JP6047385B2 - Automatic analyzer - Google Patents

Automatic analyzer Download PDF

Info

Publication number
JP6047385B2
JP6047385B2 JP2012260462A JP2012260462A JP6047385B2 JP 6047385 B2 JP6047385 B2 JP 6047385B2 JP 2012260462 A JP2012260462 A JP 2012260462A JP 2012260462 A JP2012260462 A JP 2012260462A JP 6047385 B2 JP6047385 B2 JP 6047385B2
Authority
JP
Japan
Prior art keywords
sample
reaction
dispensing mechanism
pretreatment
dispensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012260462A
Other languages
Japanese (ja)
Other versions
JP2014106166A (en
Inventor
洋一 有賀
洋一 有賀
晃啓 安居
晃啓 安居
隆史 中沢
隆史 中沢
慶弘 鈴木
慶弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012260462A priority Critical patent/JP6047385B2/en
Publication of JP2014106166A publication Critical patent/JP2014106166A/en
Application granted granted Critical
Publication of JP6047385B2 publication Critical patent/JP6047385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は血液、尿等の成分を定量あるいは定性分析を行う自動分析装置に係り、特に試料として全血、血球を取り扱う自動分析装置に関する。   The present invention relates to an automatic analyzer that performs quantitative or qualitative analysis of components such as blood and urine, and more particularly to an automatic analyzer that handles whole blood and blood cells as samples.

血液、尿等の生体試料に含まれる特定成分の定量あるいは定性分析を行う自動分析装置は、分析結果の再現性、処理速度の高さ、などから現在の診断には欠かせないものとなっている。このような自動分析装置の分析項目は医療の進歩とともに増加の一途をたどっているが、近年ではメタボ検診に対応して、ヘモグロビンA1c分析に対応した分析装置の要求が高まっている。   Automatic analyzers that perform quantitative or qualitative analysis of specific components contained in biological samples such as blood and urine are indispensable for current diagnosis due to the reproducibility of analysis results and high processing speed. Yes. The number of analysis items of such an automatic analyzer is steadily increasing with the advance of medical treatment, but in recent years, the demand for an analyzer corresponding to hemoglobin A1c analysis is increasing in response to the metabolic screening.

ヘモグロビンA1c分析は、一般的な生化学分析項目と異なり、全血あるいは血球試料を分析する。全血あるいは血球試料はそのままでは分析しにくいため、溶血処理(赤血球を破壊し、血球の内部成分を溶出させる処理)などの前処理を行うことが普通である。溶血処理を行った試料は、その後、通常の血清試料と同様に試薬を添加し、分析を行う。   Unlike general biochemical analysis items, hemoglobin A1c analysis analyzes whole blood or blood cell samples. Since whole blood or a blood cell sample is difficult to analyze as it is, it is common to perform a pretreatment such as a hemolysis treatment (a treatment for destroying red blood cells and eluting the internal components of the blood cells). The sample subjected to the hemolysis treatment is then analyzed by adding a reagent in the same manner as a normal serum sample.

そのような溶血処理を自動分析装置で実施する方法としては、大別すると、特許文献1に記載されたような、反応ディスク上で前処理を実施できるように分注制御を変更する方法と、特許文献2に記載されたような、前処理を専用で実施する前処理ディスク(希釈ディスク)を設ける方法が知られている。   As a method of carrying out such hemolysis treatment with an automatic analyzer, roughly, as described in Patent Document 1, a method of changing dispensing control so that pretreatment can be carried out on a reaction disk, A method of providing a pretreatment disk (dilution disk) for performing pretreatment exclusively as described in Patent Document 2 is known.

特開平6−82460号公報JP-A-6-82460 特開平8−194004号公報JP-A-8-194004

特許文献1に記載の方法は、単一の試料分注機構が、試料に試薬を添加して分析を行うための分注動作に加えて、分析に先立って、試料に希釈液、あるいは前処理液を添加して前処理を行う分注動作と、希釈/前処理済みの試料を反応容器から採取して、別の反応容器に再分注と行う構成となっている。そのため、余分な機構を増やすことなく装置上での自動前処理機能を有する自動分析装置を提供することができるが、前記試料分注機構が前処理を行うための試料分注を行っている間は、分析を行うための試料分注を行えないため、特に前処理を行う分析項目の割合が高い場合には装置の処理能力が大きく低下する。   In the method described in Patent Document 1, in addition to a dispensing operation for a single sample dispensing mechanism to add a reagent to a sample and perform an analysis, the sample is diluted or pretreated before the analysis. A dispensing operation in which a liquid is added and pretreatment is performed, and a diluted / pretreated sample is collected from a reaction vessel and redispensed in another reaction vessel. Therefore, it is possible to provide an automatic analyzer having an automatic pretreatment function on the apparatus without increasing an extra mechanism, while the sample dispensing mechanism is performing sample dispensing for pretreatment. Since sample dispensing for analysis cannot be performed, the processing capability of the apparatus is greatly reduced particularly when the ratio of analysis items to be pretreated is high.

また、単一の試料分注機構で血清、血漿、全血、血球等、複数種類の試料分注を行うことになるが、前記の試料はそれぞれ液性が異なり、例えば、粘度(比粘度)については、血清は1.70〜2.00、血漿は1.72〜2.03、全血は4.40〜4.74、血球は60〜と試料の種類によって大きな差がある。そのため、1μL程度の微量な血清を再現性良く分注を行うため、ノズルの内径を細くすると、全血や血球のように粘度が大きい試料では吸引抵抗が高くなり、吸引ポンプ内の圧力の静定時間が長くなるため、正確で迅速な試料分注の妨げとなる。   In addition, a single sample dispensing mechanism is used to dispense multiple types of samples such as serum, plasma, whole blood, blood cells, etc. Each of these samples has a different liquidity, for example, viscosity (specific viscosity) As for sera, there are large differences depending on the type of sample: 1.70 to 2.00 for serum, 1.72 to 2.03 for plasma, 4.40 to 4.74 for whole blood, and 60 to 60 for blood cells. Therefore, in order to dispense a minute amount of serum of about 1 μL with good reproducibility, reducing the inner diameter of the nozzle increases the suction resistance of a sample with a large viscosity such as whole blood or blood cells, and the static pressure in the suction pump is reduced. Since the fixed time is long, accurate and quick sample dispensing is hindered.

逆に粘度が大きい試料の吸引に合わせてノズル内径を大きくすると、1μL程度の微量分注域においては分注の再現性が低下するという欠点が生じる。   Conversely, if the nozzle inner diameter is increased in accordance with suction of a sample having a high viscosity, there is a drawback that the reproducibility of dispensing is reduced in a minute dispensing region of about 1 μL.

また、全血試料の分析では、全血を遠心処理し、試料容器底部にある血球の吸引を行うため、血清や血漿の採取と違い、ノズルが試料に浸漬する距離が長く、ノズルの洗浄槽、ノズル形状等に配慮が必要であり、また分注動作も血清や血漿の採取の際とは変更が必要であるため、制御が複雑となる。また、特許文献2に記載の方法は、試料を予め希釈テーブルに移して試料の希釈/前処理を行い、反応容器で希釈/前処理された試料の分析を行う構成となっている。   In the analysis of whole blood samples, the whole blood is centrifuged and the blood cells at the bottom of the sample container are aspirated. Unlike the collection of serum and plasma, the nozzle is immersed in the sample for a long distance, and the nozzle washing tank In addition, it is necessary to consider the nozzle shape and the like, and the dispensing operation needs to be changed from the collection of serum or plasma, so that the control becomes complicated. In addition, the method described in Patent Document 2 has a configuration in which a sample is transferred to a dilution table in advance, the sample is diluted / pretreated, and the sample diluted / pretreated in the reaction vessel is analyzed.

上記の方法では、希釈テーブル上で事前に試料の前処理を行うため、希釈テーブルから反応容器への試料分注は試料の分析にのみ専念でき、全血や、血球も前処理が行われ、粘度が血清程度まで低下しており、粘度が試料分注の妨げにならない。   In the above method, sample pretreatment on the dilution table is performed in advance, so that sample dispensing from the dilution table to the reaction vessel can be concentrated only on sample analysis, whole blood and blood cells are also pretreated, Viscosity is reduced to serum level, and viscosity does not interfere with sample dispensing.

しかし、希釈テーブルの追加に伴い、希釈容器の洗浄機構、攪拌機構、試料容器から希釈テーブルに試料を移す希釈ピペット、希釈ピペットで試料を吸引する試料吸引用ポンプ、希釈ピペットのノズルの洗浄槽といった機構点数の増加に伴い、機構の複雑化、装置面積の増加が懸念される。   However, with the addition of a dilution table, a dilution container cleaning mechanism, a stirring mechanism, a dilution pipette that transfers the sample from the sample container to the dilution table, a sample suction pump that sucks the sample with the dilution pipette, a cleaning tank for the nozzle of the dilution pipette, etc. As the number of mechanism points increases, there is a concern that the mechanism will become more complicated and the area of the apparatus will increase.

上記目的を達成するための本発明の構成は以下の通りである。   The configuration of the present invention for achieving the above object is as follows.

