JP6047427B2 - Method for measuring film shape of thin film - Google Patents
Method for measuring film shape of thin film Download PDFInfo
- Publication number
- JP6047427B2 JP6047427B2 JP2013045307A JP2013045307A JP6047427B2 JP 6047427 B2 JP6047427 B2 JP 6047427B2 JP 2013045307 A JP2013045307 A JP 2013045307A JP 2013045307 A JP2013045307 A JP 2013045307A JP 6047427 B2 JP6047427 B2 JP 6047427B2
- Authority
- JP
- Japan
- Prior art keywords
- measurement object
- film
- transparent film
- height
- interference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
本発明は、透明膜で覆われた測定対象物の表面形状および透明膜の厚みを測定する薄膜の膜形状測定方法に係り、特に、3波長以上の複数の単色光を用いて非接触で透明膜表面の高さ、測定対象面の高さ及び透明膜の膜厚を測定する薄膜の膜形状測定方法に関する。 The present invention relates to a film shape measuring method of a thin film for measuring the surface shape of a measurement object covered with a transparent film and the thickness of the transparent film, and in particular, non-contact and transparent using a plurality of monochromatic lights having three or more wavelengths. The present invention relates to a film shape measuring method of a thin film that measures the height of a film surface, the height of a surface to be measured, and the thickness of a transparent film.
従来のこの種の装置として、半導体ウエハや液晶表示器用ガラス基板などの精密加工品の凹凸形状を白色光の干渉を用いて測定する方法を利用した表面形状測定装置が広く知られている。従来の表面形状測定装置は、図10に示すように、白色光源90からの白色光を第1レンズ91を通してハーフミラー92まで導き、ハーフミラー92で反射された白色光を第2レンズ93によって集束して、その白色光をビームスプリッタ95を介して測定対象面96上に照射するように構成された干渉計を備えている。 As a conventional device of this type, a surface shape measuring device using a method for measuring the uneven shape of a precision processed product such as a semiconductor wafer or a glass substrate for a liquid crystal display using interference of white light is widely known. As shown in FIG. 10, the conventional surface shape measuring apparatus guides white light from the white light source 90 to the half mirror 92 through the first lens 91, and focuses the white light reflected by the half mirror 92 by the second lens 93. An interferometer configured to irradiate the measurement target surface 96 with the white light via the beam splitter 95 is provided.
干渉計のビームスプリッタ95では、測定対象面96に照射する白色光と、参照面94に照射する白色光とに分ける。参照面94に照射される白色光は、参照面94の反射部94aで反射して、ビームスプリッタ95に再び達する。一方、ビームスプリッタ95を通過した白色光は、測定対象面96上で反射してビームスプリッタ95に再び達する。ビームスプリッタ95は、参照面94の反射部94aで反射した白色光と、測定対象面96で反射した白色光とを再び同一の経路にまとめる。このとき、参照面94からビームスプリッタ95までの距離L1と、ビームスプリッタ95から測定対象面96までの距離L2との距離の差に応じた干渉現象が発生する。その干渉現象が発生した白色光は、ハーフミラー92を通過してCCDカメラ98に入射する。 In the beam splitter 95 of the interferometer, the white light applied to the measurement target surface 96 and the white light applied to the reference surface 94 are divided. The white light irradiated on the reference surface 94 is reflected by the reflecting portion 94a of the reference surface 94 and reaches the beam splitter 95 again. On the other hand, the white light that has passed through the beam splitter 95 is reflected on the measurement target surface 96 and reaches the beam splitter 95 again. The beam splitter 95 combines the white light reflected by the reflecting portion 94a of the reference surface 94 and the white light reflected by the measurement target surface 96 again in the same path. At this time, an interference phenomenon corresponding to the difference in distance between the distance L1 from the reference surface 94 to the beam splitter 95 and the distance L2 from the beam splitter 95 to the measurement target surface 96 occurs. The white light in which the interference phenomenon has occurred passes through the half mirror 92 and enters the CCD camera 98.
CCDカメラ98は、その干渉現象が発生した白色光とともに、測定対象面96を撮像する。ここで、図示しない変動手段によって、ビームスプリッタ95側のユニットを上下に変動させて、距離L1と距離L2との差を変化させることで、CCDカメラ98に入射する白色光の波長が強め合ったり、弱め合ったりする。例えば、CCDカメラ98で撮像される領域内の測定対象面96上の特定箇所に着目した場合に、距離L2<距離L1から距離L2>距離L1になるまで、ビームスプリッタ95の位置を変動させる。これにより、特定箇所における干渉した白色光(以下、単に「干渉光」と呼ぶ)の強度を測定すると、理論的には図11に示すような結果が得られる。このときの干渉光の強度値変化の振幅が最大になる位置を求めることで、測定対象面の特定箇所の高さを求めることができる。同様にして、複数の特定箇所の高さを求めることで、測定対象面の凹凸形状を測定している。 The CCD camera 98 images the measurement target surface 96 together with the white light in which the interference phenomenon has occurred. Here, the wavelength of white light incident on the CCD camera 98 is intensified by changing the difference between the distance L1 and the distance L2 by changing the unit on the beam splitter 95 side up and down by a changing means (not shown). , Weaken each other. For example, when attention is paid to a specific part on the measurement target surface 96 in the region imaged by the CCD camera 98, the position of the beam splitter 95 is changed until the distance L2 <distance L1 to distance L2> distance L1. Thus, when the intensity of the interfered white light (hereinafter simply referred to as “interference light”) at a specific location is measured, a result as shown in FIG. 11 is theoretically obtained. By obtaining the position where the amplitude of the intensity value change of the interference light at this time is maximized, the height of the specific portion of the measurement target surface can be obtained. Similarly, the uneven shape of the measurement target surface is measured by obtaining the heights of a plurality of specific locations.
具体的には、所定間隔で干渉光の強度値を測定して取得した離散的な干渉光の強度値のデータ群から干渉光の強度値変化の振幅が最大になる位置を求める必要がある。そこで、その振幅が最大になる位置を求める方法として、離散的なデータ群の平均値を算出し、算出された平均値を各強度値から減算し、算出されたそれぞれの値を、さらに2乗することによって、プラス側の強度値を強調したデータ群に変換して、このデータ群を平滑化した曲線(包絡線)を求める。この平滑化した曲線の最大値になる位置を求めることにより、特定箇所の表面高さを求めている。 Specifically, it is necessary to obtain the position where the amplitude of the change in the intensity value of the interference light is maximized from the data group of discrete intensity values of the interference light acquired by measuring the intensity value of the interference light at a predetermined interval. Therefore, as a method for obtaining the position where the amplitude is maximized, an average value of a discrete data group is calculated, the calculated average value is subtracted from each intensity value, and each calculated value is further squared. As a result, the data is converted into a data group in which the intensity value on the plus side is emphasized, and a curve (envelope) obtained by smoothing the data group is obtained. The surface height of the specific portion is obtained by obtaining the position where the maximum value of the smoothed curve is obtained.
しかしながら、従来の方法では、次のような問題がある。すなわち、測定対象物の表面が透明膜で覆われている場合に、透明膜を透過して透明膜の裏面と接触している測定対象物との界面(以下、適宜「測定対象物表面」という)から反射した反射光に、当該透明膜表面で反射する反射光が重畳される。つまり、重畳された両反射光を干渉信号に変換すると、個別に得なければならない各干渉信号が重畳されてしまう。その結果、透明膜表面の反射光が外乱となり、測定対象物表面の高さを正確に測定することができず、ひいては、測定対象物の表面形状をも正確に測定することができないという問題がある。 However, the conventional method has the following problems. That is, when the surface of the measurement object is covered with a transparent film, the interface with the measurement object that passes through the transparent film and is in contact with the back surface of the transparent film (hereinafter referred to as “measurement object surface” as appropriate). The reflected light reflected from the surface of the transparent film is superimposed on the reflected light reflected from (). In other words, when both superimposed reflected lights are converted into interference signals, each interference signal that must be obtained individually is superimposed. As a result, the reflected light on the surface of the transparent film becomes a disturbance, the height of the surface of the measurement object cannot be measured accurately, and consequently the surface shape of the measurement object cannot be measured accurately. is there.
これら2カ所での干渉現象は、透明膜の厚みよって、その現れ方が異なる。例えば、図12の左側のように、透明膜が厚い場合には2カ所の干渉現象それぞれが個別に現れ、透明膜表面の高さと測定対象物表面の高さ、さらに膜厚を求めることができる。(特許文献1) しかし、図12の右側のように透明膜が薄い場合には、透明膜表面と測定対象物表面からの反射光の干渉現象が略重畳した状態となり、それぞれの振幅最大値が波形上に重なった状態で現れる。このような場合には、従来の振幅最大値の位置情報を求める方法では、2カ所の干渉を分離することはできない。したがって、透明膜表面の高さ情報を得ることもできないし、透明膜の下にある測定対象物表面の高さ情報をも得ることができないといった問題がある。 The appearance of the interference phenomenon at these two locations differs depending on the thickness of the transparent film. For example, as shown in the left side of FIG. 12, when the transparent film is thick, two interference phenomena appear individually, and the height of the transparent film surface, the height of the surface of the measurement object, and the film thickness can be obtained. . However, when the transparent film is thin as shown on the right side of FIG. 12, the interference phenomenon of reflected light from the surface of the transparent film and the surface of the measurement object is substantially superimposed, and each amplitude maximum value is Appears overlaid on the waveform. In such a case, the conventional method of obtaining the position information of the maximum amplitude value cannot separate the interference at two places. Therefore, there is a problem that the height information on the surface of the transparent film cannot be obtained, and the height information on the surface of the measurement object under the transparent film cannot be obtained.
本発明は、このような事情に鑑みてなされたものであって、透明膜に覆われた測定対象物の特定箇所の透明膜表面の高さ、測定対象物表面の高さ、および透明膜の膜厚を精度よく求めることのできる薄膜の膜形状測定方法を提供することを主たる目的とする。 The present invention has been made in view of such circumstances, and the height of the transparent film surface at the specific location of the measurement object covered by the transparent film, the height of the measurement object surface, and the transparent film The main object is to provide a method for measuring the shape of a thin film capable of accurately obtaining the film thickness.
