JP6048858B2 - Adhesive bone filler and adhesive bone filler kit - Google Patents

Adhesive bone filler and adhesive bone filler kit Download PDF

Info

Publication number
JP6048858B2
JP6048858B2 JP2015505496A JP2015505496A JP6048858B2 JP 6048858 B2 JP6048858 B2 JP 6048858B2 JP 2015505496 A JP2015505496 A JP 2015505496A JP 2015505496 A JP2015505496 A JP 2015505496A JP 6048858 B2 JP6048858 B2 JP 6048858B2
Authority
JP
Japan
Prior art keywords
adhesive
bone
phosphate
adhesive bone
bone filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015505496A
Other languages
Japanese (ja)
Other versions
JPWO2014142132A1 (en
Inventor
田口 哲志
哲志 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Application granted granted Critical
Publication of JP6048858B2 publication Critical patent/JP6048858B2/en
Publication of JPWO2014142132A1 publication Critical patent/JPWO2014142132A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0031Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0042Materials resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/0047Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L24/0073Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix
    • A61L24/0084Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix containing fillers of phosphorus-containing inorganic compounds, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/10Polypeptides; Proteins
    • A61L24/104Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/10Polypeptides; Proteins
    • A61L24/108Specific proteins or polypeptides not covered by groups A61L24/102 - A61L24/106
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)

Description

本発明は、接着性骨補填剤及び接着性骨補填剤キットに関するものである。 The present invention relates to an adhesive bone filler and an adhesive bone filler kit.

我が国では現在急速な人口の高齢化が進んでおり、高齢化率は平成32年には30%(すなわち、3000万人以上が高齢者)に達することが予想されている。高齢者の脊椎損傷は、寝たきりに直結する運動機能障害であり、寝たきりの高齢患者は高い確率で認知症へと移行し、長期間の入院に繋がる。脊椎損傷の中でも特に頻度が高いのは椎体圧迫骨折であり、骨粗鬆症の影響を受けている場合が多く、加齢とともに著しく増加する。   In Japan, the population is rapidly aging and the aging rate is expected to reach 30% in 2020 (that is, more than 30 million people are elderly). Elderly spine injury is a motor dysfunction directly linked to bedridden, and bedridden elderly patients have a high probability of transitioning to dementia, leading to long-term hospitalization. Among the spinal cord injuries, vertebral body compression fractures are particularly frequent and are often affected by osteoporosis, which increases markedly with age.

世界では1億人にリスクがあり、米国では年間200万件以上の脆弱性骨折が発生している。日本人の脊椎骨折の有病率を求めた報告では、70〜74歳で25%、80〜84歳で43%が脊椎椎体骨折あるいは変形を有しており、米国の約2倍となっている。   There are 100 million people around the world at risk, and more than 2 million vulnerable fractures occur in the United States each year. According to a report on the prevalence of vertebral fractures in Japanese, 25% at 70-74 years old and 43% at 80-84 years old have vertebral body fractures or deformities, which is about twice that of the United States. ing.

そのため、侵襲を最小限に留め、かつ患者自身の治癒力を最大限に引き出す骨融合性椎体再建デバイスの開発が急務となっている。   Therefore, there is an urgent need to develop a bone fusion vertebral body reconstruction device that minimizes invasion and maximizes the patient's own healing power.

椎体圧迫骨折の治療方法は、従来、脊椎を金属スクリューやロッドで固定して骨の一体化を図る脊椎固定術、椎体内部に骨補填剤を注入して骨の補強を行い、早期除痛を目的とする椎体形成術が行われてきた。   Conventional methods for treating vertebral body compression fractures include spinal fusion, in which the spine is fixed with a metal screw or rod to integrate the bone, and bone replacement is performed by injecting a bone filling agent into the vertebral body for early removal. Vertebroplasty for the purpose of pain has been performed.

脊椎固定術は侵襲が大きいため、高齢者にとって身体的、経済的負担が大きいという課題がある。一方、椎体形成術には、椎体圧迫骨折部位をシリコーン製バルーンにより空隙を作り、その空間に骨補填剤を導入するというバルーンカイフォプラシティ(BKP)がある(非特許文献1)。BKPの手法を用いた脊椎用手術器具が開示されている(特許文献1)。   Since spinal fusion is highly invasive, there is a problem that a physical and economic burden is great for elderly people. On the other hand, in vertebroplasty, there is a balloon kaifoprity (BKP) in which a vertebral body compression fracture site is formed with a silicone balloon and a bone filling agent is introduced into the space (Non-patent Document 1). A spinal surgical instrument using the BKP technique is disclosed (Patent Document 1).

椎体形成術は、患者の身体的負担が少ないため手術方法の主流となっている。この椎体形成術は低侵襲手術ではあるが、骨補填剤として骨セメントを用いた場合、骨セメント中に含まれるメチルメタクリレートモノマーが椎体外へ漏出して肺塞栓や脊髄損傷などの合併症を起こす症例が報告されている(非特許文献2)。さらに骨セメントは非吸収性である点も課題となっている(特許文献2)。更に、高い重合熱により周辺組織が壊死する課題もある。   Vertebroplasty has become the mainstream surgical method because of the low physical burden on patients. This vertebroplasty is a minimally invasive surgery, but when bone cement is used as a bone filler, the methyl methacrylate monomer contained in the bone cement leaks out of the vertebral body and causes complications such as pulmonary embolism and spinal cord injury. The case which causes is reported (nonpatent literature 2). Further, bone cement is non-absorbable (Patent Document 2). Further, there is a problem that the surrounding tissue is necrotized by a high polymerization heat.

また、骨ペーストは、吸収性であるが、最大強度となるまでに一週間程度かかる場合があり、硬化時間が長く、短時間での強度を実現できないという課題がある(非特許文献3)。さらには、ほとんどが無機成分であるため椎体内部の海綿骨に対して接着性を有さないという課題がある(特許文献3)。また、リン酸カルシウム系骨補填剤は、硬化時間が数時間以上と長いことによる補填剤漏出の危険性に加え、適用直後の骨組織に対する接着性がない点に課題がある。   Further, although bone paste is resorbable, it may take about one week to reach the maximum strength, and there is a problem that the curing time is long and the strength in a short time cannot be realized (Non-patent Document 3). Furthermore, since most are inorganic components, there is a problem of not having adhesiveness to the cancellous bone inside the vertebral body (Patent Document 3). In addition, the calcium phosphate-based bone filling material has a problem in that it has no adhesiveness to the bone tissue immediately after application, in addition to the risk of leakage of the filling material due to a long hardening time of several hours or more.

特開2012−85804号公報JP 2012-85804 A 特表2001−510369号公報JP 2001-510369 A 特願平10−539819号公報Japanese Patent Application No. 10-539819

SPINE,26,151−156(2001)SPINE, 26, 151-156 (2001) Acta Radiologica,48,89−95 (2007)Acta Radiologica, 48, 89-95 (2007) Journal of Materials Science Materials in Medicine,6,340−347(1995)Journal of Materials Science Materials in Medicine, 6, 340-347 (1995)

本発明は、骨組織に対する接着性が高く、接着時間が短く、吸収性の高い接着性骨補填剤及び接着性骨補填剤キットを提供することを課題とする。また、生体安全性が高く、三点曲げ強度を適度な強度(1MPa以上50MPa以下)にする接着性骨補填剤を提供することを課題とする。   An object of the present invention is to provide an adhesive bone filler and an adhesive bone filler kit that have high adhesion to bone tissue, have a short adhesion time, and are highly resorbable. Another object of the present invention is to provide an adhesive bone filling material that has high biological safety and has a three-point bending strength that is moderately strong (1 MPa to 50 MPa).

本発明者は、生体高分子(アルブミン、ゼラチン)を液体成分とし、有機酸架橋剤・リン酸カルシウムを固体成分とする固−液二成分系の骨補填剤とすることで、モノマーを使用せず、かつ、骨組織に接着する接着性骨補填剤を製造できることを見出した。   The present inventor uses a biopolymer (albumin, gelatin) as a liquid component and a solid-liquid two-component bone filling agent having an organic acid crosslinking agent / calcium phosphate as a solid component. And it discovered that the adhesive bone filling agent which adhere | attaches a bone tissue can be manufactured.

また、合成高分子を液体成分とし、有機酸架橋剤・リン酸カルシウムを固体成分とする固−液二成分系の骨補填剤としても、モノマーを使用しない接着性骨補填剤を製造できることを見出し、本発明を完成した。   In addition, it has been found that an adhesive bone filling agent that does not use a monomer can be produced as a solid-liquid two-component bone filling agent that uses a synthetic polymer as a liquid component and an organic acid crosslinking agent / calcium phosphate as a solid component. Completed the invention.

本発明の接着性骨補填剤は、以下のことを特徴としている
(1)骨組織に接着して硬化する接着性骨補填剤であって、
tetraamine−terminated ポリエチレングリコール(4分岐)を含有する緩衝溶液からなる液体成分と、リン酸カルシウムおよびトリスクシンイミジルシトレートを含む紛体成分との混合物を含み、
前記tetraamine−terminated ポリエチレングリコール(4分岐)は5mM〜40mMであり、かつ、前記トリスクシンイミジルシトレートは25mM〜75mMであり、
前記リン酸カルシウム(P(g))と前記液体成分(L(g))の比であるP/Lが、2/1〜3/1である
(2)前記リン酸カルシウムがα−トリカルシウムフォスフェイト(α−TCP)、α´−トリカルシウムフォスフェイト(α´−TCP)、β−トリカルシウムフォスフェイト(β−TCP)、オクタカルシウムフォスフェート(OCP)、dicalcium phosphate dibasic(DCPD)、tetracalcium phosphate monoxide(TeCP)、ハイドロキシアパタイト(HAp)、リン酸水素カルシウムの1種または2種以上の組み合わせである。
(3)前記リン酸カルシウムに金属元素がドープされている。
(4)前記金属元素が、亜鉛、銅、ストロンチウム、銀、チタンのうちの1種または2種以上である。
(5)前記リン酸カルシウムが10〜1000ナノメートルの粒子である。
(6)前記液体成分又は前記粉体成分に、アルカリ成分が添加されている。
(7)前記リン酸カルシウムはα−トリカルシウムフォスフェイト(α−TCP)であり、前記α−トリカルシウムフォスフェイト(α−TCP)は、前記紛体材料のうち、前記トリスクシンイミジルシトレートを除いた質量の50%〜80%である
The adhesive bone filling material of the present invention is characterized by the following.
(1) An adhesive bone filling material that adheres to and hardens bone tissue,
and a liquid component comprising a buffer solution containing tetraamine-terminated polyethylene glycol (4 branch), a mixture of powder components comprising calcium phosphate and preparative risk succinimidyl citrate seen including,
The tetraamine-terminated polyethylene glycol (4 branches) is 5 mM to 40 mM, and the triskesin imidyl citrate is 25 mM to 75 mM;
P / L which is the ratio of the calcium phosphate (P (g)) to the liquid component (L (g)) is 2/1 to 3/1 .
(2) The calcium phosphate is α-tricalcium phosphate (α-TCP), α′-tricalcium phosphate (α′-TCP), β-tricalcium phosphate (β-TCP), octacalcium phosphate (OCP) ), Dicalcium phosphate dibasic (DCPD), tetracalcium phosphate monoxide (TeCP), hydroxyapatite (HAp), or calcium hydrogen phosphate .
(3) a metal element in said-phosphate calcium that is doped.
(4) The metal element is one or more of zinc, copper, strontium, silver, and titanium .
(5) The calcium phosphate is a particle of 10 to 1000 nanometers .
(6) to the liquid component or the powder component, that have been added alkali components.
(7) The calcium phosphate is α-tricalcium phosphate (α-TCP), and the α-tricalcium phosphate (α-TCP) is the powder material excluding the triskesin imidyl citrate. 50% to 80% of the mass .