液体を収容する複数の反応容器を円周上に有する反応ディスクと、当該反応ディスクを1サイクルで所定数の反応容器数に相当する距離を回転動作するよう駆動させるディスク回転機構と、を備えた自動分析装置において、測定前に前処理を実施する前処理前試料を採取し吐出する動作サイクル数がnサイクル(n≧2の整数)である第一の試料分注機構と、前処理をした前処理済み試料を採取し吐出する動作サイクルが1サイクルである第二の試料分注機構と、前記前処理前試料を収容した前記反応容器に前処理液を添加し前記前処理前試料の前処理を行う前処理液分注機構と、前記第一の試料分注機構が前記前処理前試料を採取する位置に前記前処理前試料を収容する試料容器を位置付ける試料搬送機構と、前記ディスク回転機構、前記第一と前記第二の試料分注機構、前記前処理液分注機構、及び、前記試料搬送機構を制御する制御部とを備え、前記第一と前記第二の試料分注機構は、それぞれ独立に動作し、当該反応ディスク上の個々の反応容器に対して前記前処理前試料と前記前処理済み試料の夫々分注を行い、前記第一の試料分注機構が前記前処理前試料を吐出する第一の位置に停止させた反応容器は、所定のサイクル後に、前記第二の試料分注機構が試料を吐出する第二の位置に停止するように制御され、且つ、前記第二の試料分注機構は、前記前処理済み試料を収容した反応容器からの前記前処理済み試料の採取動作と、前記第二の位置に停止し且つ前記前処理前試料が収容されていない反応容器への前記前処理済み試料の吐出動作を含む分注動作を1サイクルで行うように制御され、前記前処理前試料が収容された反応容器が前記第二の位置に停止したサイクルを起点とし、前記前処理前試料が収容された反応容器に対し前記前処理液分注機構は前処理を行い、前記第二の試料分注機構が前記前処理済み試料を採取し前記第二の位置の前記前処理試料が収容されていない反応容器に吐出する、1サイクルで行う前記分注動作を行うまでの再分注サイクル数をZとした場合に、前記制御部は、Zがnで割り切れない関係で、前記ディスク回転機構、前記第一と前記第二の試料分注機構を制御する自動分析装置である。特に、請求項において区別して記載しない限り、請求項に記載の前処理には、希釈も含まれる。



A reaction disk having a plurality of reaction containers on the circumference for containing liquid; and a disk rotating mechanism for driving the reaction disk to rotate a distance corresponding to a predetermined number of reaction containers in one cycle. In the automatic analyzer, pretreatment was performed with a first sample dispensing mechanism in which the number of operation cycles for collecting and discharging a pretreatment sample for performing pretreatment before measurement is n cycles (an integer of n ≧ 2) . A second sample dispensing mechanism in which an operation cycle for collecting and discharging a pretreated sample is one cycle, and a pretreatment liquid is added to the reaction container containing the pretreatment sample before the pretreatment sample. A pretreatment liquid dispensing mechanism for performing processing, a sample transport mechanism for positioning a sample container for housing the pretreatment sample at a position where the first sample dispensing mechanism collects the pretreatment sample, and the disk rotation Mechanism, said First and the second sample dispensing mechanism, the pretreatment liquid dispensing mechanism, and, a control unit for controlling the sample transfer mechanism, said first and said second sample dispensing mechanism are each independently work, performed each dispensing of the pretreatment prior sample and the pre-processed samples for each reaction vessel on the reaction disk, before Symbol first sample dispensing mechanism of the pretreatment before the sample the reaction vessel was stopped in a first position to be discharged, after a predetermined cycle, the second sample dispensing mechanism is controlled to stop in the second position for ejecting the sample, and, said second The sample dispensing mechanism is configured to collect the pretreated sample from the reaction container containing the pretreated sample, and to a reaction container that stops at the second position and does not contain the pretreated sample. Dispensing operation including discharging operation of the pre-processed sample in one cycle It is controlled to Migihitsuji, the pretreatment before and the sample reaction vessel is housed a starting point cycle was stopped at the second position, the relative reaction vessel in which the pre-processing before the sample is received pretreatment liquid dispensing mechanism performs preprocessing, and discharges into the reaction vessel the second sample dispensing mechanism is not the pretreated sample accommodated in the pretreated sample was taken the second position, the carried out in 1 cycle When the number of redispensing cycles until the dispensing operation is performed is Z , the control unit is configured so that Z is not divisible by n, and the disk rotating mechanism, the first and second sample dispensing mechanisms It is an automatic analyzer that controls. In particular, unless otherwise specified in the claims, the pretreatment described in the claims includes dilution.



本発明によれば、試料の前処理(希釈含む)の工程における無駄な空きサイクルによる処理能力の低下を防ぐことができる。   According to the present invention, it is possible to prevent a reduction in processing capacity due to a useless empty cycle in a sample pretreatment (including dilution) step.

本発明を適用した自動分析装置の実施例の斜視図。The perspective view of the Example of the automatic analyzer to which this invention is applied. 本発明を適用した自動分析装置の実施例の上面図。The top view of the Example of the automatic analyzer to which this invention is applied. 本願の反応容器2の停止位置と、分光光度計4の測定を行うポイントの実施例。The stop position of the reaction container 2 of this application and the Example of the point which performs the measurement of the spectrophotometer 4. FIG. 本願のサイクルチャートの一例(前処理を必要としない比色分析項目のみの分析)。An example of the cycle chart of this application (analysis of only the colorimetric analysis item which does not require pre-processing). 従来技術を用いたサイクルチャートの一例(前処理を必要としない比色分析項目のみの分析)。An example of a cycle chart using conventional technology (analysis of only colorimetric analysis items that do not require preprocessing). 試料採取の違いによる試料分注機構使い分けの実施例。Examples of different use of the sample dispensing mechanism depending on the difference in sample collection. 試料採取の違いによる試料分注機構動作シーケンスの実施例。The example of the sample dispensing mechanism operation | movement sequence by the difference in sample collection. 前処理用反応容器と測定用反応容器が競合しないサイクルチャートの一例(前処理を必要とするHbA1cのみの分析)。An example of a cycle chart in which a pretreatment reaction vessel and a measurement reaction vessel do not compete (analysis of only HbA1c that requires pretreatment). 前処理用反応容器と測定用反応容器が競合するサイクルチャートの一例(前処理を必要とするHbA1cのみの分析)。An example of a cycle chart in which a pretreatment reaction vessel and a measurement reaction vessel compete (analysis of only HbA1c that requires pretreatment). 前処理済み試料分注サイクル数別の反応容器の使用状況(試料分注機構12の分注サイクル数が2の場合)。The use situation of the reaction container according to the number of pretreated sample dispensing cycles (when the number of dispensing cycles of the sample dispensing mechanism 12 is 2).

以下、図面を用いて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1,図2は本発明を適用した自動分析装置の一実施例を示す概略図である。   1 and 2 are schematic views showing an embodiment of an automatic analyzer to which the present invention is applied.

反応ディスク1には反応容器2が円周上に並んでいる。反応ディスクはモータなどの駆動機構により、反応ディスクを1サイクルで所定数の反応容器数に相当する距離を回転駆動するよう制御される。試薬ディスク9の中には複数の試薬ボトル10が円周上に載置可能である。反応ディスク1の近くに試料容器15を載せたラック16を移動する試料搬送機構17が設置されている。この搬送機構には、装置の外部から投入された試料を収容した容器を搬送する役割がある。反応ディスク1と試薬ディスク9の間には試薬分注機構7,8が設置されており、各々試薬ノズル7a,8aを備えている。ノズル7a,8aにはそれぞれ試薬用ポンプ18が接続している。反応ディスク1と試料搬送機構17の間には、回転及び上下動可能な試料分注機構11,12が設置されており、各々試料ノズル11a,12aを備えている。各々試料ノズル11a,12aには各々試料用ポンプ19が接続している。   On the reaction disk 1, reaction vessels 2 are arranged on the circumference. The reaction disk is controlled by a drive mechanism such as a motor so that the reaction disk is rotationally driven by a distance corresponding to a predetermined number of reaction vessels in one cycle. A plurality of reagent bottles 10 can be placed on the circumference of the reagent disk 9. A sample transport mechanism 17 for moving a rack 16 on which a sample container 15 is placed is installed near the reaction disk 1. This transport mechanism has a role of transporting a container containing a sample put in from the outside of the apparatus. Reagent dispensing mechanisms 7 and 8 are installed between the reaction disk 1 and the reagent disk 9, and are provided with reagent nozzles 7a and 8a, respectively. Reagent pumps 18 are connected to the nozzles 7a and 8a, respectively. Between the reaction disk 1 and the sample transport mechanism 17, there are installed sample dispensing mechanisms 11, 12 that can rotate and move up and down, and are provided with sample nozzles 11a, 12a, respectively. A sample pump 19 is connected to each of the sample nozzles 11a and 12a.

試料ノズル11a,12aは回転軸を中心に円弧を描きながら移動して試料容器から反応セルへの試料分注を行い、試料ノズル11aの軌道上には、試料搬送機構上の試料吸引位置23aと、反応ディスク上の試料吐出位置22aおよび希釈/前処理済み試料の試料採取位置23cと、試料ノズルを洗浄するための洗浄槽13が存在し、試料ノズル12aの軌道上には、試料搬送機構上の試料吸引位置23bと、反応ディスク上の試料吐出位置22bと、試料ノズルを洗浄するための洗浄槽14が存在し、試料ノズル11a,12aの軌道が干渉しないように配置されている。搬送機構は、試料吸引位置23aにある試料容器と、試料吸引位置23bにある試料容器とを独立して搬送制御できるよう搬送制御部により制御されている。また、試料搬送機構17は図1の左から右側にラック16を搬送し、試料吸引位置23aは試料吸引位置23bに対して、搬送機構17の上流側に位置している(図2参照)。   The sample nozzles 11a and 12a move while drawing an arc around the rotation axis to dispense the sample from the sample container to the reaction cell, and on the orbit of the sample nozzle 11a, the sample suction position 23a on the sample transport mechanism and The sample discharge position 22a on the reaction disk, the sample collection position 23c of the diluted / pretreated sample, and the cleaning tank 13 for cleaning the sample nozzle are present. The sample suction position 23b, the sample discharge position 22b on the reaction disk, and the cleaning tank 14 for cleaning the sample nozzle exist, and are arranged so that the trajectories of the sample nozzles 11a and 12a do not interfere with each other. The transport mechanism is controlled by the transport controller so that the sample container at the sample suction position 23a and the sample container at the sample suction position 23b can be transported independently. Further, the sample transport mechanism 17 transports the rack 16 from left to right in FIG. 1, and the sample suction position 23a is located upstream of the transport mechanism 17 with respect to the sample suction position 23b (see FIG. 2).