また、すでに、白色光や単色光からなる光源を用いて、表面形状を求める公知例は存在するが、特許文献2、3の方法では、モデルが複雑であり装置パラメータを事前に求めておく必要がある。しかし、本発明による方法では、測定対象物表面がサブミクロンオーダーの透明薄膜で覆われた場合においても、比較的容易に透明膜表面の高さ、測定対象物表面の高さおよび透明膜の膜厚が測定できる薄膜の膜形状測定方法を提供することを目的とする。 Further, there are already known examples for obtaining a surface shape using a light source composed of white light or monochromatic light. However, in the methods of Patent Documents 2 and 3, the model is complicated and it is necessary to obtain apparatus parameters in advance. There is. However, in the method according to the present invention, even when the surface of the measurement object is covered with a transparent thin film of submicron order, the height of the surface of the transparent film, the height of the surface of the measurement object, and the film of the transparent film are relatively easy. An object of the present invention is to provide a method for measuring the shape of a thin film capable of measuring the thickness.
本発明は、このような目的を達成するために、次のような構成をとる。
すなわち、請求項1に記載の発明は、透明膜で覆われた測定対象物の測定対象物表面と参照面とに照明光を照射しながら、前記測定対象物表面と参照面との距離を変動させることにより、測定対象物表面と参照面から反射して同一光路を戻る反射光によって干渉縞の変化を生じさせ、このときの干渉光の強度値に基づいて測定対象物の特定箇所の透明膜表面の高さ、測定対象物表面の高さ、および透明膜の膜厚の少なくともいずれか一つを求める薄膜の膜形状測定方法において、
照明光は3波長以上の複数の単波長を含み、透明膜を有する測定対象物表面と参照面との光路差を変化させて、両面からの反射光による干渉画像を撮像し、得られた干渉輝度信号に、モデル関数を適合して、前記透明膜表面の高さ、測定対象物表面の高さおよび透明膜の膜厚を求めるものであり、
前記モデル関数が、参照面での反射と透明膜表面での反射による干渉信号と、参照面での反射と測定対象物表面での反射による干渉信号モデルとの和、
In order to achieve such an object, the present invention has the following configuration.
That is, the invention according to claim 1 varies the distance between the measurement object surface and the reference surface while irradiating illumination light on the measurement object surface and the reference surface of the measurement object covered with the transparent film. By causing the interference light to change due to reflected light that is reflected from the surface of the measurement object and the reference surface and returns on the same optical path, a transparent film at a specific location of the measurement object is determined based on the intensity value of the interference light at this time. In the method for measuring the shape of a thin film for obtaining at least one of the height of the surface, the height of the surface of the measurement object, and the thickness of the transparent film,
Illumination light includes a plurality of single wavelengths of three or more wavelengths , changes the optical path difference between the surface of the measurement object having a transparent film and the reference surface, captures interference images by reflected light from both surfaces, and obtains interference A model function is applied to the luminance signal to obtain the height of the transparent film surface, the height of the surface of the measurement object, and the film thickness of the transparent film ,
The model function is a sum of an interference signal due to reflection on the reference surface and reflection on the transparent film surface, and an interference signal model due to reflection on the reference surface and reflection on the surface of the measurement object,
ここで、g(i,j)はデータ番号iで波長番号jのモデル関数値、a(j)は波長番号jの直流成分(=平均値)、bHere, g (i, j) is a model function value of wavelength number j with data number i, a (j) is a direct current component (= average value) of wavelength number j, b
11
(j)は波長番号jの透明膜表面輝度交流成分の振幅、b(J) is the amplitude of the transparent film surface luminance AC component of wavelength number j, b
22
(j)は波長番号jの測定対象物表面輝度交流成分の振幅、λ(j)は波長番号jの波長、z(i)はデータ番号iの高さ、z(J) is the amplitude of the surface luminance alternating current component of the wavelength number j, λ (j) is the wavelength of the wavelength number j, z (i) is the height of the data number i, z
11
は透明膜表面高さ、zIs the surface height of the transparent film, z
22
は測定対象物表面の高さ、Is the height of the surface of the measurement object,
として表すことを特徴とする。It is characterized by expressing as.
この方法によれば、各単波長毎の干渉光観測輝度値を干渉縞の物理モデルに適合させることにより、測定対象物の測定対象物表面の高さ、透明膜表面の高さおよび透明膜の膜厚を容易に求める事ができる。特に、白色光を用いた測定では困難な,透明膜の膜厚が1ミクロン以下の場合においても、測定対象物表面の高さと透明膜表面の高さを分離し、高精度に求めることが可能になる。According to this method, by adjusting the interference light observation luminance value for each single wavelength to the interference fringe physical model, the height of the measurement object surface of the measurement object, the height of the transparent film surface, and the transparent film surface The film thickness can be easily obtained. In particular, even when the thickness of the transparent film is less than 1 micron, which is difficult to measure using white light, the height of the surface of the object to be measured and the height of the surface of the transparent film can be separated and obtained with high accuracy. become.
請求項2に記載の発明は、請求項1に記載の薄膜の膜形状測定方法において、透明膜表面輝度交流成分の振幅と、測定対象物表面輝度交流成分の振幅、の振幅比が、測定に使用する各波長で共通な定数と仮定することを特徴とする。 According to a second aspect of the present invention, in the film shape measuring method of the thin film according to the first aspect, the amplitude ratio of the amplitude of the transparent film surface luminance AC component and the amplitude of the measurement target surface luminance AC component is measured. It is characterized by assuming a constant common to each wavelength used.
請求項3に記載の発明は、請求項1または請求項2のいずれかに記載の薄膜の膜形状測定方法において、前記適合するときの手法として、評価関数(標本点における実測値とモデル関数値の二乗誤差)をFとして、
According to a third aspect of the invention, the film shape measuring method of a thin film of any crab of claims 1 or claim 2, as a method at the time of the adaptation, the actual measurement value and the model function value in the evaluation function (sampling point Is the square error)
ここで、g(i,j)およびgi,jは、データ番号iで波長番号jの、モデル関数値および観測輝度値、Mは使用した波長の数、Nは観測データ数、
このFを最小にする最小二乗法を用いることを特徴とする。
Here, g (i, j) and gi, j are the model function value and observation luminance value of data number i and wavelength number j, M is the number of wavelengths used, N is the number of observation data,
The least square method that minimizes F is used.
請求項4に記載の発明は、
透明膜で覆われた測定対象物の測定対象物表面と参照面とに照明光を照射しながら、前記測定対象物表面と参照面との距離を変動させることにより、測定対象物表面と参照面から反射して同一光路を戻る反射光によって干渉縞の変化を生じさせ、このときの干渉光の強度値に基づいて測定対象物の特定箇所の透明膜表面の高さ、測定対象物表面の高さ、および透明膜の膜厚の少なくともいずれか一つを求める薄膜の膜形状測定方法において、
照明光は3波長以上の複数の単波長を含み、透明膜を有する測定対象物表面と参照面との光路差を変化させて、両面からの反射光による干渉画像を撮像し、得られた干渉輝度信号に、モデル関数を適合して、前記透明膜表面の高さ、測定対象物表面の高さおよび透明膜の膜厚を求めるものであり、
測定対象物表面の高さが少なくとも1方向で均一であって、透明膜の表面高さが少なくとも前記1方向で均一であるとき、測定対象物表面と参照面との距離を、前記1方向で空間的に変動させるように参照面を傾けて、測定対象物表面と参照面から反射して同一光路を戻る反射光によって前記1方向に干渉縞を生じさせ、この干渉縞の、前記1方向と直交する方向における変化を、干渉画像として撮像し、得られた干渉輝度信号にモデル関数を適合して、前記透明膜表面の高さ、測定対象物表面の高さおよび透明膜の膜厚の、前記1方向と直交する方向での分布を求めることを特徴とする薄膜の膜形状測定方法であって、
前記モデル関数が、参照面での反射と透明膜表面での反射による干渉信号と、参照面での反射と測定対象物表面での反射による干渉信号モデルとの和、
The invention according to claim 4
By irradiating illumination light to the measurement object surface and the reference surface of the measurement object covered with the transparent film, the distance between the measurement object surface and the reference surface is changed to change the measurement object surface and the reference surface. The interference light is reflected by the reflected light and returned from the same optical path to cause a change in the interference fringe. Based on the intensity value of the interference light at this time, the height of the transparent film surface at the specific location of the measurement object, the height of the measurement object surface In the method for measuring the film shape of a thin film for obtaining at least one of the thickness of the transparent film,
Illumination light includes a plurality of single wavelengths of three or more wavelengths, changes the optical path difference between the surface of the measurement object having a transparent film and the reference surface, captures interference images by reflected light from both surfaces, and obtains interference A model function is applied to the luminance signal to obtain the height of the transparent film surface, the height of the surface of the measurement object, and the film thickness of the transparent film,
When the height of the surface of the measurement object is uniform in at least one direction and the surface height of the transparent film is uniform in at least the one direction, the distance between the surface of the measurement object and the reference surface is determined in the one direction. The reference plane is tilted so as to vary spatially, and an interference fringe is generated in the one direction by reflected light that is reflected from the surface of the measurement object and the reference plane and returns on the same optical path. A change in the orthogonal direction is captured as an interference image, and a model function is applied to the obtained interference luminance signal to obtain the height of the transparent film surface, the height of the surface of the measurement object, and the film thickness of the transparent film, A method for measuring a film shape of a thin film, characterized by obtaining a distribution in a direction orthogonal to the one direction ,
The model function is a sum of an interference signal due to reflection on the reference surface and reflection on the transparent film surface, and an interference signal model due to reflection on the reference surface and reflection on the surface of the measurement object ,
ここで、g(i,j)はデータ番号iで波長番号jのモデル関数値、a(j)は波長番号jの直流成分(=平均値)、bHere, g (i, j) is a model function value of wavelength number j with data number i, a (j) is a direct current component (= average value) of wavelength number j, b
11
(j)は波長番号jの透明膜表面輝度交流成分の振幅、b(J) is the amplitude of the transparent film surface luminance AC component of wavelength number j, b
22
(j)は波長番号jの測定対象物表面輝度交流成分の振幅、f(j)は波長番号jの縞の空間周波数、x(i)はデータ番号iの位置、x(J) is the amplitude of the surface luminance alternating current component of the wavelength number j, f (j) is the spatial frequency of the stripe of wavelength number j, x (i) is the position of data number i, x
11
は透明膜表面ピーク位置、xIs the transparent film surface peak position, x
22
は測定対象物表面ピーク位置、Is the peak surface position of the measurement object,
として表すことを特徴とする。It is characterized by expressing as.
