:傾斜部
235:固定ボルト
24:内歯歯車用動圧平面軸受構造
241:内歯歯車用流体軸受皿
241a:内歯歯車用油槽
242:回転体
243:内歯歯車用第1動圧発生部
244:内歯歯車用第2動圧発生部
245:固定ボルト
25:内歯歯車用動圧平面軸受構造
251:内歯歯車用流体軸受皿
251a:内歯歯車用油槽
252:回転体
253:内歯歯車用第1動圧発生部
254:内歯歯車用第2動圧発生部
255:固定ボルト
1: Surface polishing apparatus 10: Lower surface plate 11: Lower surface plate receiver 12: Lower surface plate drive shaft 13: Internal gear 14: Internal gear receiver 15: Internal gear drive gear 16: Gear drive shaft 17: Sun gear 18: Sun gear drive shaft 19: carrier 20: workpiece 21: base portion 22: intermediate base portion 23: dynamic pressure planar bearing structure for lower surface plate 231: fluid bearing plate for lower surface plate 231a: oil tank for lower surface plate 232: rotating body 232a: ring Body 232b: Rotating body horizontal part 232c: Rotating body inclined part 233: First dynamic pressure generating part for lower surface plate 233a: Bearing part 233b: Inclined part 233c: Cut part 234: Second dynamic pressure generating part for lower surface plate 234a: Bearing portion 234b: Inclined portion 235: Fixing bolt 24: Internal pressure dynamic pressure flat bearing structure 241: Internal gear fluid bearing plate 241a: Internal gear oil tank 242: Rotating body 243: First gear for internal gear Generator 244: Internal gear second dynamic pressure generator 245: Fixing bolt 25: Internal gear dynamic pressure planar bearing structure 251: Internal gear fluid bearing plate 251a: Internal gear oil tank 252: Rotating body 253 : Internal gear first dynamic pressure generator 254: Internal gear second dynamic pressure generator 255: Fixing bolt

Claims (3)

回転体を支持する動圧平面軸受構造において、
回転体の環状の水平面に対して垂直に動圧を発生し、前記回転体の鉛直方向負荷を支持する複数の第1動圧発生部と、
前記回転体の外周側に形成された環状の傾斜面に対して垂直に動圧を発生し、前記回転体の鉛直方向負荷および半径方向負荷を支持する複数の第2動圧発生部と、
を備え
前記複数の第1動圧発生部を共通の部品として製作すると共に流体軸受皿内において前記回転体の回転方向に沿って互いに一定間隔で着脱自在に配置し、かつ、前記複数の第2動圧発生部を共通の部品として製作すると共に前記流体軸受皿内において前記回転体の回転方向に沿って互いに一定間隔で着脱自在に配置し、
前記回転体と前記第1動圧発生部および前記第2動圧発生部との面当たり状態を調整可能としたことを特徴とする動圧平面軸受構造。
In the dynamic pressure planar bearing structure that supports the rotating body,
The dynamic pressure generated perpendicularly to the annular horizontal surface of the rotating body, a first dynamic pressure generating portion a plurality of supporting the vertical load of the rotating body,
And said dynamic pressure generated perpendicular to the annular inclined surface formed on the outer peripheral side of the rotating body, a second dynamic pressure generating portion a plurality of supporting the vertical load and radial load of the rotating body,
Equipped with a,
The plurality of first dynamic pressure generating portions are manufactured as a common part, and are detachably arranged at regular intervals along the rotation direction of the rotating body in a fluid bearing plate, and the plurality of second dynamic pressures The generating part is manufactured as a common part and is detachably disposed at regular intervals along the rotational direction of the rotating body in the fluid bearing plate,
A dynamic pressure planar bearing structure characterized in that the surface contact state between the rotating body and the first dynamic pressure generating portion and the second dynamic pressure generating portion can be adjusted .
前記回転体と、前記複数の第1動圧発生部および前記複数の第2動圧発生部との間の隙間を、前記回転体の停止状態において略ゼロとなるように設定したことを特徴とする請求項1に記載の動圧平面軸受構造。 The clearance between the rotating body and the plurality of first dynamic pressure generating sections and the plurality of second dynamic pressure generating sections is set to be substantially zero when the rotating body is stopped. The dynamic pressure planar bearing structure according to claim 1. 下定盤にワークを押し付けると共に内歯歯車および太陽歯車に噛み合うワークキャリアがワークを相対的に回転させてワークを研磨する平面研磨装置であって、A work polishing machine that presses the work against the lower surface plate and that rotates the work relative to the work carrier meshing with the internal gear and the sun gear to polish the work,
請求項1または請求項2に記載した前記動圧平面軸受構造における前記回転体が、下定盤および/または内歯歯車の一部であることを特徴とする平面研磨装置。3. The flat polishing apparatus according to claim 1, wherein the rotating body in the dynamic pressure planar bearing structure according to claim 1 is a part of a lower surface plate and / or an internal gear.
JP2012229993A 2012-10-17 2012-10-17 Hydrodynamic planar bearing structure and planar polishing apparatus Active JP6049181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012229993A JP6049181B2 (en) 2012-10-17 2012-10-17 Hydrodynamic planar bearing structure and planar polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229993A JP6049181B2 (en) 2012-10-17 2012-10-17 Hydrodynamic planar bearing structure and planar polishing apparatus

Publications (2)

Publication Number Publication Date
JP2014079858A JP2014079858A (en) 2014-05-08
JP6049181B2 true JP6049181B2 (en) 2016-12-21

Family

ID=50784544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229993A Active JP6049181B2 (en) 2012-10-17 2012-10-17 Hydrodynamic planar bearing structure and planar polishing apparatus

Country Status (1)

Country Link
JP (1) JP6049181B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180831A (en) * 1982-04-16 1983-10-22 Ishikawajima Harima Heavy Ind Co Ltd Gas bearing structure
JPH03149415A (en) * 1989-10-12 1991-06-26 Uingu Haisera:Kk Ceramic bearing
JPH077886A (en) * 1993-06-17 1995-01-10 Nippon Densan Corp Motor
JP2004188546A (en) * 2002-12-12 2004-07-08 Hamai Co Ltd Parallel surface polishing device

Also Published As

Publication number Publication date
JP2014079858A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
KR100695341B1 (en) A Double Side Polishing Carrier and Method of Polishing Semiconductor Wafers
CN102601724A (en) Active-driving grinding device
JP6049181B2 (en) Hydrodynamic planar bearing structure and planar polishing apparatus
JP2019520223A (en) Workpiece rotation table
JP2011194517A (en) Double-side polishing device and machining method
JP2008019943A (en) Combination bearing
JP3203023U (en) Deburring device
JPS6119365B2 (en)
JP2016129921A (en) Rotary table
WO2009065405A1 (en) Method for producing a hydrodynamic thrust bearing and hydrodynamic thrust bearing
JP2007152499A (en) Work polishing method
CN215036462U (en) Grinding and polishing driving system
KR101660956B1 (en) rotating table for workpiece processing
JP4813231B2 (en) Wrap equipment
KR101485559B1 (en) Verticality type numerically controlled lathe
KR100980600B1 (en) Hydrostatic rotary table
JP2008221355A (en) Double-side machining device
CN218874969U (en) Vertical grinder rotary worktable
CN202540130U (en) Active driving grinding device
JP3012224B2 (en) Lower platen rotating device for lapping / polishing machine
CN115042069A (en) Lifting force suspension polishing device based on self-adaptive gap
JP5381555B2 (en) Plate workpiece polishing apparatus and plate workpiece polishing method
JP5265281B2 (en) Double-side polishing equipment
JP6888753B2 (en) Polishing equipment and dressing method for polishing pads
JP2008200803A (en) Superfinishing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6049181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250