反応ディスク1の周囲には、洗浄機構3、分光光度計4、攪拌機構5,6、試薬ディスク9、試料搬送機構17が配置され、洗浄機構3には洗浄用ポンプ20が接続されている。試薬分注機構7,8、試料分注機構11,12、攪拌機構5,6の動作範囲上に洗浄槽13,14,30,31,32,33がそれぞれ設置されている。また、各機構はコントローラ21(制御部)に接続している。このコントローラ21(制御部)は、反応ディスクの回転駆動や、試料ノズルの駆動、試料吸引、試料吐出の動作や、試料容器の搬送機構などの各種機構を制御する。   Around the reaction disk 1, a cleaning mechanism 3, a spectrophotometer 4, stirring mechanisms 5 and 6, a reagent disk 9, and a sample transport mechanism 17 are disposed, and a cleaning pump 20 is connected to the cleaning mechanism 3. Washing tanks 13, 14, 30, 31, 32, and 33 are installed on the operation ranges of the reagent dispensing mechanisms 7 and 8, the sample dispensing mechanisms 11 and 12, and the stirring mechanisms 5 and 6, respectively. Each mechanism is connected to a controller 21 (control unit). The controller 21 (control unit) controls various mechanisms such as the rotational drive of the reaction disk, the drive of the sample nozzle, the sample suction and the sample discharge, and the transport mechanism of the sample container.

次に図2と図3を使用し、本発明を適用した自動分析装置の基本動作を説明する。   Next, the basic operation of the automatic analyzer to which the present invention is applied will be described with reference to FIGS.

本実施例の自動分析装置は反応ディスク1に29個の反応容器2−1〜2−29がある。反応ディスクは1サイクルで反時計回りに6反応容器分の回転と停止を繰り返し、5サイクルで1回転プラス1反応容器分回転する。上記の動作を繰り返すことで反応容器は29サイクルで同一の位置に戻ることになる。また、本実施例では希釈/前処理を必要としない分析項目の試料採取を試料分注機構11が行い、分析前に希釈/前処理を行う試料の採取を試料分注機構12が行う。また、試料分注機構11と試料分注機構12はそれぞれ専用の試料吐出位置22a,22bを持ち、上記の試料吐出位置は反応ディスクの1サイクルの回転に相当する6反応容器分開けることで、試料分注機構12は試料分注機構11に対して、1サイクル前に同一の反応容器に対して、試料を吐出可能である。   The automatic analyzer of the present embodiment has 29 reaction vessels 2-1 to 2-29 on the reaction disk 1. The reaction disk repeats rotation and stop for 6 reaction vessels counterclockwise in 1 cycle, and rotates 1 rotation plus 1 reaction vessel in 5 cycles. By repeating the above operation, the reaction vessel returns to the same position in 29 cycles. In this embodiment, the sample dispensing mechanism 11 collects samples of analysis items that do not require dilution / pretreatment, and the sample dispensing mechanism 12 collects samples to be diluted / pretreated before analysis. The sample dispensing mechanism 11 and the sample dispensing mechanism 12 have dedicated sample discharge positions 22a and 22b, respectively, and the above-described sample discharge positions are opened by dividing six reaction containers corresponding to one cycle of rotation of the reaction disk. The sample dispensing mechanism 12 can discharge the sample to the same reaction container one cycle before the sample dispensing mechanism 11.

図3は反応容器2−1が試料吐出位置22bに停止した時をサイクル0として、29サイクルの中で反応容器2の停止位置と、分光光度計4によって測定を行うポイントを示す。反応容器2の動きについて、反応容器2−1を例に説明を行う。   FIG. 3 shows the stop position of the reaction vessel 2 in 29 cycles and the points at which measurement is performed by the spectrophotometer 4 when the reaction vessel 2-1 stops at the sample discharge position 22b. The movement of the reaction vessel 2 will be described by taking the reaction vessel 2-1 as an example.

サイクル0で試料吐出位置22bあった反応容器2−1はサイクル1で試料吐出位置22aに停止する。サイクル0で試料分注機構12が反応容器2−1に試料を吐出している場合にはサイクル1で試料分注機構11は反応容器2−1には試料を吐出しない。サイクル2で反応容器2−1は第一試薬吐出位置76に停止し、希釈/前処理を必要としない測定用試料には試薬R1を、希釈/前処理を行う試料には希釈液/前処理液を、試薬分注機構7が添加する。サイクル3で反応容器2−1は第一攪拌位置73に停止し、反応液となった反応容器2−1の試料を攪拌機構6で攪拌する。容器2−1の試料が希釈/前処理を必要としない測定用試料の場合には、サイクル3から4とサイクル8から9にかけて分光光度計4の前を通過する際に、反応液の吸光度を測定する。   The reaction container 2-1 that has been at the sample discharge position 22 b at cycle 0 stops at the sample discharge position 22 a at cycle 1. When the sample dispensing mechanism 12 is discharging the sample to the reaction container 2-1 at cycle 0, the sample dispensing mechanism 11 does not discharge the sample to the reaction container 2-1 at cycle 1. In cycle 2, the reaction vessel 2-1 stops at the first reagent discharge position 76, the reagent R1 is used for a measurement sample that does not require dilution / pretreatment, and the diluent / pretreatment is used for a sample that performs dilution / pretreatment. The liquid is added by the reagent dispensing mechanism 7. In cycle 3, the reaction vessel 2-1 stops at the first stirring position 73, and the sample of the reaction vessel 2-1 that has become the reaction solution is stirred by the stirring mechanism 6. When the sample in the container 2-1 is a measurement sample that does not require dilution / pretreatment, the absorbance of the reaction solution is measured when passing through the spectrophotometer 4 in cycles 3 to 4 and cycles 8 to 9. taking measurement.

反応容器2−1の試料が希釈/前処理を行う試料の場合には、サイクル6で試料吸引位置23cに停止した際に試料分注機構11によって、希釈/前処理済み試料の採取を行うとともに、試料吐出位置22aに停止している反応容器2−2に試料を再分注する。つまり、反応ディスク1と試薬分注機構8は、全血試料あるいは血球試料に対しては、前処理を施す前処理部として機能し、前処理が完了した試料は試料分注機構11で試料吐出位置22aにある反応容器に吐出される。   When the sample in the reaction vessel 2-1 is a sample to be diluted / pretreated, the sample dispensing mechanism 11 collects the diluted / pretreated sample when the sample is stopped at the sample suction position 23c in cycle 6. Then, the sample is re-dispensed into the reaction vessel 2-2 stopped at the sample discharge position 22a. That is, the reaction disk 1 and the reagent dispensing mechanism 8 function as a pretreatment unit that performs pretreatment on the whole blood sample or blood cell sample, and the sample dispensing mechanism 11 discharges the sample after the pretreatment is completed. It is discharged into the reaction vessel at position 22a.

反応容器2−2に再分注された希釈/前処理済み試料はサイクル7では第一試薬吐出位置76に停止し、希釈/前処理を必要としない測定用試料同様に、分析測定用の試薬R1を試薬分注機構7が添加する。(希釈/前処理済み試料の以後の停止位置における説明は希釈/前処理を必要としない測定用試料同様であるため省略する。)
希釈/前処理を必要としない測定用試料が入った反応容器2−1は、サイクル11で第二試薬吐出位置75に停止し、試薬分注機構8で反応液に試薬R2を添加する。サイクル12で反応容器2−1は第二攪拌位置74に停止し、攪拌機構5が反応液の攪拌を行う。サイクル13から14とサイクル17から18にかけて反応容器2−1は分光光度計4の前を通過し、反応液の吸光度を測定する。
The diluted / pretreated sample that has been re-dispensed into the reaction vessel 2-2 stops at the first reagent discharge position 76 in cycle 7, and is the reagent for analysis measurement as in the measurement sample that does not require dilution / pretreatment. The reagent dispensing mechanism 7 adds R1. (The description of the diluted / pretreated sample at the subsequent stop position is omitted because it is the same as the measurement sample that does not require dilution / pretreatment.)
The reaction container 2-1 containing the measurement sample that does not require dilution / pretreatment stops at the second reagent discharge position 75 in cycle 11, and the reagent dispensing mechanism 8 adds the reagent R2 to the reaction solution. In cycle 12, the reaction vessel 2-1 stops at the second stirring position 74, and the stirring mechanism 5 stirs the reaction solution. From cycle 13 to 14 and cycle 17 to 18, the reaction vessel 2-1 passes in front of the spectrophotometer 4 and measures the absorbance of the reaction solution.