この方法によれば、測定対象が、測定対象物表面の高さが少なくとも1方向で均一であって、透明膜の表面高さが少なくとも前記1方向で均一であれば、一括撮像により、前記1方向と直交する方向における測定対象物表面の高さと透明膜表面の高さを分離し、その分布を高精度に求めることが可能となる。According to this method, when the measurement object has a uniform surface height in at least one direction and the surface height of the transparent film is at least uniform in the one direction, the above-described 1 It is possible to separate the height of the surface of the measurement object and the height of the transparent film surface in a direction orthogonal to the direction, and obtain the distribution with high accuracy.
請求項5に記載の発明は、請求項4に記載の薄膜の膜形状測定方法において、透明膜表面輝度交流成分の振幅と、測定対象物表面輝度交流成分の振幅、の振幅比が、測定に使用する各波長で共通な定数と仮定することを特徴とする。 According to a fifth aspect of the present invention, in the method for measuring a film shape of a thin film according to the fourth aspect, the amplitude ratio between the amplitude of the transparent film surface luminance AC component and the amplitude of the measurement target surface luminance AC component is measured. It is characterized by assuming a constant common to each wavelength used.
請求項6に記載の発明は、請求項4または請求項5のいずれかに記載の薄膜の膜形状測定方法において、前記適合するときの手法として、評価関数(標本点における実測値とモデル関数値の二乗誤差)をFとして、
According to a sixth aspect of the present invention, in the method for measuring the shape of a thin film according to any one of the fourth or fifth aspect , an evaluation function (an actual measurement value and a model function value at a sample point) is used as the method for the adaptation. Is the square error)
ここで、g(i,j)およびgi,jは、データ番号iで波長番号jの、モデル関数値および観測輝度値、Mは使用した波長の数、Nは観測データ数、
このFを最小にする最小二乗法を用いることを特徴とする。
Here, g (i, j) and gi, j are the model function value and observation luminance value of data number i and wavelength number j, M is the number of wavelengths used, N is the number of observation data,
The least square method that minimizes F is used.
本発明では、複数の単波長の光源を用いて測定対象物の表面の透明薄膜の形状測定を干渉輝度データにモデル関数を適合させる手法を用いて、未知パラメータである透明膜表面の高さ、測定対象物表面の高さおよび透明膜の膜厚を求めることができる。 In the present invention, using a method of adapting the model function to the interference luminance data, the shape of the transparent thin film on the surface of the measurement object using a plurality of single-wavelength light sources, the height of the transparent film surface, which is an unknown parameter, The height of the measurement object surface and the film thickness of the transparent film can be determined.
特に、従来測定では困難であった、透明膜の膜厚が1ミクロンメートル以下の薄膜の場合での、透明膜表面と測定対象物表面それぞれの高さ及び膜厚を高精度に求めることを可能にしている。 In particular, it is possible to determine the height and film thickness of the transparent film surface and the surface of the object to be measured with high accuracy in the case of a thin film with a film thickness of 1 micrometer or less, which was difficult with conventional measurement. I have to.
また、薄膜測定をおこなうにあたり、装置としては、干渉顕微鏡、3波長照明装置、カラーカメラ、記載していない垂直走査機構、パソコンがあれば、実施可能であり、容易に実施できる発明である。 In addition, when performing thin film measurement, the present invention can be implemented with an interference microscope, a three-wavelength illumination device, a color camera, a vertical scanning mechanism (not shown), and a personal computer.
以下、本発明の特徴部分である表面形状測定装置全体で行われる処理を具体的に説明する。まず、図面を参照して本発明の実施の形態1について具体的に説明をする。図1は、本発明の実施の形態1に係る表面形状測定装置の概略構成を示す図である。 Hereinafter, the process performed by the whole surface shape measuring apparatus which is the characteristic part of this invention is demonstrated concretely. First, Embodiment 1 of the present invention will be specifically described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a surface shape measuring apparatus according to Embodiment 1 of the present invention.
この表面形状測定装置は、半導体ウエハ、ガラス基板や金属基板などの測定対象物30の表面を覆った透明膜31および透明膜31の裏面側と接合している測定対象物30に形成された微細なパターンに光を照射する光学系ユニット1と、光学系ユニット1を制御する制御系ユニット2とを備えて構成されている。 This surface shape measuring apparatus includes a transparent film 31 that covers the surface of the measurement object 30 such as a semiconductor wafer, a glass substrate, or a metal substrate, and a fine object formed on the measurement object 30 that is bonded to the back surface side of the transparent film 31. An optical system unit 1 that irradiates light on a simple pattern and a control system unit 2 that controls the optical system unit 1 are configured.
光学系ユニット1は、測定対象物30の表面である測定対象物表面30A、透明膜31の表面である透明膜表面31Aおよび参照面15に照射する白色光を発生させる白色光源10と、白色光源10から白色光を平行光にするコリメートレンズ11と、特定周波数帯域の単色光だけを通過させるバンドパスフィルタ12と、バンドパスフィルタ12を通過してきた単色光を測定対象物30の方向に反射する一方、測定対象物30の方向からの白色光を通過させるハーフミラー13と、ハーフミラー13で反射されてきた単色光を集光する対物レンズ14と、対物レンズ14を通過してきた単色光を、参照面15へ反射させる参照光と、測定対象物表面30A、透明膜表面31Aへ通過させる測定光とに分けるとともに、参照面15で反射してきた参照光と測定対象物表面30A、透明膜表面31Aで反射してきた測定光とを再びまとめて、干渉縞を発生させるビームスプリッタ16と、参照光と測定光とがまとめられた単色光を結像する結像レンズ17と、干渉縞とともに測定対象物表面30Aを撮像する撮像装置18とを備えて構成されている。撮像装置18としては、波長の異なる複数の単色光の2次元の輝度画像を個々に画像データ化できる構成であれば良く、例えば、CCD固体撮像素子、MOSイメージセンサおよびCMOSイメージセンサなどが用いられる。 The optical system unit 1 includes a white light source 10 that generates white light that irradiates the measurement object surface 30A that is the surface of the measurement object 30, the transparent film surface 31A that is the surface of the transparent film 31, and the reference surface 15, and a white light source. The collimating lens 11 that converts white light into parallel light from 10, the band-pass filter 12 that passes only monochromatic light in a specific frequency band, and the monochromatic light that has passed through the band-pass filter 12 are reflected in the direction of the measurement object 30. On the other hand, the half mirror 13 that passes white light from the direction of the measurement object 30, the objective lens 14 that condenses the monochromatic light reflected by the half mirror 13, and the monochromatic light that has passed through the objective lens 14, It is divided into reference light reflected to the reference surface 15 and measurement light passed to the measurement object surface 30A and the transparent film surface 31A, and reflected by the reference surface 15 The reference light and the measurement light reflected by the measurement object surface 30A and the transparent film surface 31A are recombined to form a beam splitter 16 that generates interference fringes and a monochromatic light in which the reference light and measurement light are combined. The imaging lens 17 for imaging and the imaging device 18 for imaging the measurement object surface 30A together with the interference fringes are provided. The imaging device 18 may have any configuration as long as it can individually convert two-dimensional luminance images of a plurality of monochromatic lights having different wavelengths into image data. For example, a CCD solid-state imaging device, a MOS image sensor, a CMOS image sensor, or the like is used. .
白色光源10は、例えば白色光ランプなどであり、比較的広い周波数帯域の白色光を発生させる。この白色光源10から発生された白色光は、コリメートレンズ11によって平行光とされ、バンドパスフィルタ12に入射する。 The white light source 10 is a white light lamp, for example, and generates white light in a relatively wide frequency band. The white light generated from the white light source 10 is collimated by the collimating lens 11 and enters the bandpass filter 12.
バンドパスフィルタ12は、特定周波数帯域の単色光だけを通過させるためのフィルタであり、白色光源10から撮像装置18までの光路に取り付けられる。好ましくは、白色光源10からの白色光が参照面15への参照光と測定対象物表面30Aの測定光に分かれる位置までの間の光路に取り付けられる。この実施例では、例えばコリメートレンズ11と、ハーフミラー13との間の光路に取り付けられている。バンドパスフィルタ12としては、例えば中心波長が480nm、560nm、600nmの帯域通過型光学干渉フィルタなどを利用する。このバンドパスフィルタ12を通過した各単色光は、その周波数帯域が狭められ、特定周波数帯域の各単色光だけがバンドパスフィルタ12を通過する。 The bandpass filter 12 is a filter for allowing only monochromatic light in a specific frequency band to pass, and is attached to the optical path from the white light source 10 to the imaging device 18. Preferably, it is attached to the optical path between the position where the white light from the white light source 10 is divided into the reference light to the reference surface 15 and the measurement light on the measurement object surface 30A. In this embodiment, for example, it is attached to the optical path between the collimating lens 11 and the half mirror 13. As the bandpass filter 12, for example, a band-pass optical interference filter having center wavelengths of 480 nm, 560 nm, and 600 nm is used. Each monochromatic light that has passed through the bandpass filter 12 has its frequency band narrowed, and only each monochromatic light in a specific frequency band passes through the bandpass filter 12.
ハーフミラー13は、バンドパスフィルタ12を通過してきた特定周波数帯域の各単色光を測定対象物30の方向に向けて反射する一方、測定対象物30の方向から戻ってきた各単色光を通過させるものである。このハーフミラー13で反射された特定周波数帯域の各単色光は、対物レンズ14に入射する。 The half mirror 13 reflects each monochromatic light in a specific frequency band that has passed through the bandpass filter 12 toward the direction of the measurement object 30, while allowing each monochromatic light returned from the direction of the measurement object 30 to pass therethrough. Is. Each monochromatic light of a specific frequency band reflected by the half mirror 13 enters the objective lens 14.
対物レンズ14は、入射してきた各単色光を焦点に向けて集光するレンズである。この対物レンズ14によって集光される各単色光は、参照面15を通過し、ビームスプリッタ16に到達する。 The objective lens 14 is a lens that collects each incident monochromatic light toward the focal point. Each monochromatic light condensed by the objective lens 14 passes through the reference surface 15 and reaches the beam splitter 16.
ビームスプリッタ16は、対物レンズ14で集光される各単色光を、ビームスプリッタ16の例えば上面で反射させる参照光と、測定対象物表面30A、透明膜表面31Aで反射させるために、ビームスプリッタ16を通過させる測定光とに分けるとともに、参照面15で反射した参照光と、測定光とを再びまとめることによって、干渉縞を発生させるものである。ビームスプリッタ16に達した各単色光は、ビームスプリッタ16の上面で反射された参照光と、ビームスプリッタ16を通過する測定光とに分けられ、その参照光は参照面15に達し、その測定光は透明膜31で覆われた測定対象物30の透明膜表面31A、および透明膜31の裏面と接合した測定対象物表面30Aである測定対象面に達する。 The beam splitter 16 reflects each monochromatic light collected by the objective lens 14 by, for example, the reference light reflected on the upper surface of the beam splitter 16 and the measurement object surface 30A and the transparent film surface 31A. And the measurement light that is reflected by the reference surface 15 and the measurement light are combined again to generate interference fringes. Each monochromatic light reaching the beam splitter 16 is divided into reference light reflected by the upper surface of the beam splitter 16 and measurement light passing through the beam splitter 16, and the reference light reaches the reference surface 15, and the measurement light Reaches the measurement target surface which is the transparent film surface 31A of the measurement object 30 covered with the transparent film 31 and the measurement object surface 30A joined to the back surface of the transparent film 31.
参照面15には、参照光をビームスプリッタ16の方向に反射させるための反射部15aが取り付けられており、この反射部15によって反射された参照光は、ビームスプリッタ16に達し、さらに、この参照光はビームスプリッタ16によって反射される。 The reference surface 15 is provided with a reflecting portion 15a for reflecting the reference light in the direction of the beam splitter 16, and the reference light reflected by the reflecting portion 15 reaches the beam splitter 16, and further, this reference The light is reflected by the beam splitter 16.
ビームスプリッタ16を通過した測定光は、焦点P0およびP1に向けて集光され、測定対象物表面30A,透明膜表面31A上で反射する。この反射した2つの測定光は、ビームスプリッタ16に達して、そのビームスプリッタ16を通過する。 The measurement light that has passed through the beam splitter 16 is condensed toward the focal points P0 and P1, and is reflected on the measurement object surface 30A and the transparent film surface 31A. The reflected two measurement lights reach the beam splitter 16 and pass through the beam splitter 16.
ビームスプリッタ16は、参照光と測定光とを再びまとめる。このとき、参照面15とビームスプリッタ16との間の距離L1と、ビームスプリッタ16と透明膜表面31Aとの間の距離L2との、距離の違いによって光路差が生じる。この光路差に応じて、参照光と測定光とは干渉し合うことで、干渉縞が生じる。この干渉縞が生じた状態の単色光は、ハーフミラー13を通過し、結像レンズ17によって結像されて、撮像装置18に入射する。 The beam splitter 16 combines the reference light and the measurement light again. At this time, an optical path difference is generated due to a difference in distance between the distance L1 between the reference surface 15 and the beam splitter 16 and the distance L2 between the beam splitter 16 and the transparent film surface 31A. According to this optical path difference, the reference light and the measurement light interfere with each other, thereby generating interference fringes. The monochromatic light in a state where the interference fringes are generated passes through the half mirror 13, is imaged by the imaging lens 17, and enters the imaging device 18.
撮像装置18は、干渉縞が生じた状態の単色光毎に、測定光によって映し出される測定対象物表面30Aの焦点P0,及び透明膜表面31Aの焦点P1それぞれの付近の画像を撮像する。この撮像した画像データは、制御系ユニット2によって収集される。また、後述で明らかになるが、本願発明の変動手段に相当する制御系ユニット2の駆動部24によって、例えば光学系ユニット1が上下に駆動される。特に、光学系ユニット1が上下方向に駆動されることによって、距離L1と距離L2との差が変化する。これにより、距離L1と距離L2との差に応じて、干渉縞が徐々に変化する。CCDカメラ18によって、後述する所定のサンプリング間隔ごとに、干渉縞の変化とともに測定対象物表面30A、透明膜表面31Aの画像が撮像され、その画像データが制御系ユニット2によって収集される。CCDカメラ18は、本発明における撮像手段に相当する。 The imaging device 18 captures images near the focal point P0 of the measurement object surface 30A and the focal point P1 of the transparent film surface 31A projected by the measurement light for each monochromatic light in a state where interference fringes are generated. The captured image data is collected by the control system unit 2. Further, as will be apparent later, for example, the optical system unit 1 is driven up and down by the drive unit 24 of the control system unit 2 corresponding to the changing means of the present invention. In particular, when the optical system unit 1 is driven in the vertical direction, the difference between the distance L1 and the distance L2 changes. As a result, the interference fringes gradually change according to the difference between the distance L1 and the distance L2. The CCD camera 18 captures images of the measurement object surface 30A and the transparent film surface 31A along with changes in interference fringes at predetermined sampling intervals described later, and the image data is collected by the control system unit 2. The CCD camera 18 corresponds to the image pickup means in the present invention.
制御系ユニット2は、表面形状測定装置の全体を統括的に制御や、所定の演算処理を行うためのCPU20と、CPU20によって逐次収集された画像データやCPU20での演算結果などの各種のデータを記憶するメモリ21と、サンプリング間隔やその他の設定情報を入力するマウスやキーボードなどの入力部22と、測定対象物表面30Aの画像などを表示するモニタ23と、CPU20の指示に応じて光学系ユニット1を上下左右に駆動する。例えば3軸駆動型のサーボモータなどの駆動機構で構成される駆動部24とを備えるコンピュータシステムで構成されている。なお、CPU20は、本発明におけるサンプリング手段および演算手段に、メモリ21は本発明における記憶手段に、駆動部24は本発明における変動手段にそれぞれ相当する。 The control system unit 2 performs overall control of the entire surface shape measuring apparatus and CPU 20 for performing predetermined calculation processing, and various data such as image data sequentially collected by the CPU 20 and calculation results by the CPU 20. Memory 21 to be stored, input unit 22 such as a mouse or keyboard for inputting sampling intervals and other setting information, a monitor 23 for displaying an image of the surface 30A to be measured, and an optical system unit according to instructions from the CPU 20 1 is driven vertically and horizontally. For example, it is comprised by the computer system provided with the drive part 24 comprised with drive mechanisms, such as a triaxial drive type servomotor. The CPU 20 corresponds to sampling means and arithmetic means in the present invention, the memory 21 corresponds to storage means in the present invention, and the drive unit 24 corresponds to fluctuation means in the present invention.
CPU20は、いわゆる中央処理装置であって、撮像装置18、メモリ21及び駆動部24を制御するとともに、撮像装置18で撮像した干渉縞を含む測定対象物表面30Aの画像データに基づいて、測定対象物30の特定箇所の透明膜表面31Aの高さ、測定対象物表面30Aの高さ、および透明膜31の膜厚Dとを求める演算処理を行う。さらに、CPU20には、モニタ23と、キーボードやマウスなどの入力部22とが接続されており、操作者は、モニタ23に表示される操作画面を観察しながら、入力部22から各種の設定情報の入力を行う。また、モニタ23には、測定終了後に、測定対象物表面30Aの高さ、透明膜表面31Aの高さ、透明膜31の膜厚D、および測定対象面の凹凸形状などが数値や画像として表示される。 The CPU 20 is a so-called central processing unit that controls the imaging device 18, the memory 21, and the driving unit 24, and measures the measurement target based on the image data of the measurement target surface 30 </ b> A including the interference fringes captured by the imaging device 18. Calculation processing is performed to obtain the height of the transparent film surface 31A at a specific location of the object 30, the height of the measurement object surface 30A, and the film thickness D of the transparent film 31. Further, a monitor 23 and an input unit 22 such as a keyboard and a mouse are connected to the CPU 20, and the operator can observe various operation information displayed on the monitor 23 from the input unit 22. Input. On the monitor 23, after the measurement is completed, the height of the measurement object surface 30A, the height of the transparent film surface 31A, the film thickness D of the transparent film 31, the uneven shape of the measurement target surface, and the like are displayed as numerical values and images. Is done.
駆動部24は、光学系ユニット1内の参照面15とビームスプリッタ16との間の固定された距離L1と、ビームスプリッタ16と測定対象物表面30Aとの間の可変の距離L2との距離の差を変化させるために、光学系ユニット1を直交3軸方向に変動させる装置であり、CPU20からの指示によって光学系ユニット1をX,Y,Z軸方向に駆動する例えば3軸駆動型のサーボモータを備える駆動機構で構成されている。なお、駆動部24は、本発明における変動手段に相当し、本発明における相対的距離とは、参照面15とビームスプリッタ16との間の距離L1と、ビームスプリッタ16と透明膜表面31Aとの間の距離L2との差を示す。本実施例では、光学系ユニット1を動作させるが、例えば測定対象物30が載置される図示していないテーブルを直交3軸方向に変動させるようにしてもよい。 The drive unit 24 has a fixed distance L1 between the reference surface 15 in the optical system unit 1 and the beam splitter 16, and a variable distance L2 between the beam splitter 16 and the measurement target surface 30A. In order to change the difference, the optical system unit 1 is moved in the orthogonal three-axis directions, and the optical system unit 1 is driven in the X, Y, and Z-axis directions according to instructions from the CPU 20, for example, a three-axis drive type servo. It is comprised with the drive mechanism provided with a motor. The drive unit 24 corresponds to a changing unit in the present invention, and the relative distance in the present invention is the distance L1 between the reference surface 15 and the beam splitter 16, and the beam splitter 16 and the transparent film surface 31A. The difference with the distance L2 is shown. In this embodiment, the optical system unit 1 is operated. For example, a table (not shown) on which the measurement object 30 is placed may be varied in the three orthogonal axes.
次に、本実施例1において用いるモデル関数について説明する。
まず、iを実測データ番号、jを波長番号とした場合のモデル関数式g0(i,j)は、2光束の場合の干渉輝度信号の基本式は、次式で表される。
Next, a model function used in the first embodiment will be described.
First, a model function equation g 0 (i, j) when i is an actually measured data number and j is a wavelength number is represented by the following equation as a basic equation of an interference luminance signal in the case of two light beams.
このを基に、透明膜表面での反射による干渉輝度g1(i,j)、測定対象物表面での反射による干渉輝度g2(i,j)、およびこれらの合算値をg(i,j)を式で表すと以下のようになる。
Based on this, the interference luminance g 1 (i, j) due to reflection on the surface of the transparent film, the interference luminance g 2 (i, j) due to reflection on the surface of the measurement object, and the sum of these values are expressed as g (i, j j) is expressed as follows.
ここで、a(j)は波長番号jの輝度直流成分(=平均値)、b1(j)は波長番号jの透明膜表面輝度交流成分の振幅、b2(j)は波長番号jの測定対象物表面輝度交流成分の振幅、αは振幅比[=b1(j)/b2(j)](注:波長に依存しない定数と仮定)、λ(j)は波長番号jの波長、z1は透明膜表面の高さ(透明膜表面輝度信号の0次ピーク位置)、z2は測定対象物表面の高さ(測定対象物表面輝度信号の0次ピーク位置)
一方、実測干渉輝度値をgijとすると、以下の評価関数式における実測値とモデル関数値の自乗誤差を最小にするパラメータを求めることができれば、妥当なモデル関数を得ることが出来る。
Here, a (j) is the luminance direct current component (= average value) of wavelength number j, b 1 (j) is the amplitude of the transparent film surface luminance alternating current component of wavelength number j, and b 2 (j) is the wavelength number j. The amplitude of the surface luminance AC component of the measurement object, α is the amplitude ratio [= b 1 (j) / b 2 (j)] (note: assumed to be a constant independent of wavelength), and λ (j) is the wavelength of wavelength number j , Z 1 is the height of the transparent film surface (0th order peak position of the transparent film surface luminance signal), and z 2 is the height of the measurement object surface (0th order peak position of the measurement object surface luminance signal).
On the other hand, if the measured interference luminance value is g ij , a reasonable model function can be obtained if a parameter that minimizes the square error between the measured value and the model function value in the following evaluation function equation can be obtained.
ここで、Mは測定に用いる波長数、Nは観測データ数である。
Here, M is the number of wavelengths used for measurement, and N is the number of observation data.
ところで、cos波のモデルは、直流成分を除くと、Bcos(x+φ)で示され。そこで、1波長について、観測波形からはBとφの2つのパラメータが求まるが、これを2つの波形に分解しようとするとパラメータはB1、B2、φ1、φ2と4つ変数となり、このままでは解けない。ところが、以下の2つのの前提条件を設けた場合
前提1:各波長のゼロ位相は同一(位相φ1、φ2が各波長で共通)
前提2:各波長の振幅比が一定(上記(4)式に記載のとおりαが波長に依存しない)
波長数をmとしたら、前提1では本来2mとなるべき位相に関する未知パラメータ数が2となり、前提2では2mとなるべき振幅に関する未知パラメータ数がm+1となる。
By the way, the cos wave model is represented by Bcos (x + φ) excluding the DC component. Therefore, for one wavelength, two parameters B and φ are obtained from the observed waveform. However, if this is decomposed into two waveforms, the parameters become four variables B 1 , B 2 , φ 1 , φ 2 , It cannot be solved as it is. However, when the following two preconditions are provided: Premise 1: Zero phase of each wavelength is the same (phases φ 1 and φ 2 are common to each wavelength)
Assumption 2: Amplitude ratio of each wavelength is constant (α is independent of wavelength as described in equation (4) above)
If the number of wavelengths is m, the number of unknown parameters related to the phase that should originally be 2 m is 2 under assumption 1, and the number of unknown parameters related to the amplitude that should be 2 m under assumption 2 is m + 1.
この前提の基では、波長数mに対して観測パラメータ数は2m、未知パラメータ数はm+3となり、mが3以上であれば、2m≧m+3となり、未知パラメータの値を求めることが可能となる。 Based on this assumption, the number of observation parameters is 2 m and the number of unknown parameters is m + 3 with respect to the number of wavelengths m. If m is 3 or more, 2m ≧ m + 3, and the value of the unknown parameter can be obtained.
そこで、以下は、3波長の単色光を用いた場合を例にして述べる。
まず、評価関数は、Mを3として、式(4)を式(5)に代入すると以下の式が得られる。
Therefore, in the following, a case where monochromatic light of three wavelengths is used will be described as an example.
First, as for the evaluation function, when M is set to 3 and Expression (4) is substituted into Expression (5), the following expression is obtained.
次に、最適値探索のための初期値を以下の方法を用いて決定する。 Next, an initial value for optimum value search is determined using the following method.
a(j): 直流成分;=観測輝度平均値
b2(j):振幅;=観測輝度レンジ(max−min)の1/(1+α)倍
α:振幅比;膜と基板の屈折率から推定
Z1:透明膜表面の高さ,Z2:測定対象物表面の高さ
さらに、ここで、
Z1,Z2の初期値計算は、観測輝度値から求めた0次縞高さをz0として、以下による。
α>1の場合:Z1=Z0 (透明膜表面がゼロ次縞位置と仮定) ;Z2=Z0−nt
α<1の場合:Z2=Z0 (測定対象物表面がゼロ次縞位置と仮定);Z1=Z0+nt
ここで、nは透明膜の屈折率を表す。
a (j): DC component; = observed luminance average value b 2 (j): amplitude; = 1 / (1 + α) times of observed luminance range (max-min) α: amplitude ratio; estimated from the refractive index of the film and the substrate Z 1 : height of transparent film surface, Z 2 : height of surface of measurement object
The initial value calculation of Z 1 and Z 2 is as follows, assuming that the zeroth-order fringe height obtained from the observed luminance value is z 0 .
When α> 1: Z 1 = Z 0 (assuming that the transparent film surface is at the zero-order fringe position); Z 2 = Z 0 -nt
When α <1: Z 2 = Z 0 (assuming that the surface of the measurement object is a zero-order fringe position); Z 1 = Z 0 + nt
Here, n represents the refractive index of the transparent film.
最後に、上記に基づき、透明膜表面および測定対象面の高さと膜厚を計算する。
すなわち、透明膜表面ピークの位置Z1と測定対象物表面ピーク位置Z2を高さに換算すると、
(1)透明膜表面の高さ S=Z1
(2)膜厚 t=(Z1−Z2)/n
(3)測定対象物表面の高さ b=S−t
が、それぞれ求まる。
Finally, based on the above, the height and film thickness of the transparent film surface and the surface to be measured are calculated.
That is, when the transparent film surface peak position Z 1 and the measurement object surface peak position Z 2 are converted into heights,
(1) Height of transparent film surface S = Z 1
(2) Film thickness t = (Z 1 −Z 2 ) / n
(3) Height of measurement object surface b = St
Are obtained.
以下,垂直走査法による算出方法を用いて求めた実験事例を実施例1として示す。
(実施例1)
1−1.実験方法:
(1)対象信号:以下の条件で、理論インターフェログラム(干渉図)を作成した。
Hereinafter, an experimental example obtained using a calculation method based on the vertical scanning method is shown as Example 1.
Example 1
1-1. experimental method:
(1) Target signal: A theoretical interferogram (interference diagram) was created under the following conditions.
・用いた波長: 470nm,560nm,600nm
・透明膜表面干渉信号:
a1(1)=a1(2)=a1(3)=1;
b1(1)=b1(2)=b1(3)=1
・測定対象物表面干渉信号:
a2(1)=a2(2)=a2(3)=0.5;
b2(1)=b2(2)=b3(3)=0.5
・z1=0nm, z2=−200nm
・観測データ間隔: 5nm
・観測データレンジ: ±500nm
(2)推定方法:
・使用ソフト:MSExcelの最適化ツールであるSOLVER
・初期値: z1=50nm, z2=−250nm, α=2.5
・その他の初期値: 前記載のとおりで、
a(j):直流成分;=観測輝度平均値
b2(j):測定対象物表面輝度交流成分の振幅;
=観測輝度レンジ(max−min)の1/(1+α)倍
α:振幅比;膜と基板の屈折率から推定
z1:透明膜表面の高さ,z2:測定対象物表面の高さ
さらに、
z1,z2の初期値計算は、観測輝度値から求めた0次縞高さをz0として、以下による。
-Wavelengths used: 470 nm, 560 nm, 600 nm
・ Transparent film surface interference signal:
a 1 (1) = a 1 (2) = a 1 (3) = 1;
b 1 (1) = b 1 (2) = b 1 (3) = 1
・ Measurement surface interference signal:
a 2 (1) = a 2 (2) = a 2 (3) = 0.5;
b 2 (1) = b 2 (2) = b 3 (3) = 0.5
・ Z1 = 0nm, z2 = -200nm
-Observation data interval: 5nm
・ Observation data range: ± 500nm
(2) Estimation method:
-Software used: SOLVER, an optimization tool for MSExcel
Initial values: z1 = 50 nm, z2 = −250 nm, α = 2.5
・ Other initial values: As described above,
a (j): DC component; = observed luminance average value
b 2 (j): Amplitude of surface AC brightness component of measurement object;
= 1 / (1 + α) times the observed luminance range (max-min)
α: Amplitude ratio; estimated from refractive index of film and substrate
z 1 : height of transparent film surface, z 2 : height of measurement object surface
further,
The initial values of z 1 and z 2 are calculated as follows, assuming that the zeroth-order fringe height obtained from the observed luminance value is z 0 .
α>1の場合:z1=z0 (透明膜表がゼロ次縞位置と仮定) ;z2=z0−nt
α<1の場合:z2=z0 (測定対象物表面がゼロ次縞位置と仮定);z1=z0+nt
1−2.実験結果:
実験結果を表1に示した。結果としては、膜厚200nmを含め、9個の未知変数が正しく推定されたことを示している。また、適合された透明膜表面輝度信号を図3に、測定対象物表面輝度信号を図4に示した。
When α> 1: z 1 = z 0 (assuming that the transparent film surface is at the zero-order fringe position); z 2 = z 0 -nt
When α <1: z 2 = z 0 (assuming that the surface of the measurement object is a zero-order fringe position); z 1 = z 0 + nt
1-2. Experimental result:
The experimental results are shown in Table 1. As a result, nine unknown variables including the film thickness of 200 nm were correctly estimated. Further, the adapted transparent film surface luminance signal is shown in FIG. 3, and the measurement object surface luminance signal is shown in FIG.
引き続き、測定対象物表面の高さが少なくとも1方向で均一であって、透明膜の表面高さが少なくとも前記1方向で均一であるときの、前記1方向と直交する方向における前記透明膜表面の高さ、測定対象物表面の高さおよび透明膜の膜厚の分布を一括で求める算出方法について、実施の形態2として記載する。
Subsequently, when the height of the surface of the measurement object is uniform in at least one direction and the surface height of the transparent film is uniform in at least the one direction, the surface of the transparent film in the direction orthogonal to the one direction is measured. A calculation method for collectively obtaining the height, the height of the surface of the measurement object, and the film thickness of the transparent film will be described as a second embodiment.
[実施の形態2(一括撮像法による算出方法)]
以下、図面を参照して本発明の実施の形態2を説明する。
[Embodiment 2 (calculation method by batch imaging method)]
Embodiment 2 of the present invention will be described below with reference to the drawings.
図5は、本発明の実施の形態2に係る表面形状測定装置の概略構成を示す図であり、図1に示した実施の形態1に係る表面形状測定装置とほぼ同じであるが、距離L1と距離L2の差がx方向で変動するように参照面15Aが傾いていること、また、測定時の距離L2は可変ではなく固定であり、撮像は一括で行うことが異なる。 FIG. 5 is a diagram showing a schematic configuration of the surface shape measuring apparatus according to the second embodiment of the present invention, which is substantially the same as the surface shape measuring apparatus according to the first embodiment shown in FIG. The reference plane 15A is inclined so that the difference between the distance L2 and the distance L2 fluctuates in the x direction, and the distance L2 at the time of measurement is not variable but fixed, and the imaging is performed collectively.
また、実施の形態2では測定対象となる測定対象物30および透明膜31の形状は、図6に例を示すように、測定対象物表面30Aの高さが少なくとも1方向で均一であって、透明膜表面31Aの高さが少なくとも前記1方向で均一である必要があり、前記1方向が図5におけるx方向となるように配置される。 Further, in the second embodiment, the shape of the measurement object 30 and the transparent film 31 to be measured is uniform in the height of the measurement object surface 30A in at least one direction as shown in FIG. The height of the transparent film surface 31A needs to be uniform in at least the one direction, and the one direction is arranged to be the x direction in FIG.
以上のように配置した測定対象は、x方向で測定対象物表面30Aの高さおよび透明膜表面31Aの高さがともに一定であるのに対して、x方向で距離L1が変動することから、距離L1と距離L2の差が変動、すなわち実施の形態1における特定点の測定で距離L2を変化させたのと同様にて干渉縞を生じさせることが出来る。 Since the measurement object arranged as described above has a constant height of the measurement object surface 30A and a height of the transparent film surface 31A in the x direction, the distance L1 varies in the x direction. The difference between the distance L1 and the distance L2 fluctuates, that is, interference fringes can be generated in the same manner as when the distance L2 is changed in the measurement of the specific point in the first embodiment.
この干渉縞は撮像装置18により画像として取得でき、x方向と直行するy方向における測定対象物表面30Aの高さおよび透明膜表面31Aの高さに応じた干渉縞がx方向に現れる。 The interference fringes can be acquired as an image by the imaging device 18, and interference fringes corresponding to the height of the measurement object surface 30A and the height of the transparent film surface 31A in the y direction perpendicular to the x direction appear in the x direction.
以下、図5に示す表面形状測定装置の構成で、一括撮像法を用いて、各ラインで、輝度データとモデル関数とを最小自乗法でフィッティングおこない、表面および裏面の高さと膜厚を算出する手順を説明する。 Hereinafter, with the configuration of the surface shape measuring apparatus shown in FIG. 5, the luminance data and the model function are fitted to each line by the least square method using the batch imaging method, and the height and film thickness of the front and back surfaces are calculated. Explain the procedure.
まず、ここで用いるモデル関数について説明する。
iを実測データ番号、jを波長番号とした場合のモデル関数式g0(i,j)は、2光束の場合の干渉輝度信号の基本式は、次式で表される。
First, the model function used here will be described.
A model function equation g 0 (i, j) where i is an actually measured data number and j is a wavelength number is expressed by the following equation as a basic equation of an interference luminance signal in the case of two light beams.
これを基に、透明膜表面での反射による干渉輝度g1(i,j)、測定対象物表面での反射による干渉輝度g2(i,j)、およびこれらの合算値をg(i,j)を式で表すと以下のようになる。
Based on this, the interference luminance g1 (i, j) due to reflection on the surface of the transparent film, the interference luminance g2 (i, j) due to reflection on the surface of the measurement object, and the sum of these values are expressed as g (i, j). Is expressed as follows.
一方、実測干渉輝度値をgi,jとすると、実施の形態1の説明と同様、以下の評価関数式における実測値とモデル関数値の自乗誤差を最小にするパラメータを求めることができれば、妥当なモデル関数を得ることが出来る。、
On the other hand, assuming that the measured interference luminance value is gi, j, as in the description of the first embodiment, it is reasonable if a parameter that minimizes the square error between the measured value and the model function value in the following evaluation function equation can be obtained. A model function can be obtained. ,
したがって、式(10)を式(5)に代入して、3波長を用いることからMを3とすると、 Therefore, substituting equation (10) into equation (5) and using 3 wavelengths, so that M is 3,
となる。 It becomes.
次に当該方法による場合のパラメータは、3種の波長の単波長を用いると、変数jを含むパラメータがそれぞれ3種類になるので、未知パラメータは、a(j),b2(j),f(3),x1,x2,α の10個で、
換算パラメータ:f(2)=f(3)×λ3/λ2,
f(1)=f(3)×λ3/λ1
となる。
また、以下の方法で、初期値を設定する。
Next, when a single wavelength of three types of wavelengths is used for the method according to the method, there are three types of parameters including the variable j, so the unknown parameters are a (j), b2 (j), f ( 3) Ten of x 1 , x 2 and α,
Conversion parameter: f (2) = f (3) × λ 3 / λ 2 ,
f (1) = f (3) × λ 3 / λ 1
It becomes.
The initial value is set by the following method.
・直流成分a(j)=輝度平均値
・振幅b2(j)=輝度レンジの1/{2(1+α)}倍
・振幅比α=透明膜屈折率と測定対象物屈折率からの推定値
・周波数f(3)=縞本数からの目視推定値
・他の周波数f(2)=f(3)×λ3/λ2,
f(1)=f(3)×λ3/λ1
・画素−高さ換算係数:Δ=(λ/2)×f (単位:nm/画素)
・透明膜表面ピーク位置x1,測定対象物表面ピーク位置x2はαと表面傾斜方向により、以下にように推定する。
DC component a (j) = luminance average value
Amplitude b 2 (j) = 1 / {2 (1 + α)} times the luminance range
・ Amplitude ratio α = Estimated value from refractive index of transparent film and refractive index of measurement object
・ Frequency f (3) = Visual estimated value from the number of stripes
Other frequency f (2) = f (3) × λ 3 / λ 2 ,
f (1) = f (3) × λ 3 / λ 1
Pixel-height conversion coefficient: Δ = (λ / 2) × f (unit: nm / pixel)
The transparent film surface peak position x 1 and the measurement object surface peak position x 2 are estimated as follows based on α and the surface tilt direction.
・α>1の場合:x1=0、x2=−nt/Δ
・α<1の場合:x2=0、x1=nt/Δ
また、フィッティング(適合)時のデータの範囲としては、設定した測定領域内のデータを用いる。この場合ゼロ次縞位置を座標原点(x=0)とした。
When α> 1: x 1 = 0, x 2 = −nt / Δ
When α <1: x 2 = 0, x 1 = nt / Δ
Further, as the data range at the time of fitting (conformity), data in the set measurement region is used. In this case, the zero-order fringe position was set as the coordinate origin (x = 0).
次に、透明膜表面の高さと測定対象物表面の高さおよび透明膜の膜厚計算をおこなう。
この場合、得られた透明膜表面ピーク位置(x1),測定対象物表面ピーク位置(x2)に,0次縞位置を加算して補正し、高さに換算する。
Next, the height of the surface of the transparent film, the height of the surface of the measurement object, and the film thickness of the transparent film are calculated.
In this case, the obtained transparent film surface peak position (x 1 ) and measurement target object surface peak position (x 2 ) are corrected by adding the 0th-order fringe position and converted into a height.
すなわち、以下の計算をおこなう。 That is, the following calculation is performed.
(1)透明膜表面の高さ s=(x1+0次縞位置)×Δ
(2)透明膜の膜厚 t=abs(x1−x2)×Δ/n
(3)測定対象物表面の高さ b=s−t
また、上記「一括撮像法による算出方法」において、さらに下記のように、変形例が行われる場合もある。
一つは、「輝度データの正規化」であり、この目的は、3波長の輝度信号強度にアンバランスがある場合、それを緩和するためにおこなわれる。具体的には、フィッティング前に、輝度値を正規化し、輝度値をほぼ[0〜2]の範囲内に収める。当該正規化方法は、
正規化輝度値=[(輝度値−平均値)/{(最大値−最小値)/2}+1]
とする。
(1) Height of transparent film surface s = (x 1 + 0th order fringe position) × Δ
(2) Film thickness of transparent film t = abs (x 1 −x 2 ) × Δ / n
(3) Height of measurement object surface b = s−t
Further, in the above “calculation method by the collective imaging method”, a modification example may be further performed as described below.
One is “normalization of luminance data”, and this purpose is performed to alleviate the imbalance in luminance signal intensity of three wavelengths. Specifically, before fitting, the luminance value is normalized, and the luminance value is approximately within the range of [0 to 2]. The normalization method is
Normalized luminance value = [(luminance value−average value) / {(maximum value−minimum value) / 2} +1]
And
さらに、上記「一括撮像法による算出方法」において、設定した初期値より正しい結果が得られなかった場合の解決方法として「広域探索モード」法を用いて最適値を探索することもできる。これは、膜厚初期値を変えながら、最適値を探索する方法である。例えば、評価関数値が最小値であるものを選択する。
(実施例2)
上記、[一括撮像法による算出方法]を用いて求めた実験事例を実施例2として示す。
2−1.実施方法:
(1)測定対象物の対象信号: 膜厚段差試料を用いた。
Furthermore, in the “calculation method using the batch imaging method”, an optimum value can be searched using the “wide area search mode” method as a solution when a correct result cannot be obtained from the set initial value. This is a method of searching for an optimum value while changing the initial value of the film thickness. For example, the evaluation function value having the minimum value is selected.
(Example 2)
An experimental example obtained using the above-mentioned [Calculation method by collective imaging method] is shown as Example 2.
2-1. Implementation method:
(1) Target signal of measurement object: A film thickness difference sample was used.
・膜厚(公称値):200nm部分と300nm部分が階段状に形成。 -Film thickness (nominal value): 200 nm portion and 300 nm portion are formed stepwise.
・膜の種類: ウエハー上のシリコン酸化膜(屈折率1.46)
(2)撮像方法
・光学系: 干渉顕微鏡
・撮像装置カメラ: 3板式カラーカメラ
・光源: 波長:470nm、560nm、600nmの3波長混合照明。
-Film type: silicon oxide film on wafer (refractive index 1.46)
(2) Imaging method
・ Optical system: Interference microscope
・ Imaging device camera: 3-plate color camera
Light source: Three-wavelength mixed illumination with wavelengths: 470 nm, 560 nm, and 600 nm.
(3)推定方法
・適合アルゴリズム: 非線形最適化法。
(3) Estimation method
-Fit algorithm: Non-linear optimization method.
・未知パラメータ: a(j)、b(j)、x1、x2、f(3)、α
2−2.実施結果。
Unknown parameters: a (j), b (j), x 1 , x 2 , f (3), α
2-2. Implementation results.
図7に、膜厚段差試料の一括撮像法による取得画像を示す。図7ではモノクロ表示になっているが、実際はカラー画像を取得しており、3波長の各波長毎の強度が得られる。図8は公称膜厚が200nm部分のX方向における各波長(Bは470nm、Gは560nm、Rは600nm、以下同様)の透明膜表面輝度信号の変化を示しており、図9は公称膜厚が300nmの部分でのX方向における各波長画像を示している。図8および図9にグラフを示すデータを基に、上記未知パラメータの推定を、マイクロソフト社Excelの最適化ツールであるSOLVERを用いて求めたが、その際、前述の方法で初期値を設定した。具体的にa(j)、b2(j)の初期値に関しては図8および図9のデータから、公称膜厚200nmの部分に関しては表2およびα=0.5という仮定から表3のように、公称膜厚が300nmの部分に関しては表4およびα=0.5という仮定から表5のように得ている。 FIG. 7 shows an acquired image obtained by the batch imaging method of a film thickness difference sample. Although a monochrome display is shown in FIG. 7, a color image is actually acquired, and intensities for each of the three wavelengths can be obtained. FIG. 8 shows the change in the transparent film surface luminance signal at each wavelength (B is 470 nm, G is 560 nm, R is 600 nm, and so on) in the X direction when the nominal film thickness is 200 nm, and FIG. 9 shows the nominal film thickness. Represents each wavelength image in the X direction at a portion of 300 nm. Based on the data shown in the graphs of FIGS. 8 and 9, the estimation of the unknown parameter was obtained using SOLVER, an optimization tool of Microsoft Excel, and at that time, the initial value was set by the method described above. . Specifically, the initial values of a (j) and b2 (j) are shown in FIG. 8 and FIG. 9 and Table 2 and the assumption that α = 0.5 are shown in Table 3 for the part with a nominal film thickness of 200 nm as shown in Table 3. Table 5 and the assumption that α = 0.5 are obtained as shown in Table 5 for the part where the nominal film thickness is 300 nm.
最終的に得られた未知パラメータの推定値は、公称膜厚200nmの部分については表6に示すとおりで、公称膜厚300nmの部分については表7に示すとおりである。 The estimated values of the unknown parameters finally obtained are as shown in Table 6 for the part with the nominal film thickness of 200 nm and as shown in Table 7 for the part with the nominal film thickness of 300 nm.
パラメータの推定値を用いて求めた膜厚は、画素−高さ換算計数Δが、Δ=λ(3)/2×f(3)=6.12(nm)と求まり、膜厚t=(x1−x2)の絶対値×Δ/nであり、シリコン酸化膜の屈折率は1.46であることから、公称膜厚200nmの部分で205nm、公称膜厚300nmの部分で293nmと、公称値と近い値が得られた。
The film thickness obtained using the estimated value of the parameter is such that the pixel-height conversion count Δ is obtained as Δ = λ (3) / 2 × f (3) = 6.12 (nm), and the film thickness t = ( x1−x2) absolute value × Δ / n, and the refractive index of the silicon oxide film is 1.46. Therefore, the nominal value is 205 nm at the nominal film thickness of 200 nm, and the nominal value is 293 nm at the nominal film thickness of 300 nm. A value close to was obtained.
本発明を用いれば、透明膜で覆われた測定対象面の凹凸形状および厚みを測定する表面形状および膜厚測定方法に係り、特に、(3波長以上の)複数の単色光を用いて非接触で測定対象物上の透明膜表面の高さ、測定対象物表面の高さおよび透明膜膜厚を測定することができる。特に、特定されていない多くの未知パラメータが存在しても、適宜初期値を設定することにより、効率良くnmレベルで測定を行うことができる。 According to the present invention, the present invention relates to a surface shape and a film thickness measuring method for measuring an uneven shape and a thickness of a measurement target surface covered with a transparent film, and in particular, non-contact using a plurality of monochromatic lights (three or more wavelengths). Thus, the height of the surface of the transparent film on the measurement object, the height of the surface of the measurement object, and the film thickness of the transparent film can be measured. In particular, even when there are many unknown parameters that have not been specified, it is possible to efficiently perform measurement at the nm level by appropriately setting initial values.
1 光学系ユニット
2 制御系ユニット
10 白色光源
11 コリメートレンズ
12 バンドパスフィルター
13 ハーフミラー
14 対物レンズ
15、15A 参照面
16 ビームスプリッタ
17 結像レンズ
18 撮像装置
20 CPU
21 メモリ
22 入力部
23 モニタ
24 駆動部
30 測定対象物
30A 測定対象物表面
31 透明膜
31A 透明膜表面
DESCRIPTION OF SYMBOLS 1 Optical system unit 2 Control system unit 10 White light source 11 Collimating lens 12 Band pass filter 13 Half mirror 14 Objective lens 15, 15A Reference surface 16 Beam splitter 17 Imaging lens 18 Imaging device 20 CPU
21 Memory 22 Input Unit 23 Monitor 24 Drive Unit 30 Measurement Object 30A Measurement Object Surface 31 Transparent Film 31A Transparent Film Surface
Claims (6)
照明光は3波長以上の複数の単波長を含み、透明膜を有する測定対象物表面と参照面との光路差を変化させて、両面からの反射光による干渉画像を撮像し、得られた干渉輝度信号に、モデル関数を適合して、前記透明膜表面の高さ、測定対象物表面の高さおよび透明膜の膜厚を求めるものであり、
前記モデル関数が、参照面での反射と透明膜表面での反射による干渉信号と、参照面での反射と測定対象物表面での反射による干渉信号モデルとの和、
ここで、g(i,j)はデータ番号iで波長番号jのモデル関数値、a(j)は波長番号jの直流成分(=平均値)、b 1 (j)は波長番号jの透明膜表面輝度交流成分の振幅、b 2 (j)は波長番号jの測定対象物表面輝度交流成分の振幅、λ(j)は波長番号jの波長、z(i)はデータ番号iの高さ、z 1 は透明膜表面高さ、z 2 は測定対象物表面の高さ、
として表すことを特徴とする薄膜の膜形状測定方法。 By irradiating illumination light to the measurement object surface and the reference surface of the measurement object covered with the transparent film, the distance between the measurement object surface and the reference surface is changed to change the measurement object surface and the reference surface. The interference light is reflected by the reflected light and returned from the same optical path to cause a change in the interference fringe. Based on the intensity value of the interference light at this time, the height of the transparent film surface at the specific location of the measurement object, the height of the measurement object surface In the method for measuring the film shape of a thin film for obtaining at least one of the thickness of the transparent film,
Illumination light includes a plurality of single wavelengths of three or more wavelengths , changes the optical path difference between the surface of the measurement object having a transparent film and the reference surface, captures interference images by reflected light from both surfaces, and obtains interference A model function is applied to the luminance signal to obtain the height of the transparent film surface, the height of the surface of the measurement object, and the film thickness of the transparent film ,
The model function is a sum of an interference signal due to reflection on the reference surface and reflection on the transparent film surface, and an interference signal model due to reflection on the reference surface and reflection on the surface of the measurement object,
Here, g (i, j) is a model function value of data number i and wavelength number j, a (j) is a direct current component (= average value ) of wavelength number j , and b 1 (j) is transparent of wavelength number j. The amplitude of the film surface luminance AC component, b 2 (j) is the amplitude of the surface luminance AC component of the measurement object having wavelength number j, λ (j) is the wavelength of wavelength number j, and z (i) is the height of data number i. , Z 1 is the surface height of the transparent film, z 2 is the height of the surface of the measurement object,
The film shape measuring method of the thin film characterized by expressing as follows.
ここで、g(i,j)およびgi,jは、データ番号iで波長番号jの、モデル関数値および観測輝度値、Mは使用した波長の数、Nは観測データ数、
このFを最小にする最小二乗法を用いることを特徴とする薄膜の膜形状測定方法。 In the film shape measuring method of the thin film according to claim 1 or 2 , as an approach when the fit is performed, an evaluation function (a square error between an actual measurement value and a model function value at a sample point) is F,
Here, g (i, j) and gi, j are the model function value and observation luminance value of data number i and wavelength number j, M is the number of wavelengths used, N is the number of observation data,
A method for measuring a film shape of a thin film, wherein a least square method for minimizing F is used.
照明光は3波長以上の複数の単波長を含み、透明膜を有する測定対象物表面と参照面との光路差を変化させて、両面からの反射光による干渉画像を撮像し、得られた干渉輝度信号に、モデル関数を適合して、前記透明膜表面の高さ、測定対象物表面の高さおよび透明膜の膜厚を求めるものであり、
測定対象物表面の高さが少なくとも1方向で均一であって、透明膜の表面高さが少なくとも前記1方向で均一であるとき、測定対象物表面と参照面との距離を、前記1方向で空間的に変動させるように参照面を傾けて、測定対象物表面と参照面から反射して同一光路を戻る反射光によって前記1方向に干渉縞を生じさせ、この干渉縞の、前記1方向と直交する方向における変化を、干渉画像として撮像し、得られた干渉輝度信号にモデル関数を適合して、前記透明膜表面の高さ、測定対象物表面の高さおよび透明膜の膜厚の、前記1方向と直交する方向での分布を求めることを特徴とする薄膜の膜形状測定方法であって、
前記モデル関数が、参照面での反射と透明膜表面での反射による干渉信号と、参照面での反射と測定対象物表面での反射による干渉信号モデルとの和、
ここで、g(i,j)はデータ番号iで波長番号jのモデル関数値、a(j)は波長番号jの直流成分(=平均値)、b 1 (j)は波長番号jの透明膜表面輝度交流成分の振幅、b 2 (j)は波長番号jの測定対象物表面輝度交流成分の振幅、f(j)は波長番号jの縞の空間周波数、x(i)はデータ番号iの位置、x 1 は透明膜表面ピーク位置、x 2 は測定対象物表面ピーク位置、として表すことを特徴とする薄膜の膜形状測定方法。 By irradiating illumination light to the measurement object surface and the reference surface of the measurement object covered with the transparent film, the distance between the measurement object surface and the reference surface is changed to change the measurement object surface and the reference surface. The interference light is reflected by the reflected light and returned from the same optical path to cause a change in the interference fringe. Based on the intensity value of the interference light at this time, the height of the transparent film surface at the specific location of the measurement object, In the method for measuring the film shape of a thin film for obtaining at least one of the thickness of the transparent film,
Illumination light includes a plurality of single wavelengths of three or more wavelengths, changes the optical path difference between the surface of the measurement object having a transparent film and the reference surface, captures interference images by reflected light from both surfaces, and obtains interference A model function is applied to the luminance signal to obtain the height of the transparent film surface, the height of the surface of the measurement object, and the film thickness of the transparent film,
When the height of the surface of the measurement object is uniform in at least one direction and the surface height of the transparent film is uniform in at least the one direction, the distance between the surface of the measurement object and the reference surface is determined in the one direction. The reference plane is tilted so as to vary spatially, and an interference fringe is generated in the one direction by reflected light that is reflected from the surface of the measurement object and the reference plane and returns on the same optical path. A change in the orthogonal direction is captured as an interference image, and a model function is applied to the obtained interference luminance signal to obtain the height of the transparent film surface, the height of the surface of the measurement object, and the film thickness of the transparent film, A method for measuring a film shape of a thin film, characterized by obtaining a distribution in a direction orthogonal to the one direction ,
The model function is a sum of an interference signal due to reflection on the reference surface and reflection on the transparent film surface, and an interference signal model due to reflection on the reference surface and reflection on the surface of the measurement object,
Here, g (i, j) is a model function value of data number i and wavelength number j, a (j) is a direct current component (= average value ) of wavelength number j , and b 1 (j) is transparent of wavelength number j. The amplitude of the film surface brightness alternating current component, b 2 (j) is the amplitude of the surface brightness alternating current component of the wavelength number j, f (j) is the spatial frequency of the stripe of wavelength number j, and x (i) is the data number i. A film shape measuring method for a thin film , wherein x 1 is a transparent film surface peak position, and x 2 is a measurement object surface peak position.
ここで、g(i,j)およびgi,jは、データ番号iで波長番号jの、モデル関数値および観測輝度値、Mは使用した波長の数、Nは観測データ数、
このFを最小にする最小二乗法を用いることを特徴とする薄膜の膜形状測定方法。 In the film shape measuring method for a thin film according to any one of claims 4 and 5 , an evaluation function (a square error between an actual measurement value and a model function value at a sample point) is set as F as a method for the adaptation.
Here, g (i, j) and gi, j are the model function value and observation luminance value of data number i and wavelength number j, M is the number of wavelengths used, N is the number of observation data,
A method for measuring a film shape of a thin film, wherein a least square method for minimizing F is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013045307A JP6047427B2 (en) | 2012-05-31 | 2013-03-07 | Method for measuring film shape of thin film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012124214 | 2012-05-31 | ||
JP2012124214 | 2012-05-31 | ||
JP2013045307A JP6047427B2 (en) | 2012-05-31 | 2013-03-07 | Method for measuring film shape of thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014006242A JP2014006242A (en) | 2014-01-16 |
JP6047427B2 true JP6047427B2 (en) | 2016-12-21 |
Family
ID=50104071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013045307A Expired - Fee Related JP6047427B2 (en) | 2012-05-31 | 2013-03-07 | Method for measuring film shape of thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6047427B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113740034B (en) * | 2021-08-19 | 2024-04-30 | 中国科学院合肥物质科学研究院 | Film uniformity detecting system based on optical interference |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000074618A (en) * | 1998-08-27 | 2000-03-14 | Fuji Xerox Co Ltd | Method and instrument for measuring interference |
JP2004340680A (en) * | 2003-05-14 | 2004-12-02 | Toray Eng Co Ltd | Method for measuring surface profile and/or film thickness, and its apparatus |
JP4183089B2 (en) * | 2004-09-16 | 2008-11-19 | 東レエンジニアリング株式会社 | Surface shape and / or film thickness measuring method and apparatus |
TWI394930B (en) * | 2005-05-19 | 2013-05-01 | Zygo Corp | Method and apparatus for analyzing low-coherence interferometry signals for obtaining information about thin film structures |
JP2006329751A (en) * | 2005-05-25 | 2006-12-07 | Sony Corp | Surface shape measuring method and surface shape measuring instrument |
JP2010151781A (en) * | 2008-03-31 | 2010-07-08 | Toray Eng Co Ltd | Frequency estimation method, frequency estimating device, surface shape measurement method, and surface shape measurement device |
JP5701159B2 (en) * | 2010-06-24 | 2015-04-15 | 東レエンジニアリング株式会社 | Method and apparatus for measuring surface shape by fitting interference fringe model |
-
2013
- 2013-03-07 JP JP2013045307A patent/JP6047427B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2014006242A (en) | 2014-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4710078B2 (en) | Surface shape measuring method and apparatus using the same | |
JP4885154B2 (en) | Method for measuring surface shape by multiple wavelengths and apparatus using the same | |
JP5369357B2 (en) | Measuring method of thickness or surface shape | |
TW200837327A (en) | Interferometry for lateral metrology | |
JP4939304B2 (en) | Method and apparatus for measuring film thickness of transparent film | |
JP2006329751A (en) | Surface shape measuring method and surface shape measuring instrument | |
JP5663758B2 (en) | Shape measuring method and shape measuring apparatus | |
JP6937482B2 (en) | Surface shape measuring device and its stitching measuring method | |
JP2013068489A (en) | Surface profiling method using multiple wavelengths and apparatus using the same | |
JP2005241493A (en) | Device for measuring and analyzing three-dimensional shape | |
JP6750813B2 (en) | Shape measuring method and shape measuring device for transparent plate | |
JP5057848B2 (en) | Method and apparatus for measuring refractive index of transparent film and method and apparatus for measuring film thickness of transparent film | |
JP6047427B2 (en) | Method for measuring film shape of thin film | |
Kitagawa | Multiwavelength single-shot interferometry without carrier fringe introduction | |
JPWO2003036229A1 (en) | Surface shape measuring method and apparatus | |
JP2012117858A (en) | Crosstalk correction coefficient calculation method, crosstalk correction coefficient calculation device, and three-dimensional surface shape measuring device using the same | |
US11248899B2 (en) | Method and apparatus for deriving a topography of an object surface | |
JP2015230264A (en) | Film thickness measurement method and film thickness measurement device | |
JP2010060420A (en) | Surface shape and/or film thickness measuring method and its system | |
JP4183089B2 (en) | Surface shape and / or film thickness measuring method and apparatus | |
JPH09318329A (en) | Method and apparatus for measuring non-contact surface shape | |
JP4192038B2 (en) | Surface shape and / or film thickness measuring method and apparatus | |
JP6511263B2 (en) | Planar spectrometer | |
JP2006329807A (en) | Image processing method and device using it | |
JP2010185844A (en) | Surface profile measuring method, and apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6047427 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |