JP6047946B2 - Field element and rotating electric machine - Google Patents

Field element and rotating electric machine Download PDF

Info

Publication number
JP6047946B2
JP6047946B2 JP2012144095A JP2012144095A JP6047946B2 JP 6047946 B2 JP6047946 B2 JP 6047946B2 JP 2012144095 A JP2012144095 A JP 2012144095A JP 2012144095 A JP2012144095 A JP 2012144095A JP 6047946 B2 JP6047946 B2 JP 6047946B2
Authority
JP
Japan
Prior art keywords
magnet
field element
nonmagnetic
magnetic
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012144095A
Other languages
Japanese (ja)
Other versions
JP2014007928A (en
Inventor
浅野 能成
能成 浅野
辰太郎 荒木
辰太郎 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2012144095A priority Critical patent/JP6047946B2/en
Publication of JP2014007928A publication Critical patent/JP2014007928A/en
Application granted granted Critical
Publication of JP6047946B2 publication Critical patent/JP6047946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、界磁子および回転電機に関する。   The present invention relates to a field element and a rotating electric machine.

回転子の内部に永久磁石が設けられるIPM(Interior-Permanent-Magnet)モータにおいて、希土類磁石に比して残留磁束密度が低い磁石(例えばフェライト磁石)が採用され得る。このような磁石は安価なためである。このようなモータとして、例えば特許文献1に記載のモータを採用することができる。特許文献1では磁石を例えばV次形状に形成している。   In an IPM (Interior-Permanent-Magnet) motor in which a permanent magnet is provided inside a rotor, a magnet (for example, a ferrite magnet) having a lower residual magnetic flux density than a rare earth magnet can be employed. This is because such a magnet is inexpensive. As such a motor, for example, a motor described in Patent Document 1 can be employed. In Patent Document 1, the magnet is formed in a V-order shape, for example.

また特許文献1においては、磁石の周方向の両側にフラックスバリアを設けている。これによって磁石の相互間の磁気的な短絡を防止している。   In Patent Document 1, flux barriers are provided on both sides of the magnet in the circumferential direction. This prevents a magnetic short circuit between the magnets.

また本発明に関連する技術として特許文献2〜5が開示されている。   Patent documents 2 to 5 are disclosed as techniques related to the present invention.

特開2010−4677号公報JP 2010-4777 A 特開2000−50543号公報JP 2000-50543 A 特開2009−44893号公報JP 2009-44893 A 特開平11−146584号公報Japanese Patent Laid-Open No. 11-146484 特開平11−89197号公報JP 11-89197 A

しかしながら特許文献1〜5では、減磁を抑制するという観点でフラックスバリアの形状について十分に考慮されていないため、減磁の抑制についても不十分であった。   However, in patent documents 1-5, since the shape of the flux barrier is not fully considered from a viewpoint of suppressing demagnetization, it was inadequate also about suppression of demagnetization.

そこで、本発明は減磁をより適切に低減できる界磁子を提供することを目的とする。   Therefore, an object of the present invention is to provide a field element that can reduce demagnetization more appropriately.

本発明にかかる界磁子の第1の態様は、回転軸(P)を中心とした周方向に並んで設けられ、前記回転軸とは反対側に交互に異なる磁極を呈する複数の永久磁石(2)と、前記永久磁石が埋設される界磁子コア(1)と、前記界磁子コアに設けられる非磁性体(3)とを備える界磁子であって、前記回転軸に平行な軸方向から見て前記永久磁石の各々は、前記回転軸側に凸となる形状を有し、前記周方向の端部において平坦部分を有する一対の磁石側面(23)と、前記回転軸とは反対側および前記回転軸側にそれぞれ位置し前記磁石側面によって互いに連結される第1磁石表面(21)及び第2磁石表面(22)とを有し、前記軸方向から見て前記非磁性体(3)は、一の前記永久磁石の一の前記磁石側面側から前記界磁子コアの外周面に向って延在し、前記磁極の極中心側および極間側にそれぞれ位置し、前記非磁性体の外縁を形成する第1非磁性表面(31)及び第2非磁性表面(32)を有し、前記軸方向から見て、(i)前記一の前記磁石側面(23)と前記第2磁石表面(22)とが成す第1角部(2b)と、前記第1非磁性表面(31)との間の最小距離(b1)は、前記第1角部(2b)と、前記一の前記磁石側面と前記第1磁石表面(21)とが成す第2角部(2a)との間の端部距離(a)以上であり、(ii)前記第2非磁性表面(32)と前記第2角部(2a)との間の最小距離(b2)は前記端部距離(a)以上であり、(iii)前記非磁性体の前記周方向における最小幅(c)は、前記非磁性体側における前記一の前記永久磁石の最小幅(a')よりも小さい、という関係を有する。 A first aspect of the field element according to the present invention is provided with a plurality of permanent magnets that are provided side by side in the circumferential direction around the rotation axis (P) and that alternately have different magnetic poles on the opposite side of the rotation axis. 2), a field element core (1) in which the permanent magnet is embedded, and a nonmagnetic material (3) provided in the field element core, the field element being parallel to the rotation axis Each of the permanent magnets as viewed from the axial direction has a shape that protrudes toward the rotating shaft, and a pair of magnet side surfaces (23) having a flat portion at the end in the circumferential direction, and the rotating shaft The first magnet surface (21) and the second magnet surface (22) which are located on the opposite side and the rotating shaft side and are connected to each other by the magnet side surfaces, and the non-magnetic material ( 3) extends from the magnet side surface of one of the permanent magnets toward the outer peripheral surface of the field element core, The first non-magnetic surface (31) and the second non-magnetic surface (32), which are respectively located on the inter-polar side and form the outer edge of the non-magnetic material, and when viewed from the axial direction, The minimum distance (b1) between the first corner (2b) formed by the magnet side surface (23) and the second magnet surface (22) and the first nonmagnetic surface (31) is It is not less than the end distance (a) between the one corner (2b) and the second corner (2a) formed by the one magnet side surface and the first magnet surface (21) , and (ii) the second minimum distance between the second corner and the non-magnetic surface (32) (2a) (b2 ) is at said end distance (a) above, (iii) the non-magnetic member before distichum A minimum width (c) in the direction is smaller than a minimum width (a ′) of the one permanent magnet on the non-magnetic material side.

本発明にかかる界磁子の第2の態様は、第1の態様にかかる界磁子であって、前記第1非磁性表面(31)は前記中心側に膨らむ湾曲形状を有する。 A second aspect of the field element according to the present invention is the field element according to the first aspect, wherein the first nonmagnetic surface (31) has a curved shape that swells toward the pole center.

本発明にかかる界磁子の第3の態様は、第1又は第2の態様にかかる界磁子であって、前記第2非磁性表面(32)は、前記外周面に近づくにしたがって、前記周方向において前記極中心に近づく。   A third aspect of the field element according to the present invention is the field element according to the first or second aspect, wherein the second nonmagnetic surface (32) approaches the outer peripheral surface as It approaches the pole center in the circumferential direction.

本発明にかかる界磁子の第4の態様は、第1から第3のいずれか一つの態様にかかる界磁子であって、前記永久磁石(2)と前記非磁性体(3)とは二色成形により一体形成される。   A field element according to a fourth aspect of the present invention is a field element according to any one of the first to third aspects, wherein the permanent magnet (2) and the non-magnetic body (3) are It is integrally formed by two-color molding.

本発明にかかる界磁子の第1の態様によれば、第1角部及び第2角部側の永久磁石の端を通る減磁磁束を低減できる。したがって永久磁石の減磁耐力を向上できる。 According to a first state like according field element of the present invention, it is possible to reduce the demagnetization flux passing through the ends of the permanent magnets of the first corner and the second corner side. Therefore, the demagnetization resistance of the permanent magnet can be improved.

本発明にかかる界磁子の第2の態様によれば、湾曲形状には角部が生じないので応力を低減できる。   According to the 2nd aspect of the field element concerning this invention, since a corner | angular part does not arise in a curved shape, stress can be reduced.

本発明にかかる界磁子の第3の態様によれば、第1周方向における永久磁石の間の磁路幅(第1周方向における非磁性体同士の間隔)を増大することができ、この磁路によるq軸インダクタンスを増大することができる。   According to the third aspect of the field element of the present invention, it is possible to increase the magnetic path width between the permanent magnets in the first circumferential direction (the interval between the nonmagnetic materials in the first circumferential direction). The q-axis inductance due to the magnetic path can be increased.