本発明の接着性骨補填剤は、骨組織に対する接着性が高く、接着時間が短く、吸収性を高くすることができる。骨接着性が高いので、接着部分から外部へ接着性骨補填剤が漏出されることが防止され、合併症の危険性は無くすことができる。また、硬化温度も低いという利点もある。また、三点曲げ強度を適度な強度(1MPa以上50MPa以下)にできる。 The adhesive bone filling material of the present invention has high adhesion to bone tissue, has a short adhesion time, and can have high absorbability. Since the bone adhesiveness is high, leakage of the adhesive bone filling material from the bonded portion to the outside is prevented, and the risk of complications can be eliminated. There is also an advantage that the curing temperature is low. Further, the three-point bending strength can be set to an appropriate strength (1 MPa or more and 50 MPa or less).

三点曲げ強度を適度な強度にすることにより、術部隣接椎体骨の骨折の危険性を大幅に低減することができる。ポリメチルメタクリレート系骨セメントは硬くなりすぎ、周辺椎体骨の更なる骨折を引き起こすおそれが発生する。逆に、リン酸カルシウム系骨補填剤は脆いので、補強部分で骨折のおそれが発生するのに対して、適度な強度は大きな利点である。また、生体安全性も高い。   By setting the three-point bending strength to an appropriate strength, the risk of fracture of the vertebral bone adjacent to the surgical site can be greatly reduced. Polymethylmethacrylate bone cement becomes too hard and can cause further fractures of the surrounding vertebral bones. On the contrary, since the calcium phosphate-based bone filling material is brittle, there is a risk of fracture at the reinforced portion, while moderate strength is a great advantage. Moreover, biological safety is also high.

本発明の実施形態である接着性骨補填剤キットの一例を示す概略図である。It is the schematic which shows an example of the adhesive bone filling material kit which is embodiment of this invention. 本発明の実施形態である接着性骨補填剤キットの使用方法の一例を示す工程図である。It is process drawing which shows an example of the usage method of the adhesive bone filling material kit which is embodiment of this invention. 本発明の実施形態である接着性骨補填剤キットの使用方法の一例を示す工程図である。It is process drawing which shows an example of the usage method of the adhesive bone filling material kit which is embodiment of this invention. Tetraamine−terminated ポリエチレングリコール(TAPEG)と有機酸架橋剤トリスクシンイミジルシトレート(TSC)を混合したときの架橋反応の一例を示す説明図である。It is explanatory drawing which shows an example of a crosslinking reaction when Tetramamine-terminated polyethylene glycol (TAPEG) and the organic acid crosslinking agent triscinimidyl citrate (TSC) are mixed. 37℃湿潤環境下で24時間静置後の成形サンプルの目視像(写真)である。It is a visual image (photograph) of the shaping | molding sample after leaving still for 24 hours in 37 degreeC humidity environment. 調製後の成形サンプルの目視像(写真)である。It is a visual image (photograph) of the shaping | molding sample after preparation. 骨接着性試験の工程図である。It is process drawing of a bone adhesiveness test. 本試験において使用した生体骨模倣材料の表面の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the surface of the living bone mimic material used in this test. 接着性骨補填剤(試験例A1)を注射器から排出したときの写真である。It is a photograph when the adhesive bone filling material (Test Example A1) is discharged from the syringe. 3点曲げ試験の概要を示した概要図である。It is the schematic which showed the outline | summary of the 3-point bending test. 本発明の接着性骨補填剤による骨補填剤硬化物とバイオペックスの3点曲げ応力を示したグラフである。It is the graph which showed the three-point bending stress of the bone filler hardened | cured material and biopex by the adhesive bone filler of this invention. 本発明の接着性骨補填剤による骨補填剤硬化物の3点曲げ応力のTAPEG濃度依存性を示すグラフである。It is a graph which shows the TAPEG density | concentration dependence of the three-point bending stress of the bone substitute hardened | cured material by the adhesive bone filler of this invention. 本発明の接着性骨補填剤による骨補填剤硬化物の3点曲げ応力のTSC濃度依存性を示すグラフである。It is a graph which shows the TSC density | concentration dependence of the 3 point | piece bending stress of the bone filler hardened | cured material by the adhesive bone filler of this invention. 本発明の接着性骨補填剤による骨補填剤硬化物の3点曲げ応力のP/L比依存性を示すグラフである。It is a graph which shows the P / L ratio dependence of the three-point bending stress of the bone filler hardened | cured material by the adhesive bone filler of this invention. 本発明の接着性骨補填剤による骨補填剤硬化物の3点曲げ応力のα−TCP含量依存性を示すグラフである。It is a graph which shows the (alpha) -TCP content dependence of the three-point bending stress of the bone substitute hardened | cured material by the adhesive bone filler of this invention. 本発明の接着性骨補填剤による骨補填剤硬化物の3点曲げ応力のTAPEG濃度依存性を示すグラフである。It is a graph which shows the TAPEG density | concentration dependence of the three-point bending stress of the bone substitute hardened | cured material by the adhesive bone filler of this invention.

(本発明の実施形態)
以下、添付図面を参照しながら、本発明の実施形態である接着性骨補填剤及び接着性骨補填剤キットについて説明する。
<接着性骨補填剤キット>
まず、本発明の実施形態である接着性骨補填剤キットについて説明する。
(Embodiment of the present invention)
Hereinafter, an adhesive bone filling agent and an adhesive bone filling kit that are embodiments of the present invention will be described with reference to the accompanying drawings.
<Adhesive bone filling kit>
First, an adhesive bone filling kit that is an embodiment of the present invention will be described.

図1は、本発明の実施形態である接着性骨補填剤キットの一例を示す概略図である。   FIG. 1 is a schematic view showing an example of an adhesive bone filling kit according to an embodiment of the present invention.

図1に示すように、本発明の実施形態である接着性骨補填剤キット11は、液体成分21を封入した第1の容器12と、粉体成分22を封入した第2の容器13と、液体成分21と粉体成分22を混合して、接着性骨補填剤を作製する第3の容器14と、前記接着性骨補填剤を接着部に注入する注入容器15と、を有して、概略構成されている。
ここで、液体成分21が、水溶性生体適合性高分子を含有する緩衝溶液からなり、粉体成分22が、第1の粉体成分であるリン酸カルシウムと第2の粉体成分である有機酸架橋剤の混合紛体であり、前記接着性骨補填剤が、後述する、本発明の実施形態である接着性骨補填剤である。
<接着性骨補填剤キットの使用方法>
次に、本発明の実施形態である接着性骨補填剤キットの使用方法について説明する。
As shown in FIG. 1, an adhesive bone filling kit 11 according to an embodiment of the present invention includes a first container 12 enclosing a liquid component 21, a second container 13 enclosing a powder component 22, A third container 14 for producing an adhesive bone filling material by mixing the liquid component 21 and the powder component 22; and an injection container 15 for injecting the adhesive bone filling material into the bonding portion. It is roughly structured.
Here, the liquid component 21 is made of a buffer solution containing a water-soluble biocompatible polymer, and the powder component 22 is a calcium phosphate that is a first powder component and an organic acid bridge that is a second powder component. The adhesive bone filler is an adhesive bone filler according to an embodiment of the present invention, which will be described later.
<How to use adhesive bone filling kit>
Next, the usage method of the adhesive bone filling material kit which is embodiment of this invention is demonstrated.

図2、3は、本発明の実施形態である接着性骨補填剤キットの使用方法の一例を示す工程図である。   2 and 3 are process diagrams showing an example of a method for using the adhesive bone filling kit according to the embodiment of the present invention.

まず、図2(a)に示すように、第1の容器12を開け、液体成分21を、第3の容器14内に入れてから、第2の容器13を開け、粉体成分22を、第3の容器14内に入れる。   First, as shown in FIG. 2A, the first container 12 is opened, the liquid component 21 is placed in the third container 14, the second container 13 is opened, and the powder component 22 is Place in third container 14.

次に、図2(b)、(c)に示すように、第3の容器14内で、液体成分21と粉体成分22をよく混合して、接着性骨補填剤31を形成してから、注入容器15内に入れる。   Next, as shown in FIGS. 2 (b) and 2 (c), after the liquid component 21 and the powder component 22 are thoroughly mixed in the third container 14 to form an adhesive bone filler 31. Into the injection container 15.

次に、骨47の圧迫骨折部分を風船でふくらまして、骨組織欠損部・圧迫骨折部に空洞部47cを形成してから、図3に示すように、空洞部47c内に注入容器15から接着性骨補填剤31を注入する。   Next, the compressed fracture portion of the bone 47 is inflated with a balloon to form a cavity portion 47c in the bone tissue defect portion / compressed fracture portion, and then bonded from the injection container 15 into the cavity portion 47c as shown in FIG. Sexual bone filling material 31 is injected.

一定時間放置することにより、骨47を接着固定することができる。   The bone 47 can be bonded and fixed by leaving it for a certain period of time.

なお、上記工程で、粉体成分22を液体成分21に入れてよく混合することが好ましい。これにより、混合操作を簡素化できる。
<接着性骨補填剤>
まず、本発明の実施形態である接着性骨補填剤について説明する。
In the above step, it is preferable to mix the powder component 22 into the liquid component 21 and mix well. Thereby, mixing operation can be simplified.
<Adhesive bone filler>
First, the adhesive bone filling material which is an embodiment of the present invention will be described.