サイクル18で反応容器2−1は廃液吸引位置70に停止し、洗浄機構3が測定の終了した反応液を吸引し、同時に洗浄液を加える。次のサイクル19で反応容器2−1はブランク水吐出位置71に停止し、洗浄機構3が洗浄液を吸引し、同時に反応容器のブランク測定を行うためのブランク水を吐出する。サイクル22から23にかけて反応容器2−1は分光光度計4の前を通過し、反応液の吸光度を測定する。サイクル24で反応容器2−1はブランク水吸引位置72に停止し、洗浄機構3がブランク水を吸引し、清浄な状態となり、ステップ29(図示せず)新たな検体の分析に再利用される。   In cycle 18, the reaction vessel 2-1 stops at the waste liquid suction position 70, and the cleaning mechanism 3 sucks the measured reaction liquid and simultaneously adds the cleaning liquid. In the next cycle 19, the reaction container 2-1 stops at the blank water discharge position 71, the cleaning mechanism 3 sucks the cleaning liquid, and simultaneously discharges blank water for performing the blank measurement of the reaction container. From cycle 22 to 23, the reaction vessel 2-1 passes in front of the spectrophotometer 4 and measures the absorbance of the reaction solution. In cycle 24, the reaction vessel 2-1 stops at the blank water suction position 72, the cleaning mechanism 3 sucks the blank water, becomes a clean state, and is reused in step 29 (not shown) for analysis of a new specimen. .

以上が本実施例における自動分析装置の基本動作である。次に本発明の詳細について説明を行う。   The above is the basic operation of the automatic analyzer in this embodiment. Next, details of the present invention will be described.

図4は本発明を適用した自動分析装置で前処理を必要としない比色分析項目のみの分析する際のサイクルチャートの一例である。図は横軸に分析のサイクルを取り、反応容器2−1が試料吐出位置22bに停止した時をサイクル0とする。図の縦軸には動作順番と、各試料分注機構が採取する検体と、その検体に依頼されている分析項目と、分析で使用する反応容器の番号を示している。   FIG. 4 is an example of a cycle chart when analyzing only the colorimetric analysis items that do not require preprocessing in the automatic analyzer to which the present invention is applied. In the figure, the horizontal axis represents the analysis cycle, and the cycle 0 is defined when the reaction vessel 2-1 stops at the sample discharge position 22b. The vertical axis of the figure shows the operation order, the sample collected by each sample dispensing mechanism, the analysis item requested for the sample, and the number of the reaction container used in the analysis.

分析サイクルの説明をする。試料分注機構12は前処理用の試料を専用で採取するので、本分析のサイクルチャート内では動作しない。よって、サイクル0で反応容器2−1には何も分注されない。サイクル1では反応容器2−1に試料分注機構11が検体AのAST分析用の試料Sを吐出する。サイクル2では反応容器2−1の試料S中に試薬分注機構7が試薬R1を添加するのと同時に、反応容器2−7に検体AのALT分析用の試料Sを吐出する。サイクル3では反応液となった反応容器2−1の試料Sを攪拌機構6で攪拌すると同時に、反応容器2−7の試料S中に試薬R1の添加、および、反応容器2−13に検体AのγGTP分析用の試料Sを吐出する。次にサイクル3から4と8から9の間で反応容器2−1中の反応液の吸光度を分光光度計4で測定する。サイクル11〜12では反応容器2−1の反応液に試薬分注機構8で試薬R2を添加し、攪拌機構5で反応液の攪拌を行い、サイクル13から14と17から18の間で反応液の吸光度を分光光度計4で測定する。以上のサイクルで分析項目の測定を行った後、サイクル18で反応容器2−1の反応液を洗浄機構3で吸い上げ、洗浄水を注入する。そして、サイクル19で洗浄水を洗浄機構3で吸い上げ、清浄となった反応容器2−1にブランク水を添加する。サイクル23から24の間で反応容器2−1の反応容器ブランク測定を分光光度計4で行う。次のサイクル24で洗浄機構3により反応容器2−1内のブランク水を吸い上げ、清浄な反応容器2−1となり、サイクル30で新たな試料の分析に再利用される。   Explain the analysis cycle. Since the sample dispensing mechanism 12 collects a sample for pretreatment exclusively, it does not operate in the cycle chart of this analysis. Therefore, nothing is dispensed into the reaction vessel 2-1 in cycle 0. In cycle 1, the sample dispensing mechanism 11 discharges the sample S for AST analysis of the specimen A into the reaction container 2-1. In cycle 2, the reagent dispensing mechanism 7 adds the reagent R1 into the sample S in the reaction container 2-1, and simultaneously, the sample S for ALT analysis of the specimen A is discharged into the reaction container 2-7. In cycle 3, the sample S in the reaction vessel 2-1 that became the reaction solution is stirred by the stirring mechanism 6, and at the same time, the reagent R1 is added to the sample S in the reaction vessel 2-7, and the sample A is put in the reaction vessel 2-13. The sample S for γGTP analysis is discharged. Next, the absorbance of the reaction solution in the reaction vessel 2-1 is measured with the spectrophotometer 4 between cycles 3 to 4 and 8 to 9. In cycles 11 to 12, the reagent R2 is added to the reaction solution in the reaction vessel 2-1 by the reagent dispensing mechanism 8, the reaction solution is stirred by the stirring mechanism 5, and the reaction solution between cycles 13 to 14 and 17 to 18 is obtained. Is measured with a spectrophotometer 4. After the analysis items are measured in the above cycle, the reaction solution in the reaction vessel 2-1 is sucked up by the cleaning mechanism 3 in cycle 18 and the cleaning water is injected. Then, in the cycle 19, washing water is sucked up by the washing mechanism 3, and blank water is added to the cleaned reaction vessel 2-1. The reaction vessel blank measurement of the reaction vessel 2-1 is performed with the spectrophotometer 4 between cycles 23 to 24. In the next cycle 24, the blank water in the reaction vessel 2-1 is sucked up by the washing mechanism 3 to become a clean reaction vessel 2-1, and is reused in cycle 30 for analysis of a new sample.

これに対して、図5は特許文献1に記載されるような従来の自動分析装置で図4と同一の分析項目を分析する際のサイクルチャートの一例である。従来の自動分析装置の形態としては、本実施例における試料分注機構12が存在しない状態と考え、図4と同様に、反応容器2−1が試料吐出位置22bに停止した時を0サイクル目とすると、サイクル0で反応容器2−1には何も分注されない。サイクル1からは図示の通り、図4と同様の分析サイクルチャートとなることは自明であり、詳細の説明については省略する。   On the other hand, FIG. 5 is an example of a cycle chart when analyzing the same analysis items as those in FIG. 4 by a conventional automatic analyzer as described in Patent Document 1. As a form of the conventional automatic analyzer, it is considered that the sample dispensing mechanism 12 in the present embodiment is not present, and when the reaction vessel 2-1 stops at the sample discharge position 22b as in FIG. Then, nothing is dispensed into the reaction vessel 2-1 in cycle 0. As shown in the drawing, it is obvious that the analysis cycle chart is the same as that in FIG. 4 from the cycle 1, and detailed description thereof is omitted.

よって、本願と従来の自動分析装置においては前処理を必要としない比色分析項目のみの分析では処理能力に差は無い。しかし、近年では通常の比色項目に加えて、予め試料の前処理を必要とする項目も存在する。一例として、メタボ検診で使用されるヘモグロビンA1c(HbA1c)分析がある。HbA1c分析は、一般的な生化学分析項目と異なり、全血試料を分析する。全血試料はそのままでは分析しにくいため、溶血処理(赤血球を破壊し、血球の内部成分を溶出させる処理)などの前処理を行うことが普通である。溶血処理を行った試料は、その後、通常の血清試料と同様に試薬を添加し、分析を行う。HbA1cのように、予め試料の前処理を必要な分析項目を、特に単位時間の処理能力が高い自動分析装置で実施する場合には本特許は有効である。   Therefore, there is no difference in processing capability between the present application and the conventional automatic analyzer in the analysis of only the colorimetric analysis items that do not require preprocessing. However, in recent years, in addition to the usual colorimetric items, there are also items that require sample pretreatment in advance. One example is hemoglobin A1c (HbA1c) analysis used in metabolic screening. Unlike a general biochemical analysis item, HbA1c analysis analyzes a whole blood sample. Since a whole blood sample is difficult to analyze as it is, it is common to perform a pretreatment such as a hemolysis treatment (a treatment that destroys red blood cells and elutes internal components of blood cells). The sample subjected to the hemolysis treatment is then analyzed by adding a reagent in the same manner as a normal serum sample. This patent is effective when an analysis item that requires pretreatment of a sample in advance, such as HbA1c, is carried out by an automatic analyzer having a high unit time processing capability.

では、図6で本願の自動分析装置において、一般的な生化学分析項目を分析するために試料分注機構11が行う血清吸引と、HbA1c分析を行うために試料分注機構12が行う全血吸引を行う一例を示す。   Then, in the automatic analyzer of the present application in FIG. 6, whole blood performed by the sample dispensing mechanism 12 for performing serum aspiration performed by the sample dispensing mechanism 11 to analyze general biochemical analysis items and HbA1c analysis. An example of performing suction is shown.

図示の試料分注機構11は血清の液面付近から一般的な生化学項目の分析を行うための試料採取を行うのに対して、試料分注機構12はHbA1c分析のため、遠心分離された全血試料の血球部分(試料容器15底部)から赤血球の採取を行う必要がある。   The sample dispensing mechanism 11 shown in FIG. 1 collects samples for analysis of general biochemical items from the vicinity of the serum level, whereas the sample dispensing mechanism 12 is centrifuged for HbA1c analysis. It is necessary to collect red blood cells from the blood cell portion of the whole blood sample (sample container 15 bottom).

図7は図6で吸引した試料を反応ディスク1の反応容器2に分注する本発明を搭載した自動分析装置の動作シーケンスの一例である。なお、T0とT1の間、T1とT2との間が1サイクルである。   FIG. 7 is an example of an operation sequence of an automatic analyzer equipped with the present invention for dispensing the sample sucked in FIG. 6 into the reaction vessel 2 of the reaction disk 1. One cycle is between T0 and T1, and between T1 and T2.

時刻T0からT1にかけて、試料分注機構11は試料吸引位置23aへ移動、試料採取後、試料吐出位置22aへ移動する。試料分注機構11は試料吐出を終えた後、洗浄槽13に移動し試料ノズル11aの洗浄を行う。   From time T0 to T1, the sample dispensing mechanism 11 moves to the sample suction position 23a, moves to the sample discharge position 22a after sampling. After the sample dispensing mechanism 11 finishes discharging the sample, it moves to the cleaning tank 13 and cleans the sample nozzle 11a.

試料分注機構12は試料吸引位置23bに移動、試料採取を行う。該当試料が図7に示す遠心分離された血球の場合には、粘度が大きいため、吸引後、試料ノズル25内の圧力が安定するのに時間が掛かる。   The sample dispensing mechanism 12 moves to the sample suction position 23b and collects the sample. In the case where the sample is the centrifuged blood cell shown in FIG. 7, since the viscosity is large, it takes time for the pressure in the sample nozzle 25 to stabilize after suction.

また、試料採取後は、洗浄槽14にて、試料ノズル25の外周に付いた不要な血清を洗い流す必要がある。試料搬送機構17は試料分注機構11,12で試料の採取が終わり、水平移動の開始とともに、それぞれラック16を移動させ、試料採取位置23a,23bに新しい試料を搬送する(同一の試料で複数の分析項目が依頼されていない場合)。   Further, after collecting the sample, it is necessary to wash away unnecessary serum attached to the outer periphery of the sample nozzle 25 in the washing tank 14. The sample transport mechanism 17 completes the sampling of the sample by the sample dispensing mechanisms 11 and 12 and moves the rack 16 with the start of the horizontal movement to transport new samples to the sample sampling positions 23a and 23b (a plurality of samples with the same sample). Analysis items have not been requested).

反応ディスク1は試料分注機構11で試料の吐出が終わり、水平移動を開始した後、反応容器2を移動させる。   The reaction disc 1 moves the reaction vessel 2 after the sample dispensing mechanism 11 finishes discharging the sample and starts horizontal movement.

次の時刻T1からT2にかけては、試料分注機構11は新しい試料に対して同様の分注動作を行う。   From the next time T1 to T2, the sample dispensing mechanism 11 performs a similar dispensing operation on a new sample.

試料分注機構12は洗浄槽14から試料吐出位置22bに移動、試料の吐出後は再び洗浄槽14に戻り試料ノズル12aの洗浄を行う。   The sample dispensing mechanism 12 moves from the cleaning tank 14 to the sample discharge position 22b, and after discharging the sample, returns to the cleaning tank 14 again to clean the sample nozzle 12a.

試料搬送機構17は、試料分注機構12が試料吸引位置23bにある試料の吸引をまだ行っていないので、試料採取位置23bにあるラック16の移動は行わない。一方、試料採取位置23aの試料でその他の項目が依頼されていない場合にはラック16を移動し新たな試料を供給する。   The sample transport mechanism 17 does not move the rack 16 at the sample collection position 23b because the sample dispensing mechanism 12 has not yet sucked the sample at the sample suction position 23b. On the other hand, if no other items are requested for the sample at the sample collection position 23a, the rack 16 is moved to supply a new sample.

反応ディスク1は試料分注機構11,12で試料の吐出が終わり、水平移動を開始した後、反応セルを移動させる。この例では、試料分注機構12が試料吸引から試料吐出まで2倍のサイクルを要する例を示しているが、2倍に限定されるものではなくn倍(n≧2の整数)であればよい。そして、この例では、試料ノズル12aが試料を吐出せずに回転動作させた(T0からT1内の反応容器移動)反応容器に対して、試料ノズル11aによる試料吐出を行っていることが分かる(T1からT2内の試料ノズル11aの試料吐出)。なお、この例では、図示していないが、T2からT3については、試料ノズル12aで吐出された試料が収容された試料容器が、試料吐出位置22aにあるため試料分注(試料吐出)を行わないように制御される。   The reaction disc 1 moves the reaction cell after the sample dispensing mechanisms 11 and 12 have finished discharging the sample and started horizontal movement. In this example, the sample dispensing mechanism 12 shows an example that requires twice as many cycles from sample suction to sample discharge. However, the cycle is not limited to two times, and is n times (an integer of n ≧ 2). Good. In this example, it can be seen that the sample nozzle 12a discharges the sample by the sample nozzle 11a with respect to the reaction vessel that is rotated without moving the sample (the reaction vessel moves from T0 to T1) ( Sample ejection from the sample nozzle 11a within T1 to T2). In this example, although not shown, sample dispensing (sample ejection) is performed from T2 to T3 because the sample container containing the sample ejected by the sample nozzle 12a is located at the sample ejection position 22a. Not to be controlled.

以上のように、血清と、全血の血球では試料の採取方法が大きく異なるため、試料搬送機構17の試料採取位置23a,23bへの試料供給から試料分注機構11、試料分注機構12の分注動作に至るまで独立に制御を行い、反応ディスク1の前記反応容器2の空き状況に応じて前記それぞれの試料分注機構は動作することで反応容器2に空きがなく、装置の単位時間当たりの処理能力が最大となるように動作する。   As described above, since the sample collection method for serum and whole blood blood cells is greatly different, the sample dispensing mechanism 11 and the sample dispensing mechanism 12 are different from the sample supply to the sample collection positions 23a and 23b of the sample transport mechanism 17. Control is performed independently until the dispensing operation is performed, and the respective sample dispensing mechanisms operate according to the availability of the reaction vessel 2 in the reaction disk 1, so that there is no empty space in the reaction vessel 2, and the unit time of the apparatus It operates so that the hit processing capacity is maximized.

また、図7から明らかな通り、血球の採取の工程は血清の採血工程よりも多く時間が掛かる。図7では試料分注機構11の動作時間に対して、試料分注機構12の動作時間が2倍かかる設定とした。特許文献1に記載されるような従来の自動分析装置において、HbA1cの前処理のための試料採取に通常の血清からの試料採取の2倍の時間をかけるということは、少なくとも反応容器2に1つ空きを作ってしまうことになり、処理能力を大きく低下させる原因となる。   Further, as apparent from FIG. 7, the blood cell collection process takes more time than the serum blood collection process. In FIG. 7, the operation time of the sample dispensing mechanism 12 is set to be twice as long as the operation time of the sample dispensing mechanism 11. In a conventional automatic analyzer as described in Patent Document 1, it takes at least twice as much time to collect a sample for pretreatment with HbA1c as to collect a sample from normal serum. Will cause a large drop in processing capacity.

また、希釈/前処理を必要としない血清試料の単位時間当たりの処理能力を向上させるため、試料分注機構の動作時間を短縮すれば、場合によっては、血清分注の2倍以上の時間をHbA1cの前処理のための試料採取に使用しなければならなくなり、その分だけ反応容器2に空きが出る数が多くなり、処理能力をさらに大きく低下させる原因となる。   In addition, in order to improve the throughput per unit time of serum samples that do not require dilution / pretreatment, if the operating time of the sample dispensing mechanism is shortened, in some cases, it will take more than twice the time of serum dispensing. It must be used for sampling for pretreatment of HbA1c, and the number of empty spaces in the reaction vessel 2 increases accordingly, which causes a further decrease in processing capacity.

図8は本願における自動分析装置でA〜Oの15検体に対してHbA1cの測定を実施した例である。前述の通り、前処理用の試料採取は試料分注機構12が担当し、前処理済み試料の反応容器への再分注は試料分注機構11が担当する。試料分注機構11(前処理済み試料の反応容器への再分注)の動作時間に対して、試料分注機構12(前処理用の試料採取)の動作時間が2倍かかる設定(試料分注機構12の分注サイクルを1とすると、試料分注機構12の分注サイクルは2)としている。   FIG. 8 shows an example in which HbA1c is measured on 15 samples A to O by the automatic analyzer according to the present application. As described above, the sample dispensing mechanism 12 is in charge of collecting a sample for pretreatment, and the sample dispensing mechanism 11 is in charge of redispensing the pretreated sample into the reaction container. Setting that takes twice the operating time of the sample dispensing mechanism 12 (sample collection for pretreatment) with respect to the operating time of the sample dispensing mechanism 11 (redispensing the pretreated sample into the reaction container) When the dispensing cycle of the dispensing mechanism 12 is 1, the dispensing cycle of the sample dispensing mechanism 12 is 2).

サイクル0で試料分注機構12は前のサイクル−1(図示は無し)で検体Aから前処理用の試料S′を採取し、反応容器2−1に吐出する。サイクル1で、反応容器2−1は試料吐出位置22aに移動する。次にサイクル2で反応容器2−1内の試料S′に試薬分注機構7で前処理液を添加すると同時に、試料分注機構12がサイクル1で検体Bから採取した前処理用の試料S′を反応容器2−13に吐出する。サイクル3では前処理液を添加した反応容器2−1の試料を攪拌機構6で攪拌する。   In cycle 0, the sample dispensing mechanism 12 collects the sample S ′ for pretreatment from the specimen A in the previous cycle-1 (not shown) and discharges it to the reaction vessel 2-1. In cycle 1, the reaction vessel 2-1 moves to the sample discharge position 22a. Next, in cycle 2, the pretreatment liquid is added to the sample S ′ in the reaction vessel 2-1 by the reagent dispensing mechanism 7, and at the same time, the sample S for pretreatment collected from the sample B by the sample dispensing mechanism 12 in cycle 1. 'Is discharged into the reaction vessel 2-13. In cycle 3, the sample in the reaction vessel 2-1 to which the pretreatment liquid has been added is stirred by the stirring mechanism 6.

サイクル6で反応容器2−1は試料採取位置23cに停止し、試料分注機構11が前処理済みの試料を反応容器2−1から採取すると共に、試料吐出位置22aに停止している反応容器2−2に再分注を行う。再分注された検体Aの前処理済み試料は図4に示した通常の比色項目の試料分析と同じく試薬R1,R2を添加され分光光度計4で吸光度の測定を行う。   In cycle 6, the reaction container 2-1 stops at the sample collection position 23c, and the sample dispensing mechanism 11 collects the preprocessed sample from the reaction container 2-1, and the reaction container stopped at the sample discharge position 22a. Re-dispense to 2-2. Resampled pre-treated samples of specimen A are added with reagents R1 and R2 and the absorbance is measured with a spectrophotometer 4 in the same manner as the sample analysis of the usual colorimetric items shown in FIG.

以上の動作を繰り返すことで、試料分注機構12は途切れなく前処理試料の分注を続け、分注開始から6サイクル目以降は試料分注機構11が前処理済み試料の再分注を2サイクルごとに途切れなく行い、A検体の分注開始から34サイクルでO検体の再分注までを終える(動作順番31以降のサイクルチャートは省略)。   By repeating the above operation, the sample dispensing mechanism 12 continues to dispense the pretreated sample without interruption, and the sample dispensing mechanism 11 re-dispenses the pretreated sample 2 after the sixth cycle from the start of dispensing. It is performed without interruption every cycle, and the re-dispensing of the O sample is completed in 34 cycles from the start of the dispensing of the A sample (the cycle chart after the operation order 31 is omitted).

つまり、試料の前処理を開始した直後の数個の反応容器を除いて半分の反応容器は試料の前処理に、もう半分の反応容器は前処理済み試料分析に使用し、反応容器に空きを作らない。   In other words, with the exception of the few reaction vessels immediately after starting the sample pretreatment, half of the reaction vessels are used for sample pretreatment, the other half of the reaction vessels are used for pretreated sample analysis, and the reaction vessels are empty. dont make.

ここで、反応容器に空きができない理由は二つある。一つは試料分注機構12による前処理用の試料の分注サイクルを2にしていることである。分注サイクルを2にすることにより全反応容器の半分が試料の前処理に用いられる。そして残りの半分の反応容器を前処理済み試料の測定に用いるようにすることにより、反応容器に空きを作らなくしている。   Here, there are two reasons why the reaction container cannot be empty. One is that the sample dispensing cycle of the sample for pretreatment by the sample dispensing mechanism 12 is set to 2. By setting the dispensing cycle to 2, half of the total reaction vessel is used for sample pretreatment. The remaining half of the reaction vessel is used for the measurement of the pretreated sample, so that no empty space is created in the reaction vessel.

空きができないもう一つの理由は、前処理用の試料の分注サイクルを2とした場合においては、前処理に供した反応容器が試料分注機構11の試料吐出位置22aに停止したタイミングを起点とした試料分注機構11における前処理済み試料の再分注のサイクル数を奇数としたことによる。図8の実施例では再分注のサイクル数は5(奇数)となっているが、これを偶数とすると、試料分注機構12が前処理用の試料を分注する反応容器は、試料分注機構11による前処理済み試料の分析に用いることが決まっているために、前処理済み試料を2サイクルに1回分注できずに反応容器に空きを作ってしまう。再分注のサイクル数を6とした場合のHbA1cを行なった場合について図9を用いて説明する。   Another reason why there is no vacancy is that when the pretreatment sample dispensing cycle is 2, the timing at which the reaction vessel used for the pretreatment stops at the sample discharge position 22a of the sample dispensing mechanism 11 starts. This is because the number of re-dispensing cycles of the pretreated sample in the sample dispensing mechanism 11 is an odd number. In the embodiment of FIG. 8, the number of re-dispensing cycles is 5 (odd number). However, when this is an even number, the reaction container in which the sample dispensing mechanism 12 dispenses the sample for pretreatment is the sample dispensing volume. Since it is determined to be used for the analysis of the pretreated sample by the injection mechanism 11, the pretreated sample cannot be dispensed once every two cycles, and an empty space is created in the reaction container. The case where HbA1c is performed when the number of redispensing cycles is 6 will be described with reference to FIG.

図9は前処理に供した反応容器が試料分注機構11の試料吐出位置22aに停止したタイミングを起点とした試料分注機構11における前処理済み試料の再分注のサイクル数を6とした自動分析装置で、A〜Mの13検体に対してHbA1cの測定を実施した例である。試料分注機構11による前処理済み試料の分注サイクル数は1で、試料分注機構12による前処理用試料の分注サイクル数は2という設定である。   In FIG. 9, the number of re-dispensing cycles of the pretreated sample in the sample dispensing mechanism 11 starting from the timing at which the reaction vessel subjected to the pretreatment stops at the sample discharge position 22 a of the sample dispensing mechanism 11 is set to 6. This is an example in which measurement of HbA1c was performed on 13 samples A to M by an automatic analyzer. The number of dispensing cycles of the pretreated sample by the sample dispensing mechanism 11 is 1, and the number of dispensing cycles of the sample for pretreatment by the sample dispensing mechanism 12 is set to 2.

基本的なシーケンスついて検体Aを例に説明する。検体Aについては、サイクル0で試料分注機構12は前のサイクル−1(図示は無し)で検体Aから前処理用の試料S′を採取し、反応容器2−1に吐出する。サイクル1で、反応容器2−1は試料吐出位置22aに移動する。サイクル2で反応容器2−1内の試料S′に試薬分注機構7で前処理液を添加、サイクル3では前処理液を添加した反応容器2−1の試料を攪拌機構6で攪拌する。サイクル7(反応容器2−1が試料吐出位置22aに停止した6サイクル後)で、試料分注機構11が前処理済みの試料を反応容器2−1から採取すると共に、試料吐出位置22aに停止している反応容器2−8に再分注を行う。再分注された検体Aの前処理済み試料は図4に示した通常の比色項目の試料分析と同じく試薬R1,R2を添加され分光光度計4で吸光度の測定を行う。   A basic sequence will be described by taking the sample A as an example. For the sample A, the sample dispensing mechanism 12 collects the sample S ′ for pretreatment from the sample A in the previous cycle-1 (not shown) at cycle 0 and discharges it to the reaction container 2-1. In cycle 1, the reaction vessel 2-1 moves to the sample discharge position 22a. In cycle 2, the pretreatment liquid is added to the sample S ′ in the reaction container 2-1 by the reagent dispensing mechanism 7, and in cycle 3, the sample in the reaction container 2-1 to which the pretreatment liquid has been added is stirred by the stirring mechanism 6. In cycle 7 (6 cycles after the reaction container 2-1 stops at the sample discharge position 22a), the sample dispensing mechanism 11 collects the pretreated sample from the reaction container 2-1, and stops at the sample discharge position 22a. Re-dispense into the existing reaction vessel 2-8. Resampled pre-treated samples of specimen A are added with reagents R1 and R2 and the absorbance is measured with a spectrophotometer 4 in the same manner as the sample analysis of the usual colorimetric items shown in FIG.

検体Aに引き続き、検体B、Cについてもそれぞれ、試料分注機構12により2サイクルごとに反応容器に前処理用の試料を分注していく。なお、検体Bについては反応容器2−13、検体Cについては反応容器2−25を前処理用の反応容器として用いる。   Subsequent to specimen A, specimens B and C are each dispensed with a sample for pretreatment into the reaction container every two cycles by the specimen dispensing mechanism 12. Note that the reaction vessel 2-13 is used for the sample B, and the reaction vessel 2-25 is used as the pretreatment reaction vessel for the sample C.

ここで、検体Cに引き続き、検体Dから前処理用の試料を分注しようとしたときに、検体Dの前処理用の反応容器2−8は、すでに検体Aの測定用の反応容器に供することが決まっている。従って、その次のサイクルに来る反応容器2−14を検体Dの前処理に用いることになる。これにより、反応容器2−15が前処理にも測定にも使用されない空きの反応容器となる。同様の現象が検体G、検体J、検体Mについても起き、7サイクルに1回の頻度で反応容器に空きを作ることになる。   Here, when the sample for pretreatment is to be dispensed from the sample D following the sample C, the reaction vessel 2-8 for pretreatment of the sample D is already used as a reaction vessel for measuring the sample A. It has been decided. Therefore, the reaction vessel 2-14 that comes in the next cycle is used for the pretreatment of the specimen D. As a result, the reaction vessel 2-15 becomes an empty reaction vessel that is not used for pretreatment or measurement. A similar phenomenon occurs in the specimen G, specimen J, and specimen M, and the reaction container is vacated once every seven cycles.

ここで、図10を用いて、試料分注機構11による前処理済み試料の分注サイクル数は1で、試料分注機構12による前処理用試料の分注サイクル数は2という設定において、前処理に供した反応容器が試料分注機構11の試料吐出位置22aに停止したタイミングを起点とした試料分注機構11における前処理済み試料の再分注のサイクル数を5〜10とした場合の反応容器の使用状況について説明する。   Here, with reference to FIG. 10, in the setting that the number of dispensing cycles of the pretreated sample by the sample dispensing mechanism 11 is 1 and the number of dispensing cycles of the sample for pretreatment by the sample dispensing mechanism 12 is 2, When the number of re-dispensing cycles of the pretreated sample in the sample dispensing mechanism 11 starting from the timing at which the reaction container subjected to the treatment stops at the sample discharge position 22a of the sample dispensing mechanism 11 is set to 5 to 10. The use situation of the reaction vessel will be described.

図10は、反応容器を使用する順番について、試料分注機構11の試料吐出位置22aに反応容器が停止する順番という観点で並べたものである。図10(a)に示した破線矢印の順に反応容器を使用していく。試料分注機構11による前処理済み試料の分注においてどの反応容器からどの反応容器へ分注するかを示すために、縦軸方向に使用順番を並べて、さらに、それぞれの再分注サイクル数で、その右側の列に移して使用順番を並べてある。ここで、試料分注機構11による前処理済み試料の分注に使用する反応容器は、実線矢印で示している。図10(a)の一番左上を例にとると、反応容器2−1から反応容器2−2へ前処理済み試料を分注するということである。未使用(空きとなる)の反応容器については、白抜きと黒抜きで示している。白抜きは、試料の前処理を開始した最初の数サイクルの空きである。黒抜きは、前処理用の反応容器と測定用の反応容器が競合するためにできる空きである。   FIG. 10 shows the order in which the reaction containers are used from the viewpoint of the order in which the reaction containers stop at the sample discharge position 22 a of the sample dispensing mechanism 11. The reaction vessels are used in the order of broken line arrows shown in FIG. In order to show which reaction container is dispensed from which reaction container in the dispensing of the pretreated sample by the sample dispensing mechanism 11, the order of use is arranged in the vertical axis direction, and the number of re-dispensing cycles is , Moved to the right column and the order of use is arranged. Here, the reaction container used for dispensing the pretreated sample by the sample dispensing mechanism 11 is indicated by a solid arrow. Taking the upper left of FIG. 10A as an example, this means that a pretreated sample is dispensed from the reaction vessel 2-1 to the reaction vessel 2-2. Unused (empty) reaction vessels are shown in white and black. Open areas are empty for the first few cycles when sample pretreatment has begun. The black holes are empty because the reaction vessel for pretreatment and the reaction vessel for measurement compete.

図10(a)は、再分注のサイクル数が5の場合である。この場合、前処理用の反応容器と測定用の反応容器が交互に並ぶために反応容器に空きができないことがわかる。   FIG. 10A shows a case where the number of re-dispensing cycles is five. In this case, it can be seen that the reaction vessel cannot be empty because the pretreatment reaction vessel and the measurement reaction vessel are alternately arranged.

一方で、再分注のサイクル数を6とした場合(図10(b))、試料分注機構12による前処理用の試料の分注が2サイクルごとに、反応容器2−1、反応容器2−13、反応容器2−25の順に行なわれるが、反応容器2−8はすでに測定に供されることが決まっているために前処理用の試料は次に来る反応容器2−14に分注する。つまり、前処理用の反応容器と測定用の反応容器が競合し、試料分注機構12による分注が2サイクルに1回できなくなり、反応容器に空きができる。   On the other hand, when the number of re-dispensing cycles is 6 (FIG. 10 (b)), the dispensing of the sample for pretreatment by the sample dispensing mechanism 12 is performed every two cycles, reaction container 2-1, reaction container 2-13 and reaction vessel 2-25, but the reaction vessel 2-8 has already been determined to be used for measurement, so the sample for pretreatment is distributed to the next reaction vessel 2-14. Note. That is, the pretreatment reaction vessel and the measurement reaction vessel compete with each other, so that the dispensing by the sample dispensing mechanism 12 cannot be performed once every two cycles, and the reaction vessel is empty.

さらに再分注のサイクル数を増やすと、再分注のサイクル数を7(図10(c))および9(図10(e))とした場合には、前処理用の反応容器と測定用の反応容器が交互に並び反応容器に空きができない。一方で、再分注のサイクル数を8(図10(d))および10(図10(f))とした場合には、試料分注機構12による分注が2サイクルに1回できなくなり、反応容器に空きができる。   When the number of re-dispensing cycles is further increased and the number of re-dispensing cycles is 7 (FIG. 10 (c)) and 9 (FIG. 10 (e)), the pretreatment reaction vessel and the measurement The reaction vessels are alternately arranged and the reaction vessel is not empty. On the other hand, when the number of re-dispensing cycles is 8 (FIG. 10 (d)) and 10 (FIG. 10 (f)), the dispensing by the sample dispensing mechanism 12 cannot be performed once every two cycles. The reaction container is empty.

ここでポイントなのは、(a)〜(f)において、一番左の列から次の列に移ったときの反応容器が前処理のための反応容器として使われるか使われないかである。つまり、(a)では反応容器2−2、(b)では反応容器2−8、(c)では反応容器2−14、(d)では反応容器2−20、(e)では反応容器2−26、(f)では反応容器2−3にあたる。これらの反応容器が前処理のための反応容器として使われないための条件としては、再分注サイクル数をZとした場合に、Zが2(試料分注機構12による分注サイクル数)で割り切れないことである。Zが2で割り切れてしまうと、前処理用の反応容器と測定用の反応容器が競合し、試料分注機構12による分注が2サイクルに1回できなくなり、反応容器に空きができる。   The point here is in (a) to (f) whether or not the reaction vessel when moving from the leftmost column to the next column is used as a reaction vessel for pretreatment. That is, (a) reaction vessel 2-2, (b) reaction vessel 2-8, (c) reaction vessel 2-14, (d) reaction vessel 2-20, (e) reaction vessel 2- 26, (f) corresponds to the reaction vessel 2-3. As a condition for these reaction vessels not to be used as reaction vessels for pretreatment, when Z is the number of re-dispensing cycles, Z is 2 (the number of dispensing cycles by the sample dispensing mechanism 12). It is not divisible. If Z is divisible by 2, the pretreatment reaction container and the measurement reaction container compete with each other, so that the dispensing by the sample dispensing mechanism 12 cannot be performed once every two cycles, and the reaction container becomes empty.

図示はしないが、仮に、試料分注機構12の分注サイクルが3、4…と増えていった場合にも、Zが試料分注機構12のサイクル数で割り切れた場合には、やはり、前処理用の反応容器と測定用の反応容器が競合により反応容器に空きができる。つまり、前処理用の反応容器と測定用の反応容器が競合しないためには、再分注サイクル数をZ、試料分注機構12による分注サイクル数をnとした場合に、「Zがnで割り切れないこと」が条件となる。   Although not shown, even if the dispensing cycle of the sample dispensing mechanism 12 is increased to 3, 4,..., If Z is divisible by the number of cycles of the sample dispensing mechanism 12, it is still the same as before. Due to competition between the processing reaction vessel and the measurement reaction vessel, the reaction vessel becomes empty. In other words, in order for the reaction vessel for pretreatment and the reaction vessel for measurement not to compete, when Z is the number of redispensing cycles and n is the number of dispensing cycles by the sample dispensing mechanism 12, “Z is n It must be “not divisible by”.

ここで、n=1(試料分注機構11の分注サイクルと同じ)場合については例外となることは自明で、図10(a)〜(f)において、奇数列の反応容器が全て、前処理用の反応容器として用いられ、偶数列の反応容器が測定用の反応容器として用いられる。   Here, it is obvious that an exception occurs when n = 1 (same as the dispensing cycle of the sample dispensing mechanism 11). In FIGS. It is used as a reaction vessel for processing, and an even number of reaction vessels are used as reaction vessels for measurement.

以上示したように、本発明の、測定前に前処理を実施する試料を採取する第一の試料分注機構と、前処理をした前処理済み試料を採取する第二の試料分注機構と、ディスク回転機構、第一と前記第二の試料分注機構を制御する制御部(コントローラ21)とを備え、第一と第二の試料分注機構は、それぞれ独立に動作し、当該反応ディスク上の反応容器に対して試料分注を行い、当該反応ディスクの反応容器は、試料測定前の前処理と、試料の分析とで共用され、第一の試料分注機構が試料を吐出する位置に停止させた反応容器は、所定のサイクル後に、第二の試料分注機構が試料を吐出する位置に停止するように制御され、停止したサイクルを起点とし、第二の試料分注機構が前処理済み試料を他の反応容器に分注を行うまでの再分注サイクル数をZ、また、第一の試料分注機構の動作サイクル数をn(n≧2の整数)とした場合に、制御部は、Zがnで割り切れない関係で、ディスク回転機構、第一と第二の試料分注機構を制御する自動分析装置を説明した。本発明によれば、試料の前処理(希釈含む)の工程において、前処理用の反応容器と測定用の反応容器の競合による無駄な空きサイクルを作らなくし、処理能力の低下を防ぐことができる。   As described above, according to the present invention, the first sample dispensing mechanism for collecting a sample to be pretreated before measurement, and the second sample dispensing mechanism for collecting a pretreated sample that has been pretreated, , A disk rotation mechanism, and a controller (controller 21) for controlling the first and second sample dispensing mechanisms. The first and second sample dispensing mechanisms operate independently of each other, and the reaction disk The sample is dispensed to the upper reaction vessel, and the reaction vessel of the reaction disk is shared by the pretreatment before the sample measurement and the sample analysis, and the position where the first sample dispensing mechanism discharges the sample. The reaction container stopped at the time is controlled so that the second sample dispensing mechanism stops at the position where the sample is discharged after a predetermined cycle, and the second sample dispensing mechanism starts from the stopped cycle. Re-dispense size until the processed sample is dispensed into another reaction vessel If the number of the samples is Z, and the number of operation cycles of the first sample dispensing mechanism is n (n ≧ 2), the control unit is configured so that Z is not divisible by n. An automatic analyzer for controlling the first and second sample dispensing mechanisms has been described. According to the present invention, in the process of sample pretreatment (including dilution), a wasteful empty cycle due to competition between the pretreatment reaction vessel and the measurement reaction vessel can be prevented, and a reduction in processing capacity can be prevented. .

また、第一の試料分注機構の動作サイクルは、n≧2であることが条件であるが、より小さい値の方が、空きサイクルが少ないことから望ましい。従い、この動作サイクルは、2が最も望ましい。   In addition, the operating cycle of the first sample dispensing mechanism is conditional on n ≧ 2, but a smaller value is desirable because there are fewer empty cycles. Therefore, this operation cycle is most preferably 2.

1 反応ディスク
2 反応容器
3 洗浄機構
4 分光光度計
5,6 攪拌機構
7 試薬分注機構
7a,8a 試薬ノズル
8 試薬分注機構
9 試薬ディスク
10 試薬ボトル
11 試料分注機構
11a,12a,24,25 試料ノズル
12 試料分注機構
13,14 洗浄槽
15 試料容器
16 ラック
17 試料搬送機構
18 試薬用ポンプ
19 試料用ポンプ
20 洗浄用ポンプ
21 コントローラ
22a,22b 試料吐出位置
23a,23b,23c,23d 試料吸引位置
26 血清
27 血球
30,31,32,33 洗浄槽
DESCRIPTION OF SYMBOLS 1 Reaction disk 2 Reaction container 3 Washing mechanism 4 Spectrophotometer 5,6 Agitation mechanism 7 Reagent dispensing mechanism 7a, 8a Reagent nozzle 8 Reagent dispensing mechanism 9 Reagent disk 10 Reagent bottle 11 Sample dispensing mechanism 11a, 12a, 24, 25 Sample nozzle 12 Sample dispensing mechanism 13, 14 Wash tank 15 Sample container 16 Rack 17 Sample transport mechanism 18 Reagent pump 19 Sample pump 20 Wash pump 21 Controllers 22a, 22b Sample discharge positions 23a, 23b, 23c, 23d Sample Suction position 26 Serum 27 Blood cell 30, 31, 32, 33 Washing tank

Claims (2)

液体を収容する複数の反応容器を円周上に有する反応ディスクと、当該反応ディスクを1サイクルで所定数の反応容器数に相当する距離を回転動作するよう駆動させるディスク回転機構と、を備えた自動分析装置において、
測定前に前処理を実施する前処理前試料を採取し吐出する動作サイクル数がnサイクル(n≧2の整数)である第一の試料分注機構と、
前処理をした前処理済み試料を採取し吐出する動作サイクル数が1サイクルである第二の試料分注機構と、
前記前処理前試料を収容した前記反応容器に前処理液を添加し前記前処理前試料の前処理を行う前処理液分注機構と、
前記第一の試料分注機構が前記前処理前試料を採取する位置に前記前処理前試料を収容する試料容器を位置付ける試料搬送機構と、
前記ディスク回転機構、前記第一と前記第二の試料分注機構、前記前処理液分注機構、及び、前記試料搬送機構を制御する制御部とを備え、
前記第一と前記第二の試料分注機構は、それぞれ独立に動作し、当該反応ディスク上の個々の反応容器に対して前記前処理前試料と前記前処理済み試料の夫々分注を行い
記第一の試料分注機構が前記前処理前試料を吐出する第一の位置に停止させた反応容器は、所定のサイクル後に、前記第二の試料分注機構が前記前処理済み試料を吐出する第二の位置に停止するように制御され、且つ、前記第二の試料分注機構は、前記前処理済み試料を収容した反応容器からの前記前処理済み試料の採取動作と、前記第二の位置に停止し且つ前記前処理前試料が収容されていない反応容器への前記前処理済み試料の吐出動作を含む分注動作を1サイクルで行うように制御され、
前記前処理前試料が収容された反応容器が前記第二の位置に停止したサイクルを起点とし、前記前処理前試料が収容された反応容器に対し前記前処理液分注機構は前処理を行い、前記第二の試料分注機構が前記前処理済み試料を採取し前記第二の位置の前記前処理試料が収容されていない反応容器に吐出する、1サイクルで行う前記分注動作を行うまでの再分注サイクル数をZとした場合に、前記制御部は、Zがnで割り切れない関係で、前記ディスク回転機構、前記第一と前記第二の試料分注機構を制御することを特徴とする自動分析装置。
A reaction disk having a plurality of reaction containers on the circumference for containing liquid; and a disk rotating mechanism for driving the reaction disk to rotate a distance corresponding to a predetermined number of reaction containers in one cycle. In automatic analyzers,
A first sample dispensing mechanism in which the number of operation cycles for collecting and discharging a pre-treatment sample for performing pre-treatment before measurement is n cycles (an integer of n ≧ 2) ;
A second sample dispensing mechanism in which the number of operation cycles for collecting and discharging a pretreated sample that has been pretreated is one cycle ;
A pretreatment liquid dispensing mechanism for adding a pretreatment liquid to the reaction vessel containing the pretreatment sample and pretreating the pretreatment sample;
A sample transport mechanism for positioning a sample container that houses the pre-treatment sample at a position where the first sample dispensing mechanism collects the pre-treatment sample;
The disk rotation mechanism, the first and second sample dispensing mechanism , the pretreatment liquid dispensing mechanism, and a control unit for controlling the sample transport mechanism ,
The first and second sample dispensing mechanisms operate independently, and dispense the pre-pretreated sample and the pre-treated sample , respectively, to individual reaction vessels on the reaction disk ,
Before SL reaction vessel is stopped in a first position where the first sample dispensing mechanism for ejecting the pretreatment before samples after a predetermined cycle, the second sample dispensing mechanism of the pre-processed samples The second sample dispensing mechanism is controlled to stop at a second position to be discharged, and the second sample dispensing mechanism is configured to collect the preprocessed sample from the reaction container containing the preprocessed sample; Controlled to perform a dispensing operation including a discharge operation of the pretreated sample into a reaction vessel that stops at a second position and does not contain the pretreated sample in one cycle,
Starting from the cycle in which the reaction container containing the pre-treatment sample is stopped at the second position, the pre-treatment liquid dispensing mechanism performs pre-treatment on the reaction container containing the pre-treatment sample. , until the second sample dispensing mechanism to discharge the reaction vessel wherein no pretreatment sample is accommodated in the pretreated sample was taken the second position, the dispensing operation carried out in one cycle When the number of re-dispensing cycles is Z , the control unit controls the disk rotation mechanism and the first and second sample dispensing mechanisms so that Z is not divisible by n. An automatic analyzer.
請求項1記載の自動分析装置において、
前記nサイクルは2サイクルであることを特徴とする自動分析装置。
The automatic analyzer according to claim 1, wherein
The automatic analyzer is characterized in that the n cycles are two cycles .
JP2012260462A 2012-11-29 2012-11-29 Automatic analyzer Active JP6047385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012260462A JP6047385B2 (en) 2012-11-29 2012-11-29 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012260462A JP6047385B2 (en) 2012-11-29 2012-11-29 Automatic analyzer

Publications (2)

Publication Number Publication Date
JP2014106166A JP2014106166A (en) 2014-06-09
JP6047385B2 true JP6047385B2 (en) 2016-12-21

Family

ID=51027773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012260462A Active JP6047385B2 (en) 2012-11-29 2012-11-29 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP6047385B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3190407B1 (en) * 2014-09-02 2021-10-27 Shimadzu Corporation Preprocessing device and analysis system provided with same
EP3739341A4 (en) 2018-01-10 2022-01-12 Hitachi High-Tech Corporation Automatic analysis device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180538A (en) * 2007-01-23 2008-08-07 Olympus Corp Analyzer
JP5667869B2 (en) * 2010-12-27 2015-02-12 株式会社日立ハイテクノロジーズ Automatic analyzer

Also Published As

Publication number Publication date
JP2014106166A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP6202742B2 (en) Automatic analyzer
JP4528814B2 (en) Automatic analyzer and method of operating automatic analyzer
US8956578B2 (en) Integrated sequential sample preparation system
JPH1062429A (en) Reagent injector/stirrer in automatic biochemical analyzer
JP7195359B2 (en) automatic analyzer
JP6219281B2 (en) Automatic analyzer
US8652832B2 (en) Automated analyzer
JP6249626B2 (en) Automatic analyzer
JP5337600B2 (en) Automatic analyzer and control method of automatic analyzer
JP7124190B2 (en) How the automated analyzer works
JP6047385B2 (en) Automatic analyzer
JP5667869B2 (en) Automatic analyzer
JP5107146B2 (en) Automatic analyzer
EP3961224A1 (en) Automatic analysis device and design method of automatic analysis device
JP5054751B2 (en) Automatic analyzer and method of operating automatic analyzer
JP7054616B2 (en) Automatic analyzer
JP4408404B2 (en) Automatic analyzer
WO2023145582A1 (en) Automatic analysis device and automatic analysis method
JP2011117755A (en) Autoanalyzer
JP2007304106A (en) Dispensing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6047385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350