本発明にかかる界磁子の第4の態様によれば、永久磁石と非磁性体とが一体となるので、永久磁石の周方向における移動(振動)を抑制することができる。   According to the 4th aspect of the field element concerning this invention, since a permanent magnet and a nonmagnetic material are united, the movement (vibration) in the circumferential direction of a permanent magnet can be suppressed.

回転軸に沿って見た界磁子の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the field element seen along the rotating shaft. 回転軸に沿って見た界磁子の一部の概念的な構成の一例を示す図である。It is a figure which shows an example of a conceptual structure of a part of field element seen along the rotating shaft. 回転軸に沿って見た界磁子の一部の概念的な構成の一例を示す図である。It is a figure which shows an example of a conceptual structure of a part of field element seen along the rotating shaft. 回転軸に沿って見た界磁子の一部の概念的な構成の一例を示す図である。It is a figure which shows an example of a conceptual structure of a part of field element seen along the rotating shaft. 回転軸に沿って見た界磁子の一部の概念的な構成の一例を示す図である。It is a figure which shows an example of a conceptual structure of a part of field element seen along the rotating shaft. 回転軸に沿って見た界磁子の一部の概念的な構成の一例を示す図である。It is a figure which shows an example of a conceptual structure of a part of field element seen along the rotating shaft. 回転軸に沿って見た界磁子の一部の概念的な構成の一例を示す図である。It is a figure which shows an example of a conceptual structure of a part of field element seen along the rotating shaft. 回転軸に沿って見た界磁子の一部の概念的な構成の一例を示す図である。It is a figure which shows an example of a conceptual structure of a part of field element seen along the rotating shaft. 回転軸に沿って見た界磁子の概念的な構成の一例を示す図である。It is a figure which shows an example of a notional structure of the field element seen along the rotating shaft. 回転軸に沿って見た界磁子の一部の概念的な構成の一例を示す図である。It is a figure which shows an example of a conceptual structure of a part of field element seen along the rotating shaft. 回転軸に沿って見た界磁子の一部の概念的な構成の一例を示す図である。It is a figure which shows an example of a conceptual structure of a part of field element seen along the rotating shaft. 回転軸に沿って見た界磁子の一部の概念的な構成の一例を示す図である。It is a figure which shows an example of a conceptual structure of a part of field element seen along the rotating shaft. 回転軸に沿って見た回転電機の一部の概念的な構成の一例を示す図である。It is a figure which shows an example of some conceptual structures of the rotary electric machine seen along the rotating shaft.

第1の実施の形態.
図1に例示するように、本界磁子5は界磁子用コア1と複数の永久磁石2と非磁性体3とを備えている。なお以下では、回転軸Pを中心とした周方向及び径方向をそれぞれ単に周方向及び径方向と呼び、回転軸Pに平行な方向を軸方向と呼ぶ。
First embodiment.
As illustrated in FIG. 1, the field element 5 includes a field element core 1, a plurality of permanent magnets 2, and a nonmagnetic material 3. Hereinafter, the circumferential direction and the radial direction around the rotation axis P are simply referred to as the circumferential direction and the radial direction, respectively, and the direction parallel to the rotation axis P is referred to as the axial direction.

永久磁石2は周方向に沿って並んで配置される。これらの永久磁石2のうち周方向で隣り合う二者は、互いに異なる極性の磁極面を回転軸Pとは反対側に向けて設けられる。言い換えれば、複数の永久磁石2は周方向で交互に異なる磁極を回転軸Pとは反対側に呈する。例えば紙面右上及び右下の永久磁石2が回転軸Pとは反対側にN極の磁極を呈し、紙面左上及び左下の永久磁石2が回転軸Pとは反対側にS極の磁極を呈する。   The permanent magnets 2 are arranged side by side along the circumferential direction. Two of these permanent magnets 2 adjacent to each other in the circumferential direction are provided with magnetic pole surfaces having different polarities facing away from the rotation axis P. In other words, the plurality of permanent magnets 2 present magnetic poles alternately different in the circumferential direction on the side opposite to the rotation axis P. For example, the upper right and lower right permanent magnets 2 on the plane of the paper present N poles on the side opposite to the rotation axis P, and the upper left and lower left permanent magnets 2 on the side of the page exhibit S poles on the side opposite to the rotation axis P.

各永久磁石2は回転軸P側に凸となる形状を有している。図1の例示では、各永久磁石2は例えば自身に対して回転軸Pとは反対側に位置する中心点Qを中心とした円弧に沿う形状を有している。このような形状は、回転軸Pを中心とした円弧とは異なるという意味で逆円弧形状とも呼ばれる。また以下では、ある磁石の形状を規定する中心点Qを中心とした周方向を当該磁石について磁石周方向と呼び、中心点Qを中心とした径方向を当該磁石について磁石径方向と呼ぶ。   Each permanent magnet 2 has a shape that protrudes toward the rotation axis P. In the illustration of FIG. 1, each permanent magnet 2 has a shape along an arc centered on a center point Q located on the opposite side of the rotation axis P with respect to itself, for example. Such a shape is also called a reverse arc shape in the sense that it is different from an arc centered on the rotation axis P. In the following, the circumferential direction around the center point Q that defines the shape of a certain magnet is called the magnet circumferential direction for the magnet, and the radial direction around the center point Q is called the magnet radial direction for the magnet.

かかる形状において、永久磁石2は一対の磁石側面23と磁石表面21,22とを有する。磁石側面23は永久磁石2の周方向における両端部においてそれぞれ平坦部分を有する。磁石表面21,22はそれぞれ回転軸Pとは反対側および回転軸P側に位置し、磁石側面23によって互いに連結される。なお磁石表面21は中心点Q側に位置し、磁石表面22は中心点Qとは反対側に位置する、とも表現できる。これらの磁石表面21,22には永久磁石2としての磁極面が形成される。   In such a shape, the permanent magnet 2 has a pair of magnet side surfaces 23 and magnet surfaces 21 and 22. The magnet side surfaces 23 have flat portions at both ends in the circumferential direction of the permanent magnet 2. The magnet surfaces 21 and 22 are located on the side opposite to the rotation axis P and on the rotation axis P side, and are connected to each other by the magnet side surface 23. It can also be expressed that the magnet surface 21 is located on the center point Q side and the magnet surface 22 is located on the opposite side of the center point Q. A magnetic pole surface as the permanent magnet 2 is formed on the magnet surfaces 21 and 22.

なお図1の例示では4つの永久磁石2が設けられている。つまり4極の界磁子が示されている。ただしこれに限らず、界磁子の極数は任意の偶数であればよい。また図1の例示では永久磁石2の各々が一つの磁極を形成しているものの、複数の永久磁石によって一つの磁極を形成してもよい。言い換えれば、永久磁石2の各々は複数の永久磁石に分割されていても良い。   In the illustration of FIG. 1, four permanent magnets 2 are provided. That is, a 4-pole field element is shown. However, the present invention is not limited to this, and the number of poles of the field element may be any even number. In the illustration of FIG. 1, each of the permanent magnets 2 forms one magnetic pole, but one magnetic pole may be formed by a plurality of permanent magnets. In other words, each of the permanent magnets 2 may be divided into a plurality of permanent magnets.

界磁子用コア1は例えば軟磁性体(例えば鉄)で形成され、例えば回転軸Pを中心とした円柱形状を有する。上述の永久磁石2はこの界磁子用コア1に埋設される。例えば界磁子用コア1には格納孔が設けられ、この格納孔に永久磁石2が格納される。永久磁石2が格納されることで、界磁子用コア1の外周面10には周方向で交互に異なる磁極面が形成される。   The field element core 1 is formed of, for example, a soft magnetic material (for example, iron) and has, for example, a cylindrical shape with the rotation axis P as the center. The above-described permanent magnet 2 is embedded in the field element core 1. For example, the field element core 1 is provided with a storage hole, and the permanent magnet 2 is stored in the storage hole. By storing the permanent magnet 2, magnetic pole faces that are alternately different in the circumferential direction are formed on the outer circumferential face 10 of the field element core 1.

図1の例示では、界磁子用コア1には回転軸Pを含む領域にシャフト貫挿孔11が設けられている。このシャフト貫挿孔11には不図示のシャフトが挿入される。当該シャフトと界磁子用コア1とは例えば圧入などにより互いに固定される。なおシャフト貫挿孔11は必須の要件ではない。例えば回転軸Pに沿う軸方向における界磁子5の両端に端板を設け、この端板にシャフトを取り付ける場合には、シャフト貫挿孔11は不要である。   In the illustration of FIG. 1, the field element core 1 is provided with a shaft insertion hole 11 in a region including the rotation axis P. A shaft (not shown) is inserted into the shaft insertion hole 11. The shaft and the field element core 1 are fixed to each other, for example, by press fitting. The shaft insertion hole 11 is not an essential requirement. For example, when end plates are provided at both ends of the field element 5 in the axial direction along the rotation axis P and a shaft is attached to the end plates, the shaft insertion hole 11 is not necessary.

このような界磁子5に対して、より具体的には外周面に対してエアギャップを介して対面するように電機子(不図示)を配置することで、回転電機を実現することができる。電機子は界磁子へと回転磁界を印加し、この回転磁界に応じて電機子と界磁子とが相対的に回転する。図1の例示では界磁子は回転子として機能する。   More specifically, a rotating electric machine can be realized by disposing an armature (not shown) with respect to such a field element 5 so as to face the outer peripheral surface via an air gap. . The armature applies a rotating magnetic field to the field element, and the armature and the field element rotate relatively in accordance with the rotating magnetic field. In the illustration of FIG. 1, the field element functions as a rotor.

非磁性体3は界磁子用コア1に設けられ、永久磁石2の磁石側面23側から界磁子用コア1の外周面10に向って延在する。例えば非磁性体3は一の永久磁石2についての磁石周方向において、当該一の永久磁石2の磁石側面23と対面する位置に設けられる。この非磁性体3によって、周方向で隣り合う永久磁石2の磁気的な短絡、及び一の永久磁石2における磁石表面21,22の磁気的な短絡を抑制できる。   The non-magnetic body 3 is provided in the field element core 1 and extends from the magnet side surface 23 side of the permanent magnet 2 toward the outer peripheral surface 10 of the field element core 1. For example, the nonmagnetic material 3 is provided at a position facing the magnet side surface 23 of the one permanent magnet 2 in the magnet circumferential direction of the one permanent magnet 2. By this nonmagnetic material 3, it is possible to suppress a magnetic short circuit between the permanent magnets 2 adjacent in the circumferential direction and a magnetic short circuit between the magnet surfaces 21 and 22 in one permanent magnet 2.

このような非磁性体3は、例えば界磁子用コア1に形成された非磁性格納孔に格納される。また非磁性体3は任意の非磁性体であってよく、例えば空気であってもよい。非磁性体3が空気である場合は非磁性格納孔自体が非磁性体3に相当する。   Such a nonmagnetic material 3 is stored in, for example, a nonmagnetic storage hole formed in the field element core 1. The nonmagnetic material 3 may be any nonmagnetic material, for example, air. When the nonmagnetic material 3 is air, the nonmagnetic storage hole itself corresponds to the nonmagnetic material 3.

図1の例示では、非磁性体3よりも外周側で界磁子用コア1の一部としての連結部15が存在する。連結部15は永久磁石2及び非磁性体3よりも外周側のコアと内周側のコアとを連結する。これによって界磁子用コア1の強度を向上することができる。なお連結部15は、回転軸Pを中心として径方向における幅が薄い薄肉部によって形成されることが望ましい。言い換えれば、連結部15は容易に磁気飽和する薄肉部によって形成されることが望ましい。これによって永久磁石2が連結部15を介して磁気的に短絡することを防止できる。   In the illustration of FIG. 1, there is a connecting portion 15 as a part of the field element core 1 on the outer peripheral side of the nonmagnetic material 3. The connecting portion 15 connects the core on the outer peripheral side and the core on the inner peripheral side with respect to the permanent magnet 2 and the nonmagnetic body 3. As a result, the strength of the field element core 1 can be improved. The connecting portion 15 is preferably formed of a thin portion having a thin radial width around the rotation axis P. In other words, it is desirable that the connecting portion 15 be formed of a thin portion that is easily magnetically saturated. As a result, the permanent magnet 2 can be prevented from being magnetically short-circuited via the connecting portion 15.

図1の例示では非磁性体3と永久磁石2とは互いに接しているものの、これらが磁石周方向において互いに離間していても良い。例えば非磁性体3と永久磁石2との間に界磁子用コア1の一部が介在していてもよい。これによって界磁子用コア1の強度を向上することができる。なおこの一部は、磁石周方向における幅が薄く容易に磁石飽和する薄肉部によって形成されることが望ましい。これによって、磁石表面21,22の当該一部を介した短絡を防止できる。   In the illustration of FIG. 1, the non-magnetic body 3 and the permanent magnet 2 are in contact with each other, but they may be separated from each other in the magnet circumferential direction. For example, a part of the field element core 1 may be interposed between the nonmagnetic material 3 and the permanent magnet 2. As a result, the strength of the field element core 1 can be improved. In addition, it is desirable that this part is formed by a thin portion that has a small width in the circumferential direction of the magnet and is easily saturated with the magnet. This can prevent a short circuit through the part of the magnet surfaces 21 and 22.

以下、図2を参照して、回転軸Pに垂直な断面における非磁性体3の形状について詳述する。図2の例示では、図示を容易にするために界磁子5のうち非磁性体3の一つに相当する領域のみが示される。他の図面においても適宜に当該部分のみが示される。   Hereinafter, with reference to FIG. 2, the shape of the nonmagnetic material 3 in a cross section perpendicular to the rotation axis P will be described in detail. In the illustration of FIG. 2, only the region corresponding to one of the nonmagnetic bodies 3 in the field element 5 is shown for ease of illustration. In other drawings, only the relevant part is shown as appropriate.

ここでは特に、非磁性体3の外縁を形成する非磁性表面31,32について述べる。非磁性表面31は非磁性体3の極中心側に位置する表面であり、非磁性表面32は非磁性体3の極間側に位置する表面である。なおここでいう極中心とは、当該非磁性体3に対応する永久磁石2によって形成される界磁子用コア1の磁極の周方向における中心である。また極間とは当該磁極の周方向における端(つまり当該磁極と、これと周方向で隣り合う磁極との境界)である。   Here, the nonmagnetic surfaces 31 and 32 that form the outer edge of the nonmagnetic material 3 will be particularly described. The nonmagnetic surface 31 is a surface located on the pole center side of the nonmagnetic material 3, and the nonmagnetic surface 32 is a surface located on the interpolar side of the nonmagnetic material 3. The pole center here is the center in the circumferential direction of the magnetic pole of the field element core 1 formed by the permanent magnet 2 corresponding to the non-magnetic body 3. Further, the distance between the poles is an end in the circumferential direction of the magnetic pole (that is, a boundary between the magnetic pole and a magnetic pole adjacent to the magnetic pole in the circumferential direction).

また以下では磁石表面21と磁石側面23とがなす角部を角部2aと呼び、磁石表面22と磁石側面23とがなす角部を角部2bと呼ぶ。   Hereinafter, a corner formed by the magnet surface 21 and the magnet side surface 23 is referred to as a corner 2a, and a corner formed by the magnet surface 22 and the magnet side surface 23 is referred to as a corner 2b.

非磁性体3は以下の3つの関係を満たす。第1に、非磁性表面31と角部2bとの間の最小距離b1は角部2a,2bの間の距離(以下、端部距離と呼ぶ)a以上である。言い換えれば非磁性表面31は、角部2bを中心とし端部距離aを半径とする仮想円弧R1よりも極中心側(中心点Q側)に設けられる。ただし非磁性表面31は仮想円弧R1と外接していても良く、仮想円弧R1と同一形状であってもよい。   The nonmagnetic material 3 satisfies the following three relationships. First, the minimum distance b1 between the nonmagnetic surface 31 and the corner 2b is equal to or greater than the distance between the corners 2a and 2b (hereinafter referred to as end distance) a. In other words, the nonmagnetic surface 31 is provided closer to the pole center side (center point Q side) than the virtual arc R1 having the corner portion 2b as the center and the end portion distance a as the radius. However, the nonmagnetic surface 31 may circumscribe the virtual arc R1 and may have the same shape as the virtual arc R1.

図2の例示では、非磁性表面31は例えば表面311,312を有している。表面312は例えば磁石表面21から外周面10へ向かって延在し、中心点Q(図1参照)を中心とした円弧に沿う形状を有する。表面311は例えば直線形状を有し、表面312の永久磁石2とは反対側の一端から外周面10へ向って延在する。図2の例示では表面311は仮想円弧R1に外接する。よって最小距離b1はこの接点と角部2bとの間の距離であり、その値は端部距離aと等しい。   In the illustration of FIG. 2, the nonmagnetic surface 31 has, for example, surfaces 311 and 312. For example, the surface 312 extends from the magnet surface 21 toward the outer peripheral surface 10 and has a shape along an arc centered on the center point Q (see FIG. 1). The surface 311 has, for example, a linear shape, and extends from one end of the surface 312 opposite to the permanent magnet 2 toward the outer peripheral surface 10. In the illustration of FIG. 2, the surface 311 circumscribes the virtual arc R1. Therefore, the minimum distance b1 is a distance between the contact point and the corner 2b, and the value is equal to the end distance a.

第2に、非磁性表面32と角部2aとの間の最小距離b2は端部距離a以上である。言い換えれば非磁性表面32は、角部2aを中心とし端部距離aを半径とする仮想円弧R2よりも極間側(中心点Qとは反対側)に設けられる。ただし非磁性表面32は仮想円弧R2に外接していても良く、仮想円弧R2と同一形状であっても良い。   Second, the minimum distance b2 between the nonmagnetic surface 32 and the corner 2a is equal to or greater than the end distance a. In other words, the nonmagnetic surface 32 is provided on the side closer to the pole (the side opposite to the center point Q) than the virtual arc R2 having the corner 2a as the center and the end distance a as the radius. However, the nonmagnetic surface 32 may circumscribe the virtual arc R2 or may have the same shape as the virtual arc R2.

図2の例示では、非磁性表面32は磁石表面22から外周面10へ向かって延在し、中心点Qを中心とした円弧に沿う形状を有する。よって最小距離b2は角部2a,2bの間の距離であり、その値は端部距離aに等しい。   In the illustration of FIG. 2, the nonmagnetic surface 32 extends from the magnet surface 22 toward the outer peripheral surface 10 and has a shape along an arc centered on the center point Q. Therefore, the minimum distance b2 is the distance between the corners 2a and 2b, and its value is equal to the end distance a.

なお図2の例示では、非磁性表面31,32は外周面10側で非磁性表面33を介して互いに連結される。非磁性表面33は仮想円弧R1,R2に対して外周面10側に位置する。   In the illustration of FIG. 2, the nonmagnetic surfaces 31 and 32 are connected to each other via the nonmagnetic surface 33 on the outer peripheral surface 10 side. The nonmagnetic surface 33 is located on the outer peripheral surface 10 side with respect to the virtual arcs R1 and R2.

第3に、非磁性体3の周方向における最小幅c(非磁性表面31,32の周方向における間の最小距離)は、磁石側面23側における永久磁石2の最小幅a’よりも小さい。   Third, the minimum width c in the circumferential direction of the nonmagnetic body 3 (the minimum distance between the nonmagnetic surfaces 31 and 32 in the circumferential direction) is smaller than the minimum width a ′ of the permanent magnet 2 on the magnet side surface 23 side.

図2の例示では永久磁石2の最小幅a’は端部距離aと等しい。一方で図3の例示では端部距離aは最小幅a’よりも長い。これは、図2の例示では磁石側面23が磁石径方向に沿う平坦形状を有している(図1も参照)のに対して、図3の例示では磁石側面23が磁石径方向に沿わない平坦形状を有しているからである。   In the illustration of FIG. 2, the minimum width a 'of the permanent magnet 2 is equal to the end distance a. On the other hand, in the illustration of FIG. 3, the end distance a is longer than the minimum width a '. In the illustration of FIG. 2, the magnet side surface 23 has a flat shape along the magnet radial direction (see also FIG. 1), whereas in the illustration of FIG. 3, the magnet side surface 23 does not follow the magnet radial direction. It is because it has a flat shape.

また図2,3の例示では、表面311と非磁性表面32との間の周方向における幅は外周面10に近づくにしたがって単調減少する。言い換えれば、非磁性体3は外周面10へと向かって細くなる先細り形状を有する。よって図2,3の例示では、非磁性体3の周方向における幅は外周面10側で最小値cを採る。   2 and 3, the width in the circumferential direction between the surface 311 and the nonmagnetic surface 32 decreases monotonously as the outer peripheral surface 10 is approached. In other words, the nonmagnetic material 3 has a tapered shape that narrows toward the outer peripheral surface 10. 2 and 3, the width in the circumferential direction of the nonmagnetic material 3 takes the minimum value c on the outer peripheral surface 10 side.

このような非磁性体3によれば、永久磁石2の端部における減磁耐力を向上することができる。以下に詳述する。   According to such a nonmagnetic material 3, the demagnetization resistance at the end of the permanent magnet 2 can be improved. This will be described in detail below.

図4の太線矢印で示すように、逆磁界の一部は、角部2bと非磁性表面31との間の非磁性体3を通って、永久磁石2の角部2bへと印加され得る。なおここでいう逆磁界とは永久磁石2から発生する磁束と逆の方向の磁束を発生させる磁界であって、不図示の電機子によって発生させられる。このような逆磁界による磁束は永久磁石2を減磁させる要因となるので、以下ではこの磁束を減磁磁束と呼ぶ。   As indicated by a thick arrow in FIG. 4, a part of the reverse magnetic field can be applied to the corner 2 b of the permanent magnet 2 through the nonmagnetic body 3 between the corner 2 b and the nonmagnetic surface 31. Note that the reverse magnetic field here is a magnetic field that generates a magnetic flux in a direction opposite to the magnetic flux generated from the permanent magnet 2, and is generated by an armature (not shown). Since the magnetic flux due to such a reverse magnetic field causes demagnetization of the permanent magnet 2, this magnetic flux is hereinafter referred to as a demagnetizing magnetic flux.

本実施の形態によれば最小距離b1は端部距離a以上であるので、例えば図4の非磁性体3’(非磁性体3’では最小距離b1が端部距離a未満となっている)に比して、この角部2bに印加される逆磁界を低減することができる。言い換えれば、角部2b側の永久磁石2の端部を流れる減磁磁束を低減できる。これは、非磁性表面31と角部2bとの間の最小距離b1を端部距離a以上とすることで、角部2b側の永久磁石2の端部を通る経路における磁気抵抗を高めることができるからである。また最小距離b1は端部距離a以上であるので、非磁性体3を経由して角部2bへと向かう減磁磁束に対する永久磁石2の減磁耐力を、角部2aを経由して角部2bへと向かう減磁磁束に対する永久磁石2の減磁耐力と同程度かそれ以上にすることができる。   According to the present embodiment, since the minimum distance b1 is equal to or greater than the end portion distance a, for example, the nonmagnetic body 3 ′ in FIG. 4 (the minimum distance b1 is less than the end portion distance a in the nonmagnetic body 3 ′). As compared with this, the reverse magnetic field applied to the corner 2b can be reduced. In other words, the demagnetizing magnetic flux flowing through the end of the permanent magnet 2 on the corner 2b side can be reduced. This is because by setting the minimum distance b1 between the nonmagnetic surface 31 and the corner 2b to be equal to or greater than the end distance a, the magnetic resistance in the path passing through the end of the permanent magnet 2 on the corner 2b side can be increased. Because it can. Further, since the minimum distance b1 is equal to or greater than the end distance a, the demagnetization resistance of the permanent magnet 2 against the demagnetizing magnetic flux going to the corner portion 2b via the non-magnetic body 3 is reduced to the corner portion via the corner portion 2a. The demagnetization resistance of the permanent magnet 2 with respect to the demagnetizing magnetic flux toward 2b can be set to the same level or more.

また最小幅cが最小幅a’よりも狭いので、減磁磁束は永久磁石2よりも非磁性体3のうち最小幅cを有する部分へと流れやすい。なぜなら、永久磁石2の透磁率は非常に小さいので磁気抵抗としてはこれを非磁性体3と同視できるところ、最小幅cが最小幅a’よりも狭いので永久磁石2よりも優先的に当該部分へと減磁磁束が流れるのである。したがって、永久磁石2の他の箇所における減磁も招きにくい。   Further, since the minimum width c is narrower than the minimum width a ′, the demagnetizing magnetic flux tends to flow to the portion having the minimum width c in the nonmagnetic material 3 rather than the permanent magnet 2. This is because the magnetic permeability of the permanent magnet 2 is very small, so that the magnetic resistance can be regarded as the same as the non-magnetic material 3, and since the minimum width c is narrower than the minimum width a ′, this part is preferentially given over the permanent magnet 2. The demagnetizing magnetic flux flows to the side. Therefore, demagnetization at other locations of the permanent magnet 2 is also less likely to occur.

さらに非磁性体3によれば最小距離b2も端部距離aよりも大きい。したがって、図4の例示とは異なって、極間の外周面10側から非磁性体3を通って角部2aへと流れる減磁磁束(図4において左上から右下へと流れる破線の減磁磁束)も低減することができる。したがって、このような減磁磁束に対しても永久磁石2の角部2bのみならず角部2aの減磁を抑制することができる。   Furthermore, according to the nonmagnetic material 3, the minimum distance b2 is also larger than the end portion distance a. Therefore, unlike the illustration of FIG. 4, the demagnetizing magnetic flux that flows from the outer peripheral surface 10 side between the poles to the corner portion 2a through the nonmagnetic material 3 (the broken line demagnetization flowing from the upper left to the lower right in FIG. 4). Magnetic flux) can also be reduced. Therefore, the demagnetization of not only the corner portion 2b of the permanent magnet 2 but also the corner portion 2a can be suppressed against such a demagnetizing magnetic flux.

なおここでは、角部2bについての磁気抵抗として角部2bと非磁性表面31との間の距離を考慮し、角部2aについての磁気抵抗として角部2aと非磁性表面32との距離を考慮した。一方で、角部2bと非磁性表面32との距離については考慮する必要がなく、同様に角部2aと非磁性表面31との距離については考慮する必要がない。これは、例えば外周面10から非磁性表面32側を流れる減磁磁束が存在したとしても、この減磁磁束は角部2bには向かわずに周方向へと流れるからである(図4参照)。よって、角部2bの磁気抵抗として、角部2bと非磁性表面32との距離を考慮する必要はほとんどない。角部2aと非磁性表面31との距離についても同様である。   Here, the distance between the corner 2b and the nonmagnetic surface 31 is considered as the magnetic resistance for the corner 2b, and the distance between the corner 2a and the nonmagnetic surface 32 is considered as the magnetic resistance for the corner 2a. did. On the other hand, it is not necessary to consider the distance between the corner 2b and the nonmagnetic surface 32. Similarly, it is not necessary to consider the distance between the corner 2a and the nonmagnetic surface 31. This is because, for example, even if there is a demagnetizing magnetic flux flowing from the outer peripheral surface 10 to the nonmagnetic surface 32 side, this demagnetizing magnetic flux flows in the circumferential direction without going to the corner portion 2b (see FIG. 4). . Therefore, it is almost unnecessary to consider the distance between the corner 2b and the nonmagnetic surface 32 as the magnetic resistance of the corner 2b. The same applies to the distance between the corner 2a and the nonmagnetic surface 31.

このような非磁性体3を採用することで、従来(例えば非磁性体3’)に比べて減磁耐力を1〜2割向上できることが出願人によって確認された。   It has been confirmed by the applicant that the use of such a nonmagnetic material 3 can improve the demagnetization proof strength by 10 to 20% compared to the conventional case (for example, nonmagnetic material 3 ').

なお図2,3の例示では、非磁性体3の非磁性表面31は外周面10に近づくにつれて極間に近づく。かかる形状によれば、界磁子用コア1において永久磁石2よりも外周面10側におけるq軸の磁路を広げることができる。   2 and 3, the nonmagnetic surface 31 of the nonmagnetic body 3 approaches the gap as it approaches the outer peripheral surface 10. According to this shape, it is possible to widen the q-axis magnetic path on the outer peripheral surface 10 side of the permanent magnet 2 in the field element core 1.

<角部>
図1〜4の例示では、磁石側面23はそれぞれ磁石表面21,22と角をなしている。しかしながら実際の製造では厳密な角は形成されずに例えば丸みおよび面取りが形成される。
<Corner>
1-4, the magnet side surface 23 forms an angle with the magnet surfaces 21 and 22, respectively. However, in actual manufacturing, for example, roundness and chamfering are formed without forming a precise corner.

図5の例示では、永久磁石2がその端部において丸められている。このような形状においては、角部2a,2bは次のように把握される。即ち角部2bは磁石表面22を延長した仮想線と磁石側面23の平坦部分に沿う仮想線とがなす角部である。磁石表面22を延長した仮想線とは、例えば磁石表面22をその曲率を維持したまま外周面10へと延在して得られる仮想線である。また角部2aは磁石表面21を延長した仮想線と磁石側面23の平坦部分に沿う仮想線とがなす角部である。磁石表面21を延長した仮想線についても同様である。   In the illustration of FIG. 5, the permanent magnet 2 is rounded at the end. In such a shape, the corners 2a and 2b are grasped as follows. That is, the corner 2 b is a corner formed by a virtual line extending from the magnet surface 22 and a virtual line along the flat portion of the magnet side surface 23. The imaginary line obtained by extending the magnet surface 22 is, for example, a phantom line obtained by extending the magnet surface 22 to the outer peripheral surface 10 while maintaining its curvature. The corner portion 2 a is a corner portion formed by an imaginary line extending from the magnet surface 21 and an imaginary line along the flat portion of the magnet side surface 23. The same applies to a virtual line obtained by extending the magnet surface 21.

図6の例示では、永久磁石2がその端部において面取りされている。具体的には側面23がその表面21,22側において屈曲している。このような形状においても角部2a,2bは図5を参照して説明したように把握される。   In the illustration of FIG. 6, the permanent magnet 2 is chamfered at its end. Specifically, the side surface 23 is bent on the surfaces 21 and 22 side. Even in such a shape, the corners 2a and 2b are grasped as described with reference to FIG.

<非磁性体>
図7に例示する非磁性体3は非磁性表面31の形状という点で図1の非磁性体3と相違する。図7の非磁性表面31は極中心側に膨らむ湾曲形状を有している。これによって例えば非磁性表面31,33によって形成される角部をより鈍角で形成できる。したがってこの角部に生じる応力を緩和できる。また非磁性表面31自体に角部が生じないので、非磁性表面31において生じる応力の集中を抑制できる。
<Non-magnetic material>
The nonmagnetic body 3 illustrated in FIG. 7 is different from the nonmagnetic body 3 of FIG. The nonmagnetic surface 31 in FIG. 7 has a curved shape that swells toward the pole center. Thereby, for example, the corners formed by the nonmagnetic surfaces 31 and 33 can be formed at a more obtuse angle. Therefore, the stress generated in the corner can be relaxed. Further, since no corners are generated on the nonmagnetic surface 31 itself, the concentration of stress generated on the nonmagnetic surface 31 can be suppressed.

図8に例示する非磁性体3は非磁性表面31の形状という点で図1の非磁性体3と相違する。図8の非磁性表面31は複数の平坦部分によって形成される段差形状を有する。この段差形状において非磁性体3の周方向における幅は外周面10に近づくにつれて低減する。より詳細には非磁性表面31は表面313〜315を有する。表面313は非磁性表面33の極中心側の一端から磁石周方向に沿って永久磁石2側へと延在し、表面314に繋がる。表面314は表面313の(非磁性表面33と反対側の)端から周方向に沿って極中心側と延在し表面315へと繋がる。表面315は表面314の(表面313と反対側の)端から磁石表面21へと延在しており、磁石表面21に沿う円弧と同じ円弧に沿う。このようにして表面313〜315によって段差形状が形成されている。   The nonmagnetic material 3 illustrated in FIG. 8 is different from the nonmagnetic material 3 of FIG. The nonmagnetic surface 31 in FIG. 8 has a step shape formed by a plurality of flat portions. In this stepped shape, the width in the circumferential direction of the nonmagnetic material 3 decreases as the outer peripheral surface 10 is approached. More specifically, the nonmagnetic surface 31 has surfaces 313 to 315. The surface 313 extends from one end on the pole center side of the nonmagnetic surface 33 toward the permanent magnet 2 along the circumferential direction of the magnet, and is connected to the surface 314. The surface 314 extends from the end (on the opposite side of the nonmagnetic surface 33) of the surface 313 to the pole center side along the circumferential direction and is connected to the surface 315. Surface 315 extends from the end of surface 314 (on the opposite side to surface 313) to magnet surface 21 and follows the same arc as the arc along magnet surface 21. In this way, a step shape is formed by the surfaces 313 to 315.

図9に例示する非磁性体3は非磁性表面32の形状という点で図1の非磁性体3と相違する。図9の非磁性表面32は外周面10に近づくにしたがって、周方向において極中心側に近づく。図9の例示では、非磁性表面32は磁石表面22に沿う仮想円弧R3に対して極中心側に位置する。つまり図1の例示では、非磁性表面32が磁石表面22の円弧に沿うように延在し、非磁性表面31が磁石表面21の円弧に対して極間側に傾斜することで、先細り形状を形成したのに対して、図9の例示では非磁性表面32も極中心側に傾斜して先細り形状を形成する。   The nonmagnetic body 3 illustrated in FIG. 9 is different from the nonmagnetic body 3 of FIG. The nonmagnetic surface 32 of FIG. 9 approaches the pole center side in the circumferential direction as it approaches the outer peripheral surface 10. In the illustration of FIG. 9, the nonmagnetic surface 32 is located on the pole center side with respect to the virtual arc R <b> 3 along the magnet surface 22. That is, in the illustration of FIG. 1, the nonmagnetic surface 32 extends so as to follow the arc of the magnet surface 22, and the nonmagnetic surface 31 is inclined toward the pole side with respect to the arc of the magnet surface 21, thereby forming a tapered shape. In contrast to the above, in the example of FIG. 9, the nonmagnetic surface 32 is also inclined toward the pole center side to form a tapered shape.

これによって非磁性体3同士の間の周方向における幅が外周面10側で広くなる。したがって極間におけるq軸磁路を増大することができる。これによってq軸インダクタンスを向上でき、ひいてはリラクタンストルクを向上できる。   Thereby, the width in the circumferential direction between the non-magnetic bodies 3 is increased on the outer peripheral surface 10 side. Therefore, the q-axis magnetic path between the poles can be increased. As a result, the q-axis inductance can be improved, and the reluctance torque can be improved.

図10に例示する非磁性体3は空気である。図1の非磁性体3と比較して、図10の非磁性体3(即ち界磁子用コア1に形成される孔)は外周面10において径方向外側に開口している。また非磁性体3と永久磁石2との間には界磁子用コア1の一部としての連結部14が介在する。連結部14によって、永久磁石2よりも外周側のコアと内周側のコアとが互いに連結される。連結部14は磁石周方向における幅が薄い薄肉部によって形成される。言い換えれば、連結部14は容易に磁気飽和する薄肉部によって形成される。これによって連結部14を介した永久磁石2の磁気的な短絡を抑制することができる。   The nonmagnetic material 3 illustrated in FIG. 10 is air. Compared with the nonmagnetic body 3 in FIG. 1, the nonmagnetic body 3 in FIG. 10 (that is, a hole formed in the field element core 1) opens radially outward on the outer peripheral surface 10. Further, a connecting portion 14 as a part of the field element core 1 is interposed between the non-magnetic body 3 and the permanent magnet 2. By the connecting portion 14, the core on the outer peripheral side and the core on the inner peripheral side than the permanent magnet 2 are connected to each other. The connecting portion 14 is formed by a thin portion having a thin width in the magnet circumferential direction. In other words, the connecting portion 14 is formed by a thin portion that is easily magnetically saturated. Thereby, a magnetic short circuit of the permanent magnet 2 through the connecting portion 14 can be suppressed.

なお非磁性体3は空気に限らず固体であってもよい。この場合、非磁性体3は外周面10において露出する。   The nonmagnetic material 3 is not limited to air but may be solid. In this case, the nonmagnetic material 3 is exposed on the outer peripheral surface 10.

図7〜10の非磁性体3のいずれもが上述した第1から第3の関係を満たすので、これらの非磁性体3であっても永久磁石2の端部における減磁耐力を向上することができる。   Since all of the nonmagnetic bodies 3 in FIGS. 7 to 10 satisfy the first to third relationships, the demagnetization resistance at the end of the permanent magnet 2 can be improved even with these nonmagnetic bodies 3. Can do.

なお図1〜10の非磁性体3のいずれもが、外周面10側に近づくにしたがって周方向における幅が狭くなる先細り形状を有しているが、これに限らない。例えば非磁性体3の周方向における幅が、永久磁石2から外周面10へと向かうにつれて一旦は低減し、最小値を採った後に増大しても構わない。つまり、例えば砂時計の内部空間のような形状を採用しても構わない。   1 to 10 has a tapered shape in which the width in the circumferential direction becomes narrower toward the outer peripheral surface 10 side, but is not limited thereto. For example, the width in the circumferential direction of the non-magnetic body 3 may be reduced once as it goes from the permanent magnet 2 to the outer peripheral surface 10, and may be increased after taking the minimum value. That is, for example, a shape like an internal space of an hourglass may be adopted.

<永久磁石2の周方向における固定>
例えば図2の例示では、非磁性表面32は磁石表面21の円弧に沿う表面312を有している。これは最小距離b1を端部距離a以上とするという観点で有利である。つまり、本実施の形態とは異なって非磁性体3’のように非磁性表面31が角部2aから非磁性表面33へと直線で繋がる場合、最小距離b1が端部距離aよりも短くなる(図4参照)。一方で、本実施の形態では表面312によってこの部分における最小距離をより確実に端部距離a以上にしている。同様に図2の例示では、非磁性表面32は磁石表面22に沿う円弧と同じ円弧に沿っている。これによって角部2bと非磁性表面32との間の最小距離b1をより確実に端部距離a以上にしている。
<Fixing in the circumferential direction of the permanent magnet 2>
For example, in the illustration of FIG. 2, the nonmagnetic surface 32 has a surface 312 that follows the arc of the magnet surface 21. This is advantageous from the viewpoint that the minimum distance b1 is not less than the end distance a. That is, unlike the present embodiment, when the nonmagnetic surface 31 is connected in a straight line from the corner 2a to the nonmagnetic surface 33 as in the nonmagnetic material 3 ', the minimum distance b1 is shorter than the end distance a. (See FIG. 4). On the other hand, in the present embodiment, the minimum distance in this portion is more reliably set to the end distance a or more by the surface 312. Similarly, in the illustration of FIG. 2, the nonmagnetic surface 32 is along the same arc as the arc along the magnet surface 22. As a result, the minimum distance b1 between the corner 2b and the nonmagnetic surface 32 is more reliably set to the end distance a or more.

しかしながら、最小距離b1,b2のいずれもが端部距離aよりも長いことによって、永久磁石2側における非磁性体3の幅が永久磁石2の幅よりも広くなり得る。この場合、非磁性体3が空気で形成されていれば、永久磁石2が磁石周方向で移動しえる。このような永久磁石2の移動は回転電機の性能上好ましくない。したがってこの場合、永久磁石2の周方向における位置を固定する固定部を設けることが望ましい。   However, since both of the minimum distances b1 and b2 are longer than the end portion distance a, the width of the nonmagnetic body 3 on the permanent magnet 2 side can be wider than the width of the permanent magnet 2. In this case, if the nonmagnetic material 3 is formed of air, the permanent magnet 2 can move in the magnet circumferential direction. Such movement of the permanent magnet 2 is not preferable in terms of performance of the rotating electrical machine. Therefore, in this case, it is desirable to provide a fixing portion for fixing the position of the permanent magnet 2 in the circumferential direction.

このような固定部は種々の固定によって実現可能であり、本実施の形態の趣旨を逸脱しない範囲で任意の固定が採用される。例えば固定部は、磁石表面21または磁石表面22に設けられた突部または凹部と、これと嵌合して界磁子用コア1に設けられる凹部または突部とを備えていても良い。これによって、永久磁石2の周方向の位置が固定される。   Such a fixing part can be realized by various fixings, and arbitrary fixing is employed without departing from the gist of the present embodiment. For example, the fixed portion may include a protrusion or recess provided on the magnet surface 21 or the magnet surface 22 and a recess or protrusion provided on the field element core 1 by fitting with the protrusion or recess. As a result, the circumferential position of the permanent magnet 2 is fixed.

また固定部は図11に示すように、界磁子用コア1に設けられる突部16であってもよい。かかる突部16は磁石周方向において磁石側面23と対面する位置に設けられ、永久磁石2の磁石周方向における移動を阻害する。なお突部16は磁石周方向における幅が薄い薄肉部によって形成される。言い換えれば、突部16は容易に磁気飽和する薄肉部によって形成される。このような突部16は磁気的には非磁性と見なすことができる。よって突部16は非磁性体3の一部と見なすことができる。   Further, as shown in FIG. 11, the fixed portion may be a protrusion 16 provided on the field element core 1. The protrusion 16 is provided at a position facing the magnet side surface 23 in the magnet circumferential direction, and hinders movement of the permanent magnet 2 in the magnet circumferential direction. The protrusion 16 is formed by a thin portion having a small width in the magnet circumferential direction. In other words, the protrusion 16 is formed by a thin portion that is easily magnetically saturated. Such protrusions 16 can be considered magnetically non-magnetic. Therefore, the protrusion 16 can be regarded as a part of the nonmagnetic material 3.

また突部16に替えて図10の連結部14が固定部として設けられても良い。これによっても永久磁石2の移動を妨げることができる。   Moreover, it replaces with the protrusion 16 and the connection part 14 of FIG. 10 may be provided as a fixing | fixed part. This can also prevent the movement of the permanent magnet 2.

また軸方向における界磁子5の両側に端板を設ける場合、この端板に固定部を設けても良い。例えば軸方向に延在する棒状の突起部を端板に設け、この突起部を非磁性体3に挿入する。図12を参照して、この突起部4は端板が界磁子に取り付けられた状態で磁石側面23と磁石周方向で対面する。これによって永久磁石2による磁石周方向の移動が妨げられる。なお突起部4は非磁性で設けられていることが望ましい。或いは突起部4は磁石径方向又は磁石周方向における幅が薄い薄肉部によって形成されることが望ましい。言い換えると当該突起部は容易に磁気飽和する薄肉部によって形成されることが望ましい。これによって突起部4と端板とを介して永久磁石2が磁気的に短絡することを防止できる。   Moreover, when providing an end plate on both sides of the field element 5 in the axial direction, a fixing portion may be provided on the end plate. For example, a rod-like protrusion extending in the axial direction is provided on the end plate, and this protrusion is inserted into the nonmagnetic material 3. Referring to FIG. 12, the protrusion 4 faces the magnet side surface 23 in the magnet circumferential direction with the end plate attached to the field element. This prevents the permanent magnet 2 from moving in the circumferential direction of the magnet. In addition, it is desirable that the protrusion 4 is provided non-magnetically. Alternatively, the protrusion 4 is preferably formed by a thin portion having a thin width in the magnet radial direction or the magnet circumferential direction. In other words, it is desirable that the protrusion is formed by a thin portion that is easily magnetically saturated. Thereby, it is possible to prevent the permanent magnet 2 from being magnetically short-circuited through the protrusion 4 and the end plate.

<二色成形>
非磁性体3と永久磁石2とを二色成形しても構わない。例えば非磁性体3を樹脂で成形し、永久磁石2をボンド磁石で成形する。より詳細には例えばまず、永久磁石2に相当する空間を有する金型に硬磁性片と樹脂との混合物を注入して射出成形することによって、ボンド磁石を形成する。続いて例えば上側の金型を取り替えて非磁性体3に相当する空間を形成し、この空間に樹脂を注入して成形する。これによって、非磁性体3と永久磁石2とを一体で成形することできる。これによって永久磁石2の周方向における移動(振動)を抑制することができる。なお永久磁石2と非磁性体3との成形順序は任意である。
<Two-color molding>
The non-magnetic material 3 and the permanent magnet 2 may be molded in two colors. For example, the non-magnetic material 3 is molded from a resin, and the permanent magnet 2 is molded from a bonded magnet. More specifically, for example, first, a bonded magnet is formed by injecting a mixture of a hard magnetic piece and a resin into a mold having a space corresponding to the permanent magnet 2 and performing injection molding. Subsequently, for example, the upper mold is replaced to form a space corresponding to the non-magnetic material 3, and the resin is injected into this space for molding. Thereby, the nonmagnetic material 3 and the permanent magnet 2 can be integrally formed. Thereby, the movement (vibration) in the circumferential direction of the permanent magnet 2 can be suppressed. The molding order of the permanent magnet 2 and the nonmagnetic material 3 is arbitrary.

また界磁子用コア1と永久磁石2と非磁性体3との成形を組み合わせても良い。例えば界磁子用コア1を圧縮成形で形成した後に、永久磁石2および非磁性体3を順次に射出成形により形成してもよい。これによって非磁性体3と永久磁石2と界磁子用コア1とを一体で成形することができる。この場合、界磁子用コア1は圧粉磁心で形成される。なお界磁子用コア1と永久磁石2と非磁性体3との少なくとも二つを成形すればよく、また成形順序は任意である。   Moreover, you may combine shaping | molding of the core 1 for field elements, the permanent magnet 2, and the nonmagnetic body 3. FIG. For example, after the field element core 1 is formed by compression molding, the permanent magnet 2 and the nonmagnetic material 3 may be sequentially formed by injection molding. As a result, the non-magnetic material 3, the permanent magnet 2, and the field element core 1 can be integrally formed. In this case, the field element core 1 is formed of a dust core. In addition, what is necessary is just to shape | mold at least two of the core 1 for field elements, the permanent magnet 2, and the nonmagnetic body 3, and a shaping | molding order is arbitrary.

なお永久磁石2の形状として逆円弧形状を例示したが、これに限らない。永久磁石2は例えば回転軸P側に凸となるV字形状であってもよい。   In addition, although the reverse arc shape was illustrated as a shape of the permanent magnet 2, it is not restricted to this. For example, the permanent magnet 2 may have a V-shape that protrudes toward the rotation axis P.

第2の実施の形態.
第1の実施の形態では界磁子5単体に着目して永久磁石2の端部における減磁耐力を向上した。ここでは界磁子5と電機子6とを有する回転電機に着目する。
Second embodiment.
In the first embodiment, focusing on the field element 5 alone, the demagnetization resistance at the end of the permanent magnet 2 is improved. Here, attention is paid to a rotating electric machine having a field element 5 and an armature 6.

図13に例示するように、電機子6は径方向においてエアギャップを介して界磁子5と対面する。なお図13においては電機子6のうち一つのティースのみが例示される。実際には、電機子6は複数のティースとバックヨークと巻線とを備える。複数のティースは回転軸P(図1等参照)を中心として放射状に配置される。バックヨークは複数のティースの界磁子5とは反対側の一端を磁気的に連結する。巻線は例えば集中巻によりティースに巻回される。   As illustrated in FIG. 13, the armature 6 faces the field element 5 through the air gap in the radial direction. In FIG. 13, only one tooth of the armature 6 is illustrated. Actually, the armature 6 includes a plurality of teeth, a back yoke, and a winding. The plurality of teeth are arranged radially about the rotation axis P (see FIG. 1 and the like). The back yoke magnetically connects one end of the plurality of teeth opposite to the field element 5. The winding is wound around the teeth by, for example, concentrated winding.

永久磁石2に印加される逆磁界はこの電機子6によって発生する。よって図13に例示するように、角部2b側の永久磁石2の端を通る減磁磁束の経路には、非磁性体3のみならず非磁性のエアギャップgが介在する。したがって、最小距離b1とエアギャップgとの和を、この経路における磁気抵抗と見なすことができる。   A reverse magnetic field applied to the permanent magnet 2 is generated by the armature 6. Therefore, as illustrated in FIG. 13, not only the nonmagnetic body 3 but also the nonmagnetic air gap g is interposed in the path of the demagnetizing magnetic flux passing through the end of the permanent magnet 2 on the corner 2 b side. Therefore, the sum of the minimum distance b1 and the air gap g can be regarded as the magnetoresistance in this path.

したがって最小距離b1とエアギャップgの和を端部距離a以上とし、同様に最小距離b2とエアギャップgとの和を端部距離a以上としてもよい。また第1の実施の形態と同様に周方向における非磁性表面31,32の間の最小幅cは非磁性体3側における磁石表面21,22の間の最小幅a’よりも小さい。   Therefore, the sum of the minimum distance b1 and the air gap g may be equal to or greater than the end distance a, and similarly, the sum of the minimum distance b2 and the air gap g may be equal to or greater than the end distance a. Similarly to the first embodiment, the minimum width c between the nonmagnetic surfaces 31 and 32 in the circumferential direction is smaller than the minimum width a 'between the magnet surfaces 21 and 22 on the nonmagnetic body 3 side.

このような非磁性体3によっても、永久磁石2の端部の減磁耐力を向上することができる。なお非磁性体3の具体的な形状については第1の実施の形態と同様であるので、繰り返しの説明を避ける。   Such a nonmagnetic material 3 can also improve the demagnetization resistance of the end of the permanent magnet 2. Note that the specific shape of the nonmagnetic material 3 is the same as that of the first embodiment, so that repeated description is avoided.

1 界磁子用コア
2 永久磁石
3 非磁性体
21,22 磁石表面
23 磁石側面
31,32 非磁性表面
a 端部距離
a’ 最小幅
b1,b2 最小距離
c 最小幅
P 回転軸
DESCRIPTION OF SYMBOLS 1 Core for field element 2 Permanent magnet 3 Non-magnetic material 21, 22 Magnet surface 23 Magnet side surface 31, 32 Non-magnetic surface a End distance a 'Minimum width b1, b2 Minimum distance c Minimum width P Rotating shaft

Claims (4)

回転軸(P)を中心とした周方向に並んで設けられ、前記回転軸とは反対側に交互に異なる磁極を呈する複数の永久磁石(2)と、
前記永久磁石が埋設される界磁子コア(1)と、
前記界磁子コアに設けられる非磁性体(3)と
を備える界磁子であって、
前記回転軸に平行な軸方向から見て前記永久磁石の各々は、
前記回転軸側に凸となる形状を有し、
前記周方向の端部において平坦部分を有する一対の磁石側面(23)と、
前記回転軸とは反対側および前記回転軸側にそれぞれ位置し前記磁石側面によって互いに連結される第1磁石表面(21)及び第2磁石表面(22)と
を有し、
前記軸方向から見て前記非磁性体(3)は、
一の前記永久磁石の一の前記磁石側面側から前記界磁子コアの外周面に向って延在し、
前記磁極の極中心側および極間側にそれぞれ位置し、前記非磁性体の外縁を形成する第1非磁性表面(31)及び第2非磁性表面(32)
を有し、
前記軸方向から見て、
(i)前記一の前記磁石側面(23)と前記第2磁石表面(22)とが成す第1角部(2b)と、前記第1非磁性表面(31)との間の最小距離(b1)は、前記第1角部(2b)と、前記一の前記磁石側面と前記第1磁石表面(21)とが成す第2角部(2a)との間の端部距離(a)以上であり、
(ii)前記第2非磁性表面(32)と前記第2角部(2a)との間の最小距離(b2)は前記端部距離(a)以上であり、
(iii)前記非磁性体の前記周方向における最小幅(c)は、前記非磁性体側における前記一の前記永久磁石の最小幅(a')よりも小さい、
という関係を有する、界磁子。
A plurality of permanent magnets (2) provided side by side in the circumferential direction around the rotation axis (P) and presenting different magnetic poles alternately on the opposite side of the rotation axis,
A field element core (1) in which the permanent magnet is embedded;
A field element comprising a non-magnetic material (3) provided in the field element core,
Each of the permanent magnets when viewed from an axial direction parallel to the rotation axis,
Having a shape that protrudes toward the rotating shaft;
A pair of magnet side surfaces (23) having a flat portion at the circumferential end, and
A first magnet surface (21) and a second magnet surface (22) which are respectively located on the opposite side of the rotating shaft and on the rotating shaft side and connected to each other by the magnet side surfaces;
The non-magnetic material (3) viewed from the axial direction is
Extending from one magnet side surface of one of the permanent magnets toward the outer peripheral surface of the field element core,
A first non-magnetic surface (31) and a second non-magnetic surface (32) which are located on the pole center side and the pole-pole side of the magnetic pole and form the outer edge of the non-magnetic material, respectively.
Have
Seen from the axial direction,
(i) The minimum distance (b1) between the first corner (2b) formed by the one magnet side surface (23) and the second magnet surface (22) and the first nonmagnetic surface (31) ) Is equal to or greater than the end distance (a) between the first corner (2b) and the second corner (2a) formed by the one magnet side surface and the first magnet surface (21). Yes,
(ii) The minimum distance (b2) between the second nonmagnetic surface (32) and the second corner (2a) is not less than the end distance (a);
(iii) the minimum width in the front distichum direction of the non-magnetic material (c), the smaller than the one of the minimum width of the permanent magnet in the non-magnetic side (a '),
A field element that has the relationship
前記第1非磁性表面(31)は前記中心側に膨らむ湾曲形状を有する、請求項1に記載の界磁子。 The field element according to claim 1, wherein the first nonmagnetic surface has a curved shape that swells toward the pole center. 前記第2非磁性表面(32)は、前記外周面に近づくにしたがって、前記周方向において前記極中心に近づく、請求項1又は2に記載の界磁子。   The field element according to claim 1 or 2, wherein the second nonmagnetic surface (32) approaches the pole center in the circumferential direction as the outer peripheral surface is approached. 前記永久磁石(2)と前記非磁性体(3)とは二色成形により一体形成される、請求項1から3のいずれか一つに記載の界磁子。   The field element according to any one of claims 1 to 3, wherein the permanent magnet (2) and the non-magnetic body (3) are integrally formed by two-color molding.
JP2012144095A 2012-06-27 2012-06-27 Field element and rotating electric machine Expired - Fee Related JP6047946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012144095A JP6047946B2 (en) 2012-06-27 2012-06-27 Field element and rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012144095A JP6047946B2 (en) 2012-06-27 2012-06-27 Field element and rotating electric machine

Publications (2)

Publication Number Publication Date
JP2014007928A JP2014007928A (en) 2014-01-16
JP6047946B2 true JP6047946B2 (en) 2016-12-21

Family

ID=50105203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012144095A Expired - Fee Related JP6047946B2 (en) 2012-06-27 2012-06-27 Field element and rotating electric machine

Country Status (1)

Country Link
JP (1) JP6047946B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6214876B2 (en) * 2013-01-25 2017-10-18 株式会社ミツバ Manufacturing method of rotor
JP2015159706A (en) * 2014-01-22 2015-09-03 日本精工株式会社 Electric motor, electric power steering device and vehicle
DE112016006654T5 (en) * 2016-03-25 2018-12-13 Mitsubishi Electric Corporation Rotor, engine, compressor and cooling air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003793A1 (en) * 1994-07-25 1996-02-08 Daikin Industries, Ltd. Brushless dc motor
JP4867194B2 (en) * 2005-04-28 2012-02-01 トヨタ自動車株式会社 Rotor
JP2008136298A (en) * 2006-11-28 2008-06-12 Toyota Industries Corp Rotator of rotary electric machine, and rotary electric machine
JP5228316B2 (en) * 2006-12-06 2013-07-03 株式会社豊田自動織機 Rotating electric machine rotor and rotating electric machine
JP2011083066A (en) * 2009-10-02 2011-04-21 Osaka Prefecture Univ Permanent magnet assisted synchronous reluctance motor

Also Published As

Publication number Publication date
JP2014007928A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP4169055B2 (en) Rotating electric machine
JP5709907B2 (en) Permanent magnet embedded rotary electric machine for vehicles
JP6007593B2 (en) Rotor, rotating electric machine provided with the same, and method of manufacturing rotor
JP5234202B2 (en) Rotor and rotating electric machine using the same
JP5891089B2 (en) Permanent magnet synchronous machine
JP5813254B2 (en) Permanent magnet rotating electric machine
US8829758B2 (en) Rotary electric machine
WO2013008284A1 (en) Permanent magnet type electric rotating machine and manufacturing method thereof
JP5701936B2 (en) Embedded magnet type rotating electric machine
JP7299531B2 (en) rotor, motor
JP6047946B2 (en) Field element and rotating electric machine
CN111953097A (en) Rotating electrical machine
JP2013236418A (en) Rotary electric machine
US11901773B2 (en) Rotating electric machine
JP2018098936A (en) Magnet unit
JP2014023275A (en) Field element, rotary electric machine, and method of manufacturing field element
JP2008029130A (en) Rotating electric machine
WO2022080010A1 (en) Rotor and rotating electric machine
JP6949283B1 (en) Synchronous motor
JP7401737B2 (en) rotor, motor
WO2023007708A1 (en) Rotor and motor
WO2022080110A1 (en) Rotor and rotary electric machine
JP6338139B2 (en) Permanent magnet embedded motor
JP6467912B2 (en) Rotating electrical machine
JP5340809B2 (en) Magnet for motor and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R151 Written notification of patent or utility model registration

Ref document number: 6047946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees