JP2011053807A - Device and method for collision analysis - Google Patents

Device and method for collision analysis Download PDF

Info

Publication number
JP2011053807A
JP2011053807A JP2009200568A JP2009200568A JP2011053807A JP 2011053807 A JP2011053807 A JP 2011053807A JP 2009200568 A JP2009200568 A JP 2009200568A JP 2009200568 A JP2009200568 A JP 2009200568A JP 2011053807 A JP2011053807 A JP 2011053807A
Authority
JP
Japan
Prior art keywords
collision
characteristic
strain
stress
modeled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009200568A
Other languages
Japanese (ja)
Inventor
Tomokazu Suzuki
友和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2009200568A priority Critical patent/JP2011053807A/en
Publication of JP2011053807A publication Critical patent/JP2011053807A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To analyze collision between an impact absorber and a vehicle by reproducing the collision naturally with high accuracy using a finite element model, without producing drag characteristics, deformation portion, deformation sequence and deformation shape (deformation type (break, crushed destruction)) which are different from actual characteristics in a wide characteristic range of a stress-distortion characteristic. <P>SOLUTION: An impact absorber 12 formed of integrated cylinder-shaped bodies, having axial lines mutually disposed in parallel, is modeled with a shell element by the finite element method. A collision analysis device 1 performs collision analysis by making collision in a predetermined manner between the impact absorber 12 and a collision object vehicle 21 which is modeled by the finite element method. To each element of the modeled impact absorber 12, a damage characteristic having a decreased stress accompanying an increased distortion is set in a predetermined first distortion area, as a characteristic between stress and distortion at compression. Also, a characteristic in which the element itself becomes extinct is set in a predetermined second distortion area. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ハニカム構造を有する衝撃吸収体を備えた車両衝突試験用バリア(ムービングバリア、固定バリア等)と車両との衝突を有限要素法によりシェル要素でモデル化して解析する衝突解析装置及び衝突解析方法に関する。   The present invention relates to a collision analysis apparatus for analyzing a collision between a vehicle collision test barrier (moving barrier, fixed barrier, etc.) including a shock absorber having a honeycomb structure and a vehicle by modeling with a shell element by a finite element method, and a collision It relates to the analysis method.

従来より、車両においては様々な衝突試験が行われており、近年では、実車による衝突試験のみならず、有限要素法でモデル化して解析することが行われるようになってきている。   Conventionally, various crash tests have been performed on vehicles, and in recent years, not only a crash test using an actual vehicle but also modeling and analysis by a finite element method has been performed.

例えば、特開2007−102537号公報(以下、特許文献1)では、互いに平行な軸線を有する筒状に形成された多数のハニカム格子の集合体であるアルミハニカムで構成される衝撃吸収体を有限要素法でモデル化するにあたり、そのハニカム格子の仮想寸法を実物におけるハニカム格子の寸法よりも大きく設定し、かつ実物と同じ圧縮荷重が作用した場合に実物と同じ圧縮応力が生じるように、仮想板厚を実物の板厚とは異なるようにモデル化する技術が開示されている。   For example, in Japanese Patent Application Laid-Open No. 2007-102537 (hereinafter referred to as Patent Document 1), a shock absorber made of an aluminum honeycomb that is an aggregate of a large number of honeycomb lattices formed in a cylindrical shape having mutually parallel axes is limited. When modeling with the element method, the virtual dimensions of the honeycomb lattice are set to be larger than the actual honeycomb lattice dimensions, and the same compressive stress as the actual product is generated when the same compressive load is applied. A technique for modeling the thickness different from the actual plate thickness is disclosed.

特開2007−102537号公報JP 2007-102537 A

ところで、実際の衝突では、衝撃吸収体(実機)は概ね衝突側から順次崩壊していく形態をとるが、これを上述の特許文献1に開示されるように、板厚若しくは応力−歪特性のスケールファクターで抗力特性を合わせて解析することは非常に困難であるという問題がある。有限要素法では、要素ロッキング等の問題もあり、例えば、図9の一点破線で示すように、解析対象をある程度圧縮していくと、要素間の干渉等により、ある一定の歪を超えると実際の応力−歪特性(図9中、実線で示す)とは異なる抗力(応力の上昇)が発生してきて再現性が悪化してしまう。従って、上述の特許文献1に開示されるように板厚等を仮想的に設定する際には、変形モード等を考慮して更に複雑な調整が必要になるという問題がある。   By the way, in an actual collision, the shock absorber (actual machine) generally takes a form of gradually collapsing from the collision side. There is a problem that it is very difficult to analyze the drag characteristics together with the scale factor. In the finite element method, there are problems such as element locking. For example, as shown by the one-dot broken line in FIG. A drag (increase in stress) different from the stress-strain characteristic (shown by a solid line in FIG. 9) is generated, and the reproducibility is deteriorated. Therefore, when the plate thickness and the like are virtually set as disclosed in Patent Document 1 described above, there is a problem that more complicated adjustment is required in consideration of the deformation mode and the like.

本発明は上記事情に鑑みてなされたもので、衝撃吸収体と車両との衝突を有限要素モデルにより、応力−歪特性の幅広い特性領域で実際の特性と異なる抗力特性、変形部位、変形順序及び変形形状(変形種類(折れ・圧壊))が発生することなく衝突を自然に精度良く再現して解析することができる衝突解析装置及び衝突解析方法を提供することを目的としている。   The present invention has been made in view of the above circumstances, and the collision between the shock absorber and the vehicle is based on the finite element model, the drag characteristics, the deformation site, the deformation order, and the different characteristics from the actual characteristics in a wide characteristic region of the stress-strain characteristics. An object of the present invention is to provide a collision analysis apparatus and a collision analysis method capable of reproducing and analyzing a collision naturally and accurately without generating a deformed shape (deformation type (folding / crushing)).

本発明は、筒状体を軸線を互いに平行に集合して構成した衝撃吸収体を有限要素法によりモデル化し、有限要素法によりモデル化した被衝突体と所定に衝突させて衝突解析する衝突解析装置において、上記モデル化した衝撃吸収体の圧縮時における応力と歪の関係で示す全体の抗力特性が予め設定した歪の値を超える領域で、応力が上昇するのを抑制する補正特性を設定したことを特徴としている。   The present invention is a collision analysis in which a shock absorber formed by collecting cylindrical bodies in parallel with each other in an axis is modeled by the finite element method, and is collided with a collision target modeled by the finite element method to perform a collision analysis. In the device, a correction characteristic that suppresses an increase in stress is set in a region where the entire drag characteristic indicated by the relationship between stress and strain at the time of compression of the above modeled shock absorber exceeds a preset strain value. It is characterized by that.

本発明による衝突解析装置及び衝突解析方法によれば、衝撃吸収体と車両との衝突を有限要素モデルにより、応力−歪特性の幅広い特性領域で実際の特性と異なる抗力特性、変形部位、変形順序及び変形形状(変形種類(折れ・圧壊))が発生することなく衝突を自然に精度良く再現して解析することが可能となる。   According to the collision analysis apparatus and the collision analysis method according to the present invention, the collision between the shock absorber and the vehicle is based on the finite element model, and the drag characteristics, the deformation part, and the deformation order that are different from the actual characteristics in a wide characteristic region of the stress-strain characteristics. In addition, it is possible to reproduce and analyze the collision naturally and accurately without generating a deformation shape (deformation type (breaking / crushing)).

本発明の実施の一形態に係る衝突解析装置の概略構成図である。1 is a schematic configuration diagram of a collision analysis apparatus according to an embodiment of the present invention. 本発明の実施の一形態に係る衝突解析プログラムのフローチャートである。It is a flowchart of the collision analysis program which concerns on one Embodiment of this invention. 本発明の実施の一形態に係るムービングバリアモデル化処理のフローチャートである。It is a flowchart of the moving barrier modeling process which concerns on one Embodiment of this invention. 本発明の実施の一形態に係るムービングバリアの斜視図である。It is a perspective view of the moving barrier concerning one embodiment of the present invention. 本発明の実施の一形態に係る衝撃吸収体の説明図である。It is explanatory drawing of the shock absorber which concerns on one Embodiment of this invention. 本発明の実施の一形態に係る有限要素法によりシェル要素でモデル化した衝撃吸収体の説明図である。It is explanatory drawing of the shock absorber modeled with the shell element by the finite element method which concerns on one Embodiment of this invention. 本発明の実施の一形態に係る解析する衝突試験の一例を示す説明図である。It is explanatory drawing which shows an example of the crash test to analyze which concerns on one Embodiment of this invention. 本発明の実施の一形態に係る各要素に設定する応力−歪特性の説明図である。It is explanatory drawing of the stress-strain characteristic set to each element which concerns on one Embodiment of this invention. 本発明の実施の一形態に係る衝撃吸収体の圧縮時における全体の応力−歪特性の説明図である。It is explanatory drawing of the whole stress-strain characteristic at the time of compression of the shock absorber which concerns on one Embodiment of this invention.

以下、図面に基づいて本発明の実施の形態を説明する。
本実施形態において、ハニカム構造を有する衝撃吸収体を備えた車両衝突試験用バリア(ムービングバリア)と車両との衝突置解析の処理は、パーソナルコンピュータ(以下、PCと略称)等のコンピュータシステムにおいて後述する衝突解析プログラムが実行されることによって行われる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the present embodiment, a collision analysis analysis of a vehicle collision test barrier (moving barrier) including a shock absorber having a honeycomb structure and a vehicle will be described later in a computer system such as a personal computer (hereinafter abbreviated as PC). This is done by executing a collision analysis program.

図1に示すように、衝突解析装置であるPC1は、中央処理装置(以下、CPUと略称)と各種データ及びプログラムを記憶する記憶装置とを備えたコンピュータ本体2と、このコンピュータ本体2に接続された、キー入力装置であるキーボード3と、ポインティングデバイスであるマウス4と、表示装置であるモニタ5とを有して主要に構成されている。   As shown in FIG. 1, a PC 1 as a collision analysis device is connected to a computer main body 2 having a central processing unit (hereinafter abbreviated as CPU) and a storage device for storing various data and programs, and to the computer main body 2. The keyboard 3 that is a key input device, a mouse 4 that is a pointing device, and a monitor 5 that is a display device are mainly configured.

このコンピュータ本体2には、ムービングバリア及び車両等の図面や描画等の解析対象とするデータが、FD(flexible disk)、CD(Compact Disc)、DVD(Digital Versatile Disk)等の記録メディアや、回線を通じて供給され、コンピュータ本体2に内蔵された、HD(Hard Disk)に記録され、後述の衝突解析プログラムに従って、有限要素モデルによるムービングバリアと車両との衝突解析が実行される。   In the computer 2, data to be analyzed such as drawings and drawings of moving barriers and vehicles, etc. are recorded on recording media such as FD (flexible disk), CD (Compact Disc), DVD (Digital Versatile Disk), etc. And is recorded in an HD (Hard Disk) built in the computer main body 2, and the collision analysis between the moving barrier and the vehicle by the finite element model is executed according to a collision analysis program described later.

ここで、本実施の形態で解析対象とするムービングバリアの実機について説明する。
図4において、符号10は、ムービングバリアを示し、このムービングバリア10は、台車(4輪車)11の前端に衝撃吸収体12が取り付けられた、デフォーマブルバリアに構成されている。
Here, the actual machine of the moving barrier to be analyzed in this embodiment will be described.
In FIG. 4, reference numeral 10 denotes a moving barrier. The moving barrier 10 is configured as a deformable barrier in which a shock absorber 12 is attached to the front end of a carriage (four-wheeled vehicle) 11.

衝撃吸収体12は、実車形状に模して形成されており、実車のバンパの高さに相当する高さに位置する下部吸収体12aが上部吸収体12bよりも前方に突出して形成されている。   The shock absorber 12 is formed to resemble the shape of an actual vehicle, and a lower absorber 12a positioned at a height corresponding to the height of a bumper of the actual vehicle is formed to protrude forward from the upper absorber 12b. .

衝撃吸収体12は、図5に示すように、下部吸収体12a、上部吸収体12b共に、アルミハニカム構造で、衝突により変形自在に構成されている。アルミハニカムは、それぞれの軸線方向が前後方向(衝突方向)に一致するそれぞれ筒状体としての多数の正六角筒状のハニカム格子を並列し、集合して構成されている。各ハニカム格子は、各筒壁を隣接する異なるハニカム格子と共有することで、互いの間に隙間がなく各ハニカム格子内にのみ空間が形成された中空構造となっている。   As shown in FIG. 5, the impact absorber 12 has an aluminum honeycomb structure in which both the lower absorber 12a and the upper absorber 12b are configured to be deformable by collision. An aluminum honeycomb is formed by arranging a large number of regular hexagonal honeycomb lattices in parallel as a cylindrical body in which the respective axial directions coincide with the front-rear direction (collision direction). Each honeycomb lattice has a hollow structure in which each cylindrical wall is shared with adjacent different honeycomb lattices, so that there is no gap between them and spaces are formed only within each honeycomb lattice.

次に、本実施の形態により実行される衝突解析を、図2のフローチャートで説明する。まず、ステップ(以下、「S」と略称)101で、解析に必要な様々な情報、ムービングバリア10の形状(衝撃吸収体12の外形寸法も含む)、被衝突車両の形状、重量等の諸元、側突、後突等の衝突形態、衝突条件(衝突速度、衝突角度)、解析の諸条件等を入力する。   Next, the collision analysis executed by the present embodiment will be described with reference to the flowchart of FIG. First, in step (hereinafter abbreviated as “S”) 101, various information necessary for analysis, the shape of the moving barrier 10 (including the external dimensions of the shock absorber 12), the shape of the vehicle to be collided, the weight, etc. Input the collision type such as original, side collision, and rear collision, collision conditions (collision speed, collision angle), analysis conditions, etc.

次いで、S102に進み、ムービングバリア10の有限要素法によるモデル化を、後述するムービングバリアモデル化処理のフローチャートに従って実行する。   Next, in S102, modeling of the moving barrier 10 by the finite element method is executed according to a flowchart of the moving barrier modeling process described later.

次に、S103に進み、被衝突車両を有限要素法によりモデル化する。   Next, the process proceeds to S103, and the collision vehicle is modeled by the finite element method.

そして、S104に進んで、有限要素法によりモデル化された被衝突車両に、有限要素法によりモデル化されたムービングバリア10を衝突させて衝突させた後の構造解析を行う。例えば、衝突形態が側突の場合、図7に示すように、公知の側突試験の規格に従って、有限要素法によりモデル化された被衝突車両21に対し、有限要素法によりモデル化されたムービングバリア10を車両側面に衝突させて、衝突させた後の構造解析を行う。尚、衝突形態は、側突に限るものではなく、前突、後突、それぞれのオフセット衝突等であっても良い。   Then, the process proceeds to S104, and a structural analysis is performed after the moving barrier 10 modeled by the finite element method collides with the vehicle to be collided modeled by the finite element method. For example, when the collision mode is a side collision, as shown in FIG. 7, the moving vehicle modeled by the finite element method is compared with the collision target vehicle 21 modeled by the finite element method in accordance with a known side collision test standard. The barrier 10 is collided with the side surface of the vehicle, and the structural analysis after the collision is performed. The collision mode is not limited to a side collision, and may be a front collision, a rear collision, an offset collision, or the like.

次に、上述のS102で実行する、ムービングバリア10の有限要素法によるモデル化を、図3のフローチャートで説明する。   Next, modeling of the moving barrier 10 by the finite element method executed in S102 described above will be described with reference to the flowchart of FIG.

まず、S201で、解析の計算時間を決定する。
次に、S202に進んで、S201の計算時間の制約から、解析における各処理のステップ時間が決定されて、総要素数が決定される。これにより、最小要素サイズが決定されて、ハニカム格子の最小コアサイズ(実機の寸法とは異なる仮想的な寸法)が決定される。こうして、ハニカム格子のコアサイズ(実機の寸法とは異なる仮想的な寸法:図5(b)中のSc)が決定される。
First, in S201, an analysis calculation time is determined.
Next, proceeding to S202, the step time of each process in the analysis is determined from the constraint of the calculation time of S201, and the total number of elements is determined. Thereby, the minimum element size is determined, and the minimum core size (virtual dimension different from the actual machine dimension) of the honeycomb lattice is determined. In this way, the core size of the honeycomb lattice (virtual dimension different from the actual machine dimension: Sc in FIG. 5B) is determined.

次に、S203に進むと、板厚を仮想的に決定する。
次いで、S204に進み、例えば、予め実験等により求められているデータ等を参照して、(板厚/ハニカムの一辺の長さ)をパラメータとして、実機の圧縮時における応力−歪特性を、各要素毎の基準となる応力−歪特性として決定する(図8中の実線の特性の決定)。
Next, when proceeding to S203, the plate thickness is virtually determined.
Next, the process proceeds to S204, for example, referring to data obtained in advance through experiments or the like, using (sheet thickness / length of one side of honeycomb) as a parameter, the stress-strain characteristics at the time of compression of the actual machine, It is determined as a stress-strain characteristic serving as a reference for each element (determination of the characteristic of the solid line in FIG. 8).

次に、S205に進み、S204で決定した各要素毎の基準となる応力−歪特性に対し、予め設定しておいた実験、演算等による補正特性を設定する。この補正特性は、例えば、図8中の破線で示す特性であり、この例では、歪εがε1を超える領域(第1の歪領域)で、歪εの増加に伴って応力σが低下するダメージ特性となっている。また、本実施の形態では、各要素の補正特性として、上述の破線で示すダメージ特性に加え、例えば、歪εが予め設定した値を超える領域(第2の歪領域)では、その要素自体が消滅する特性が設定されている。   Next, the process proceeds to S205, and a correction characteristic based on a preset experiment, calculation, or the like is set for the stress-strain characteristic serving as a reference for each element determined in S204. This correction characteristic is, for example, a characteristic indicated by a broken line in FIG. 8. In this example, in the region where the strain ε exceeds ε1 (first strain region), the stress σ decreases as the strain ε increases. Damage characteristics. Further, in the present embodiment, in addition to the damage characteristics indicated by the above-described broken line as the correction characteristics of each element, for example, in an area where the strain ε exceeds a preset value (second distortion area), the element itself is A characteristic that disappears is set.

次いで、S206に進み、ハニカム構造の衝撃吸収体12が、図6に示すように、有限要素法によりシェル要素でモデル化され、このモデル化された衝撃吸収体12の各要素に対して、上述のS204、S205の応力−歪特性が設定される。   Next, in S206, the shock absorber 12 having a honeycomb structure is modeled by a shell element by a finite element method as shown in FIG. The stress-strain characteristics of S204 and S205 are set.

そして、S207に進んで、ムービングバリア10が、有限要素法によりシェル要素でモデル化されてルーチンを抜ける。   In step S207, the moving barrier 10 is modeled as a shell element by the finite element method, and the routine is exited.

このように、本実施の形態によれば、筒状体を軸線を互いに平行に集合して構成した衝撃吸収体12を有限要素法によりシェル要素でモデル化し、有限要素法によりモデル化した被衝突車両21と所定に衝突させて衝突解析する衝突解析装置1において、モデル化した衝撃吸収体12のそれぞれの要素に対し、圧縮時における応力と歪の特性として予め定めた第1の歪領域に歪の増加に伴って応力が低下するダメージ特性を設定すると共に、予め定めた第2の歪領域に該要素自身が消滅する特性を設定するようになっている。これにより、モデル化した衝撃吸収体12の圧縮時における全体の応力−歪特性が予め設定した歪の値を超える領域で、応力が上昇することが確実に抑制される。すなわち、図9に示すように、所定の歪の値を超えると応力が、実際の特性以上に上昇していこうとする(一点破線)が、応力降下を含んだダメージ特性を設定することで、この応力の上昇を防止して実際の応力−歪特性に近づけるようになっているのである(破線)。また、第2の歪領域に要素自身が消滅する特性を設定することで、歪が大きくなって応力が上昇しようとする要素が消去されるため、これによっても実際の応力−歪特性に近づけられることとなる(消去補正を含んだ応力−歪特性)。このように、本発明の実施の形態による、有限要素法によりモデル化される衝撃吸収体は、応力−歪特性の幅広い特性領域で実際の特性と略同様の特性で解析が可能であるため、衝突を自然に精度良く再現して解析することが可能となる。   As described above, according to the present embodiment, the impact absorber 12 formed by assembling the cylindrical body with the axis lines set in parallel to each other is modeled by the shell element by the finite element method, and the collision target modeled by the finite element method is used. In the collision analysis apparatus 1 that performs collision analysis with a vehicle 21 in a predetermined collision, each element of the modeled shock absorber 12 is distorted in a first strain region that is predetermined as stress and strain characteristics during compression. In addition to setting a damage characteristic in which the stress decreases with an increase in the value, a characteristic in which the element itself disappears in a predetermined second strain region is set. This reliably suppresses an increase in stress in a region where the overall stress-strain characteristic during compression of the modeled shock absorber 12 exceeds a preset strain value. That is, as shown in FIG. 9, when the strain exceeds a predetermined strain value, the stress tends to increase beyond the actual characteristic (one-dot broken line), but by setting the damage characteristic including the stress drop, This increase in stress is prevented so as to approach the actual stress-strain characteristic (broken line). In addition, by setting the characteristic that the element itself disappears in the second strain region, the element whose strain is increased and the stress is increased is erased, so that this also approaches the actual stress-strain characteristic. (Stress-strain characteristics including erasure correction). As described above, the shock absorber modeled by the finite element method according to the embodiment of the present invention can be analyzed with substantially the same characteristics as actual characteristics in a wide characteristic region of stress-strain characteristics. It is possible to reproduce and analyze the collision naturally and accurately.

尚、本実施の形態では、応力−歪特性を補正する特性として、第1の歪領域に歪の増加に伴って応力が低下するダメージ特性を設定する補正と、第2の歪領域に要素自身が消滅する特性を設定する補正の2つを設定するようにしているが、どちらか一方のみの補正を設定するようにしても良い。   In the present embodiment, as characteristics for correcting the stress-strain characteristics, correction for setting a damage characteristic in which stress decreases with increasing strain is set in the first strain area, and elements themselves are set in the second strain area. Although two corrections for setting the characteristic of disappearance are set, only one of the corrections may be set.

更に、本実施の形態では、衝撃吸収体の筒状体として、正六角筒状のアルミハニカムを例に説明したが、他の形状、例えば正四角筒状等であっても良いことは言うまでもない。   Furthermore, in the present embodiment, a regular hexagonal tubular aluminum honeycomb has been described as an example of the shock absorber cylindrical body. However, it is needless to say that other shapes such as a regular rectangular tubular body may be used. .

また、本実施の形態では、ハニカム構造を有する衝撃吸収体を備えたムービングバリア10を例に説明しているが、ハニカム構造を有する衝撃吸収体を備えた固定バリアに対しても同様に本解析手法を適用できることは言うまでもない。   Further, in the present embodiment, the moving barrier 10 provided with the shock absorber having the honeycomb structure is described as an example, but the present analysis is similarly applied to the fixed barrier provided with the shock absorber having the honeycomb structure. It goes without saying that the method can be applied.

更に、本実施の形態では、衝撃吸収体を有限要素法によりシェル要素でモデル化した場合の例を説明したが、シェル要素以外の要素でモデル化して解析する場合においても本解析手法が適用できることは言うまでもない。   Furthermore, in the present embodiment, an example in which the shock absorber is modeled with a shell element by the finite element method has been described. However, the present analysis method can be applied even when modeling and analyzing with an element other than the shell element. Needless to say.

1 衝突解析装置
2 コンピュータ本体
3 キーボード
4 マウス
5 モニタ
10 ムービングバリア
11 台車
12 衝撃吸収体
12a 下部吸収体
12b 上部吸収体
21 被衝突車両
DESCRIPTION OF SYMBOLS 1 Collision analyzer 2 Computer main body 3 Keyboard 4 Mouse 5 Monitor 10 Moving barrier 11 Cart 12 Shock absorber 12a Lower absorber 12b Upper absorber 21 Impacted vehicle

Claims (6)

筒状体を軸線を互いに平行に集合して構成した衝撃吸収体を有限要素法によりモデル化し、有限要素法によりモデル化した被衝突体と所定に衝突させて衝突解析する衝突解析装置において、
上記モデル化した衝撃吸収体の圧縮時における応力と歪の関係で示す全体の抗力特性が予め設定した歪の値を超える領域で、応力が上昇するのを抑制する補正特性を設定したことを特徴とする衝突解析装置。
In a collision analysis device that analyzes a collision by modeling a shock absorber formed by collecting cylindrical bodies parallel to each other by a finite element method and colliding with a collision target modeled by a finite element method.
The above-mentioned modeled shock absorber has a correction characteristic that suppresses the rise of stress in the region where the overall drag characteristic indicated by the relationship between stress and strain during compression exceeds the preset strain value. A collision analysis device.
上記補正特性は、上記有限要素法によりモデル化した衝撃吸収体のそれぞれの要素に対し、圧縮時における応力と歪の特性として予め定めた第1の歪領域に歪の増加に伴って応力が低下するダメージ特性を設定して形成することを特徴とする請求項1記載の衝突解析装置。   The correction characteristic is that, for each element of the shock absorber modeled by the finite element method, the stress decreases as the strain increases in the first strain region that is predetermined as the stress and strain characteristics during compression. The collision analysis apparatus according to claim 1, wherein a damage characteristic to be set is set. 上記補正特性は、上記有限要素法によりモデル化した衝撃吸収体のそれぞれの要素に対し、圧縮時における応力と歪の特性として予め定めた第2の歪領域に該要素自身が消滅する特性を設定して形成することを特徴とする請求項1記載の衝突解析装置。   The correction characteristic is set such that each element of the shock absorber modeled by the finite element method is extinguished in a second strain region predetermined as a stress and strain characteristic during compression. The collision analysis apparatus according to claim 1, wherein the collision analysis apparatus is formed. 上記補正特性は、上記有限要素法によりモデル化した衝撃吸収体のそれぞれの要素に対し、圧縮時における応力と歪の特性として予め定めた第1の歪領域に歪の増加に伴って応力が低下するダメージ特性を設定すると共に、予め定めた第2の歪領域に該要素自身が消滅する特性を設定して形成することを特徴とする請求項1記載の衝突解析装置。   The correction characteristic is that, for each element of the shock absorber modeled by the finite element method, the stress decreases as the strain increases in the first strain region that is predetermined as the stress and strain characteristics during compression. The collision analysis apparatus according to claim 1, wherein a damage characteristic to be set is set and a characteristic in which the element itself disappears is set in a predetermined second strain region. 筒状体を軸線を互いに平行に集合して構成した衝撃吸収体を有限要素法によりモデル化し、有限要素法によりモデル化した被衝突体と所定に衝突させて衝突解析する衝突解析方法において、
上記モデル化した衝撃吸収体の圧縮時における応力と歪の関係で示す全体の抗力特性が予め設定した歪の値を超える領域で、応力が上昇するのを抑制する補正特性を設定して解析することを特徴とする衝突解析方法。
In a collision analysis method in which a shock absorber formed by collecting cylindrical bodies parallel to each other in an axis is modeled by the finite element method, and a collision is performed by colliding with a collision target modeled by the finite element method.
Set and analyze a correction characteristic that suppresses the rise of stress in the region where the overall drag characteristic indicated by the relationship between stress and strain during compression of the modeled shock absorber exceeds the preset strain value. A collision analysis method characterized by the above.
上記補正特性は、上記有限要素法によりモデル化した衝撃吸収体のそれぞれの要素に対し、圧縮時における応力と歪の特性として予め定めた第1の歪領域に歪の増加に伴って応力が低下するダメージ特性を設定することと、予め定めた第2の歪領域に該要素自身が消滅する特性を設定することの少なくとも一方の設定を行って形成することを特徴とする請求項5記載の衝突解析方法。   The correction characteristic is that, for each element of the shock absorber modeled by the finite element method, the stress decreases as the strain increases in the first strain region that is predetermined as the stress and strain characteristics during compression. 6. The collision according to claim 5, wherein the collision characteristic is formed by setting at least one of setting a damage characteristic to be performed and setting a characteristic that the element itself disappears in a predetermined second strain region. analysis method.
JP2009200568A 2009-08-31 2009-08-31 Device and method for collision analysis Pending JP2011053807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009200568A JP2011053807A (en) 2009-08-31 2009-08-31 Device and method for collision analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009200568A JP2011053807A (en) 2009-08-31 2009-08-31 Device and method for collision analysis

Publications (1)

Publication Number Publication Date
JP2011053807A true JP2011053807A (en) 2011-03-17

Family

ID=43942768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009200568A Pending JP2011053807A (en) 2009-08-31 2009-08-31 Device and method for collision analysis

Country Status (1)

Country Link
JP (1) JP2011053807A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181491A1 (en) 2013-05-10 2014-11-13 新日鐵住金株式会社 Deformation analysis device, deformation analysis method, and program
CN106021701A (en) * 2016-05-17 2016-10-12 吉林大学 Car body beam frame collision modeling and analysis method considering characteristics of plastic hinge
CN106503292A (en) * 2016-09-20 2017-03-15 浙江大学 The Finite Element Method of the progressive failure of prediction Laminated Composites Under Low Velocity Impact Loading
CN106777769A (en) * 2017-01-08 2017-05-31 浙江大学 The finite element method of the progressive failure of composite material by multilayer slab under prediction low velocity impact
CN107515972A (en) * 2017-08-10 2017-12-26 苏州上声电子有限公司 A kind of Numerical Simulation Analysis method of loudspeaker falling process
CN109858072A (en) * 2018-12-13 2019-06-07 江苏梓米汽车科技有限公司 A kind of finite element modeling method for the obstacle that car crass uses
KR20220142121A (en) * 2021-04-14 2022-10-21 공주대학교 산학협력단 Method for analyzing stiffness change of vehicle front frame before and after accident repair and method for evaluating safety of repaired vehicle using thereof
KR20220142122A (en) * 2021-04-14 2022-10-21 공주대학교 산학협력단 Method for analyzing stiffness change of trunk exchange vehicle after collision and method for evaluating safety of repaired vehicle using therof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181491A1 (en) 2013-05-10 2014-11-13 新日鐵住金株式会社 Deformation analysis device, deformation analysis method, and program
US10331809B2 (en) 2013-05-10 2019-06-25 Nippon Steel & Sumitomo Metal Corporation Deformation analysis device, deformation analysis method, and program
CN106021701B (en) * 2016-05-17 2018-10-19 吉林大学 Consider coachbuilt body beam framework collision modeling and the analysis method of plastic hinge characteristic
CN106021701A (en) * 2016-05-17 2016-10-12 吉林大学 Car body beam frame collision modeling and analysis method considering characteristics of plastic hinge
CN106503292A (en) * 2016-09-20 2017-03-15 浙江大学 The Finite Element Method of the progressive failure of prediction Laminated Composites Under Low Velocity Impact Loading
CN106503292B (en) * 2016-09-20 2018-04-24 浙江大学 Predict the finite element method of the progressive failure of Laminated Composites Under Low Velocity Impact Loading
CN106777769A (en) * 2017-01-08 2017-05-31 浙江大学 The finite element method of the progressive failure of composite material by multilayer slab under prediction low velocity impact
CN107515972A (en) * 2017-08-10 2017-12-26 苏州上声电子有限公司 A kind of Numerical Simulation Analysis method of loudspeaker falling process
CN107515972B (en) * 2017-08-10 2020-06-23 苏州上声电子股份有限公司 Numerical simulation analysis method for loudspeaker falling process
CN109858072A (en) * 2018-12-13 2019-06-07 江苏梓米汽车科技有限公司 A kind of finite element modeling method for the obstacle that car crass uses
KR20220142121A (en) * 2021-04-14 2022-10-21 공주대학교 산학협력단 Method for analyzing stiffness change of vehicle front frame before and after accident repair and method for evaluating safety of repaired vehicle using thereof
KR20220142122A (en) * 2021-04-14 2022-10-21 공주대학교 산학협력단 Method for analyzing stiffness change of trunk exchange vehicle after collision and method for evaluating safety of repaired vehicle using therof
KR102526014B1 (en) * 2021-04-14 2023-04-26 공주대학교 산학협력단 Method for analyzing stiffness change of trunk exchange vehicle after collision and method for evaluating safety of repaired vehicle using therof
KR102526015B1 (en) * 2021-04-14 2023-04-26 공주대학교 산학협력단 Method for analyzing stiffness change of vehicle front frame before and after accident repair and method for evaluating safety of repaired vehicle using thereof

Similar Documents

Publication Publication Date Title
JP2011053807A (en) Device and method for collision analysis
Wu et al. Energy absorption of additively manufactured functionally bi-graded thickness honeycombs subjected to axial loads
Gao et al. Crushing analysis and multiobjective crashworthiness optimization of foam-filled ellipse tubes under oblique impact loading
Asanjarani et al. Multi-objective crashworthiness optimization of tapered thin-walled square tubes with indentations
Song Numerical simulation on windowed tubes subjected to oblique impact loading and a new method for the design of obliquely loaded tubes
Estrada et al. Crashworthiness behavior of aluminum profiles with holes considering damage criteria and damage evolution
Nagel et al. Dynamic simulation and energy absorption of tapered thin-walled tubes under oblique impact loading
Hou et al. Crashworthiness optimization of corrugated sandwich panels
EP1908539B1 (en) Method and device for designing member, computer program, and computer-readable recording medium
JP4645399B2 (en) Shock absorber modeling method, shock absorber analysis method, shock absorber modeling device, and shock absorber analysis device
Qi et al. On design of hybrid material double-hat thin-walled beams under lateral impact
Chiandussi et al. Maximisation of the crushing performance of a tubular device by shape optimisation
Wang et al. Reliability-based optimization of a novel negative Poisson's ratio door anti-collision beam under side impact
JP2008310627A (en) Structural analysis apparatus and structural analysis method
Li et al. Study on crushing behaviors of foam-filled thin-walled square tubes with different types and number of initiators under multiple angle loads
Djamaluddin et al. Optimization and crush characteristic of foam-filled fender subjected to transverse loads
Avalle et al. Optimisation of a vehicle energy absorbing steel component with experimental validation
Xie et al. Multi-objective crashworthiness optimization of energy-absorbing box with gradient lattice structure
Liu et al. Effects of wall thickness and geometric shape on thin-walled parts structural performance
Zhou et al. The energy absorption behavior of cruciforms designed by kirigami approach
Zhou et al. Spot weld layout optimization of tube crash performance with manufacturing constraints
Wu et al. Studies on impact performance of gradient lattice structure applied to crash box
Chen et al. Cross-section optimization for axial and bending crushes using dual phase steels
Djamaluddin Optimization of foam-filled crash-box under axial loading for pure electric vehicle
Chen et al. Crashworthiness analysis and multi-objective optimisation of multi-cell windowed structures under dynamic impact loading