本発明の実施形態である接着性骨補填剤31は、液体成分21と粉体成分22とを混合後、骨組織に注入・塗布して、前記骨組織に接着する接着性骨補填剤である。   An adhesive bone filler 31 according to an embodiment of the present invention is an adhesive bone filler that mixes the liquid component 21 and the powder component 22 and then injects and applies the bone component to the bone tissue and adheres to the bone tissue. .

液体成分21が水溶性生体適合性高分子を含有する緩衝溶液である。   The liquid component 21 is a buffer solution containing a water-soluble biocompatible polymer.

前記水溶性生体適合性高分子は、水溶性で生体適合性を有する生体高分子又は合成高分子である。   The water-soluble biocompatible polymer is a water-soluble biocompatible biopolymer or synthetic polymer.

前記生体高分子がアルブミン又はゼラチンであることが好ましい。これにより、生成した接着性骨セメントに生体親和性・吸収性を付与することができる。   The biopolymer is preferably albumin or gelatin. Thereby, biocompatibility and absorbability can be imparted to the produced adhesive bone cement.

前記アルブミンが、ウシ、ブタ、ウマ若しくはヒトのいずれか1種若しくは2種以上の血清アルブミン又は遺伝子組換えアルブミンであることが好ましい。具体的には、前記アルブミンとしては、ヒト血清アルブミン(HSA)を挙げることができ、生体高分子を含有するリン酸緩衝溶液として、例えば、ヒト血清アルブミン(HSA)の42w/v%リン酸緩衝溶液(pH8.0)(以下、42w/v%HSAと略記する。)を用いることができる。   It is preferable that the albumin is one or more of serum albumin or genetically modified albumin of bovine, pig, horse or human. Specifically, the albumin can include human serum albumin (HSA). As a phosphate buffer solution containing a biopolymer, for example, a 42 w / v% phosphate buffer of human serum albumin (HSA) A solution (pH 8.0) (hereinafter abbreviated as 42 w / v% HSA) can be used.

前記ゼラチンが、ウシ、ブタ、魚若しくはヒトのいずれか1種若しくは2種以上のゼラチン又は遺伝子組換えゼラチンであることが好ましい。特に魚ゼラチンの場合にはタラゼラチンが高濃度でも常温において液体であるため好ましい。これにより、生成した接着性骨補填剤に生体親和性・吸収性に加え、細胞接着性を付与することができる。   It is preferable that the gelatin is one or more gelatins of bovine, porcine, fish or human or genetically modified gelatin. In particular, fish gelatin is preferred because cod gelatin is liquid at room temperature even at high concentrations. Thereby, in addition to biocompatibility and absorbability, cell adhesiveness can be provided to the produced adhesive bone filling material.

また、前記合成高分子は、側鎖あるいは末端にアミノ基を有するポリエーテル又は水溶性高分子であることが好ましい。   The synthetic polymer is preferably a polyether having an amino group at the side chain or terminal or a water-soluble polymer.

前記側鎖あるいは末端にアミノ基を有するポリエーテルとしては、3〜8分岐したポリエチレングリコールであることが好ましい。   The polyether having an amino group at the side chain or terminal is preferably 3 to 8 branched polyethylene glycol.

3〜8分岐したポリエチレングリコールとしては、ペンタエリトリトール テトラポリエチレングリコールエーテルを挙げることができ、側鎖あるいは末端にアミノ基を有するポリエチレングリコールとしては、tetraamine−terminated ポリエチレングリコール(4分岐)(以下、TAPEGと略記する。)を挙げることができる。また、前記水溶性高分子としては、ポリペプチドを挙げることができ、側鎖あるいは末端にアミノ基を有するポリペプチドとしては、ポリリジンを挙げることができる。   Examples of the polyethylene glycol having 3 to 8 branches include pentaerythritol tetrapolyethylene glycol ether. Examples of the polyethylene glycol having an amino group at the side chain or terminal include tetraamine-terminated polyethylene glycol (four branches) (hereinafter referred to as TAPEG). Abbreviated). Examples of the water-soluble polymer include polypeptides, and examples of the polypeptide having an amino group at the side chain or terminal include polylysine.

粉体成分22が第1の粉体成分であるリン酸カルシウムと第2の粉体成分である有機酸架橋剤の混合紛体である。   The powder component 22 is a mixed powder of calcium phosphate as a first powder component and an organic acid crosslinking agent as a second powder component.

リン酸カルシウムは少しずつ溶解し、体内で低結晶性のハイドロキシアパタイトを再構成して、強度を高めることができる。   Calcium phosphate dissolves little by little and can reconstitute low crystalline hydroxyapatite in the body to increase strength.

リン酸カルシウムとしては、例えば、粒径250μm以下のα−トリカルシウムフォスフェイト(以下、α−TCP(<250μm)と略記する。)を挙げることができる。粒径は、小さいほど良い。ナノ粒子であればなお好ましい。   Examples of calcium phosphate include α-tricalcium phosphate (hereinafter abbreviated as α-TCP (<250 μm)) having a particle size of 250 μm or less. The smaller the particle size, the better. Nanoparticles are still preferred.

前記リン酸カルシウムがα−トリカルシウムフォスフェイト(α−TCP)、α´−トリカルシウムフォスフェイト(α´−TCP)、β−トリカルシウムフォスフェイト(β−TCP)、オクタカルシウムフォスフェート(OCP)、dicalcium phosphate dibasic(DCPD)、tetracalcium phosphate monoxide(TeCP)、ハイドロキシアパタイト(HAp)、リン酸水素カルシウムの1種または2種以上の組み合わせであることが好ましい。これらのリン酸カルシウムは、焼成あるいは未焼成のどちらでもよい。これにより、骨伝導性および骨誘導能を付与することができる。   The calcium phosphate is α-tricalcium phosphate (α-TCP), α′-tricalcium phosphate (α′-TCP), β-tricalcium phosphate (β-TCP), octacalcium phosphate (OCP), and dicalcium. A combination of one or more of phosphate dibasic (DCPD), tetracalcium phosphate monooxide (TeCP), hydroxyapatite (HAp), and calcium hydrogen phosphate is preferable. These calcium phosphates may be fired or unfired. Thereby, osteoconductivity and osteoinductive ability can be provided.

また、前記リン酸カルシウムには、骨形成能を付与するために金属元素がドープされていることが好ましい。ドープする金属元素としては、例えば、亜鉛、銅、ストロンチウム、銀、チタンのいずれか1種又は2種以上が好ましい。これにより、骨芽細胞の活性化により骨形成を促進することができる。   The calcium phosphate is preferably doped with a metal element in order to impart bone forming ability. As the metal element to be doped, for example, one or more of zinc, copper, strontium, silver, and titanium is preferable. Thereby, osteogenesis can be promoted by activation of osteoblasts.

また、前記リン酸カルシウムが10〜1000ナノメートルの粒子であることが好ましい。これにより、硬化物の強度を上げることができる。   Moreover, it is preferable that the said calcium phosphate is a particle | grain of 10-1000 nanometer. Thereby, the intensity | strength of hardened | cured material can be raised.

前記有機酸架橋剤が酒石酸、リンゴ酸、クエン酸又はコハク酸のすべてのカルボキシル基をN−ヒドロキシスクシンイミド若しくはN−ヒドロキシスルホスクシンイミドで修飾した架橋剤の1種または2種以上の組み合わせであることが好ましい。これにより、架橋剤の活性エステルが液体成分中に含まれる水溶性生体適合性高分子のアミノ基と反応して硬化する。クエン酸架橋剤として、クエン酸のカルボキシル基をN−ヒドロキシスクシンイミドで修飾したトリスクシンイミジルシトレート(以下、TSCと略記する。)を挙げることができる。また、リンゴ酸架橋剤として、リンゴ酸の2つのカルボキシル基をN−ヒドロキシスクシンイミドで修飾したジスクシンイミジルマレートを挙げることができる。また、酒石酸架橋剤として、酒石酸の2つのカルボキシル基をN−ヒドロキシスクシンイミドで修飾したジスクシンイミジルタータレートを挙げることができる。   The organic acid crosslinking agent is one or a combination of two or more crosslinking agents obtained by modifying all carboxyl groups of tartaric acid, malic acid, citric acid or succinic acid with N-hydroxysuccinimide or N-hydroxysulfosuccinimide. preferable. Thereby, the active ester of the crosslinking agent reacts with the amino group of the water-soluble biocompatible polymer contained in the liquid component and is cured. Examples of the citric acid crosslinking agent include trisuccinimidyl citrate (hereinafter abbreviated as TSC) in which the carboxyl group of citric acid is modified with N-hydroxysuccinimide. Further, examples of the malic acid crosslinking agent include disuccinimidyl malate obtained by modifying two carboxyl groups of malic acid with N-hydroxysuccinimide. Further, examples of the tartaric acid crosslinking agent include disuccinimidyl tartrate in which two carboxyl groups of tartaric acid are modified with N-hydroxysuccinimide.

さらに、コハク酸架橋剤として、コハク酸の2つのカルボキシル基をN−ヒドロキシスクシンイミドで修飾したジスクシンイミジルスクシネートを挙げることができる。   Furthermore, as a succinic acid crosslinking agent, disuccinimidyl succinate obtained by modifying two carboxyl groups of succinic acid with N-hydroxysuccinimide can be mentioned.

図4は、TAPEGと有機酸架橋剤トリスクシンイミジルシトレート(TSC)を混合したときの架橋反応の一例を示す説明図である。図4に示すように、TAPEG水溶液と固体成分の一つであるクエン酸架橋剤TSCを混合することにより、TSCの水溶液への溶解に伴いTAPEGのアミノ末端が架橋されて、数分〜数十分以内に高分子ゲルが生成される。   FIG. 4 is an explanatory view showing an example of a crosslinking reaction when TAPEG and an organic acid crosslinking agent triscinimidyl citrate (TSC) are mixed. As shown in FIG. 4, by mixing the TAPEG aqueous solution and the citric acid crosslinking agent TSC, which is one of the solid components, the amino terminus of TAPEG is cross-linked with the dissolution of TSC in the aqueous solution. A polymer gel is formed within minutes.

液体成分21又は粉体成分22に、アルカリ成分が添加されていることが好ましい。これにより、接着速度を早めることができる。アルカリ成分は、例えば、NaOH、NaHCO、KOHである。An alkali component is preferably added to the liquid component 21 or the powder component 22. Thereby, the adhesion speed can be increased. The alkaline component is, for example, NaOH, NaHCO 3 , KOH.

液体成分21にアルカリ成分を添加する場合は、液体成分21にアルカリ溶液を混合する。アルカリ溶液としては、0.1M NaOH sol.(μL)を挙げることができる。   When adding an alkaline component to the liquid component 21, an alkaline solution is mixed with the liquid component 21. As an alkaline solution, 0.1M NaOH sol. (ΜL).

また、粉体成分22にアルカリ成分を添加する場合は、粉体成分22に、アルカリ溶液中に溶けている物質を粉末状にしたアルカリ成分を混合する。   In addition, when an alkali component is added to the powder component 22, the powder component 22 is mixed with an alkali component obtained by powdering a substance dissolved in an alkaline solution.

前記第1の粉体成分であるリン酸カルシウム(P(g))と前記液体成分(L(g))の比P/Lが、1/1<P/L<3.5/1の条件を満たすことが好ましい。これにより、成形性を高めることができる。3.5/1≦P/Lの場合には、崩壊するおそれが発生する。また、P/L≦1/1の場合には、不均一となるおそれが発生する。   The ratio P / L of calcium phosphate (P (g)), which is the first powder component, and the liquid component (L (g)) satisfies the condition of 1/1 <P / L <3.5 / 1. It is preferable. Thereby, a moldability can be improved. In the case of 3.5 / 1 ≦ P / L, there is a risk of collapse. Further, in the case of P / L ≦ 1/1, there is a risk of non-uniformity.

本発明の実施形態である接着性骨補填剤31は、例えば、骨組織欠損部・圧迫骨折部に注入・塗布されることで、骨組織に接着して硬化する接着性骨補填剤であって、水溶性生体適合性高分子を含有する緩衝溶液からなる液体成分21と、リン酸カルシウムおよび有機酸架橋剤を含む紛体成分22との混合物を含むという構成なので、骨組織に対する接着性が高く、接着時間が短く、吸収性を高くすることができる。   An adhesive bone filling material 31 according to an embodiment of the present invention is an adhesive bone filling material that adheres to and hardens bone tissue by being injected and applied to, for example, a bone tissue defect portion or a compression fracture portion. The composition includes a mixture of a liquid component 21 composed of a buffer solution containing a water-soluble biocompatible polymer and a powder component 22 containing calcium phosphate and an organic acid cross-linking agent. Is short and the absorbency can be increased.

また、三点曲げ強度を適度な強度(1MPa以上50MPa以下)にできる。三点曲げ強度を1MPa以上50MPa以下の適度な強度にすることにより、術部隣接椎体骨の骨折の危険性を大幅に低減することができる。ポリメチルメタクリレート系骨セメントは硬くなりすぎ、周辺椎体骨の更なる骨折を引き起こすおそれが発生する。逆に、リン酸カルシウム系骨補填剤は脆いので、補強部分で骨折のおそれが発生する。これに対して、適度な強度とすると、これらのおそれを低減できるので、実用上で大きな利点となる。   Further, the three-point bending strength can be set to an appropriate strength (1 MPa or more and 50 MPa or less). By setting the three-point bending strength to an appropriate strength of 1 MPa or more and 50 MPa or less, the risk of fracture of the vertebral bone adjacent to the surgical site can be greatly reduced. Polymethylmethacrylate bone cement becomes too hard and can cause further fractures of the surrounding vertebral bones. On the contrary, since the calcium phosphate bone filler is brittle, there is a risk of fracture at the reinforcing portion. On the other hand, if the strength is appropriate, these fears can be reduced, which is a great advantage in practical use.

本発明の実施形態である接着性骨補填剤31は、前記水溶性生体適合性高分子が水溶性生体適合性を有する生体高分子又は合成高分子である構成なので、緩衝溶液への分散性高く液体成分を調製することができ、また、生体に対する安全性が高い接着性骨補填剤として使用することができる。   The adhesive bone filling material 31 according to an embodiment of the present invention has a configuration in which the water-soluble biocompatible polymer is a biopolymer or a synthetic polymer having water-soluble biocompatibility, and thus has high dispersibility in a buffer solution. A liquid component can be prepared, and it can be used as an adhesive bone filler that is highly safe for living bodies.

本発明の実施形態である接着性骨補填剤31は、前記生体高分子がアルブミン又はゼラチンである構成なので、吸収性を高くすることができる。   The adhesive bone filling material 31 according to the embodiment of the present invention can increase the absorbability because the biopolymer is albumin or gelatin.

本発明の実施形態である接着性骨補填剤31は、前記アルブミンが、ウシ、ブタ、ウマ若しくはヒトのいずれか1種若しくは2種以上の血清アルブミン又は遺伝子組換えアルブミンである構成なので、吸収性を高くすることができる。また、細胞接着性を高めることができる。   The adhesive bone filling material 31 according to an embodiment of the present invention has a structure in which the albumin is one or more of serum albumin or recombinant albumin of bovine, pig, horse or human, Can be high. Moreover, cell adhesiveness can be improved.

本発明の実施形態である接着性骨補填剤31は、前記ゼラチンが、ウシ、ブタ、魚若しくはヒトのいずれか1種若しくは2種以上のゼラチン又は遺伝子組換えゼラチンである構成なので、吸収性に加え、細胞接着性を高めることができる。   The adhesive bone filling material 31 according to an embodiment of the present invention has a structure in which the gelatin is one or more of bovine, porcine, fish or human, or genetically modified gelatin. In addition, cell adhesion can be enhanced.

本発明の実施形態である接着性骨補填剤31は、前記合成高分子が側鎖あるいは末端にアミノ基を有するポリエーテル又は水溶性高分子である構成なので、有機酸架橋剤により、前記合成高分子のアミノ側鎖あるいはアミノ末端を架橋することで、骨補填剤自身の強度を高めることができる。   The adhesive bone filling material 31 according to an embodiment of the present invention has a structure in which the synthetic polymer is a polyether having a side chain or an amino group at the terminal or a water-soluble polymer. By crosslinking the amino side chain or amino terminal of the molecule, the strength of the bone filling material itself can be increased.

本発明の実施形態である接着性骨補填剤31は、前記側鎖あるいは末端にアミノ基を有するポリエーテルが3〜8分岐したポリエチレングリコールである構成なので、有機酸架橋剤により、アミノ側鎖あるいはアミノ末端を架橋することで、骨補填剤自身の強度を高めることができる。   The adhesive bone filling material 31 according to the embodiment of the present invention has a structure in which the polyether having an amino group at the side chain or terminal is a polyethylene glycol having 3 to 8 branches. By crosslinking the amino terminus, the strength of the bone filling material itself can be increased.

本発明の実施形態である接着性骨補填剤31は、前記3〜8分岐したポリエチレングリコールが、ペンタエリトリトール テトラポリエチレングリコールエーテルであり、側鎖あるいは末端にアミノ基を有するポリエチレングリコールが、tetraamine−terminated ポリエチレングリコール(4分岐)である構成なので、有機酸架橋剤により、ポリエーテルのアミン末端を架橋することにより、架橋構造を形成でき、骨補填剤自身の強度を高めることができる。   In the adhesive bone filling material 31 according to an embodiment of the present invention, the 3 to 8 branched polyethylene glycol is pentaerythritol tetrapolyethylene glycol ether, and the polyethylene glycol having an amino group at a side chain or a terminal is tetraamine-terminated. Since it is the structure which is polyethyleneglycol (4 branches), a crosslinked structure can be formed by bridge | crosslinking the amine terminal of polyether with an organic acid crosslinking agent, and the intensity | strength of the bone filling material itself can be raised.

本発明の実施形態である接着性骨補填剤31は、前記リン酸カルシウムがα−トリカルシウムフォスフェイト(α−TCP)、α´−トリカルシウムフォスフェイト(α´−TCP)、β−トリカルシウムフォスフェイト(β−TCP)、オクタカルシウムフォスフェート(OCP)、dicalcium phosphate dibasic(DCPD)、tetracalcium phosphate monoxide (TeCP)、ハイドロキシアパタイト(HAp)、リン酸水素カルシウムの1種または2種以上の組み合わせである構成なので、骨組織に対する接着性を高くすることができる。   In the adhesive bone filling material 31 according to the embodiment of the present invention, the calcium phosphate is α-tricalcium phosphate (α-TCP), α′-tricalcium phosphate (α′-TCP), β-tricalcium phosphate. (Β-TCP), octacalcium phosphate (OCP), dialcalcium phosphate dibasic (DCPD), tetracalcium phosphate monooxide (TeCP), hydroxyapatite (HAp), or a combination of two or more of calcium hydrogen phosphate Therefore, the adhesiveness to the bone tissue can be increased.

本発明の実施形態である接着性骨補填剤31は、前記有機酸架橋剤が酒石酸、リンゴ酸、コハク酸又はクエン酸のすべてのカルボキシル基をN−ヒドロキシスクシンイミド若しくはN−ヒドロキシスルホスクシンイミドで修飾した架橋剤の1種または2種以上である構成なので、骨補填剤に接着性を付与することができる。   In the adhesive bone filling material 31 according to an embodiment of the present invention, the organic acid crosslinking agent is modified with N-hydroxysuccinimide or N-hydroxysulfosuccinimide on all carboxyl groups of tartaric acid, malic acid, succinic acid or citric acid. Since it is the structure which is 1 type, or 2 or more types of a crosslinking agent, adhesiveness can be provided to a bone filling agent.

本発明の実施形態である接着性骨補填剤31は、前記液体成分又は前記粉体成分に、アルカリ成分が添加されている構成なので、接着速度を早くして、接着時間を短くすることができる。   Since the adhesive bone filling material 31 according to the embodiment of the present invention has a configuration in which an alkali component is added to the liquid component or the powder component, the bonding speed can be increased and the bonding time can be shortened. .

本発明の実施形態である接着性骨補填剤31は、前記第1の粉体成分(P(g))と前記液体成分(L(g))の比であるP/Lが、1/1<P/L<3.5/1の条件を満たす構成なので、骨組織に対する接着性が高く、接着時間が短く、吸収性を高くすることができる。また、三点曲げ強度を適度な強度(1MPa以上50MPa以下)にできる。   In the adhesive bone filling material 31 according to the embodiment of the present invention, P / L, which is the ratio of the first powder component (P (g)) to the liquid component (L (g)), is 1/1. Since it is the structure which satisfy | fills the conditions of <P / L <3.5 / 1, the adhesiveness with respect to a bone tissue is high, the adhesion | attachment time is short, and absorptivity can be made high. Further, the three-point bending strength can be set to an appropriate strength (1 MPa or more and 50 MPa or less).

本発明の実施形態である接着性骨補填剤キット11は、液体成分21を封入した第1の容器12と、粉体成分22を封入した第2の容器13と、液体成分21と粉体成分22を混合して、接着性骨補填剤31を作製する第3の容器14と、接着性骨補填剤31を接着部に注入する注入容器15と、を有し、前記液体成分が、水溶性生体適合性高分子を含有する緩衝溶液からなり、前記粉体成分が、第1の粉体成分であるリン酸カルシウムと第2の粉体成分である有機酸架橋剤の混合紛体である構成なので、これ以外の器具・試薬を必要とすることなく、容易に、かつ、速やかに接着処理を行うことができる。   An adhesive bone filling kit 11 according to an embodiment of the present invention includes a first container 12 enclosing a liquid component 21, a second container 13 enclosing a powder component 22, a liquid component 21 and a powder component. 22, a third container 14 for producing an adhesive bone filling material 31, and an injection container 15 for injecting the adhesive bone filling material 31 into an adhesive part, wherein the liquid component is water-soluble. This is composed of a buffer solution containing a biocompatible polymer, and the powder component is a mixed powder of calcium phosphate as the first powder component and organic acid crosslinking agent as the second powder component. Adhesion treatment can be performed easily and promptly without the need for other instruments / reagents.

本発明の実施形態である接着性骨補填剤及び接着性骨補填剤キットは、上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内で、種々変更して実施することができる。本実施形態の具体例を以下の実施例で示す。しかし、本発明はこれらの実施例に限定されるものではない。   The adhesive bone filling material and the adhesive bone filling material kit that are embodiments of the present invention are not limited to the above-described embodiments, and may be implemented with various modifications within the scope of the technical idea of the present invention. Can do. Specific examples of this embodiment are shown in the following examples. However, the present invention is not limited to these examples.

(実施例1)
<液体/固体(P/L)の最適化試験>
以下のようにして、液体/固体(P/L)の種々の混合比における骨補填剤形成能を検討し、液体/固体(P/L)の最適条件を調べた。
Example 1
<Optimization test of liquid / solid (P / L)>
In the following manner, the bone filling agent forming ability at various mixing ratios of liquid / solid (P / L) was examined, and the optimum condition of liquid / solid (P / L) was examined.

まず、液体成分(L)として、ヒト血清アルブミン(HSA、シグマ社製)を用いた42w/v%HSAあるいは30w/v%タラゼラチン、粉末成分(P)のリン酸カルシウムとしてα−TCP(和光純薬工業社製、ふるいで<250μmとしたもの)、有機酸架橋剤としてTSCを準備した。   First, as a liquid component (L), 42 w / v% HSA or 30 w / v% cod gelatin using human serum albumin (HSA, manufactured by Sigma), α-TCP (Wako Pure Chemical Industries) as calcium phosphate of the powder component (P) TSC was prepared as an organic acid cross-linking agent.

次に、液体成分(L)である42w/v%HSAあるいは30w/v%タラゼラチン、粉末成分(P)であるα−TCP(<250μm)の混合比(P/L)を変えて、P/L=3.5/1(試験例1、6)、3/1(試験例2、7)、2/1(試験例3、8)、1/1(試験例4、9)、1/2(試験例5、10)の5種の接着性骨補填剤を調製した。各試験例は、表1に記載のように、TSC添加量、ならびにアルカリ添加量(0.1M NaOH sol.(μL))も変えた。   Next, the mixing ratio (P / L) of 42 w / v% HSA or 30 w / v% cod gelatin, which is the liquid component (L), and α-TCP (<250 μm), which is the powder component (P), is changed to P /L=3.5/1 (Test Examples 1 and 6), 3/1 (Test Examples 2 and 7), 2/1 (Test Examples 3 and 8), 1/1 (Test Examples 4 and 9), 1 / 2 (Test Examples 5 and 10) were prepared. In each test example, as shown in Table 1, the amount of TSC added and the amount of alkali added (0.1 M NaOH sol. (ΜL)) were also changed.

表1は、42w/v%HSAを用いて調製した接着性骨補填剤の調製条件と成形性の観察結果である。   Table 1 shows the observation results of the preparation conditions and moldability of the adhesive bone filler prepared using 42 w / v% HSA.


表2は、30w/v%タラゼラチンを用いて調製した接着性骨補填剤の調製条件と成形性の観察結果である。

Table 2 shows the preparation conditions and moldability observation results of the adhesive bone filler prepared using 30 w / v% cod gelatin.


次に、これらの接着性骨補填剤を用い、直径7mm、高さ14mmの円筒状の成形サンプルを5つ形成した。

Next, five cylindrical shaped samples having a diameter of 7 mm and a height of 14 mm were formed using these adhesive bone fillers.

次に、42w/v%HSAを用いて調製した接着性骨補填剤の各成形サンプルを37℃湿潤環境下で24時間静置した。   Next, each molded sample of the adhesive bone filling material prepared using 42 w / v% HSA was allowed to stand in a 37 ° C. humid environment for 24 hours.

図5は、37℃湿潤環境下で24時間静置後の成形サンプルの目視像(写真)である。写真から分かるように、静置後でも、P/L=1.5/1(試験例2)、2/1(試験例3)、3/1(試験例4)の成形サンプルの成形性は良好であった。   FIG. 5 is a visual image (photograph) of a molded sample after standing for 24 hours in a 37 ° C. humid environment. As can be seen from the photograph, the moldability of the molded samples of P / L = 1.5 / 1 (Test Example 2), 2/1 (Test Example 3), and 3/1 (Test Example 4) after standing still is It was good.

一方、静置後、P/L=1/1(試験例1)の成形サンプルの成形性は不均一となった。α−TCPが不均一となったためである。   On the other hand, after standing, the moldability of the molded sample with P / L = 1/1 (Test Example 1) became non-uniform. This is because α-TCP is not uniform.

また、P/L=3.5/1(試験例5)の成形サンプルは、崩壊した。α−TCPを均一に液体中に分散させることが出来ず、形状を保てなかったためである。   Moreover, the molded sample of P / L = 3.5 / 1 (Test Example 5) collapsed. This is because α-TCP could not be uniformly dispersed in the liquid and the shape could not be maintained.

従って、42w/v%HSAの場合は、1/1<P/L<3.5/1の条件が最適であることが明らかとなった。   Therefore, in the case of 42 w / v% HSA, it became clear that the condition of 1/1 <P / L <3.5 / 1 is optimal.

次に、30w/v%タラゼラチンを用いて調製した接着性骨補填剤を用いて各成形サンプルを調製した。   Next, each molded sample was prepared using an adhesive bone filler prepared using 30 w / v% cod gelatin.

図6は、調製後の成形サンプルの目視像(写真)である。写真から分かるように、P/L=1.5/1(試験例7)、2/1(試験例8)、3/1(試験例9)、3.5/1(試験例10)の成形サンプルの成形性は良好であった。   FIG. 6 is a visual image (photograph) of the molded sample after preparation. As can be seen from the photograph, P / L = 1.5 / 1 (Test Example 7), 2/1 (Test Example 8), 3/1 (Test Example 9), 3.5 / 1 (Test Example 10). The moldability of the molded sample was good.

一方、静置後、P/L=1/1(試験例6)の成形サンプルは脆弱であった。α−TCP含量が十分でないため、タラゼラチンの物性が支配的になったためである。   On the other hand, after standing, the molded sample of P / L = 1/1 (Test Example 6) was fragile. This is because the physical properties of cod gelatin became dominant because the α-TCP content was not sufficient.

従って、30w/v%タラゼラチンの場合、1/1<P/Lの条件が最適であることが明らかとなった。
<骨接着性試験>
次に、上記42w/v%HSAを用いた接着性骨補填剤を用いて、骨接着性試験を行った。
Therefore, in the case of 30 w / v% cod gelatin, it became clear that the condition of 1/1 <P / L was optimal.
<Bone adhesion test>
Next, the bone adhesion test was performed using the adhesive bone filling material using 42 w / v% HSA.

図7は、骨接着性試験の工程図である。   FIG. 7 is a process diagram of a bone adhesion test.

骨接着性試験の試験片52として、生体骨模倣材料を用いた。   A living bone mimetic material was used as the test piece 52 for the bone adhesion test.

生体骨模倣材料は、象牙(直径6mm、厚さ0.3mm、円板状)を25%リン酸溶液に180秒浸漬してから、多量の水で洗浄後、乾燥させて作製した。   The living bone mimicking material was prepared by immersing ivory (diameter 6 mm, thickness 0.3 mm, disk shape) in a 25% phosphoric acid solution for 180 seconds, washing with a large amount of water, and drying.

図8は、本試験において使用した生体骨模倣材料の表面の一例を示す電子顕微鏡写真である。
<接着試験>
まず、試験片52には、象牙(直径6mm、厚さ0.3mm、円板状)を用いた。接着試験前に象牙を25%リン酸溶液に180秒浸漬後多量の水で洗浄して乾燥して使用した。接着試験のために、試験片(象牙)を円柱状のポリメチルメタクリレートプラスチックロッド51の表面51aに張り付けた。
FIG. 8 is an electron micrograph showing an example of the surface of the living bone mimic material used in this test.
<Adhesion test>
First, ivory (diameter 6 mm, thickness 0.3 mm, disk shape) was used for the test piece 52. Before the adhesion test, the ivory was immersed in a 25% phosphoric acid solution for 180 seconds, washed with a large amount of water and dried. For the adhesion test, a test piece (ivory) was attached to the surface 51 a of the cylindrical polymethylmethacrylate plastic rod 51.

次に、内径7mm、高さ14mmの円筒状のシリコーン53を被せた。   Next, a cylindrical silicone 53 having an inner diameter of 7 mm and a height of 14 mm was covered.

次に、シリコーン53の筒内に接着性骨補填剤31を導入した。接着性骨補填剤31としては、42w/v%HSAを用いた接着性骨補填剤P/L=3/1と、骨セメント(市販品)、バイオペックス(HOYA株式会社製)を用いた。   Next, the adhesive bone filling material 31 was introduced into the cylinder of the silicone 53. As the adhesive bone filling material 31, an adhesive bone filling material P / L = 3/1 using 42 w / v% HSA, bone cement (commercial product), and Biopex (manufactured by HOYA Corporation) were used.

次に、テクスチャーアナライザーにより、試験片(象牙)52に対する接着性骨補填剤等の接着強度を調べた。   Next, the adhesive strength of the adhesive bone filler or the like to the test piece (ivory) 52 was examined by a texture analyzer.

表3は、これらの接着性骨補填剤等の接着強度の結果である。   Table 3 shows the results of the adhesive strength of these adhesive bone fillers and the like.

P/L=3/1(試験例4)は、バイオペックスと比較して高い接着強度であった。また、骨セメントは、接着強度は0.8MPaと高い値であったが、合成物であるため吸収性を示さないので、好ましくない。
<三点曲げ強度試験>
まず、長さ64mm、幅10mm、厚さ4mmの板状の試験片を作成した。
P / L = 3/1 (Test Example 4) had higher adhesive strength than Biopex. Further, the bone cement has a high adhesive strength of 0.8 MPa, but it is not preferable because it is a composite and does not exhibit absorbability.
<Three point bending strength test>
First, a plate-shaped test piece having a length of 64 mm, a width of 10 mm, and a thickness of 4 mm was prepared.

次に、オートグラフにより、成形サンプルの三点曲げ強度を測定した。コントロールとして、市販品の骨セメント、バイオペックスを使用した。   Next, the three-point bending strength of the molded sample was measured by an autograph. Commercially available bone cement and biopex were used as controls.

表4は、三点曲げ強度試験の結果である。   Table 4 shows the results of the three-point bending strength test.

P/L=3/1(試験例4)は、バイオペックス、骨セメントと比較して低い三点曲げ強度であったが、粉体成分の組成を変えることによりバイオペックスを超える曲げ強度となった。 P / L = 3/1 (Test Example 4) had a low three-point bending strength compared to biopex and bone cement, but the bending strength exceeded that of biopex by changing the composition of the powder component. It was.

<液体/固体(P/L)の最適化試験2(試験例A1〜A20:Run#A1〜A20)>
以下のようにして、液体/固体(P/L)の種々の混合比における骨補填剤形成能を検討した。
<Liquid / Solid (P / L) Optimization Test 2 (Test Examples A1 to A20: Run # A1 to A20)>
In the following manner, the bone filling agent forming ability at various liquid / solid (P / L) mixing ratios was examined.

まず、TAPEGを0.1M リン酸緩衝液(pH6.0) に溶解させて、TAPEG溶液(液体成分(L))を作成した。   First, TAPEG was dissolved in 0.1 M phosphate buffer (pH 6.0) to prepare a TAPEG solution (liquid component (L)).

次に、固体成分(P)としてα−TCP、ナノアパタイト粒子(球状−平均粒径40nm、株式会社ソフセラ製)およびTSCを計り採り、ペンシルスターラーでよく混合した。この混合粉末を液体成分(L)である、0.1M リン酸緩衝液(pH6.0)に溶解したTAPEG溶液に添加してペンシルスターラーで撹拌・混合して接着性骨補填剤を調製した。   Next, α-TCP, nanoapatite particles (spherical-average particle size of 40 nm, manufactured by Softela Co., Ltd.) and TSC were weighed and mixed well with a pencil stirrer as the solid component (P). This mixed powder was added to a TAPEG solution dissolved in 0.1 M phosphate buffer (pH 6.0), which is a liquid component (L), and stirred and mixed with a pencil stirrer to prepare an adhesive bone filler.

図9は、接着性骨補填剤(試験例A1)を注射器から排出したときの写真である。   FIG. 9 is a photograph when the adhesive bone filling material (Test Example A1) is discharged from the syringe.

次に、先に記載の方法により接着性骨補填剤を塗布して、三点曲げ強度(Bending strength)を測定した。   Next, the adhesive bone filling material was applied by the method described above, and the three-point bending strength was measured.

表5は、調製した接着性骨補填剤の調製条件と三点曲げ強度(Bending strength)の測定結果である。   Table 5 shows the preparation conditions of the prepared adhesive bone filling material and the measurement results of the three-point bending strength (Bending strength).

表5に示すように、P/L比、TAPEG濃度およびTSC含量の制御により、三点曲げ強度(Bending strength)を1.28MPa以上6.11MPa以下に制御できた。 As shown in Table 5, by controlling the P / L ratio, TAPEG concentration, and TSC content, the three-point bending strength (bending strength) could be controlled to 1.28 MPa or more and 6.11 MPa or less.

(接着性骨補填剤の評価試験1)
(実験)
紛体材料のリン酸カルシウムとしてnano HAp :Nano-SHAp(球状-平均粒径40nm) (ソフセラ社製)を用意し、有機酸架橋剤として合成品のDST(Disuccinimidyl tartarate)を用意した。このDSTとnano HApを所定量秤量し、ペンシルスターラーでよく混合し、混合粉末を得た。この混合粉末を、液体成分であるHSA(Human serum albumin, Sigma-Aldrich社製、0.1M PBS pH6.0)が封入されたチューブに添加してペンシルスターラーで10sec撹拌して接着性骨補填剤を得た。この方法で、HAS、DST、nanoHApについての混合比を変化させて複数の接着性骨補填剤を得た。
(Evaluation test 1 for adhesive bone filler)
(Experiment)
Nano HAp: Nano-SHAp (spherical-average particle size 40 nm) (manufactured by Sofcella) was prepared as calcium phosphate of the powder material, and synthetic DST (Disuccinimidyl tartarate) was prepared as the organic acid crosslinking agent. A predetermined amount of DST and nano HAp were weighed and mixed well with a pencil stirrer to obtain a mixed powder. Add this mixed powder to a tube containing HSA (Human serum albumin, Sigma-Aldrich, 0.1M PBS pH6.0), a liquid component, and stir for 10 seconds with a pencil stirrer to give an adhesive bone filler. Obtained. By this method, a plurality of adhesive bone filling agents were obtained by changing the mixing ratio of HAS, DST, and nanoHAp.

そして、この接着性骨接着剤を、円筒状(φ7mm, 高さ14mm)のシリコーンチューブに入れて成型した。37℃で1日静置して硬化させ、シリコーン型から取り出し観察した。その際、硬化時間を定性的に評価した。
(結果)
得られた接着性骨補填剤の状態(均一性およびインジェクションの容易性)と、骨補填剤硬化物の状態を評価した結果を表6(試験No.1〜9)、表7(試験No.10〜18)、表8(試験No.19〜27)に示す。
The adhesive bone adhesive was molded into a cylindrical (φ7 mm, height 14 mm) silicone tube. It was allowed to stand at 37 ° C. for 1 day to cure, taken out of the silicone mold and observed. At that time, the curing time was qualitatively evaluated.
(result)
Table 6 (Test Nos. 1 to 9) and Table 7 (Test No. 1) show the state of the obtained adhesive bone filling material (uniformity and ease of injection) and the state of the cured bone filling material. 10 to 18) and Table 8 (Test Nos. 19 to 27).

この接着性骨補填剤は、液体成分であるHSA濃度が高い場合(40w/w%)、HSAとDSTおよびnanoHApとを含む紛体成分が均一に混ざりにくく、硬化が早くなる傾向があった。しかし、予想に反して、DST量が少ない方が硬化が早く、骨補填剤硬化物の硬度も強い傾向があった。試行した中では試験No.5が、接着性骨補填剤の取り扱い性に優れ、24時間後の硬さも良好であり、実用性の面からバランスが最も取れていることが確認された。 In this adhesive bone filling material, when the concentration of HSA, which is a liquid component, is high (40 w / w%), the powder component containing HSA, DST, and nanoHAp is less likely to be uniformly mixed, and there is a tendency for hardening to be accelerated. However, contrary to expectations, there was a tendency that the smaller the DST amount, the faster the curing and the stronger the hardness of the bone filler cured material. Among the trials, it was confirmed that Test No. 5 was excellent in handleability of the adhesive bone filling material, had good hardness after 24 hours, and had the best balance in terms of practicality.

<接着性骨補填剤の評価試験2>
(実験)
DSTの代わりに、有機酸架橋剤として合成品のDSM(Disuccinimidyl malate)を使用した以外は、上記の接着性骨補填剤の評価試験1と同様に条件で試験を行った。
(結果)
得られた接着性骨補填剤の状態と、骨補填剤硬化物の状態を評価した結果を表9に示す。
<Evaluation test 2 of adhesive bone filler>
(Experiment)
The test was conducted under the same conditions as in the above-described adhesive bone filler evaluation test 1 except that synthetic DSM (Disuccinimidyl malate) was used as the organic acid crosslinking agent instead of DST.
(result)
Table 9 shows the results of evaluating the state of the obtained adhesive bone filling material and the state of the cured bone filling material.

DSMを用いたこの接着性骨補填剤は、DSTに比べて硬化時間が長く、成型がしやすかった。同量のDSTに比べて接着性骨補填剤の粘度が低い傾向があった。接着性骨補填剤の取り扱い性と、24時間後の骨補填剤硬化物の硬度から、試験No.3、No.4がバランスが取れていることが明らかとなった。 This adhesive bone filling material using DSM had a longer setting time than DST and was easy to mold. There was a tendency for the adhesive bone filler to have a lower viscosity than the same amount of DST. From the handleability of the adhesive bone filling material and the hardness of the cured bone filling material after 24 hours, it was revealed that Test No. 3 and No. 4 were balanced.

したがって、疎水性の高い有機酸架橋剤であるDSMは、DSTよりも接着性骨補填剤の紛体成分として有用であることが明らかとなった。この結果から、接着性骨補填剤の紛体成分として、疎水性の高い有機酸架橋剤であるTSCを用いた場合も同様に、接着性骨補填剤の取り扱い性と骨補填剤硬化物の硬度に優れていることが明らかとなった。   Therefore, it became clear that DSM, which is a highly hydrophobic organic acid crosslinking agent, is more useful as a powder component of an adhesive bone filler than DST. From this result, when TSC, which is a highly hydrophobic organic acid cross-linking agent, is used as the powder component of the adhesive bone filling material, the handleability of the adhesive bone filling material and the hardness of the cured bone filling material are similarly reduced. It became clear that it was excellent.

<HSA骨補填剤の力学的強度の測定>
(実験)
3点曲げ試験の試験片には、紛体材料(P)として、DSMとnanoHApを用い、液体材料(L)として35w/w%HSA(0.1M PBS pH6)を用い、このP/L比が2/1でDSMが125mMになるように秤量し、nano HApと混合後、ペンシルスターラーでよく混合して混合粉末を得た。この混合粉末をHSA溶液に添加した後にペンシルスターラーで撹拌して接着性骨補填剤を作製し、この接着性骨補填剤を40×10×4mmのシリコーン型枠に充填後、ガラス板ではさんで成型した。37℃で1日静置して硬化させて骨補填剤硬化物を得た後、この骨補填剤硬化物について3点曲げ試験を行った。
<Measurement of mechanical strength of HSA bone filling material>
(Experiment)
The test piece for the three-point bending test uses DSM and nanoHAp as the powder material (P), 35w / w% HSA (0.1M PBS pH6) as the liquid material (L), and this P / L ratio is 2 / 1 so that DSM was 125 mM, mixed with nano HAp, and mixed well with a pencil stirrer to obtain a mixed powder. After this mixed powder is added to the HSA solution, it is stirred with a pencil stirrer to produce an adhesive bone filler. After filling this adhesive bone filler into a 40 x 10 x 4 mm silicone mold, sandwiched between glass plates Molded. After allowing to stand at 37 ° C. for 1 day and curing to obtain a cured bone filler, a three-point bending test was performed on the cured bone filler.

3点曲げ試験の概要を図10に示す。3点曲げ試験には、島津オートグラフAGS-Hを使用し、1KNのロードセルにより評価した。図10に示したように一定の曲率半径Rを持った支点の間で試験片を支え、その中央に加圧くさびで荷重を加え、試験片が折れたときの荷重を強度とした。
(結果)
結果を図11に示す。HSAを用いたこの骨補填剤硬化物は、曲げ応力が1.7MPa(±0.2)であった。一方、市販の骨補填剤バイオペックス(HOYA株式会社製)の強度は4倍以上高いことから、曲げ応力の向上を図るため、他の生体適合性高分子についての検討が必要であると考えられた。
An outline of the three-point bending test is shown in FIG. In the three-point bending test, Shimadzu Autograph AGS-H was used and evaluated with a 1KN load cell. As shown in FIG. 10, the test piece was supported between fulcrums having a constant radius of curvature R, a load was applied to the center with a pressure wedge, and the load when the test piece was broken was defined as strength.
(result)
The results are shown in FIG. This bone filler cured product using HSA had a bending stress of 1.7 MPa (± 0.2). On the other hand, since the strength of commercially available bone filler Biopex (made by Hoya Co., Ltd.) is more than 4 times higher, it is considered necessary to study other biocompatible polymers in order to improve bending stress. It was.

<TAPEG骨補填剤の力学的強度の測定>
(実験)
3点曲げ試験の試験片には、紛体材料(P)として、合成品のTSC(Trisuccinimidyl citrate)とnano HApと、α-TCP(α-Tricalcium phosphate)を用い、液体材料(L)として TAPEG/ 0.1M PBS (pH6)(TAPEG :Tetraamine terminated polyethylene glycol (MW:20,000) (日油株式会社製)を用いた。
<Measurement of mechanical strength of TAPEG bone filler>
(Experiment)
The specimen of the three-point bending test uses TSC (Trisuccinimidyl citrate) and nano HAp, and α-TCP (α-Tricalcium phosphate) as the powder material (P), and TAPEG / α as the liquid material (L). 0.1M PBS (pH 6) (TAPEG: Tetraamine terminated polyethylene glycol (MW: 20,000) (manufactured by NOF Corporation) was used.

紛体材料は、TSCの質量を除き、α-TCPとnano HApの割合を決定した。試験片の調製方法は、TSC、nano HApおよびα-TCPを秤量し、ペンシルスターラーでよく混合した。この混合粉末をTAPEG溶液に添加してペンシルスターラーで撹拌して接着性骨補填剤を作製し、この接着性骨補填剤を40×10×4mmのシリコーンチューブに充填し、ガラス板ではさんで成型した。37℃で1日静置して硬化させて骨補填剤硬化物を得た後、この骨補填剤硬化物について3点曲げ試験を行った。   For the powder material, the ratio of α-TCP and nano HAp was determined, excluding the mass of TSC. The test piece was prepared by weighing TSC, nano HAp and α-TCP and mixing them well with a pencil stirrer. Add this mixed powder to the TAPEG solution and stir with a pencil stirrer to make an adhesive bone filler, fill this adhesive bone filler into a 40 x 10 x 4 mm silicone tube, and mold with a glass plate did. After allowing to stand at 37 ° C. for 1 day and curing to obtain a cured bone filler, a three-point bending test was performed on the cured bone filler.

(結果−1)三点曲げ強度に及ぼすTAPEG濃度の影響評価
P/L比を2.5/1に設定し、α-TCPは紛体材料のうち、TSCを除いた質量の40%となるようにして三点曲げ強度のTAPEG依存性を評価した。図12に示すように、25mM TAPEGが最も曲げ応力が高いことが確認された。
(Result-1) Evaluation of TAPEG concentration effect on three-point bending strength
The P / L ratio was set to 2.5 / 1, and the α-TCP was evaluated for the TAPEG dependence of the three-point bending strength so that the powder material would be 40% of the mass excluding TSC. As shown in FIG. 12, it was confirmed that 25 mM TAPEG has the highest bending stress.

(結果−2)三点曲げ強度に及ぼすTSC濃度の影響評価
P/L比を2.5/1に設定し、α-TCPは紛体材料のうち、TSCを除いた質量の40%となるようにして三点曲げ強度のTSC濃度依存性を評価した。図13に示すように、TSC濃度は50mMがもっとも曲げ応力が高いことが確認された。
(Result-2) Evaluation of the effect of TSC concentration on three-point bending strength
The P / L ratio was set to 2.5 / 1, and α-TCP was evaluated for the TSC concentration dependency of the three-point bending strength so that the mass of the powder material was 40% excluding TSC. As shown in FIG. 13, it was confirmed that the bending stress was highest when the TSC concentration was 50 mM.

(結果−3)三点曲げ強度に及ぼすP/L比の影響評価
α-TCPは紛体材料のうち、TSCを除いた質量の40%となるようにして三点曲げ強度のTSC濃度依存性を評価した。図14に示すように、P/L比は2.5/1が最も曲げ応力が高くなることが確認された。予備実験でP3.5/L1は粉過多で成型が不可であった。
(Result-3) Evaluation of the effect of P / L ratio on the three-point bending strength α-TCP shows the TSC concentration dependence of the three-point bending strength so that it is 40% of the mass of the powder material excluding TSC. evaluated. As shown in FIG. 14, it was confirmed that the bending stress was highest when the P / L ratio was 2.5 / 1. In a preliminary experiment, P3.5 / L1 was too powdery and could not be molded.

(結果−4)三点曲げ強度に及ぼすα-TCP量の影響評価
P/L比を2.5/1と固定し、α-TCPは紛体材料のうち、TSCを除いた質量の50, 60, 70, 75, 80%となるようにして三点曲げ強度のTSC濃度依存性を評価した。α-TCP含量75%のバイオペックスも同条件で曲げ応力を測定した。図15に示すように、α-TCP含量は70%が曲げ応力がもっとも高く、また、再現性が高いことが確認された。
(Result-4) Evaluation of the effect of α-TCP on the three-point bending strength
The P / L ratio is fixed at 2.5 / 1, and α-TCP is 50, 60, 70, 75, 80% of the mass of the powder material excluding TSC, and the three-point bending strength depends on the TSC concentration. Sex was evaluated. Bending stress was also measured under the same conditions for Biopex with α-TCP content of 75%. As shown in FIG. 15, it was confirmed that 70% of the α-TCP content had the highest bending stress and high reproducibility.

(結果−5)三点曲げ強度に及ぼす骨補填剤成分の条件最適化
25mM TAPEG / 50mM TSC + (nanoHAp + 70%α-TCP)で、P/L比は2.5/1が最も曲げ応力が高いことが示唆されたため、この条件で3点曲げ試験を行った。P/L比は2.5/1に設定した。図16に示したように、25mM TAPEG / 50mM TSC + (nanoHAp + 70%α-TCP)で Powder/Liquid比は2.5/1が最も曲げ応力が高いことが確認された。
(Result-5) Optimization of conditions of bone filler components on three-point bending strength
With 25 mM TAPEG / 50 mM TSC + (nanoHAp + 70% α-TCP), the P / L ratio of 2.5 / 1 was suggested to have the highest bending stress, so a three-point bending test was performed under these conditions. The P / L ratio was set to 2.5 / 1. As shown in FIG. 16, it was confirmed that 25/1 TAPEG / 50 mM TSC + (nanoHAp + 70% α-TCP) and Powder / Liquid ratio of 2.5 / 1 had the highest bending stress.

本発明の接着性骨補填剤及び接着性骨補填剤キットは、骨組織に対する接着性が高く、接着時間が短く、吸収性の高い接着性骨補填剤及び接着性骨補填剤キットに関するものであり、この接着性骨補填剤は、圧迫骨折の治療において、骨セメントや骨ペーストより、接着時間が短時間であり、高強度かつ高接着性の特性を有し、高吸収性で用いることができ、医療用デバイス・材料・機器産業において利用可能性がある。   The adhesive bone filling material and adhesive bone filling material kit of the present invention relates to an adhesive bone filling material and an adhesive bone filling material kit that have high adhesion to bone tissue, a short bonding time, and high absorbability. This adhesive bone filler has a shorter bonding time than bone cement and bone paste in the treatment of compression fractures, has high strength and high adhesive properties, and can be used with high absorbency. It can be used in the medical device / material / equipment industry.

11…接着性骨補填剤キット、12…第1の容器、13…第2の容器、14…第3の容器、15…注入容器、21…液体成分、22…粉体成分、23…X線検出器、24…台、31、32…接着性骨補填剤、47…骨、47c…空洞部、51…ポリメチルメタクリレートプラスチックロッド、51a…表面、52…試験片、53…円筒状のシリコーン DESCRIPTION OF SYMBOLS 11 ... Adhesive bone filler kit, 12 ... 1st container, 13 ... 2nd container, 14 ... 3rd container, 15 ... Injection | pouring container, 21 ... Liquid component, 22 ... Powder component, 23 ... X-ray Detector, 24 ... Stand, 31, 32 ... Adhesive bone filler, 47 ... Bone, 47c ... Cavity, 51 ... Polymethylmethacrylate plastic rod, 51a ... Surface, 52 ... Test piece, 53 ... Cylindrical silicone

Claims (7)

骨組織に接着して硬化する接着性骨補填剤であって、
tetraamine−terminated ポリエチレングリコール(4分岐)を含有する緩衝溶液からなる液体成分と、リン酸カルシウムおよびトリスクシンイミジルシトレートを含む紛体成分との混合物を含み、
前記tetraamine−terminated ポリエチレングリコール(4分岐)は5mM〜40mMであり、かつ、前記トリスクシンイミジルシトレートは25mM〜75mMであり、
前記リン酸カルシウム(P(g))と前記液体成分(L(g))の比であるP/Lが、2/1〜3/1である
ことを特徴とする接着性骨補填剤。
An adhesive bone filling agent that adheres to and hardens bone tissue,
and a liquid component comprising a buffer solution containing tetraamine-terminated polyethylene glycol (4 branch), a mixture of powder components comprising calcium phosphate and preparative risk succinimidyl citrate seen including,
The tetraamine-terminated polyethylene glycol (4 branches) is 5 mM to 40 mM, and the triskesin imidyl citrate is 25 mM to 75 mM;
The adhesive bone filling material , wherein P / L which is a ratio of the calcium phosphate (P (g)) and the liquid component (L (g)) is 2/1 to 3/1 .
前記リン酸カルシウムがα−トリカルシウムフォスフェイト(α−TCP)、α´−トリカルシウムフォスフェイト(α´−TCP)、β−トリカルシウムフォスフェイト(β−TCP)、オクタカルシウムフォスフェート(OCP)、dicalcium phosphate dibasic(DCPD)、tetracalcium phosphate monoxide(TeCP)、ハイドロキシアパタイト(HAp)、リン酸水素カルシウムの1種または2種以上の組み合わせであることを特徴とする請求項1に記載の接着性骨補填剤。 The calcium phosphate is α-tricalcium phosphate (α-TCP), α′-tricalcium phosphate (α′-TCP), β-tricalcium phosphate (β-TCP), octacalcium phosphate (OCP), and dicalcium. The adhesive bone filler according to claim 1, which is one or a combination of two or more of phosphate dibasic (DCPD), tetracalcium phosphate monoxide (TeCP), hydroxyapatite (HAp), and calcium hydrogen phosphate. . 前記リン酸カルシウムに金属元素がドープされていることを特徴とする請求項1または2に記載の接着性骨補填剤。 Adhesion bone filling agent according to claim 1 or 2 metal element is characterized that you have been doped to said calcium phosphate. 前記金属元素が、亜鉛、銅、ストロンチウム、銀、チタンのうちの1種または2種以上であることを特徴とする請求項3に記載の接着性骨補填剤。 4. The adhesive bone filler according to claim 3, wherein the metal element is one or more of zinc, copper, strontium, silver, and titanium . 前記リン酸カルシウムが10〜1000ナノメートルの粒子であることを特徴とする請求項1から4のいずれか1項に記載の接着性骨補填剤。 The adhesive bone filler according to any one of claims 1 to 4 , wherein the calcium phosphate is a particle of 10 to 1000 nanometers . 前記液体成分又は前記粉体成分に、アルカリ成分が添加されていることを特徴とする請求項1から5のいずれか1項に記載の接着性骨補填剤。 Wherein the liquid component or the powder component, adhesion bone filling agent claimed in any one of 5, wherein that you have been added alkali components. 前記リン酸カルシウムはα−トリカルシウムフォスフェイト(α−TCP)であり、前記α−トリカルシウムフォスフェイト(α−TCP)は、前記紛体材料のうち、前記トリスクシンイミジルシトレートを除いた質量の50%〜80%であることを特徴とする請求項1に記載の接着性骨補填剤。 The calcium phosphate is α-tricalcium phosphate (α-TCP), and the α-tricalcium phosphate (α-TCP) is 50 masses of the powder material excluding the trisuccinimidyl citrate. The adhesive bone filling material according to claim 1 , wherein the adhesive bone filling material is in a range of% to 80% .
JP2015505496A 2013-03-13 2014-03-11 Adhesive bone filler and adhesive bone filler kit Expired - Fee Related JP6048858B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013050139 2013-03-13
JP2013050139 2013-03-13
JP2013206357 2013-10-01
JP2013206357 2013-10-01
PCT/JP2014/056368 WO2014142132A1 (en) 2013-03-13 2014-03-11 Adhesive bone filler and adhesive bone filler kit

Publications (2)

Publication Number Publication Date
JP6048858B2 true JP6048858B2 (en) 2016-12-21
JPWO2014142132A1 JPWO2014142132A1 (en) 2017-02-16

Family

ID=51536785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015505496A Expired - Fee Related JP6048858B2 (en) 2013-03-13 2014-03-11 Adhesive bone filler and adhesive bone filler kit

Country Status (4)

Country Link
US (1) US20160008507A1 (en)
EP (1) EP2974752A4 (en)
JP (1) JP6048858B2 (en)
WO (1) WO2014142132A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105288748B (en) * 2015-12-03 2018-01-16 广东省微生物研究所 A kind of anti-infective calcium phosphate composite bone cement material and preparation method thereof
CN109089422B (en) * 2016-03-29 2022-04-01 富士胶片株式会社 Laminate comprising cell sheet, therapeutic agent for cardiac disease, and film for laminating cell sheet
EP3466905B1 (en) * 2016-05-30 2021-12-15 FUJIFILM Corporation Method for producing calcium phosphate molded article, calcium phosphate molded article, and material for transplantation
EP3630215A1 (en) * 2017-05-26 2020-04-08 Association for the Advancement of Tissue Engineering and Cell based Technologies & Therapies (A4TEC) - Associação Ionic-doped composition methods and uses thereof
JPWO2019069825A1 (en) * 2017-10-05 2020-09-17 国立研究開発法人産業技術総合研究所 A composite containing a β-TCP substrate and an OCP crystal layer and a method for producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173941A (en) * 2002-11-27 2004-06-24 Olympus Corp Calcium gradient material and its manufacturing method
JP2004290278A (en) * 2003-03-25 2004-10-21 Olympus Corp Manufacturing apparatus for biological tissue filling material
JP2005518250A (en) * 2002-02-22 2005-06-23 デピュイ スパイン、インコーポレイテッド Tissue repair matrix
JP2006346049A (en) * 2005-06-14 2006-12-28 National Institute For Materials Science Solid-liquid mixed type two-component system in vivo decomposing and absorbing adhesive medical material
JP2008503317A (en) * 2004-06-22 2008-02-07 ボーン サポート アクチボラゲット Curing substance manufacturing equipment
WO2012046717A1 (en) * 2010-10-05 2012-04-12 独立行政法人物質・材料研究機構 Two-component tissue adhesive and method for producing same
JP2013500935A (en) * 2009-08-04 2013-01-10 バイオマトセル・エービー Ion-substituted calcium phosphate particles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583114A (en) * 1994-07-27 1996-12-10 Minnesota Mining And Manufacturing Company Adhesive sealant composition
US6355705B1 (en) 1997-02-07 2002-03-12 Queen's University At Kingston Anaesthetic bone cement
WO2009105614A2 (en) * 2008-02-22 2009-08-27 Dermal Technologies, Llc Compositions for tissue augmentation
JP2012085804A (en) 2010-10-19 2012-05-10 Univ Of Tsukuba Instrument for spine surgery
WO2013121429A1 (en) * 2012-02-16 2013-08-22 Ramot At Tel-Aviv University Ltd. Formulations and kits for forming bioadhesive matrices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518250A (en) * 2002-02-22 2005-06-23 デピュイ スパイン、インコーポレイテッド Tissue repair matrix
JP2004173941A (en) * 2002-11-27 2004-06-24 Olympus Corp Calcium gradient material and its manufacturing method
JP2004290278A (en) * 2003-03-25 2004-10-21 Olympus Corp Manufacturing apparatus for biological tissue filling material
JP2008503317A (en) * 2004-06-22 2008-02-07 ボーン サポート アクチボラゲット Curing substance manufacturing equipment
JP2006346049A (en) * 2005-06-14 2006-12-28 National Institute For Materials Science Solid-liquid mixed type two-component system in vivo decomposing and absorbing adhesive medical material
JP2013500935A (en) * 2009-08-04 2013-01-10 バイオマトセル・エービー Ion-substituted calcium phosphate particles
WO2012046717A1 (en) * 2010-10-05 2012-04-12 独立行政法人物質・材料研究機構 Two-component tissue adhesive and method for producing same

Also Published As

Publication number Publication date
US20160008507A1 (en) 2016-01-14
EP2974752A1 (en) 2016-01-20
EP2974752A4 (en) 2016-10-19
JPWO2014142132A1 (en) 2017-02-16
WO2014142132A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP6048858B2 (en) Adhesive bone filler and adhesive bone filler kit
EP2598179B1 (en) Calcium particle-embedded, snap-to-dough, high-viscosity bone cement
Schreader et al. A polyurethane‐based nanocomposite biocompatible bone adhesive
JPS6251629B2 (en)
WO1996011715A1 (en) Hard-tissue repair composition and supply unit therefor
Ravarian et al. Nanoscale chemical interaction enhances the physical properties of bioglass composites
WO2009131829A2 (en) Bone cement composition and method
JP2007512063A (en) Bioabsorbable composite material
Engstrand et al. Polyhedral oligomeric silsesquioxane (POSS)–poly (ethylene glycol)(PEG) hybrids as injectable biomaterials
Vázquez et al. Acrylic bone cements modified with β-TCP particles encapsulated with poly (ethylene glycol)
Bou-Francis et al. Standardized methodology for in vitro assessment of bone-to-bone adhesion strength
Goto et al. The biocompatibility and osteoconductivity of a cement containing β–TCP for use in vertebroplasty
JP5976014B2 (en) Composition containing injectable self-hardening apatite cement
KR101176793B1 (en) Bone cement composition containing silk fibroin hydrolysates and polymethylmetacrylate
De Wijn Poly (methyl methacrylate)–aqueous phase blends: in situ curing porous materials
WO2023065474A1 (en) Calcium phosphate-based organic-inorganic composite bioactive material and preparation method therefor
JP3340002B2 (en) Hard tissue repair composition and device for supplying the same
JP2002210002A (en) Composition for restoring biological tissue
CN105461941B (en) A kind of preparation method of self-curing high intensity macromolecular glue
Van de Watering et al. Biodegradation of calcium phosphate cement composites
JP2014124416A (en) Bone regeneration material kit, pasty bone regeneration material, bone regeneration material and bone junction material
CN110665056B (en) Injectable bone cement with tissue self-bonding performance and preparation method and application thereof
JP2000245821A (en) Bloactive cement composition
JP3871298B2 (en) Medical implant material
Menarbazari et al. 3D-printed polycaprolactone/tricalcium silicate scaffolds modified with decellularized bone ECM-oxidized alginate for bone tissue engineering

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161110

R150 Certificate of patent or registration of utility model

Ref document number: 6048858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees