JP6048006B2 - Method and apparatus for detecting optimum local reinforcement position of component constituting structure, and method for reinforcing component based on optimum local reinforcement position detection method - Google Patents
Method and apparatus for detecting optimum local reinforcement position of component constituting structure, and method for reinforcing component based on optimum local reinforcement position detection method Download PDFInfo
- Publication number
- JP6048006B2 JP6048006B2 JP2012191164A JP2012191164A JP6048006B2 JP 6048006 B2 JP6048006 B2 JP 6048006B2 JP 2012191164 A JP2012191164 A JP 2012191164A JP 2012191164 A JP2012191164 A JP 2012191164A JP 6048006 B2 JP6048006 B2 JP 6048006B2
- Authority
- JP
- Japan
- Prior art keywords
- rigidity
- reinforcement position
- optimum
- analysis model
- local reinforcement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002787 reinforcement Effects 0.000 title claims description 89
- 238000001514 detection method Methods 0.000 title claims description 45
- 238000000034 method Methods 0.000 title claims description 29
- 230000003014 reinforcing effect Effects 0.000 title claims description 27
- 238000004458 analytical method Methods 0.000 claims description 138
- 238000012916 structural analysis Methods 0.000 claims description 22
- 230000003247 decreasing effect Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 4
- 230000000452 restraining effect Effects 0.000 claims description 3
- 238000003860 storage Methods 0.000 description 9
- 238000003466 welding Methods 0.000 description 8
- 238000009434 installation Methods 0.000 description 7
- 238000005457 optimization Methods 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000013500 data storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000013433 optimization analysis Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/82—Elements for improving aerodynamics
Description
本発明は構造体の最適化解析に関するものであり、自動車の車体等の構造体を構成する部品の最適局所的補強位置検出方法、装置および最適局所的補強位置検出方法に基づいて部品を補強する方法の最適化に関する。 The present invention relates to an optimization analysis of a structure, and reinforces a component based on an optimum local reinforcement position detection method, apparatus, and optimum local reinforcement position detection method of a component constituting a structure such as an automobile body. It relates to method optimization.
近年、特に自動車産業においては環境問題に起因した車体の最適化(剛性向上化、軽量化)が進められており、そのために車体の設計にCAE(Computer Aided Engineering)解析は欠かせない技術となっている。このCAE解析では数理最適化、板厚最適化、形状最適化、トポロジー最適化などの最適化技術を用いて剛性の向上や軽量化が図れる。 In recent years, especially in the automobile industry, optimization of vehicle bodies (improving rigidity and weight reduction) due to environmental problems has been promoted. For this reason, CAE (Computer Aided Engineering) analysis has become an indispensable technology for vehicle body design. ing. In this CAE analysis, the rigidity can be improved and the weight can be reduced by using optimization techniques such as mathematical optimization, plate thickness optimization, shape optimization, and topology optimization.
また車体の剛性を向上させる方法としては、車体を構成する部品に、部品の局所に設置されて該局所を補強する局所的補強部材(例えば、バルクヘッドやリインフォース等)を設置する方法がある(例えば特許文献1)。
このような局所的補強部材は設置する位置によって、部品や部品を組み込んだ車体の剛性に大きく影響を与えるため、その最適な補強位置を見出すことが求められている。
In addition, as a method for improving the rigidity of the vehicle body, there is a method in which a local reinforcing member (for example, a bulkhead or a reinforcement) that is installed locally on a component of the vehicle to reinforce the local region is installed on a component that constitutes the vehicle body ( For example, Patent Document 1).
Such a local reinforcing member greatly affects the rigidity of the part and the vehicle body incorporating the part depending on the installation position, and therefore, it is required to find the optimum reinforcing position.
そのためには、例えば上述したようなCAE解析を用いて、局所的補強部材の部品への設置位置を変更し、その都度剛性解析を行い、得られた結果同士を比較することでより適切な補強位置を見出すことができる。 For this purpose, for example, the CAE analysis as described above is used to change the installation position of the local reinforcing member on the component, perform the rigidity analysis each time, and compare the obtained results for more appropriate reinforcement. The position can be found.
しかし、上記のような方法は試行錯誤的なものであり、ある部品において局所的補強を施すことで剛性の向上に最も寄与がありそうな位置を人間の勘にもとづいて探して、その都度当該位置に局所的補強部材を設置した部品の解析モデルを作成して解析しなければならず、著しく手間がかかるという問題がある。 However, the method described above is trial and error, and by searching for the position that is most likely to contribute to the improvement of rigidity by applying local reinforcement on a certain part, each time There is a problem in that it takes a lot of work because an analysis model of a part in which a local reinforcing member is installed at a position must be created and analyzed.
また、局所的補強部材を設置するためには設置するためのある程度の大きさの場所が必要である。そのため、剛性に寄与しそうな位置のすべてに局所的補強部材を設置できるとも限らない。
また、局所的補強部材を設置できたとしても、局所的補強部材の形状や本体との接合状態の良否によっては正確な結果を得ることができないという問題があった。
Further, in order to install the local reinforcing member, a place of a certain size for installation is required. Therefore, it is not always possible to install local reinforcing members at all positions that are likely to contribute to rigidity.
Further, even if the local reinforcing member can be installed, there is a problem that an accurate result cannot be obtained depending on the shape of the local reinforcing member and the joining state with the main body.
本発明は、上記のような問題を解決するためになされたものであり、効率的に最適な局所的補強位置を検出することができる最適局所的補強位置検出方法、装置および最適局所的補強位置検出方法に基づいて部品を補強する方法を得ることを目的とする。 The present invention has been made to solve the above-described problem, and an optimum local reinforcement position detection method, apparatus, and optimum local reinforcement position capable of efficiently detecting an optimum local reinforcement position. An object is to obtain a method for reinforcing a part based on a detection method.
(1)本発明に係る最適局所的補強位置検出方法は、コンピュータが構造解析によって構造体を構成する部品における局所的な最適補強位置を検出する最適局所的補強位置検出方法であって、コンピュータがプログラムを実行することで実現される各手段が各工程を行うものであり、
解析モデル生成手段が、平面要素および/または立体要素を用いて前記部品の構造解析モデルを生成する構造解析モデル生成工程と、
領域分割手段が、該生成された構造解析モデルに基準となる基準軸を設定し、前記構造解析モデルの任意の範囲に前記基準軸に対して所定の角度で任意の幅の複数領域に分割を行う領域分割工程と、
剛性変更手段が、前記分割された領域のうち任意の領域について、弾性率を高くしたり、板厚を増減させたりして、剛性を変更する剛性変更工程と、
剛性解析手段が、剛性が一部変更された前記各構造解析モデルについて、前記解析モデルの少なくとも一端を拘束して剛性解析を行う剛性解析工程と、
最適補強位置検出手段が、前記複数の剛性解析結果に基づいて前記部品における最適な局所的補強位置を検出する最適補強位置検出工程と、を有することを特徴とするものである。
(1) An optimum local reinforcement position detection method according to the present invention is an optimum local reinforcement position detection method in which a computer detects a local optimum reinforcement position in a component constituting a structure by structural analysis , and the computer Each means realized by executing the program performs each process,
Analysis model generating means comprises a structural analysis model generating step of generating a structural analysis model of the part using the planar element and / or three-dimensional elements,
A region dividing unit sets a reference axis serving as a reference for the generated structural analysis model , and divides the structure analysis model into a plurality of regions having an arbitrary width at a predetermined angle with respect to the reference axis within an arbitrary range of the structural analysis model. A region dividing step to be performed;
A rigidity changing step in which the rigidity changing means changes the rigidity by increasing the elastic modulus or increasing / decreasing the plate thickness for an arbitrary area among the divided areas;
A rigidity analysis step in which rigidity analysis means performs rigidity analysis by constraining at least one end of the analysis model for each structural analysis model in which the rigidity is partially changed;
The optimum reinforcement position detecting means includes an optimum reinforcement position detecting step of detecting an optimum local reinforcement position in the part based on the plurality of rigidity analysis results.
(2)また、上記(1)に記載のものにおいて、前記剛性変更工程は、前記任意の領域の板厚および/または弾性率を変更することを特徴とするものである。 (2) Further, in the above (1), the rigidity changing step is characterized by changing a plate thickness and / or an elastic modulus of the arbitrary region.
(3)本発明に係る部品の補強方法は、上記(1)または(2)に記載の最適局所的補強位置検出方法で検出された最適局所的補強位置に基づいて、バルクヘッドを設置して部品を補強することを特徴とするものである。 (3) A method for reinforcing a component according to the present invention includes installing a bulkhead based on the optimum local reinforcement position detected by the optimum local reinforcement position detection method described in (1) or (2) above. It is characterized by reinforcing parts.
(4)本発明に係る部品の補強方法は、上記(1)または(2)に記載の最適局所的補強位置検出方法で検出された最適局所的補強位置に基づいて、テーラードブランク材を用いて部品を補強することを特徴とするものである。 (4) The component reinforcing method according to the present invention uses a tailored blank material based on the optimum local reinforcement position detected by the optimum local reinforcement position detection method described in (1) or (2) above. It is characterized by reinforcing parts.
(5)本発明に係る最適局所的補強位置検出装置は、構造解析による構造体を構成する部品における局所的な最適補強位置を検出する最適局所的補強位置検出装置であって、
平面要素および/または立体要素を用いて前記部品の構造解析モデルを生成する解析モデル生成手段と、
該生成された構造解析モデルに基準となる基準軸を設定し、前記構造解析モデルの任意の範囲に前記基準軸に対して所定の角度で任意の幅の複数領域に分割を行う領域分割手段と、
前記分割された領域のうち任意の領域について、弾性率を高くしたり、板厚を増減させたりして、剛性を変更する剛性変更手段と、
剛性が一部変更された前記各構造解析モデルについて、前記解析モデルの少なくとも一端を拘束して剛性解析を行う剛性解析手段と、を有することを特徴とするものである。
(5) An optimum local reinforcement position detection device according to the present invention is an optimum local reinforcement position detection device that detects a local optimum reinforcement position in a component constituting a structure by structural analysis ,
An analysis model generating means for generating a structural analysis model of the part using a planar element and / or a three-dimensional element;
A region dividing means for setting a reference axis serving as a reference to the generated structural analysis model, and dividing into a plurality of regions having an arbitrary width at a predetermined angle with respect to the reference axis in an arbitrary range of the structural analysis model; ,
Rigidity changing means for changing the rigidity by increasing the elastic modulus or increasing or decreasing the plate thickness for an arbitrary area among the divided areas,
Each structural analysis model in which the rigidity is partially changed includes rigidity analysis means for performing rigidity analysis by restraining at least one end of the analysis model .
(6)また、上記(5)に記載のものにおいて、前記複数の剛性解析結果に基づいて前記部品における最適な局所的補強位置を検出する最適補強位置検出手段を有することを特徴とするものである。 (6) Further, in the above (5), there is provided an optimum reinforcement position detecting means for detecting an optimum local reinforcement position in the part based on the plurality of rigidity analysis results. is there.
(7)また、上記(5)又は(6)に記載のものにおいて、前記剛性変更手段は、前記任意の領域の板厚および/または弾性率を変更することを特徴とするものである。 (7) In the above (5) or (6), the rigidity changing means changes the plate thickness and / or elastic modulus of the arbitrary region.
本発明においては、部品自体の剛性を局所的に変化させて、局所的補強部材を設置した部品と同様の状態にするようにしたので、効率的に最適な局所的補強位置を検出することができる。 In the present invention, since the rigidity of the part itself is locally changed to be in the same state as the part on which the local reinforcing member is installed, the optimal local reinforcing position can be detected efficiently. it can.
本発明の一実施の形態に係る最適局所的補強位置検出方法は、図1のフローチャート図に示すように、平面要素および/または立体要素を用いて前記部品の解析モデルを生成する解析モデル生成工程S1と、該生成された解析モデルに基準となる基準軸を設定し、前記解析モデルの任意の範囲に前記基準軸に対して所定の角度で任意の幅の複数領域に分割を行う領域分割工程S3と、前記分割された領域のうち任意の領域について剛性を変更する剛性変更工程S5と、剛性が一部変更された前記各解析モデルについて剛性解析を行う剛性解析工程S7と、前記複数の剛性解析結果に基づいて前記部品における最適な局所的補強位置を検出する最適補強位置検出工程S9とを行う。 The optimal local reinforcement position detection method according to an embodiment of the present invention includes an analysis model generation step of generating an analysis model of the part using a planar element and / or a solid element as shown in the flowchart of FIG. S1 and a region dividing step of setting a reference axis as a reference for the generated analysis model, and dividing into a plurality of regions of an arbitrary width at a predetermined angle with respect to the reference axis in an arbitrary range of the analysis model S3, a stiffness changing step S5 for changing the stiffness of any of the divided regions, a stiffness analyzing step S7 for performing a stiffness analysis on each analysis model whose stiffness has been partially changed, and the plurality of stiffnesses An optimum reinforcement position detection step S9 for detecting an optimum local reinforcement position in the part based on the analysis result is performed.
最適局所的補強位置検出方法はプログラム処理を実行するPC(パーソナルコンピュータ)等の装置によって行うものであるので、まず、装置(以下、「最適局所的補強位置検出装置1」という)の構成について図2に示すブロック図に基づいて概説する。 Since the optimal local reinforcement position detection method is performed by a device such as a PC (personal computer) that executes program processing, first, the configuration of the device (hereinafter referred to as “optimal local reinforcement position detection device 1”) is illustrated. An outline will be given based on the block diagram shown in FIG.
〔最適局所的補強位置検出装置〕
本発明の一実施の形態に係る最適局所的補強位置検出装置1は、PC(パーソナルコンピュータ)等によって構成され、図2に示すように、表示装置3と入力装置5と主記憶装置7と補助記憶装置9および演算処理部11とを有している。
また、演算処理部11には、表示装置3と入力装置5と主記憶装置7および補助記憶装置9が接続され、演算処理部11の指令によって各機能を行う。表示装置3は計算結果の表示等に用いられ、液晶モニター等で構成される。入力装置5はオペレータからの入力等に用いられ、キーボードやマウス等で構成される。主記憶装置7は演算処理部11で使用するデータの一時保存や演算等に用いられ、RAM等で構成される。補助記憶装置9は、データの記憶等に用いられ、ハードディスク等で構成される。
[Optimum local reinforcement position detector]
An optimal local reinforcement position detection device 1 according to an embodiment of the present invention is configured by a PC (personal computer) or the like, and as shown in FIG. 2, a display device 3, an input device 5, a main storage device 7, and an auxiliary device. A storage device 9 and an arithmetic processing unit 11 are included.
The arithmetic processing unit 11 is connected to the display device 3, the input device 5, the main storage device 7, and the auxiliary storage device 9, and performs each function according to commands from the arithmetic processing unit 11. The display device 3 is used for displaying calculation results, and is composed of a liquid crystal monitor or the like. The input device 5 is used for input from an operator, and is composed of a keyboard, a mouse, and the like. The main storage device 7 is used for temporary storage and calculation of data used in the arithmetic processing unit 11, and is constituted by a RAM or the like. The auxiliary storage device 9 is used for data storage and the like, and is composed of a hard disk or the like.
演算処理部11はPC等のCPU等によって構成され、演算処理部11内には、解析モデル生成手段13と、領域分割手段15と、剛性変更手段17と、剛性解析手段19と、最適補強位置検出手段21とを有する。これらの手段はCPU等が所定のプログラムを実行することによって実現される。以下にこれら手段について説明する。 The arithmetic processing unit 11 is constituted by a CPU such as a PC, and the arithmetic processing unit 11 includes an analysis model generating unit 13, a region dividing unit 15, a stiffness changing unit 17, a stiffness analyzing unit 19, and an optimum reinforcement position. Detection means 21. These means are realized by a CPU or the like executing a predetermined program. These means will be described below.
<解析モデル生成手段>
解析モデル生成手段13は、平面要素(シェル要素)、立体要素(ソリッド要素)、または、平面要素と立体要素の両方を使用して部品の解析モデルを生成する。
本実施の形態では、解析対象の部品の例として、中空部品について解析モデル31を作成した。解析モデル31は、図3(a)および図3(b)に示すように、高さが80mmのハット断面部品33と、該ハット断面部品33の開口部を覆う、幅が120mmの平板35とを接合してなり、長さが800mmの筒状からなるものである。ハット断面部品33のフランジ部33aの幅は20mmである。ハット断面部品33と平板35の接合は、フランジ部33aとフランジ部33aに当接する平板35の端部とをスポット溶接することで行われている。スポット溶接は、ハット断面部品33の長手方向に40mmピッチでフランジ部33aの幅方向端から7.5mmの位置に、直径6mmのスポットで行われている。解析モデル31の板厚は1.2mmである。
<Analysis model generation means>
The analysis model generation means 13 generates an analysis model of a part using a plane element (shell element), a solid element (solid element), or both a plane element and a solid element.
In the present embodiment, the analysis model 31 is created for the hollow part as an example of the part to be analyzed. As shown in FIGS. 3A and 3B, the analysis model 31 includes a hat cross-sectional component 33 having a height of 80 mm and a flat plate 35 having a width of 120 mm that covers the opening of the hat cross-sectional component 33. And is formed in a cylindrical shape having a length of 800 mm. The width of the flange portion 33a of the hat cross-sectional component 33 is 20 mm. The hat cross-sectional component 33 and the flat plate 35 are joined by spot welding the flange portion 33a and the end portion of the flat plate 35 that contacts the flange portion 33a. Spot welding is performed with a spot having a diameter of 6 mm at a position of 7.5 mm from the width direction end of the flange portion 33 a at a pitch of 40 mm in the longitudinal direction of the hat cross-sectional component 33. The thickness of the analysis model 31 is 1.2 mm.
<領域分割手段>
領域分割手段15は、解析モデルに基準となる基準軸を設定し、解析モデルの任意の範囲に基準軸に対して所定の角度の平面で、任意の幅の複数領域に分割を行う。
各領域の幅は、等間隔な幅であってもよいし、領域毎に異なってもよい。あるいは、例えばバルクヘッドが設置可能な幅など、実際に補強する際の幅を想定して決定してもよいし、それよりももっと細かい幅にしてもよい。
基準軸は、上記のような領域分割が行いやすいように設定する。例えば、解析する部品の形状に沿うような軸を設定すればよい。
図4は、中空部品の解析モデル31についての領域分割の一例を説明する図である。基準軸は解析モデル31の長手方向軸とし、解析モデル31の一端を基準として、長手方向位置200mmから500mmの間に、解析モデル31の該基準軸に対して垂直な平面で、20mm幅で15領域に分割した。図4において分割後の各領域を他の領域と区別可能なように灰色の濃淡で色分けして示す。
<Area dividing means>
The area dividing unit 15 sets a reference axis serving as a reference for the analysis model, and divides the analysis model into a plurality of areas having an arbitrary width on a plane having a predetermined angle with respect to the reference axis in an arbitrary range of the analysis model.
The width of each region may be a uniform width or may be different for each region. Alternatively, the width may be determined by assuming the width at which the bulkhead can be actually reinforced, for example, the width at which the bulkhead can be installed, or a width that is finer than that.
The reference axis is set so that the region division as described above can be easily performed. For example, an axis along the shape of the component to be analyzed may be set.
FIG. 4 is a diagram for explaining an example of region division for the analysis model 31 of the hollow part. The reference axis is the longitudinal axis of the analysis model 31, and is a plane perpendicular to the reference axis of the analysis model 31 between the longitudinal positions 200 mm and 500 mm with one end of the analysis model 31 as a reference and 15 mm in width of 20 mm. Divided into areas. In FIG. 4, each divided region is color-coded with gray shades so that it can be distinguished from other regions.
<剛性変更手段>
剛性変更手段17は、領域分割手段15で分割された領域のうちの任意の領域の剛性を変更する。剛性の変更は、例えば、任意の領域の弾性率を高くしたり、逆に低くしたり、板厚を増減させたりすることで行う。なお、ここでいう弾性率とは、ヤング率、ポアソン比、体積弾性率、剛性率のことである。
なお、分割領域の断面積が異なる部品(例えば一端から他端に向かって縮径するような部品)について、各領域の幅が同一であれば、各領域の板厚を一様に増減させると、該板厚の増減に伴う重量増減量が各領域で異なることになる。この場合、板厚の増減を一様にするのではなく、重量増減量が同一になるように、各領域の板厚の増減を調整してもよい。
<Rigidity change means>
The rigidity changing means 17 changes the rigidity of an arbitrary area among the areas divided by the area dividing means 15. The rigidity is changed by, for example, increasing the elastic modulus in an arbitrary region, conversely decreasing it, or increasing or decreasing the plate thickness. Here, the elastic modulus means Young's modulus, Poisson's ratio, bulk elastic modulus, and rigidity.
In addition, if the width of each region is the same for components having different cross-sectional areas (for example, components whose diameter decreases from one end to the other), the thickness of each region is increased or decreased uniformly. Thus, the amount of weight increase / decrease accompanying the increase / decrease of the plate thickness is different in each region. In this case, the increase / decrease in the plate thickness in each region may be adjusted so that the increase / decrease in the plate thickness is not made uniform but the weight increase / decrease amount is the same.
<剛性解析手段>
剛性解析手段19は、剛性変更手段17で剛性が一部変更された各解析モデルについて剛性解析を行う。剛性解析は、部品単体の解析モデルについて行ってもよいし、部品の解析モデルを構造体の解析モデルに組み込んだ状態で、構造体全体の剛性解析を行ってもよい。
<Rigidity analysis means>
The rigidity analysis means 19 performs rigidity analysis on each analysis model whose rigidity has been partially changed by the rigidity change means 17. The stiffness analysis may be performed on an analysis model of a single component, or the stiffness analysis of the entire structure may be performed in a state where the analysis model of the component is incorporated in the analysis model of the structure.
<最適補強位置検出手段>
最適補強位置検出手段21は、複数の剛性解析結果に基づいて部品における最適な局所的補強位置を検出する。
<Optimum reinforcement position detection means>
The optimum reinforcement position detecting means 21 detects an optimum local reinforcement position in the part based on a plurality of rigidity analysis results.
〔最適局所的補強位置検出方法〕
以上のように構成された本実施の最適局所的補強位置検出装置1を用いて最適な局所的補強位置を検出する方法の一例を、最適局所的補強位置検出装置1の動作と共に、図1のフローチャート図および図3〜図10に基づいて説明する。
上述の解析モデル31(図3参照)を例として最適な局所的補強位置の検出する場合について以下の説明を行う。
[Optimum local reinforcement position detection method]
An example of a method for detecting an optimum local reinforcement position using the optimum local reinforcement position detection apparatus 1 of the present embodiment configured as described above, together with the operation of the optimum local reinforcement position detection apparatus 1, is shown in FIG. This will be described with reference to the flowchart diagram and FIGS.
The case where the optimal local reinforcement position is detected will be described below by taking the analysis model 31 (see FIG. 3) as an example.
<解析モデル生成工程>
まず、解析モデル生成手段13を用いて、中空部品の解析モデル31を生成する(解析モデル生成工程S1)。本実施の形態では、板厚を1.2mm、メッシュサイズ10mm×10mmで生成した。
<Analysis model generation process>
First, an analysis model 31 of a hollow part is generated using the analysis model generation means 13 (analysis model generation step S1). In the present embodiment, the plate thickness is 1.2 mm and the mesh size is 10 mm × 10 mm.
<領域分割工程>
次に、領域分割手段15を用いて解析モデル31を、任意の範囲に前記基準軸に対して所定の角度で任意の幅の複数領域に分割する(領域分割工程S3)。本実施の形態では、図4に示すように20mm幅で15分割の複数の領域に分割した。
<Area division process>
Next, the analysis model 31 is divided into a plurality of regions having an arbitrary width at a predetermined angle with respect to the reference axis by using the region dividing means 15 (region dividing step S3). In this embodiment, as shown in FIG. 4, it is divided into a plurality of 15-divided areas with a width of 20 mm.
<剛性変更工程>
次に、剛性変更手段17を用いて領域分割工程S3で分割された領域のうち任意の領域について剛性を変更する(剛性変更工程S5)。本実施の形態では、剛性を変更する領域の板厚を他の領域の2倍の2.4mmにするものとした。
<Rigidity change process>
Next, the stiffness is changed for an arbitrary region among the regions divided in the region dividing step S3 using the stiffness changing means 17 (rigidity changing step S5). In this embodiment, the thickness of the region where the rigidity is changed is set to 2.4 mm, which is twice that of the other regions.
<剛性解析工程>
次に、剛性解析手段19を用いて、剛性変更工程S5で剛性が一部変更された各解析モデル31について剛性解析を行う(剛性解析工程S7)。
本実施の形態では、解析モデル31単体の剛性解析を行うに際して、荷重拘束条件の例として曲げ荷重条件と、ねじり荷重条件と、コイル支持部への水平方向荷重条件の3条件で行うものとした。以下に詳細に説明する。
<Rigidity analysis process>
Next, the stiffness analysis is performed on each analysis model 31 whose stiffness has been partially changed in the stiffness changing step S5 using the stiffness analyzing means 19 (stiffness analyzing step S7).
In the present embodiment, when performing the rigidity analysis of the analysis model 31 alone, it is performed under the three conditions of the bending load condition, the torsion load condition, and the horizontal load condition to the coil support section as an example of the load constraint condition. . This will be described in detail below.
曲げ荷重条件は、図5(a)に示すように、解析モデル31の一端を完全に拘束し、他端面の中心に下方向に490Nの荷重を付与したものである。図5(b)に曲げ荷重付与後の解析モデル31の変形状態を示す。 As shown in FIG. 5A, the bending load condition is one in which one end of the analysis model 31 is completely restrained and a load of 490 N is applied downward to the center of the other end surface. FIG. 5B shows a deformation state of the analysis model 31 after the bending load is applied.
ねじり荷重条件は、図6に示すように、曲げ荷重条件の場合と同様に一端を完全に拘束し、解析モデル31の他端面の中心に、1×106N・mmのねじりモーメントを付与したものである。図6(b)にねじり荷重付与後の解析モデル31の変形状態を示す。 As shown in FIG. 6, the torsional load condition was completely restrained at one end as in the case of the bending load condition, and a torsional moment of 1 × 10 6 N · mm was applied to the center of the other end face of the analysis model 31. Is. FIG. 6B shows a deformation state of the analysis model 31 after the torsional load is applied.
コイル支持部への水平方向荷重条件は、図7に示すように、解析モデル31の両端を完全に拘束し、解析モデル31の上面中央(長手方向位置400mm)に設けたコイル支持部31aに、水平方向に解析モデル31の長手方向に直交するように10Nの荷重を付与したものである。図7(b)に水平方向荷重付与後の解析モデル31の変形状態を示す。 As shown in FIG. 7, the horizontal load condition on the coil support part is that the both ends of the analysis model 31 are completely restrained, and the coil support part 31 a provided at the center of the upper surface of the analysis model 31 (longitudinal position 400 mm) A load of 10 N is applied so as to be orthogonal to the longitudinal direction of the analysis model 31 in the horizontal direction. FIG. 7B shows the deformation state of the analysis model 31 after the horizontal load is applied.
<最適補強位置検出工程>
次に、最適補強位置検出手段21を用いて剛性解析工程S7の結果に基づいて、解析モデル31における最適な局所的補強位置を検出する(最適補強位置検出工程S9)。上記拘束荷重条件毎の剛性解析結果について以下に、図8〜図10に基づいて説明する。
<Optimum reinforcement position detection process>
Next, the optimum local reinforcement position in the analysis model 31 is detected based on the result of the stiffness analysis step S7 using the optimum reinforcement position detection means 21 (optimum reinforcement position detection step S9). The rigidity analysis result for each constraint load condition will be described below with reference to FIGS.
曲げ荷重を付与した場合の剛性解析の結果を図8に示す。図8は、剛性を変更した解析モデル31毎の剛性変化率をグラフ化したものである。図8の縦軸は、剛性変化率(%)を示しており、横軸は解析モデル31の剛性を変更した20mm領域の拘束した一端からの長手方向中央位置(mm)を示している。剛性変化率(%)は、剛性解析工程S7における剛性解析結果G1と、比較のために行った剛性を変更させない場合の剛性解析結果G2とを下式(1)で比較したものである。
剛性変化率(%)=|G2−G1|/G1×100 ・・・(1)
FIG. 8 shows the result of rigidity analysis when a bending load is applied. FIG. 8 is a graph of the rate of change in stiffness for each analysis model 31 whose stiffness has been changed. The vertical axis in FIG. 8 indicates the rigidity change rate (%), and the horizontal axis indicates the central position (mm) in the longitudinal direction from the constrained one end of the 20 mm region in which the rigidity of the analysis model 31 is changed. The stiffness change rate (%) is obtained by comparing the stiffness analysis result G1 in the stiffness analysis step S7 with the stiffness analysis result G2 when the stiffness performed for comparison is not changed by the following equation (1).
Rigidity change rate (%) = | G2-G1 | / G1 × 100 (1)
曲げ荷重を付与した場合、図8に示す通り、荷重付与側から拘束側になるにしたがって剛性変化率が上がっている。このことから、荷重付与側の領域の剛性を向上させるよりも、拘束側の領域の剛性を向上させる方が解析モデル31の剛性が向上することが分かる。なお、図8中の矢印で示す各プロットは、溶接スポットの位置を示している。 When a bending load is applied, as shown in FIG. 8, the rate of change in stiffness increases as the load is applied to the restraint side. From this, it can be seen that the rigidity of the analysis model 31 is improved by improving the rigidity of the restraining side area rather than improving the rigidity of the load applying side area. In addition, each plot shown by the arrow in FIG. 8 has shown the position of the welding spot.
図9は、ねじり荷重を付与した場合の剛性解析の結果を示したものである。図9の縦軸と横軸は図8と同様であるのでその説明を省略する。
ねじり荷重を付与した場合、図9に示す通りほぼ横ばいであり、これはどの位置であっても剛性向上は同じことを意味している。なお、図9中の矢印で示す各プロットは、図8の場合と同様に溶接スポットの影響で両隣のプロットの値よりわずかに剛性変化率が高くなる。
FIG. 9 shows the result of stiffness analysis when a torsional load is applied. The vertical and horizontal axes in FIG. 9 are the same as those in FIG.
When a torsional load is applied, it is almost flat as shown in FIG. 9, which means that the rigidity improvement is the same at any position. In addition, each plot shown by the arrow in FIG. 9 becomes slightly higher in the stiffness change rate than the values of the adjacent plots due to the influence of the welding spot as in the case of FIG.
図10は、解析モデル31の上面中央にコイル支持部37aを設け、該コイル支持部37aへの水平方向荷重を付与した場合の剛性解析の結果を示したものである。図10の縦軸と横軸は、図8および図9と同様である。
コイル支持部37aへの水平方向荷重を付与した場合、図10に示す通り、コイル支持部37a(長手方向位置400mm)近傍の領域の剛性を向上させた場合の剛性変化率が高くなっている。このことは、コイル支持部37a近傍を補強することが、解析モデル31(中空部品)の剛性を高めるのに最も効果的であることを意味している。
FIG. 10 shows the result of rigidity analysis when a coil support portion 37a is provided in the center of the upper surface of the analysis model 31 and a horizontal load is applied to the coil support portion 37a. The vertical and horizontal axes in FIG. 10 are the same as those in FIGS. 8 and 9.
When a horizontal load is applied to the coil support portion 37a, as shown in FIG. 10, the rigidity change rate when the rigidity of the region in the vicinity of the coil support portion 37a (longitudinal position 400 mm) is improved is high. This means that reinforcing the vicinity of the coil support portion 37a is most effective in increasing the rigidity of the analysis model 31 (hollow part).
上記の結果に基づいて、例えばコイル支持部37aへの水平方向荷重を付与した場合についての最適補強位置を検出する場合、上述したとおり、コイル支持部37a近傍の剛性を向上させることが最も効果的であるので、最適補強位置検出手段21によって、最適補強位置としてコイル支持部37a近傍が検出される。 Based on the above results, for example, when detecting the optimum reinforcement position when a horizontal load is applied to the coil support portion 37a, it is most effective to improve the rigidity in the vicinity of the coil support portion 37a as described above. Therefore, the optimum reinforcement position detecting means 21 detects the vicinity of the coil support portion 37a as the optimum reinforcement position.
なお、上記では、最適局所的補強位置検出装置1は、最適補強位置検出手段21を有している場合について説明したが、最適補強位置検出手段21を有していなくてもよい。この場合、剛性解析結果に基づいてオペレータが判断すればよい。 In the above description, the optimum local reinforcement position detection device 1 has been described as having the optimum reinforcement position detection means 21, but may not have the optimum reinforcement position detection means 21. In this case, the operator may determine based on the rigidity analysis result.
以上のように、本実施の形態においては、部品の任意の領域毎に部品自体の剛性を変化させて剛性解析を行い比較することで、どの領域の剛性が全体の剛性に最も寄与しているかを確認することができ、その結果に基づいて部品における最適な補強位置を検出することができる。 As described above, in the present embodiment, which region contributes most to the overall stiffness by changing the stiffness of the component itself for each arbitrary region of the component and performing a stiffness analysis and comparison. Can be confirmed, and based on the result, the optimum reinforcement position in the part can be detected.
なお、部品の剛性を向上させたい場合には、上記のようにして検出された局所的補強位置に基づいて、局所的補強部材(例えばバルクヘッド)を後から設置すればよい。また、局所的補強位置を補強できるようなテーラードブランク材を用いて部品を作成すれば、局所的補強部材を設置する場合と同様に、部品の剛性を効果的に向上させることができる。 When it is desired to improve the rigidity of the component, a local reinforcing member (for example, a bulkhead) may be installed later based on the local reinforcing position detected as described above. Moreover, if a part is created using the tailored blank material which can reinforce a local reinforcement position, the rigidity of a part can be improved effectively similarly to the case where a local reinforcement member is installed.
本発明の最適局所的補強位置検出装置1による作用効果について、具体的な実施例に基づいて説明する。
上記の実施の形態においては、剛性解析工程S7において部品(中空部品の解析モデル31)単体での剛性解析を行ったが、例えば、構造体を構成する一部品について本発明の解析モデル生成工程S1、領域分割工程S3、剛性変更工程S5を適用して、剛性解析工程S7を行うにあたって、該部品を構造体に組み込んだ状態で構造体の剛性解析を行うことで、該剛性変更の構造体全体の剛性への影響が分かる。
そこで、本実施例においては、図11に示す車体41を構成する一部品であるリアサイドメンバ43について上記各工程(解析モデル生成工程S1、領域分割工程S3、剛性変更工程S5)を適用し、リアサイドメンバ43が車体41に組み込まれた状態で剛性解析を行った(図12(a)参照)。
The effects of the optimum local reinforcement position detection device 1 according to the present invention will be described based on specific examples.
In the above-described embodiment, the rigidity analysis of the component (hollow component analysis model 31) alone is performed in the stiffness analysis step S7. For example, the analysis model generation step S1 of the present invention is performed for one component constituting the structure. When the stiffness analysis step S7 is performed by applying the region dividing step S3 and the stiffness changing step S5, the stiffness analysis of the structure is performed in a state in which the part is incorporated in the structure, so that the entire structure of the stiffness change is performed. You can see the effect on the stiffness.
Therefore, in the present embodiment, the above-described steps (analysis model generation step S1, region division step S3, stiffness change step S5) are applied to the rear side member 43 which is one part constituting the vehicle body 41 shown in FIG. Rigidity analysis was performed with the member 43 incorporated in the vehicle body 41 (see FIG. 12A).
解析に用いた車体41の寸法は、巾1200mm、長さ3350mm、高さ1130mmで、板厚0.8mmから2.0mmの鋼板および鋼材を用いた。基準の重量は125kgである。
リアサイドメンバ43は、コの字断面形状を有し、全体の長さが1030mmの長尺の部品であり、車体41の左右後方に組み込まれている。リアサイドメンバ43は、左右で同じ形状であるため、左後方のリアサイドメンバ43を例に挙げて以下の説明をする。リアサイドメンバ43は、車体41に組み込まれた状態の下面側にコイル支持部Aを有しており、コイル支持部Aにおいて図示しないコイルによって車体41が支持される。
The dimensions of the vehicle body 41 used for the analysis were steel plates and steel materials having a width of 1200 mm, a length of 3350 mm, a height of 1130 mm, and a thickness of 0.8 mm to 2.0 mm. The reference weight is 125kg.
The rear side member 43 is a long component having a U-shaped cross-sectional shape and an overall length of 1030 mm, and is incorporated in the left and right rear sides of the vehicle body 41. Since the rear side member 43 has the same shape on the left and right, the following description will be given by taking the rear side member 43 on the left rear as an example. The rear side member 43 has a coil support portion A on the lower surface side in a state of being incorporated in the vehicle body 41, and the vehicle body 41 is supported by a coil (not shown) in the coil support portion A.
領域分割は、図12に示すように、各リアサイドメンバ43の所定の範囲(詳細は後述する)を、領域幅を40mmとして車体前方から40mmピッチで1ピッチおきに13個の領域に分割した。図12において分割後の各領域を他の領域と区別可能なように灰色の濃淡で色分けして示す。
剛性変更は、上記分割した13個の領域のうちの任意の1つの領域の板厚を10倍(0.8mm×10=8mm)に変更するものとした。
剛性解析の荷重拘束条件は図13に示すように、4箇所のコイル支持部(コイル支持部A、コイル支持部B、コイル支持部C、コイル支持部D)のうち3箇所を拘束して他の1箇所に0.5kNの荷重を与えるという車体ねじり荷重を、荷重を付与する箇所を4箇所ごとに変えて4条件で剛性解析を行い、該4条件の剛性解析結果の平均値を求めた。なお、車体41の元形状(剛性向上策を講じないリアサイドメンバ43を組み込んだ車体41)でのねじり剛性の平均値は25.1(kN*m/deg)である。
As shown in FIG. 12, the predetermined range (details will be described later) of each rear side member 43 is divided into 13 regions every other pitch at a pitch of 40 mm from the front of the vehicle body with a region width of 40 mm. In FIG. 12, each divided area is color-coded with gray shades so that it can be distinguished from other areas.
The rigidity was changed by changing the plate thickness of any one of the 13 divided areas to 10 times (0.8 mm × 10 = 8 mm).
As shown in FIG. 13, the load constraint condition of the stiffness analysis is restricted by restricting three of the four coil support portions (coil support portion A, coil support portion B, coil support portion C, coil support portion D). The vehicle body torsional load of applying a load of 0.5 kN to one place was subjected to rigidity analysis under four conditions by changing the place where the load was applied to every four places, and the average value of the rigidity analysis results under the four conditions was obtained. The average value of the torsional rigidity in the original shape of the vehicle body 41 (the vehicle body 41 incorporating the rear side member 43 that does not take rigidity improvement measures) is 25.1 (kN * m / deg).
また、比較例として、従来方法に基づいて、人手により、図12(b)に示すように、各リアサイドメンバ43の発明例と同様の範囲にバルクヘッド45(図14参照、幅97mm、高さ148mm、フランジ部幅25mm)を1つ設置した解析モデルを作成して、作成した解析モデルを車体41に組み込んだ。その後、車体41の剛性解析を行った。続いて、バルクヘッド45の設置位置を40mmずらして解析モデルを作成し、車体41に組み込んで剛性解析を行い、同様の作業を13通り繰り返した。このように、比較例では解析したい条件毎に1つ1つ解析モデルを作成し直して構造体に組み込んで剛性解析しなければならず非常に手間である。この点、本発明においてはその手間が掛からない。
なお、バルクヘッド45の設置は、バルクヘッド45のフランジ部45aの中央とリアサイドメンバ43をスポット溶接で溶接することで行った。
Further, as a comparative example, the bulkhead 45 (see FIG. 14, width 97 mm, height) within the same range as the invention example of each rear side member 43 as shown in FIG. An analysis model with one 148 mm flange width 25 mm) was created, and the created analysis model was incorporated into the vehicle body 41. Thereafter, rigidity analysis of the vehicle body 41 was performed. Subsequently, an analysis model was created by shifting the installation position of the bulkhead 45 by 40 mm, and the analysis model was incorporated into the vehicle body 41 to perform rigidity analysis. The same operation was repeated 13 times. As described above, in the comparative example, it is necessary to recreate an analysis model one by one for each condition to be analyzed, incorporate it into the structure, and analyze the rigidity. In this respect, the present invention does not require time and effort.
The bulkhead 45 was installed by welding the center of the flange portion 45a of the bulkhead 45 and the rear side member 43 by spot welding.
剛性解析の結果を図15に示す。図15の縦軸は、剛性向上対策を講じていない車体41と比較した車体全体の剛性向上率(%)を表しており、横軸は、車体41における前席シート付近を原点とし、リアサイドメンバ43に至る方向をプラス方向とした長さを示している。図15(a)は発明例の剛性解析結果であり、図15(b)は比較例の剛性解析結果である。 The result of the stiffness analysis is shown in FIG. The vertical axis in FIG. 15 represents the rigidity improvement rate (%) of the entire vehicle body as compared with the vehicle body 41 that has not taken rigidity improvement measures, and the horizontal axis represents the vicinity of the front seat in the vehicle body 41 as the origin, and the rear side member. The length in which the direction reaching 43 is the plus direction is shown. FIG. 15A shows the rigidity analysis result of the invention example, and FIG. 15B shows the rigidity analysis result of the comparative example.
図15(a)のグラフから分かる通り、発明例では前席シート付近からの距離1260mm〜1740mmの間を領域分割した。図15(a)に示す通り、発明例では前席シート付近からの距離1660mm(コイル支持部Aを有する領域の板厚を厚くした場合の剛性解析結果)で最大値(剛性向上率=約4.2%)になっており、前席シート付近からの距離1660mmの前後で急激にグラフが変化している。このことから、前席シート付近からの距離1660mmの位置が最適局所的補強位置であることが明確に分かる。 As can be seen from the graph of FIG. 15 (a), in the inventive example, the region between the distance of 1260 mm and 1740 mm from the vicinity of the front seat is divided. As shown in FIG. 15A, in the invention example, the maximum value (stiffness improvement rate = about 4.2) at a distance of 1660 mm from the vicinity of the front seat (the rigidity analysis result when the thickness of the region having the coil support portion A is increased). The graph changes rapidly around the distance of 1660mm from the vicinity of the front seat. This clearly shows that the position at a distance of 1660 mm from the vicinity of the front seat is the optimum local reinforcement position.
他方、比較例の場合、図15(b)に示す通り、グラフの傾きが緩やかであり、剛性向上率の最大値を示すプロットが2つ(1620mm、1660mm)あり、どの位置が最適局所的補強位置であるかが明確でない。これは、以下の理由が考えられる。バルクヘッド45の最大の補強効果を有する位置は縦壁部45bのある位置であるが、バルクヘッド45の設置位置はフランジ部45aの中央にある溶接スポットの位置であり、両者の位置がずれている。車体41に荷重を付加する場合、まず溶接スポットに荷重が付加され、フランジ部45aを介して縦壁部45bに付加される構造であるので、最適補強位置が設置位置からずれて検出される。このようにバルクヘッド45を直接車体41に組み込んで剛性解析を行う場合、正確な解が得られない。 On the other hand, in the case of the comparative example, as shown in FIG. 15B, the slope of the graph is gentle, and there are two plots (1620mm, 1660mm) showing the maximum value of the rigidity improvement rate, which position is the optimum local reinforcement. It is not clear whether it is a position. The following reasons can be considered for this. The position where the bulkhead 45 has the maximum reinforcing effect is the position where the vertical wall portion 45b is located, but the installation position of the bulkhead 45 is the position of the welding spot in the center of the flange portion 45a, and the positions of both are shifted. Yes. When a load is applied to the vehicle body 41, the load is first applied to the welding spot, and is added to the vertical wall portion 45b via the flange portion 45a. Therefore, the optimum reinforcement position is detected with a deviation from the installation position. As described above, when the bulkhead 45 is directly incorporated in the vehicle body 41 and the rigidity analysis is performed, an accurate solution cannot be obtained.
以上のように、本発明によれば、部品(リアサイドメンバ43)の任意の領域毎に部品(リアサイドメンバ43)自体の剛性を変化させて剛性解析を行い比較することで、どの領域の剛性が構造体(車体41)全体の剛性に最も寄与しているかを確認することができ、その結果に基づいて部品(リアサイドメンバ43)における最適な局所的補強位置を検出することができる。 As described above, according to the present invention, the rigidity of the part (rear side member 43) itself is changed for each arbitrary region of the part (rear side member 43), and the rigidity analysis is performed and compared. It can be confirmed whether it contributes most to the rigidity of the entire structure (vehicle body 41), and based on the result, the optimum local reinforcement position in the component (rear side member 43) can be detected.
また、局所的補強部材(バルクヘッド45等)を設置して解析できないような領域にも、本発明においては、該領域のパラメータを変更して解析を行えばよい。
また、局所的補強部材(バルクヘッド45等)を設置して解析する場合のように、局所的補強部材の形状や設置条件に影響されることがないため、正確な局所的補強位置を検出することができる。
また、部品(リアサイドメンバ43)を車体に組み込んだままでも、部品単体で解析を行う場合と同様に適用できるため、部品ごとの車体41の解析モデル作成の手間がかからず、非常に効率的である。
Further, in the present invention, the analysis may be performed by changing the parameters of the region even in a region where the local reinforcing member (such as the bulkhead 45) cannot be installed and analyzed.
In addition, it is not affected by the shape and installation conditions of the local reinforcement member as in the case of installing and analyzing the local reinforcement member (bulk head 45 etc.), so that the accurate local reinforcement position is detected. be able to.
In addition, even if the part (rear side member 43) is still incorporated in the vehicle body, it can be applied in the same manner as the case where the analysis is performed on a single part, so that it does not take time to create an analysis model of the vehicle body 41 for each part and is very efficient. It is.
また、最適な局所的補強位置に基づいて補強することにより剛性や衝突特性等が向上すれば、その向上分、部品を軽量化することもできる。 Further, if the rigidity, the collision characteristics, and the like are improved by reinforcing based on the optimum local reinforcing position, the parts can be reduced in weight by the improvement.
A、B、C、D コイル支持部
1 最適局所的補強位置検出装置
3 表示装置
5 入力装置
7 主記憶装置
9 補助記憶装置
11 演算処理部
13 解析モデル生成手段
15 領域分割手段
17 剛性変更手段
19 剛性解析手段
21 最適補強位置検出手段
31 解析モデル
31a コイル支持部
33 ハット断面部品
33a フランジ部
35 平板
41 車体
43 リアサイドメンバ
45 バルクヘッド
45a フランジ部
45b 縦壁部
A, B, C, D Coil support 1 Optimal local reinforcement position detection device 3 Display device 5 Input device 7 Main storage device 9 Auxiliary storage device 11 Arithmetic processing unit 13 Analysis model generation means 15 Region division means 17 Stiffness change means 19 Rigidity analysis means 21 Optimal reinforcement position detection means 31 Analysis model 31a Coil support part 33 Hat cross-section part 33a Flange part 35 Flat plate 41 Car body 43 Rear side member 45 Bulk head 45a Flange part 45b Vertical wall part
Claims (7)
解析モデル生成手段が、平面要素および/または立体要素を用いて前記部品の構造解析モデルを生成する構造解析モデル生成工程と、
領域分割手段が、該生成された構造解析モデルに基準となる基準軸を設定し、前記構造解析モデルの任意の範囲に前記基準軸に対して所定の角度で任意の幅の複数領域に分割を行う領域分割工程と、
剛性変更手段が、前記分割された領域のうち任意の領域について、弾性率を高くしたり、板厚を増減させたりして、剛性を変更する剛性変更工程と、
剛性解析手段が、剛性が一部変更された前記各構造解析モデルについて、前記解析モデルの少なくとも一端を拘束して剛性解析を行う剛性解析工程と、
最適補強位置検出手段が、前記複数の剛性解析結果に基づいて前記部品における最適な局所的補強位置を検出する最適補強位置検出工程と、を有することを特徴とする最適局所的補強位置検出方法。 An optimum local reinforcement position detection method in which a computer detects a local optimum reinforcement position in a part constituting a structure by structural analysis, and each means realized by the computer executing a program performs each step Is,
Analysis model generating means comprises a structural analysis model generating step of generating a structural analysis model of the part using the planar element and / or three-dimensional elements,
A region dividing unit sets a reference axis serving as a reference for the generated structural analysis model , and divides the structure analysis model into a plurality of regions having an arbitrary width at a predetermined angle with respect to the reference axis within an arbitrary range of the structural analysis model. A region dividing step to be performed;
A rigidity changing step in which the rigidity changing means changes the rigidity by increasing the elastic modulus or increasing / decreasing the plate thickness for an arbitrary area among the divided areas;
A rigidity analysis step in which rigidity analysis means performs rigidity analysis by constraining at least one end of the analysis model for each structural analysis model in which the rigidity is partially changed;
An optimum local reinforcement position detection method, comprising: an optimum reinforcement position detection step in which an optimum reinforcement position detection means detects an optimum local reinforcement position in the part based on the plurality of rigidity analysis results.
徴とする請求項1に記載の最適局所的補強位置検出方法。 The optimal local reinforcement position detection method according to claim 1, wherein the rigidity changing step changes a plate thickness and / or an elastic modulus of the arbitrary region.
置に基づいて、バルクヘッドを設置して部品を補強することを特徴とする部品の補強方法
。 A method for reinforcing a part, comprising: installing a bulkhead to reinforce the part based on the optimum local reinforcement position detected by the optimum local reinforcement position detection method according to claim 1.
置に基づいて、テーラードブランク材を用いて部品を補強することを特徴とする部品の補
強方法。 A method for reinforcing a part, comprising: reinforcing a part using a tailored blank material based on the optimum local reinforcement position detected by the optimum local reinforcement position detection method according to claim 1.
平面要素および/または立体要素を用いて前記部品の構造解析モデルを生成する解析モデル生成手段と、
該生成された構造解析モデルに基準となる基準軸を設定し、前記構造解析モデルの任意の範囲に前記基準軸に対して所定の角度で任意の幅の複数領域に分割を行う領域分割手段と、
前記分割された領域のうち任意の領域について、弾性率を高くしたり、板厚を増減させたりして、剛性を変更する剛性変更手段と、
剛性が一部変更された前記各構造解析モデルについて、前記解析モデルの少なくとも一端を拘束して剛性解析を行う剛性解析手段と、を有することを特徴とする最適局所的補強位置検出装置。 An optimum local reinforcement position detecting device for detecting a local optimum reinforcement position in a part constituting a structure by structural analysis ,
An analysis model generating means for generating a structural analysis model of the part using a planar element and / or a three-dimensional element;
A region dividing means for setting a reference axis serving as a reference to the generated structural analysis model, and dividing into a plurality of regions having an arbitrary width at a predetermined angle with respect to the reference axis in an arbitrary range of the structural analysis model; ,
Rigidity changing means for changing the rigidity by increasing the elastic modulus or increasing or decreasing the plate thickness for an arbitrary area among the divided areas,
An optimum local reinforcement position detecting apparatus , comprising: a stiffness analysis unit that performs a stiffness analysis by restraining at least one end of the analysis model with respect to each structural analysis model in which the stiffness is partially changed.
最適補強位置検出手段を有することを特徴とする請求項5に記載の最適局所的補強位置検
出装置。 6. The optimum local reinforcement position detecting device according to claim 5, further comprising optimum reinforcement position detecting means for detecting an optimum local reinforcement position in the part based on the plurality of rigidity analysis results.
徴とする請求項5または6に記載の最適局所的補強位置検出装置。
The optimal local reinforcement position detection apparatus according to claim 5 or 6, wherein the rigidity changing means changes a plate thickness and / or an elastic modulus of the arbitrary region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012191164A JP6048006B2 (en) | 2012-08-31 | 2012-08-31 | Method and apparatus for detecting optimum local reinforcement position of component constituting structure, and method for reinforcing component based on optimum local reinforcement position detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012191164A JP6048006B2 (en) | 2012-08-31 | 2012-08-31 | Method and apparatus for detecting optimum local reinforcement position of component constituting structure, and method for reinforcing component based on optimum local reinforcement position detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014048886A JP2014048886A (en) | 2014-03-17 |
JP6048006B2 true JP6048006B2 (en) | 2016-12-21 |
Family
ID=50608498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012191164A Active JP6048006B2 (en) | 2012-08-31 | 2012-08-31 | Method and apparatus for detecting optimum local reinforcement position of component constituting structure, and method for reinforcing component based on optimum local reinforcement position detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6048006B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6798595B1 (en) * | 2019-09-19 | 2020-12-09 | Jfeスチール株式会社 | Vibration noise reduction analysis method and analysis equipment for automobile panel parts |
CN117538430B (en) * | 2024-01-04 | 2024-03-26 | 西安建筑科技大学 | Building structure reinforcement method and monitoring system based on data identification |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0920267A (en) * | 1995-07-07 | 1997-01-21 | Hino Motors Ltd | Pillar structure of automobile |
JP2000197969A (en) * | 1998-12-25 | 2000-07-18 | Sumitomo Metal Ind Ltd | Blank for integrally forming and forming method thereof |
JP2002215680A (en) * | 2001-01-16 | 2002-08-02 | Toyota Central Res & Dev Lab Inc | Method of designing structure, and recording medium |
JP4525092B2 (en) * | 2004-01-29 | 2010-08-18 | 横浜ゴム株式会社 | Golf swing sensitivity evaluation method and golf swing sensitivity evaluation apparatus for rigidity distribution of golf club shaft |
JP4739147B2 (en) * | 2006-08-28 | 2011-08-03 | トヨタ自動車株式会社 | Shape defect factor identification method, apparatus and program |
JP4418449B2 (en) * | 2006-09-08 | 2010-02-17 | 新日本製鐵株式会社 | Springback occurrence cause identifying method, apparatus thereof, and program thereof |
JP4973296B2 (en) * | 2007-04-18 | 2012-07-11 | トヨタ自動車株式会社 | Vibration countermeasure support system, vibration countermeasure support method, vibration countermeasure support program |
JP4744542B2 (en) * | 2008-03-11 | 2011-08-10 | 関東自動車工業株式会社 | Design support device |
TWI438041B (en) * | 2008-09-30 | 2014-05-21 | Nippon Steel & Sumitomo Metal Corp | Forming simulation method, forming simulation apparatus, forming simuration program and media for storing the program, and forming method using the simulation result |
-
2012
- 2012-08-31 JP JP2012191164A patent/JP6048006B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014048886A (en) | 2014-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8689637B2 (en) | Fracture analysis method, device, and program for spot welded portion, and computer-readable recording medium | |
KR101628644B1 (en) | Analyzing method and apparatus for optimizing welding position of structure | |
WO2014034953A1 (en) | Springback suppression component and method for manufacturing same | |
JP5942872B2 (en) | Method and apparatus for optimizing analysis of joint position of structure | |
EP3751435A1 (en) | Automotive body adhesive bonding position optimization analysis method and optimization analysis device | |
KR101974892B1 (en) | Vehicle body stiffness analysis method | |
JP5445529B2 (en) | Method and apparatus for optimizing analysis of joint position of structure | |
KR20190008351A (en) | Method and apparatus for optimizing joint position of vehicle body | |
KR20190085126A (en) | Shape optimizing method and shape optimizing device for reinforcing member of vehicle body | |
WO2019077834A1 (en) | Layered composite member shape optimization analyzing method and shape optimization analyzing device | |
JP6048006B2 (en) | Method and apparatus for detecting optimum local reinforcement position of component constituting structure, and method for reinforcing component based on optimum local reinforcement position detection method | |
JP2008102041A (en) | Rigidity analysis system of structure and its program | |
JP6172104B2 (en) | Apparatus and method for specifying site for continuous joining of structure model | |
EP4140859B1 (en) | Method and device for optimization analysis of joining position in automotive body | |
JP5302909B2 (en) | Dent stiffness prediction method | |
JP2019128868A (en) | Shape optimization analysis method for stiffening member of car body component and device therefor | |
JP7131064B2 (en) | Boundary condition setting method, boundary condition setting program, and boundary condition setting calculation device | |
JP5240031B2 (en) | Stiffening method for structures | |
JP4744541B2 (en) | Design support device | |
Zhou et al. | Spot weld layout optimization of tube crash performance with manufacturing constraints | |
US10509867B2 (en) | Structure design support device, structure design support method, program, and recording medium | |
JP7287336B2 (en) | Optimization analysis method and apparatus for joint position of car body | |
JP6414138B2 (en) | Body design support apparatus and method | |
WO2022163021A1 (en) | Method and device for determining dividing position and integration of automotive component | |
US20240320384A1 (en) | Optimization analysis method, apparatus, and program for joining positions of automotive body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161025 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6048006 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |