JP6047035B2 - Hydraulic shock absorber for vehicles - Google Patents

Hydraulic shock absorber for vehicles Download PDF

Info

Publication number
JP6047035B2
JP6047035B2 JP2013041393A JP2013041393A JP6047035B2 JP 6047035 B2 JP6047035 B2 JP 6047035B2 JP 2013041393 A JP2013041393 A JP 2013041393A JP 2013041393 A JP2013041393 A JP 2013041393A JP 6047035 B2 JP6047035 B2 JP 6047035B2
Authority
JP
Japan
Prior art keywords
valve
cylinder
chamber
liquid chamber
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013041393A
Other languages
Japanese (ja)
Other versions
JP2013228092A (en
Inventor
森田 雄二
雄二 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2013041393A priority Critical patent/JP6047035B2/en
Publication of JP2013228092A publication Critical patent/JP2013228092A/en
Application granted granted Critical
Publication of JP6047035B2 publication Critical patent/JP6047035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Description

本発明は、車両用液圧緩衝器の改良に関する。   The present invention relates to an improvement of a hydraulic shock absorber for a vehicle.

従来、単筒型に設定される車両用液圧緩衝器にあっては、たとえば、シリンダと、シリンダ内に摺動自在に挿入されシリンダ内を液室と気室とに区画するフリーピストンと、シリンダ内に摺動自在に挿入され液室を気室に面する圧側室と気室に面しない伸側室とに区画するピストンと、ピストンに一端が連結されるピストンロッドとを備えて構成され、車体の振動を抑制するものがある(たとえば、特許文献1参照)。   Conventionally, in a vehicle hydraulic shock absorber set to a single cylinder type, for example, a cylinder, a free piston that is slidably inserted into the cylinder and divides the inside of the cylinder into a liquid chamber and an air chamber, A piston that is slidably inserted into the cylinder and divides the liquid chamber into a pressure side chamber facing the air chamber and an extension side chamber not facing the air chamber, and a piston rod having one end connected to the piston, There is one that suppresses vibration of the vehicle body (see, for example, Patent Document 1).

また、この単筒型の車両用液圧緩衝器にあっては、ピストンがシリンダに対して軸方向に移動する伸縮行程にあっては、ロッドがシリンダ内に出入りする際のシリンダ内容積変化を気室の容積を拡大あるいは減少させることによって補償している。   Further, in this single cylinder type hydraulic shock absorber for a vehicle, in the expansion / contraction stroke in which the piston moves in the axial direction with respect to the cylinder, the change in the volume in the cylinder when the rod enters and exits the cylinder. Compensation is achieved by increasing or decreasing the volume of the air chamber.

ところで、単筒型の車両用液圧緩衝器は、伸長する行程では、ピストンが気室に面していない伸側室を圧縮し、反対の圧側室の容積を拡大させるので、液体が圧縮側の伸側室から拡大側の圧側室へ流れ、この液体の流れに抵抗を与えて圧縮側の伸側室の圧力上昇を促し、伸側室と圧側室の圧力に差を生じせしめ、当該差圧をピストンに作用させることによって伸長を妨げる減衰力を発揮する。   By the way, the single cylinder type hydraulic shock absorber for a vehicle compresses the expansion side chamber where the piston does not face the air chamber and expands the volume of the opposite pressure side chamber in the extending stroke, so that the liquid is compressed on the compression side. It flows from the expansion side chamber to the expansion side pressure side chamber, resists the flow of this liquid and promotes the pressure increase in the compression side expansion side chamber, causes a difference in pressure between the expansion side chamber and the compression side chamber, and the differential pressure is applied to the piston. It exerts a damping force that prevents extension by acting.

これに対して、圧縮される行程では、単筒型の車両用液圧緩衝器は、ピストンが気室に面している圧側室を圧縮し、反対の伸側室の容積を拡大させるので、液体が圧縮側の圧側室から拡大側の伸側室へ流れ、この液体の流れに抵抗を与えて圧側室と伸側室の圧力に差を生じせしめ、当該差圧をピストンに作用させることによって圧縮を妨げる減衰力を発揮する。   On the other hand, in the stroke to be compressed, the single cylinder type hydraulic shock absorber for the vehicle compresses the pressure side chamber facing the air chamber and expands the volume of the opposite extension side chamber. Flows from the compression-side compression side chamber to the expansion-side extension side chamber, resists the flow of this liquid, causes a difference in pressure between the compression-side chamber and the extension-side chamber, and prevents compression by acting on the piston with the differential pressure. Demonstrates damping force.

このように、単筒型の車両用液圧緩衝器は、伸長行程時には、気室に面していない伸側室を圧縮するので、ロッド周りのシールの耐久が許容する範囲において、伸側室の圧力を幾らでも増大させることができる。   Thus, the single cylinder type hydraulic shock absorber for the vehicle compresses the extension side chamber that does not face the air chamber during the extension stroke, so that the pressure of the extension side chamber is within the range that the durability of the seal around the rod allows. Can be increased any number of times.

反対に、圧縮行程時では、気室に面している圧側室を圧縮することになって気室自体も圧縮されるが、気体の体積弾性係数は液体の体積弾性係数より小さく気室の圧力上昇が小さいため圧側室内の圧力上昇も小さく、さらに、気室に面していない伸側室内は減圧されるため、シリンダ内の圧力場(伸側室圧力と圧側室圧力の平均圧力)が低下する。   On the other hand, during the compression stroke, the pressure chamber facing the air chamber is compressed and the air chamber itself is also compressed, but the volume elastic modulus of the gas is smaller than the volume elastic modulus of the liquid and the pressure of the air chamber Since the increase is small, the pressure increase in the compression chamber is small, and the expansion chamber that does not face the air chamber is depressurized, so that the pressure field in the cylinder (the average pressure of the expansion chamber pressure and the compression chamber pressure) decreases. .

すると、液体中に溶け込んだ気体の影響もあり液柱剛性が低くなり、特に、伸長行程から圧縮行程に切換わる初期において、圧縮行程時の減衰力の立上りが時間的に不足する傾向となり、単筒型の車両用液圧緩衝器にあっては、圧縮行程時における減衰力発生応答性の更なる向上が求められている。   As a result, the rigidity of the liquid column is lowered due to the influence of gas dissolved in the liquid.In particular, at the initial stage of switching from the expansion stroke to the compression stroke, the rising of the damping force during the compression stroke tends to be insufficient in time. In the case of a cylinder-type hydraulic shock absorber for a vehicle, further improvement in damping force generation response during the compression stroke is required.

そのため、単筒型の車両用液圧緩衝器は、気室内に加圧されたガスを封入して、シリンダ内の液体を常時加圧状態に維持して、圧縮行程時の減衰力を高める工夫を施している。   Therefore, the single cylinder type vehicle hydraulic shock absorber is designed to increase the damping force during the compression stroke by sealing the pressurized gas into the air chamber and maintaining the liquid in the cylinder in a constantly pressurized state. Has been given.

しかしながら、気室の圧力を大きくすると、今度は、車両用液圧緩衝器のシリンダ内の液室内圧力が高くなり、ロッド周りをシールするオイルシールにもこの圧力が作用してオイルシールのロッドを締付ける緊迫力が大きくなって、ロッドの摺動抵抗が過大となり、単筒型液圧緩衝器の円滑な伸縮が妨げられて、特に、車両用途で使用する場合、車両搭乗者にゴツゴツ感を知覚させ車両における乗り心地を阻害してしまいかねない。   However, when the pressure in the air chamber is increased, the pressure in the fluid chamber in the cylinder of the vehicle hydraulic shock absorber increases, and this pressure also acts on the oil seal that seals around the rod. The tightening force increases, the sliding resistance of the rod becomes excessive, and the smooth expansion and contraction of the single cylinder type hydraulic shock absorber is impeded. Especially when used in vehicle applications, the occupant feels jerky. This can hinder ride comfort in the vehicle.

そこで、シリンダ内に、気室と圧側室に連通される液室とを備えた補償室と、圧側室から液室へ向かう液体の流れに抵抗を与える弁要素を設けて、圧縮行程時の圧側室の圧力上昇を補償するようにして、圧縮行程時における減衰力発生応答性の向上を図る改良された緩衝器もある(たとえば、特許文献2参照)。   Therefore, a compensation chamber having a gas chamber and a liquid chamber communicated with the pressure side chamber and a valve element that provides resistance to the flow of liquid from the pressure side chamber to the liquid chamber are provided in the cylinder, and the pressure side during the compression stroke is provided. There is also an improved shock absorber that improves the damping force generation response during the compression stroke so as to compensate for the pressure increase in the chamber (see, for example, Patent Document 2).

特開平08−159199号公報(図1)JP 08-159199 A (FIG. 1) 特開2010−60083号公報(図1)Japanese Patent Laying-Open No. 2010-60083 (FIG. 1)

しかしながら、このような改良された緩衝器にあっては、圧縮行程時における減衰力発生応答性を向上できる点で優れているが、圧縮行程時における圧側室の圧力上昇の程度を調節することができないので、減衰力および減衰力発生応答性の調整を行うことができない。   However, such an improved shock absorber is superior in that it can improve the damping force generation response during the compression stroke, but it is possible to adjust the degree of pressure rise in the compression side chamber during the compression stroke. Therefore, the damping force and the damping force generation response cannot be adjusted.

また、この種の車両用液圧緩衝器に搭載される減衰バルブには、オリフィスやチョークといったピストン速度が低速時に主として減衰力を発揮する絞りと、ピストン速度が高速となると開弁して減衰力を発揮する開弁型のバルブを並列させているものがあるが、減衰力を調整する場合、絞りの開口面積のみを調節するか或いは後者のバルブの開弁圧のみを調節するものか何れしかなく、圧縮行程時における圧側室の圧力上昇の程度を直感的且つ簡易に調節することができなかった。   In addition, a damping valve mounted on this type of vehicle hydraulic shock absorber includes a throttle such as an orifice or a choke that exerts a damping force mainly when the piston speed is low, and a valve that opens when the piston speed becomes high. However, when adjusting the damping force, only the opening area of the throttle or only the valve opening pressure of the latter valve is adjusted. In addition, the degree of pressure increase in the compression side chamber during the compression stroke could not be adjusted intuitively and easily.

そこで、本発明は、上記した不具合を改善するために創案されたものであって、その目的とするところは、圧縮行程時における圧側室の圧力上昇の程度を直感的且つ簡易に調節して、減衰力発生応答性を調節することができる車両用液圧緩衝器を提供することである。   Therefore, the present invention was devised to improve the above-described problems, and the object of the present invention is to intuitively and easily adjust the degree of pressure increase in the compression side chamber during the compression stroke, It is an object of the present invention to provide a vehicular hydraulic shock absorber capable of adjusting damping force generation responsiveness.

上記した課題を解決するために、本発明の第一の課題解決手段は、シリンダと、上記シリンダ内に摺動自在に挿入されるピストンと、上記シリンダ内に移動自在に挿入されて上記ピストンに連結されるピストンロッドと、上記シリンダ内に上記ピストンで区画される伸側室と圧側室と、上記シリンダの側方に設けられて内部に中空部を備えたバルブケースと、上記シリンダに軸方向に沿って連結されるとともに内部に上記中空部を介して上記圧側室に連通される液室を形成する液室筒と、上記液室を附勢する附勢手段と上記中空部内に収容されて上記圧側室と上記液室とを区画する仕切部材と、上記中空部内に収容されて上記圧側室と上記液室とを連通するとともに通過する液体の流れに抵抗を与える絞り弁と、上記中空部内に収容されて上記絞り弁に並列して上記圧側室と上記液室とを連通するとともに通過する液体の流れに抵抗を与える弁要素と、上記中空部内に収容されて上記絞り弁および弁要素に並列して上記液室から上記圧側室へ向かう液体の流れのみを許容するチェック弁と、上記絞り弁の開口面積と上記弁要素における上記抵抗とを同時に変化させる調整機構とを備え、上記弁要素は、上記仕切部材の液室側に配置されて上記仕切部材に形成された上記圧側室と上記液室とを連通するポートの出口を開閉する弁体と、上記弁体の反仕切部材側に配置される環状のばね受と、上記弁体と上記ばね受との間に介装されて上記弁体を仕切部材側へ向けて附勢するばね要素とを備え、上記絞り弁は、有底筒状であって内部が上記圧側室に連通される中空軸の側部に開口して内部を上記液室へ連通する長孔で形成されてなり、上記調整機構は、上記ばね受を外周に装着した上記中空軸に設けた上記ばね受の反仕切部材側に当接して上記ばね受の反仕切部材側への移動を規制する規制部と、上記中空軸を上記仕切部材に対して軸方向に遠近させる駆動手段と、上記中空軸の駆動に対し不動とされて上記中空軸の駆動に対し上記長孔とのラップ面積を増減させるシャッタとを備え、上記駆動手段の駆動によって、上記絞り弁の開口面積と上記ばね要素の初期荷重とを同時に変化させることを特徴とする。
上記した課題を解決するために、本発明の第二の課題解決手段は、シリンダと、上記シリンダ内に摺動自在に挿入されるピストンと、上記シリンダ内に移動自在に挿入されて上記ピストンに連結されるピストンロッドと、上記シリンダ内に上記ピストンで区画される伸側室と圧側室と、上記シリンダの側方に設けられて内部に中空部を備えたバルブケースと、上記シリンダに軸方向に沿って連結されるとともに内部に上記中空部を介して上記圧側室に連通される液室を形成する液室筒と、上記液室を附勢する附勢手段と、上記中空部内に収容されて上記圧側室と上記液室とを区画する仕切部材と、上記中空部内に収容されて上記圧側室と上記液室とを連通するとともに通過する液体の流れに抵抗を与える絞り弁と、上記中空部内に収容されて上記絞り弁に並列して上記圧側室と上記液室とを連通するとともに通過する液体の流れに抵抗を与える弁要素と、上記中空部内に収容されて上記絞り弁および弁要素に並列して上記液室から上記圧側室へ向かう液体の流れのみを許容するチェック弁と、上記絞り弁の開口面積と上記弁要素における上記抵抗とを同時に変化させる調整機構と、上記液室筒の一端に設けられ複数のボルト挿通孔を有する液室筒フランジと、上記シリンダの一端に設けられ且つ上記液室筒フランジに設けたボルト挿通孔と同数のボルト挿通孔を有するシリンダフランジと、上記バルブケースに設けられて上記シリンダの端部と上記液室筒の端部とを閉鎖するとともに上記液室筒フランジに設けたボルト挿通孔と同数のボルト挿通孔を有する閉塞部材とを備え、上記シリンダと上記液室筒との間に上記閉塞部材を介装した状態で、上記シリンダ、上記液室筒および上記閉塞部材は、上記各ボルト挿通孔に挿入されるボルトによって締結されていることを特徴とする。
To solve the problems described above, the first means for solving problems of the present invention, the cylinder and a piston that is inserted slidably into the cylinder, the movably inserted in the piston within the cylinder A piston rod to be connected; an expansion side chamber and a pressure side chamber defined by the piston in the cylinder; a valve case provided on a side of the cylinder and having a hollow portion therein; and an axial direction in the cylinder. a liquid chamber tube to form a liquid chamber which communicates with the compression side chamber through the hollow portion therein while being connected along a biasing means for biasing the liquid chamber, is accommodated within the hollow portion A partition member that divides the pressure side chamber and the liquid chamber, a throttle valve that is accommodated in the hollow portion and communicates with the pressure side chamber and the liquid chamber and provides resistance to the flow of liquid passing therethrough, and the inside of the hollow portion Housed in A valve element that communicates the pressure side chamber and the liquid chamber in parallel with the throttle valve, and that provides resistance to the flow of liquid passing therethrough, and is housed in the hollow portion and in parallel with the throttle valve and the valve element. A check valve that allows only the flow of liquid from the liquid chamber toward the pressure side chamber, and an adjustment mechanism that simultaneously changes the opening area of the throttle valve and the resistance of the valve element. A valve body that is disposed on the liquid chamber side of the member and that opens and closes an outlet of a port that communicates the pressure chamber and the liquid chamber formed in the partition member; And a spring element that is interposed between the valve body and the spring receiver and biases the valve body toward the partition member, and the throttle valve has a bottomed cylindrical shape. The inside opens to the side of the hollow shaft that communicates with the pressure side chamber. The adjustment mechanism is in contact with the side of the spring support provided on the hollow shaft with the spring support mounted on the outer periphery thereof, so that the spring support receives the spring support. A restricting portion for restricting movement of the hollow shaft toward the partitioning member, a driving means for moving the hollow shaft in the axial direction with respect to the partitioning member, and driving the hollow shaft that is immovable with respect to the driving of the hollow shaft. On the other hand, a shutter for increasing or decreasing the lap area with the elongated hole is provided, and the opening area of the throttle valve and the initial load of the spring element are simultaneously changed by driving the driving means .
In order to solve the above-described problems, the second problem-solving means of the present invention includes a cylinder, a piston that is slidably inserted into the cylinder, and a slidably inserted into the cylinder. A piston rod to be connected; an expansion side chamber and a pressure side chamber defined by the piston in the cylinder; a valve case provided on a side of the cylinder and having a hollow portion therein; and an axial direction in the cylinder. A liquid chamber cylinder that forms a liquid chamber that is connected along the inside and communicates with the pressure side chamber via the hollow portion, an urging means that urges the liquid chamber, and is accommodated in the hollow portion. A partition member that divides the pressure side chamber and the liquid chamber, a throttle valve that is accommodated in the hollow portion and communicates with the pressure side chamber and the liquid chamber and provides resistance to the flow of liquid passing therethrough, and the inside of the hollow portion Housed in A valve element that communicates the pressure side chamber and the liquid chamber in parallel with the throttle valve, and that provides resistance to the flow of liquid passing therethrough, and is housed in the hollow portion and in parallel with the throttle valve and the valve element. A check valve that allows only the flow of liquid from the liquid chamber to the pressure side chamber, an adjustment mechanism that simultaneously changes the opening area of the throttle valve and the resistance of the valve element, and one end of the liquid chamber cylinder. A liquid chamber cylinder flange having a plurality of bolt insertion holes, a cylinder flange provided at one end of the cylinder and having the same number of bolt insertion holes as the bolt insertion holes provided in the liquid chamber cylinder flange, and provided in the valve case A closing member that closes the end of the cylinder and the end of the liquid chamber cylinder and has the same number of bolt insertion holes as the bolt insertion holes provided in the liquid chamber cylinder flange, The cylinder, the liquid chamber tube, and the closing member are fastened by bolts inserted into the bolt insertion holes in a state where the closing member is interposed between the Linda and the liquid chamber tube. Features.

本発明の単筒型液圧緩衝器によれば、圧側室内の圧力を速やかに増圧させて、伸側室と圧側室における圧力場の低下を抑制しつつ圧縮側の減衰力を発揮することができるので、伸長行程から圧縮行程に切換わる初期や、圧縮行程時でピストン速度が低速時において減衰力の立上りが時間的に不足する傾向を解消でき、減衰力発生応答性が向上する。   According to the single cylinder type hydraulic shock absorber of the present invention, it is possible to rapidly increase the pressure in the compression side chamber and exhibit the compression side damping force while suppressing the decrease in the pressure field in the expansion side chamber and the compression side chamber. Therefore, it is possible to eliminate the tendency that the rising of the damping force is insufficient in the initial stage of switching from the expansion stroke to the compression stroke or when the piston speed is low during the compression stroke, and the damping force generation response is improved.

また、気室内の圧力を高める必要も無いので、車両用液圧緩衝器の容器内の圧力が過剰に高くなることも無く、ロッド周りをシールするシール部材の緊迫力が大きくなる心配が無く、車両搭乗者にゴツゴツ感を知覚させ車両における乗り心地を阻害してしまうこともない。   In addition, since there is no need to increase the pressure in the air chamber, the pressure in the container of the hydraulic shock absorber for the vehicle does not become excessively high, and there is no fear that the tightening force of the seal member that seals around the rod will increase. It does not disturb the ride comfort of the vehicle by making the vehicle occupant perceive a jerky feeling.

本発明の車両用液圧緩衝器によれば、車両における乗り心地を損なうことなく圧縮行程初期にあっても応答性良く必要十分な減衰力を発揮することができるのである。   According to the vehicle hydraulic shock absorber of the present invention, a necessary and sufficient damping force can be exhibited with good responsiveness even in the initial stage of the compression stroke without impairing the ride comfort in the vehicle.

そして、さらに、圧側室の圧力上昇の特性を絞り弁と弁要素の両方を同時に調整可能であるから、絞り弁のみ、あるいは、弁要素のみの調整が可能である緩衝器や、双方の調整が可能であっても独立して調整しなければならない緩衝器に比較して、より簡単に且つ、より直感的に圧側室の圧力上昇特性(ピストン速度に対する圧側室の圧力上昇の特性)を調節することができ、圧側の減衰力応答性の調節も同様に簡単に行うことができるのである。   Furthermore, since both the throttle valve and the valve element can be adjusted simultaneously with respect to the pressure rise characteristics of the pressure side chamber, it is possible to adjust only the throttle valve or the buffer that can adjust only the valve element, or both. Adjust pressure rise characteristics of the pressure side chamber more easily and more intuitively (compression characteristics of the pressure side chamber with respect to piston speed) compared to shock absorbers that must be adjusted independently, even if possible Therefore, the adjustment of the damping force responsiveness on the compression side can be easily performed as well.

一実施の形態における車両用液圧緩衝器の縦断面図である。It is a longitudinal cross-sectional view of the hydraulic shock absorber for vehicles in one embodiment. 一実施の形態における車両用液圧緩衝器の一部拡大縦断面図である。It is a partially expanded longitudinal cross-sectional view of the hydraulic shock absorber for vehicles in one embodiment. 一実施の形態における車両用液圧緩衝器の圧側減衰特性を説明する図である。It is a figure explaining the compression side attenuation | damping characteristic of the hydraulic buffer for vehicles in one embodiment. 一実施の形態における車両用液圧緩衝器の調整機構による圧側室の圧力上昇特性の変化を説明する図である。It is a figure explaining the change of the pressure rise characteristic of the compression side chamber by the adjustment mechanism of the hydraulic buffer for vehicles in one embodiment. 一実施の形態における車両用液圧緩衝器の調整機構による圧側減衰特性の変化を説明する図である。It is a figure explaining the change of the compression side damping characteristic by the adjustment mechanism of the hydraulic shock absorber for vehicles in one embodiment. 弁要素の弁体に初期撓みを与えた場合の一実施の形態の車両用液圧緩衝器における縦断面図である。It is a longitudinal cross-sectional view in the hydraulic shock absorber for vehicles of one Embodiment at the time of giving initial stage bending to the valve body of a valve element. 弁要素の弁体に初期撓みを与えた場合の一実施の形態の車両用液圧緩衝器の動作を説明する図である。It is a figure explaining operation | movement of the hydraulic shock absorber for vehicles of one Embodiment at the time of giving initial deflection to the valve body of a valve element. 弁要素の弁体に初期撓みを与えた場合の一実施の形態の車両用液圧緩衝器における圧側減衰特性を説明する図である。It is a figure explaining the pressure side attenuation | damping characteristic in the hydraulic buffer for vehicles of one Embodiment at the time of giving initial deflection to the valve body of a valve element.

以下、図に示した実施の形態に基づき、本発明を説明する。図1および図2に示すように、一実施の形態における車両用液圧緩衝器Dは、シリンダ1と、当該シリンダ1内に摺動自在に挿入されるピストン2と、シリンダ1内に移動自在に挿入されてピストン2に連結されるピストンロッド3と、シリンダ1内にピストン2で区画される伸側室R1と圧側室R2と、シリンダ1の側方に設けられて内部に中空部Aを備えたバルブケース4と、シリンダ1に軸方向に沿って連結されるとともに内部に中空部Aを介して圧側室R2に連通される液室Lを形成する液室筒5と、液室Lを附勢する附勢手段6と、中空部A内に収容されて圧側室R2と液室Lとを区画する仕切部材7と、中空部A内に収容されて圧側室R2と液室Lとを連通するとともに通過する液体の流れに抵抗を与える絞り弁8と、中空部A内に収容されて絞り弁8に並列して圧側室R2と液室Lとを連通するとともに通過する液体の流れに抵抗を与える弁要素9と、中空部A内に収容されて絞り弁8および弁要素9に並列して液室Lから圧側室R2へ向かう液体の流れのみを許容するチェック弁10と、絞り弁8の開口面積と弁要素9における上記抵抗とを同時に変化させる調整機構11とを備えて構成されており、図示しない車両の車体と車軸との間に介装されて車体の振動を抑制するものである。   The present invention will be described below based on the embodiments shown in the drawings. As shown in FIG. 1 and FIG. 2, a vehicle hydraulic shock absorber D according to an embodiment includes a cylinder 1, a piston 2 that is slidably inserted into the cylinder 1, and a movable body within the cylinder 1. A piston rod 3 inserted into the piston 2 and connected to the piston 2, an extension side chamber R1 and a pressure side chamber R2 defined by the piston 2 in the cylinder 1, and a hollow portion A provided in the side of the cylinder 1 inside. And a liquid chamber cylinder 5 that forms a liquid chamber L that is connected to the cylinder 1 along the axial direction and communicates with the pressure side chamber R2 through the hollow portion A. The urging means 6 for energizing, the partition member 7 accommodated in the hollow portion A for partitioning the pressure side chamber R2 and the liquid chamber L, and the pressure side chamber R2 and the liquid chamber L communicated in the hollow portion A. And a throttle valve 8 that provides resistance to the flow of liquid that passes through and the hollow portion A And a valve element 9 that communicates the pressure side chamber R2 and the liquid chamber L in parallel with the throttle valve 8 and provides resistance to the flow of the liquid passing therethrough, and is accommodated in the hollow portion A and accommodates the throttle valve 8 and the valve. A check valve 10 that allows only the flow of liquid from the liquid chamber L to the pressure side chamber R2 in parallel with the element 9, and an adjustment mechanism 11 that simultaneously changes the opening area of the throttle valve 8 and the resistance in the valve element 9 It is provided, and is interposed between a vehicle body and an axle (not shown) to suppress vibration of the vehicle body.

以下、各部材について詳細に説明する。シリンダ1は、筒状であって下端がバルブケース4に設けた閉塞部材12によって閉塞されるとともに図1中上端には、ピストンロッド3を摺動自在に軸支するロッドガイド13が嵌合されている。ロッドガイド13の上方には、シール部材14が積層されており、このシール部材14は、シリンダ1の図1中上端外周に螺着されるキャップ15によってロッドガイド13とともにシリンダ1へ締め付け固定されている。   Hereinafter, each member will be described in detail. The cylinder 1 has a cylindrical shape, and a lower end thereof is closed by a closing member 12 provided in the valve case 4, and a rod guide 13 that slidably supports the piston rod 3 is fitted to the upper end in FIG. ing. A seal member 14 is laminated above the rod guide 13. The seal member 14 is fastened and fixed to the cylinder 1 together with the rod guide 13 by a cap 15 that is screwed to the outer periphery of the upper end of the cylinder 1 in FIG. Yes.

また、シリンダ1の図1中下端である一端には、シリンダフランジ1aが設けられており、このシリンダフランジ1aには、16個のボルト挿通孔1bが周方向に等間隔に設けられている。   Moreover, the cylinder flange 1a is provided in the end which is the lower end in FIG. 1 of the cylinder 1, and 16 bolt insertion holes 1b are provided in this cylinder flange 1a at equal intervals in the circumferential direction.

なお、シール部材14は、ピストンロッド3の外周に摺接するリップ部14aと、ロッドガイド13に密着する外周シール部14bとを備えていて、ピストンロッド3とロッドガイド13との間が密にシールされている。また、ロッドガイド13の外周には、シリンダ1の内周に密着するシールリング13aが設けられており、シリンダ1とロッドガイド13との間が密にシールされている。   The seal member 14 includes a lip portion 14a that is in sliding contact with the outer periphery of the piston rod 3 and an outer peripheral seal portion 14b that is in close contact with the rod guide 13 so that the space between the piston rod 3 and the rod guide 13 is tightly sealed. Has been. Further, a seal ring 13 a that is in close contact with the inner periphery of the cylinder 1 is provided on the outer periphery of the rod guide 13, so that the space between the cylinder 1 and the rod guide 13 is tightly sealed.

そして、シリンダ1内には上記ピストンロッド3の先端に固定されるピストン2が摺動自在に挿入され、当該ピストン2によってシリンダ1内は、図1中上方の伸側室R1と図1中下方の圧側室R2とに区画されている。これら伸側室R1および圧側室R2内には、作動油等の液体が充填されており、ピストン2に設けた減衰通路16によって伸側室R1と圧側室R2とが互いに連通されている。   A piston 2 fixed to the tip of the piston rod 3 is slidably inserted into the cylinder 1, and the piston 2 causes the cylinder 1 to have an upper extension side chamber R1 in FIG. 1 and a lower portion in FIG. It is partitioned into a compression side chamber R2. The extension side chamber R1 and the pressure side chamber R2 are filled with a liquid such as hydraulic oil, and the extension side chamber R1 and the pressure side chamber R2 are communicated with each other by a damping passage 16 provided in the piston 2.

上記減衰通路16は、減衰弁17を備えてこれを通過する液体の流れに抵抗を与えるようになっており、車両用液圧緩衝器Dの伸縮時に伸側室R1から圧側室R2へ、あるいは、圧側室Rから伸側室Rへ移動する液体の流れに抵抗を与えてこれら伸側室R1と圧側室R2の圧力に差を生じさせるようになっていて、車両用液圧緩衝器Dは、両者の差圧に見合った減衰力を発生するようになっている。 The damping passage 16 is provided with a damping valve 17 so as to provide resistance to the flow of liquid passing therethrough, and when the vehicle hydraulic shock absorber D is expanded or contracted, the extension side chamber R1 to the pressure side chamber R2, or giving resistance to the flow of liquid moving from the pressure side chamber R 2 to the expansion side chamber R 1 have become cause a difference in pressure of these expansion side chamber R1 and the compression side chamber R2, fluid pressure shock absorber D for a vehicle A damping force commensurate with the differential pressure between the two is generated.

なお、減衰弁17は、液体が通過する際にこの液体の流れに抵抗を与え、所定の圧力損失を生じさせるものであればよく、具体的にはたとえば、オリフィスやリーフバルブといった減衰バルブを採用することができる。また、伸側室R1から圧側室R2へ向かう流れのみを許容する減衰通路と、圧側室R2から伸側室R1へ向かう流れのみを許容する減衰通路の両方を設けておいて、それぞれに、減衰弁を設ける構成を採用してもよいし、また、減衰通路は、ピストン2以外にも、ピストンロッド3に設けたり、シリンダ1外に設けたりするようにしてもよい。   It should be noted that the damping valve 17 only needs to provide resistance to the flow of the liquid when the liquid passes and cause a predetermined pressure loss. Specifically, for example, a damping valve such as an orifice or a leaf valve is employed. can do. Further, both a damping passage allowing only the flow from the expansion side chamber R1 to the compression side chamber R2 and a damping passage allowing only the flow from the compression side chamber R2 to the expansion side chamber R1 are provided, and a damping valve is provided for each. The structure provided may be employ | adopted and the attenuation | damping channel | path may be provided in the piston rod 3 besides the piston 2, or may be provided out of the cylinder 1.

さらに、この場合、車両用液圧緩衝器Dは、片ロッド型の緩衝器とされており、詳しくは後述するが、圧縮行程時にピストンロッド3のシリンダ1へ侵入する体積分の液体がシリンダ1内で余剰となって、圧側室R2から液室Lへ排出される際に、この液体の流れに絞り弁8および弁要素9で抵抗を与えて減衰力を発生することができるようになっているので、伸側室R1から圧側室R2へ向かう流れのみを許容する減衰通路を設ける場合、圧側室R2から伸側室R1へ向かう流れのみを許容する逆止弁のみを備えて流れに殆ど抵抗を与えない通路を設けてもよい。   Further, in this case, the vehicle hydraulic shock absorber D is a single rod type shock absorber, and as will be described in detail later, a volume of liquid that enters the cylinder 1 of the piston rod 3 during the compression stroke is stored in the cylinder 1. When the pressure is increased and discharged from the pressure side chamber R2 to the liquid chamber L, a damping force can be generated by giving resistance to the flow of the liquid by the throttle valve 8 and the valve element 9. Therefore, in the case of providing a damping passage that allows only the flow from the expansion side chamber R1 to the compression side chamber R2, only a check valve that allows only the flow from the compression side chamber R2 to the expansion side chamber R1 is provided to almost resist flow. There may be no passage.

液室筒5は、図1中下端が閉塞され、当該下端に車両への取付を可能とするブラケット5aを備えている。また、液室筒5の図1中上端である一端には、液室筒フランジ5bが設けられており、この液室筒フランジ5bには、シリンダフランジ1aに設けたボルト挿通孔1bと同数の16個のボルト挿通孔5cが周方向に等間隔に設けられている。このボルト挿通孔5cは、内周に螺子山が形成されていて螺子孔とされている。   The liquid chamber cylinder 5 is closed at the lower end in FIG. 1 and is provided with a bracket 5a at the lower end that enables attachment to a vehicle. Moreover, the liquid chamber cylinder flange 5b is provided in the end which is the upper end in FIG. 1 of the liquid chamber cylinder 5, and this liquid chamber cylinder flange 5b has the same number as the bolt insertion hole 1b provided in the cylinder flange 1a. Sixteen bolt insertion holes 5c are provided at equal intervals in the circumferential direction. The bolt insertion hole 5c is formed as a screw hole with a thread formed on the inner periphery.

そして、この液室筒5内には、フリーピストン18が摺動自在に挿入されていて、液室筒5内であってフリーピストン18よりも図1中上方に液室Lが区画されるとともに、当該フリーピストン18よりも図1中下方に気室Gが区画されている。この気室Gは、内部圧力で液室Lを附勢する附勢手段6としてのエアばねを形成しており、液室筒5の下方に設けたバルブ19を介して気体を気室Gへ充填することができるようになっている。なお、附勢手段6としては、上記したエアばね以外にも、フリーピストン18を押圧する金属ばね等とされてもよいし、また、フリーピストン18で気室Gを画成するのではなく、ダイヤフラムやブラダで気室を形成してこれを附勢手段としてもよい。   A free piston 18 is slidably inserted into the liquid chamber cylinder 5, and a liquid chamber L is defined in the liquid chamber cylinder 5 and above the free piston 18 in FIG. An air chamber G is defined below the free piston 18 in FIG. The air chamber G forms an air spring as an urging means 6 that urges the liquid chamber L with internal pressure, and gas is supplied to the air chamber G through a valve 19 provided below the liquid chamber cylinder 5. It can be filled. In addition to the air spring described above, the biasing means 6 may be a metal spring or the like that presses the free piston 18, and does not define the air chamber G with the free piston 18, An air chamber may be formed by a diaphragm or a bladder, and this may be used as an urging means.

つづいて、バルブケース4は、図1および図2に示すように、中空部Aを備えた有底筒状のケース本体20と、シリンダ1の図1中下端と液室筒5の図1中上端の間に介装される閉塞部材12と、閉塞部材12の図1中上端から立ち上がる筒状のシリンダ側ソケット21と、閉塞部材12の図1中下端から立ち上がる筒状の液室筒側ソケット22と、閉塞部材12とケース本体20とを連結する連結部23と、閉塞部材12の外周側であって周方向に等間隔をもって設けられる16個のボルト挿通孔24と、ケース本体20の内周から開口して連結部23を介してシリンダ側ソケット21内へ通じる連通孔25と、ケース本体20の内周から開口して連結部23を介して液室筒側ソケット22内へ通じる連通孔26とを備えている。   Subsequently, as shown in FIGS. 1 and 2, the valve case 4 includes a bottomed cylindrical case body 20 having a hollow portion A, a lower end of the cylinder 1 in FIG. 1, and a liquid chamber cylinder 5 in FIG. 1. A closing member 12 interposed between the upper ends, a cylindrical cylinder side socket 21 rising from the upper end in FIG. 1 of the closing member 12, and a cylindrical liquid chamber cylinder side socket rising from the lower end in FIG. 22, a connecting portion 23 that connects the closing member 12 and the case main body 20, 16 bolt insertion holes 24 provided at equal intervals in the circumferential direction on the outer peripheral side of the closing member 12, A communication hole 25 that opens from the periphery and communicates with the cylinder side socket 21 via the connecting portion 23, and a communication hole that opens from the inner periphery of the case body 20 and communicates with the liquid chamber cylinder side socket 22 via the connection portion 23. 26.

ケース本体20は、内周に段部20aが設けられており、この段部20aより上方から連通孔25が開口し、段部20aより下方から連通孔26が開口している。そして、シリンダ側ソケット21をシリンダ1内に挿入し、液室筒側ソケット22を液室筒5内に挿入すると、ケース本体20内の中空部Aは、連通孔25を介して圧側室R2へ連通されるとともに、連通孔26を介して液室Lへ連通される。   The case main body 20 is provided with a stepped portion 20a on the inner periphery. A communication hole 25 is opened from above the stepped portion 20a, and a communication hole 26 is opened from below the stepped portion 20a. When the cylinder side socket 21 is inserted into the cylinder 1 and the liquid chamber tube side socket 22 is inserted into the liquid chamber tube 5, the hollow portion A in the case body 20 is connected to the pressure side chamber R <b> 2 through the communication hole 25. The fluid chamber L communicates with the liquid chamber L through the communication hole 26.

また、図2に示すように、ケース本体20の図1中上端開口部、つまり、中空部Aへ通じる開口20bには、環状のアジャスタ保持部材29と、アジャスタ保持部材29の内周に回転自在に保持されたアジャスタ30とで閉塞されている。なお、アジャスタ保持部材29は、外周であって図2中上方が上記ケース本体20の開口20bに螺着されていて、外周の図2中下方には、シールリング31が装着されており、アジャスタ保持部材29とケース本体20との間は密にシールされ、さらに、アジャスタ保持部材29とアジャスタ30との間は、アジャスタ30の外周に装着されたシールリング32によって密にシールされ、これにより中空部Aからの液体の漏えいが防止されている。なお、アジャスタ30の中空部A側の端部である図2中下端には外周向けて突出する鍔30aが設けられており、当該鍔30aがアジャスタ保持部材29の中空部A側である図2中下端の内周に設けた環状凹部29aに嵌合して、アジャスタ30のアジャスタ保持部材29からの抜けが防止されている。アジャスタ30は、中空部A側端部から開口する螺子孔30bを備えるとともに、反中空部A側端から開口する工具差込孔30cを備え、図示しない工具を工具差込孔30c内に差し込み工具を回転させることでアジャスタ30を外部操作で周方向へ回転させることができるようになっている。なお、このアジャスタ30をモータ等の駆動源で回転させるようにしてもよい。 Further, as shown in FIG. 2, the upper end opening in FIG. 1 of the case body 20, that is, the opening 20 b leading to the hollow portion A, is freely rotatable to the inner periphery of the annular adjuster holding member 29 And the adjuster 30 held in the middle. The adjuster holding member 29 has an outer periphery, and the upper part in FIG. 2 is screwed into the opening 20b of the case body 20, and a seal ring 31 is attached to the lower part of the outer periphery in FIG. The holding member 29 and the case body 20 are tightly sealed, and further, the adjuster holding member 29 and the adjuster 30 are tightly sealed by a seal ring 32 attached to the outer periphery of the adjuster 30, thereby hollowing out. Leakage of liquid from the part A is prevented. 2, which is an end portion of the adjuster 30 on the hollow portion A side, is provided with a flange 30a protruding toward the outer periphery , and the flange 30a is on the hollow portion A side of the adjuster holding member 29. 2, the adjuster 30 is prevented from coming off from the adjuster holding member 29 by being fitted into an annular recess 29 a provided at the inner periphery of the middle lower end. The adjuster 30 includes a screw hole 30b that opens from the end on the hollow portion A side and a tool insertion hole 30c that opens from the end on the anti-hollow portion A side, and inserts a tool (not shown) into the tool insertion hole 30c. By rotating the adjuster 30, the adjuster 30 can be rotated in the circumferential direction by an external operation. The adjuster 30 may be rotated by a drive source such as a motor.

そして、ケース本体20に設けた中空部A内であって、ケース本体20の内周に設けた段部20aには、仕切部材7が装着されていて、この仕切部材7は、中空部A内を図2中上方側の部屋と下方側の部屋に区画しており、上方側の部屋は連通孔25を介して圧側室R2に連通されて圧側室R2の一部として機能し、下方側の部屋は連通孔26を介して液室Lに連通されて液室Lの一部として機能している。したがって、仕切部材7は、圧側室R2と液室Lとを区画する仕切として機能している。   A partition member 7 is attached to a step portion 20a provided in the inner periphery of the case body 20 in the hollow portion A provided in the case body 20, and the partition member 7 is disposed in the hollow portion A. 2 is divided into an upper room and a lower room. The upper room communicates with the pressure side chamber R2 via the communication hole 25 and functions as a part of the pressure side chamber R2. The chamber communicates with the liquid chamber L through the communication hole 26 and functions as a part of the liquid chamber L. Therefore, the partition member 7 functions as a partition that partitions the pressure side chamber R2 and the liquid chamber L.

閉塞部材12は、この場合、円盤状であって、その外周側には周方向に等間隔をもって16個のボルト挿通孔24が設けられている。ボルト挿通孔24は、シリンダフランジ1aおよび液室筒フランジ5bに設けたボルト挿通孔1b,5cと同数の16個が設けられている。これらボルト挿通孔1b,5,24は、同一径の円周上に設けられていて、閉塞部材12をシリンダ1と液室筒5で挟んで周方向に位置を合わせると三つのボルト挿通孔1b,5,24で一つのボルト挿通孔Bが形成され、このボルト挿通孔Bにボルト27を挿通して先端を螺子孔とされるボルト挿通孔5cを螺着することで、シリンダ1、液室筒5およびバルブケース4が一体化される。そして、ボルト挿通孔1b,5,24は、この例では、16個設けられているので、バルブケース4はシリンダ1および液室筒5に対して周方向に22.5度ずつ16位置のいずれか一つの位置を選択して固定することが可能となっている。つまり、このようにバルブケース4を取り付けることで、バルブケース4のシリンダ1および液室筒5に対する位置を選択することができるので、車両に車両用緩衝器Dを組み込む際に、バルブケース4が邪魔とならないように位置決めすることができる。なお、ボルト挿通孔1b,5,24は、取付バランスのこともあり、少なくとも三つ以上設けるようにするとよい。また、ボルト挿通孔5cは、螺子孔ではなく単なる孔であって、ボルト27に螺合するナットを利用してシリンダ1、液室筒5およびバルブケース4を一体化してもよいし、ボルト挿通孔1bを螺子孔として図1中液室筒フランジ5bの下方側からボルト27をボルト挿通孔Bへ挿通するようにしてもよい。 In this case, the closing member 12 has a disk shape, and 16 bolt insertion holes 24 are provided on the outer peripheral side thereof at equal intervals in the circumferential direction. The bolt insertion holes 24 are provided in the same number as 16 bolt insertion holes 1b and 5c provided in the cylinder flange 1a and the liquid chamber cylinder flange 5b. These bolt insertion holes 1b, 5c , 24 are provided on the circumference of the same diameter, and when the closing member 12 is sandwiched between the cylinder 1 and the liquid chamber cylinder 5 and aligned in the circumferential direction, three bolt insertion holes are provided. 1b, 5 c, 24 a bolt insertion hole B is formed by, by screwing the bolt insertion hole 5c is a tip and screw hole by inserting the bolts 27 into the bolt insertion hole B, a cylinder 1, The liquid chamber cylinder 5 and the valve case 4 are integrated. Since 16 bolt insertion holes 1b, 5c , 24 are provided in this example, the valve case 4 is located at 16 positions in the circumferential direction with respect to the cylinder 1 and the liquid chamber cylinder 5 by 22.5 degrees. Any one of the positions can be selected and fixed. That is, by attaching the valve case 4 in this way, the positions of the valve case 4 with respect to the cylinder 1 and the liquid chamber cylinder 5 can be selected. Therefore, when the vehicle shock absorber D is incorporated in the vehicle, the valve case 4 It can be positioned so that it does not get in the way. The bolt insertion holes 1b, 5c , 24 may be provided in a balanced manner, and at least three may be provided. The bolt insertion hole 5c is not a screw hole but a simple hole, and the cylinder 1, the liquid chamber cylinder 5 and the valve case 4 may be integrated using a nut screwed to the bolt 27, or the bolt insertion hole 5c may be integrated. The bolt 27 may be inserted into the bolt insertion hole B from the lower side of the liquid chamber cylinder flange 5b in FIG.

このように、閉塞部材12をシリンダ1と液室筒5とで挟むようにしてこれらがボルト27でボルト締結されるが、シリンダ1内には閉塞部材12に設けたシリンダ側ソケット21が嵌合されるとともに、液室筒5内には液室筒側ソケット22が嵌合されるので、シリンダ1、バルブケース4および液室筒5のガタつきが防止されるとともに、シリンダ1と液室筒5に対するモーメントの入力に対しても耐えることができる。なお、シリンダ側ソケット21の外周にはシールリング21aが装着されておりシリンダ1との間が密にシールされ、液室筒側ソケット22の外周にもシールリング22aが装着されていて液室筒5との間が密にシールされている。   In this way, the closing member 12 is clamped by the bolt 27 so as to sandwich the closing member 12 between the cylinder 1 and the liquid chamber cylinder 5, and the cylinder side socket 21 provided in the closing member 12 is fitted into the cylinder 1. At the same time, since the liquid chamber cylinder side socket 22 is fitted into the liquid chamber cylinder 5, the cylinder 1, the valve case 4 and the liquid chamber cylinder 5 are prevented from rattling, and the cylinder 1 and the liquid chamber cylinder 5 are prevented from being loose. It can withstand the moment input. A seal ring 21 a is attached to the outer periphery of the cylinder-side socket 21, so that the space between the cylinder 1 and the cylinder 1 is tightly sealed, and a seal ring 22 a is also attached to the outer periphery of the liquid chamber-cylinder side socket 22. 5 is tightly sealed.

つづいて、上記のように構成されたバルブケース4の中空部A内には、仕切部材7の他に、圧側室R2と液室Lとを連通するとともに通過する液体の流れに抵抗を与える絞り弁8と、絞り弁8に並列して圧側室R2と液室Lとを連通するとともに通過する液体の流れに抵抗を与える弁要素9と、絞り弁8および弁要素9に並列して液室Lから圧側室R2へ向かう液体の流れのみを許容するチェック弁10とが設けられている。   Subsequently, in the hollow portion A of the valve case 4 configured as described above, in addition to the partition member 7, the pressure side chamber R2 and the liquid chamber L communicate with each other and provide a resistance to the flow of liquid passing therethrough. A valve element 9 which communicates the pressure side chamber R2 and the liquid chamber L in parallel with the throttle valve 8 and provides resistance to the flow of the liquid passing therethrough; a liquid chamber in parallel with the throttle valve 8 and the valve element 9; A check valve 10 that allows only the flow of liquid from L to the pressure side chamber R2 is provided.

したがって、シリンダ1に対してピストン2が図1中上方へ移動する、つまり、車両用液圧緩衝器Dが伸長作動する場合、ピストン2が伸側室R1を圧縮するとともに、圧側室R2を拡大させるので、伸側室R1内の液体は、減衰通路16を介して圧側室R2へ移動する。この減衰通路16を通過する液体の流れに減衰弁17で抵抗を与えて、車両用液圧緩衝器Dは伸側の減衰力を発生する。また、シリンダ1内からピストンロッド3が退出するのでシリンダ1内で不足する液体は、チェック弁10を介して液室Lからシリンダ1内へ供給され、液室Lから流出する液体の体積見合いでフリーピストン18が図1中下方へ移動して気室Gの体積が増加してシリンダ1内の容積変化を補償する。   Therefore, when the piston 2 moves upward in FIG. 1 with respect to the cylinder 1, that is, when the vehicle hydraulic shock absorber D is extended, the piston 2 compresses the expansion side chamber R1 and expands the pressure side chamber R2. Therefore, the liquid in the extension side chamber R1 moves to the compression side chamber R2 via the attenuation passage 16. A resistance is given to the flow of liquid passing through the damping passage 16 by the damping valve 17, and the vehicle hydraulic shock absorber D generates the damping force on the extension side. Further, since the piston rod 3 is retracted from the cylinder 1, the liquid deficient in the cylinder 1 is supplied from the liquid chamber L into the cylinder 1 through the check valve 10, and is in proportion to the volume of the liquid flowing out from the liquid chamber L. The free piston 18 moves downward in FIG. 1 to increase the volume of the air chamber G to compensate for the volume change in the cylinder 1.

反対に、シリンダ1に対してピストン2が図1中下方へ移動する、つまり、車両用液圧緩衝器Dが圧縮作動する場合、ピストン2が圧側室R2を圧縮するとともに、伸側室R1を拡大させるので、圧側室R2内の液体は、減衰通路16を介して伸側室R1へ移動するとともに、シリンダ1内へピストンロッド3が侵入してピストンロッド3がシリンダ1へ侵入する体積分の液体がシリンダ1内で余剰となるので、余剰の液体は、絞り弁8および弁要素9を介して液室L内へ排出され、液室L内へ流入する液体の体積見合いでフリーピストン18が図1中上方へ移動して気室Gの体積が減少してシリンダ1内の容積変化を補償する。シリンダ1内の余剰の液体が絞り弁8および弁要素9を介して液室L内へ排出されるため、シリンダ1内の圧力場(伸側室圧力と圧側室圧力の平均圧力)の低下が抑制されるとともに、減衰通路16を通過する液体の流れに減衰弁17で抵抗を与えて、圧側室R2と伸側室R1の圧力に差が生じて、車両用液圧緩衝器Dは圧側の減衰力を発生する。なお、圧側室R2から伸側室R1への流れを許容する逆止弁を備える通路を設けていて、液体が圧側室R2から伸側室R1へ移動する流れに殆ど抵抗を与えないようにする場合にも、絞り弁8および弁要素9によって圧側室R2内の圧力を上昇させることができるので、車両用液圧緩衝器Dは圧側の減衰力を充分に発生することができる。   On the contrary, when the piston 2 moves downward in FIG. 1 with respect to the cylinder 1, that is, when the vehicle hydraulic shock absorber D is compressed, the piston 2 compresses the compression side chamber R2 and expands the expansion side chamber R1. Therefore, the liquid in the compression side chamber R2 moves to the expansion side chamber R1 via the attenuation passage 16, and the volume of liquid that the piston rod 3 enters the cylinder 1 and the piston rod 3 enters the cylinder 1 is retained. Since there is surplus in the cylinder 1, surplus liquid is discharged into the liquid chamber L through the throttle valve 8 and the valve element 9, and the free piston 18 corresponds to the volume of the liquid flowing into the liquid chamber L as shown in FIG. Moving in the middle and upward, the volume of the air chamber G decreases to compensate for the volume change in the cylinder 1. Since the excess liquid in the cylinder 1 is discharged into the liquid chamber L through the throttle valve 8 and the valve element 9, the pressure field in the cylinder 1 (the average pressure of the expansion side chamber pressure and the pressure side chamber pressure) is suppressed. At the same time, a resistance is given to the flow of the liquid passing through the damping passage 16 by the damping valve 17 to cause a difference between the pressures of the compression side chamber R2 and the expansion side chamber R1, and the vehicle hydraulic pressure buffer D has a compression side damping force. Is generated. In addition, when a passage provided with a check valve that allows the flow from the pressure side chamber R2 to the extension side chamber R1 is provided, the flow of liquid from the pressure side chamber R2 to the extension side chamber R1 is hardly given resistance. However, since the pressure in the pressure side chamber R2 can be increased by the throttle valve 8 and the valve element 9, the vehicular hydraulic pressure damper D can sufficiently generate the pressure side damping force.

仕切部材7は、図2に示すように、環状とされていて、図中上下方向となる軸方向に貫通するポート33と、液室L側となる図2中下端側に設けられてポート33の外周に形成される環状弁座34と、外周に設けた凹部7aと、アジャスタ保持部材29側となる図2中上端の外周から内周へ向けて設けられてポート33の下端に通じる溝7bと、アジャスタ保持部材29側となる図2中上端の内周径を拡径して設けられて溝7bに連通される内周凹部7cとを備えている。なお、ポート33は、開口面積を確保できれば、設置数は任意であり、溝7bもポート33の設置数に対応して設ければよい。よって、ポート33の図2中上端は、溝7bおよび連通孔25を通じてシリンダ1内の圧側室R2へ連通されており、ポート33の図2中下端は、連通孔26を介して液室Lに連通されている。また、仕切部材7の図2中上端外周は、面取部7dが設けてあるが、これは、ポート33から連通孔25へ、連通孔25からポート33へ抜けていく液体の流れを仕切部材7とバルブケース4におけるケース本体20の間の環状隙間で絞ってしまって妨げないように、流路面積を確保するために設けてあり、面取部7dを設けることで、流路面積の確保が容易となるので、バルブケース4のケース本体20における図2中上下方向長さを短縮化することができる。   As shown in FIG. 2, the partition member 7 has an annular shape, and includes a port 33 penetrating in the axial direction which is the vertical direction in the figure, and a port 33 provided on the lower end side in FIG. 2 which is the liquid chamber L side. An annular valve seat 34 formed on the outer periphery of the outer periphery, a recess 7a provided on the outer periphery, and a groove 7b provided from the outer periphery of the upper end in FIG. And an inner peripheral recess 7c that is provided with an enlarged inner peripheral diameter at the upper end in FIG. 2 on the adjuster holding member 29 side and communicated with the groove 7b. Note that the number of ports 33 can be set as long as the opening area can be secured, and the grooves 7b may be provided corresponding to the number of ports 33 set. Therefore, the upper end in FIG. 2 of the port 33 is communicated with the pressure side chamber R2 in the cylinder 1 through the groove 7b and the communication hole 25, and the lower end in FIG. 2 of the port 33 is connected to the liquid chamber L through the communication hole 26. It is communicated. Further, a chamfered portion 7d is provided on the outer periphery of the upper end of the partition member 7 in FIG. 2, and this is a partition member that prevents the liquid flow from the port 33 to the communication hole 25 and from the communication hole 25 to the port 33. 7 and the valve case 4 are provided in order to secure a flow path area so as not to be blocked by an annular gap between the case body 20 and the chamfered portion 7d, thereby securing a flow path area. Therefore, the length of the case body 20 of the valve case 4 in the vertical direction in FIG. 2 can be shortened.

この仕切部材7は、ケース本体20の図2中上端に設けた開口20bの内周に螺着されて固定される環状のアジャスタ保持部材29の図2中下端に当接している。また、仕切部材7の外周は、ケース本体20の内周に設けた段部20aに嵌合して図2中下方への移動が規制されてバルブケース4に装着される筒状のバルブキャップ40の上端に当接されている。したがって、仕切部材7は、アジャスタ保持部材29とバルブキャップ40とで挟持されてバルブケース4の中空部A内に収容固定されている。   The partition member 7 is in contact with the lower end in FIG. 2 of the annular adjuster holding member 29 that is screwed to the inner periphery of the opening 20b provided at the upper end in FIG. Further, the outer periphery of the partition member 7 is fitted into a step portion 20a provided on the inner periphery of the case body 20 so that the downward movement in FIG. It is in contact with the upper end of. Therefore, the partition member 7 is sandwiched between the adjuster holding member 29 and the valve cap 40 and accommodated and fixed in the hollow portion A of the valve case 4.

バルブキャップ40は、具体的には、仕切部材7の外周に当接するとともにケース本体20の段部20aにおける仕切部材側面に当接する筒状の当接部40aと、当接部40aに連なるとともに環状であって外周径が当接部40aより小径でケース本体20の段部20aの内周に嵌合する嵌合部40bと、嵌合部40bの内周から反仕切部材側となる図2中下方へ設けた筒部40cと、筒部40cの図2中下端となる反仕切部材側端から仕切部材側へ向けて設けた二つの切欠40dと、当接部40aの仕切部材側端に周方向に適宜の間隔をあけて設けられて仕切部材側へ突出する複数の突起40eと、嵌合部40bを貫いてバルブキャップ40の内外を連通する複数の孔40fとを備えて構成され、上記突起40eが仕切部材7の外周に形成した凹部7aに嵌合することで、バルブキャップ40と仕切部材7の周方向の相対回転が規制されるともに、突起40eと凹部7aの嵌合によってバルブキャップ40に対して仕切部材7が径方向にも位置決めされる。そして、このバルブキャップ40をバルブケース4におけるケース本体20の内周に挿入すると、当接部40aの上端外周が段部20aの上端に当接して、バルブキャップ40のそれ以上のケース本体20内への移動が規制されるようになっている。なお、孔40fの設置数は、開口面積を確保できれば、任意である。   Specifically, the valve cap 40 is in contact with the outer periphery of the partition member 7 and also has a cylindrical contact portion 40a that contacts the side surface of the partition member in the step portion 20a of the case body 20, and an annular shape that is continuous with the contact portion 40a. In FIG. 2, the outer peripheral diameter is smaller than the contact portion 40 a and is fitted to the inner periphery of the step portion 20 a of the case body 20, and the inner periphery of the fitting portion 40 b is on the side opposite to the partitioning member. A cylindrical portion 40c provided downward, two notches 40d provided from the opposite end of the cylindrical portion 40c to the partition member side, which is the lower end of the cylindrical portion 40c in FIG. 2, and a partition member side end of the abutting portion 40a. A plurality of projections 40e provided at appropriate intervals in the direction and projecting toward the partition member side, and a plurality of holes 40f penetrating through the fitting portion 40b and communicating with the inside and outside of the valve cap 40. Protrusions 40e are formed on the outer periphery of the partition member 7 By fitting in the recessed portion 7a, the relative rotation in the circumferential direction of the valve cap 40 and the partition member 7 is restricted, and the partition member 7 is radially connected to the valve cap 40 by the fitting of the projection 40e and the recessed portion 7a. Also positioned. When the valve cap 40 is inserted into the inner periphery of the case body 20 in the valve case 4, the outer periphery of the upper end of the contact portion 40 a contacts the upper end of the step portion 20 a, so Movement to is regulated. Note that the number of holes 40f is arbitrary as long as the opening area can be secured.

また、仕切部材7の内周には、当該内周に摺接して軸方向移動自在および周方向回転自在に摺動自在に有底筒状の中空軸35が挿入されている。この中空軸35は、先端となる開口側の外周に設けた螺子部35aと、螺子部35aより図2中下方外周に設けた環状溝35bと、内部を環状溝35bへ連通する透孔35cと、環状溝35bより図2中下方に設けられた長孔でなるオリフィスとされる絞り弁8と、底部となる図2中下端の外周に設けられて径方向へ突出する二つの規制部35dとを備えて構成されている。   In addition, a cylindrical hollow shaft 35 with a bottom is inserted in the inner periphery of the partition member 7 so as to be slidably contacted with the inner periphery and slidable in the axial direction and freely rotatable in the circumferential direction. The hollow shaft 35 includes a screw portion 35a provided on the outer periphery on the opening side that is the tip, an annular groove 35b provided on the outer periphery in the lower part in FIG. 2 from the screw portion 35a, and a through hole 35c that communicates the inside with the annular groove 35b. A throttle valve 8 which is an orifice having a long hole provided below the annular groove 35b in FIG. 2, and two regulating portions 35d which are provided on the outer periphery of the lower end in FIG. It is configured with.

そして、中空軸35は開口側を仕切部材7の内周を通してアジャスタ30内に挿入し、上記した中空軸35の螺子部35aがアジャスタ30の螺子孔30b内に螺合される。また、中空軸35の二つの規制部35dは、それぞれバルブキャップ40の切欠40d内へ挿入されており、中空軸35は、バルブキャップ40によって周方向への回転が規制されている。さらに、アジャスタ30は、鍔30aが仕切部材7とアジャスタ保持部材29とで挟まれて、軸方向に位置決めされるので、これによって、周方向への回転が許容されつつもバルブケース4に抜け止めされてバルブケース4に取り付けられている。   The hollow shaft 35 is inserted into the adjuster 30 through the inner periphery of the partition member 7 on the opening side, and the screw portion 35 a of the hollow shaft 35 is screwed into the screw hole 30 b of the adjuster 30. The two restricting portions 35 d of the hollow shaft 35 are respectively inserted into the notches 40 d of the valve cap 40, and the rotation of the hollow shaft 35 in the circumferential direction is restricted by the valve cap 40. Further, the adjuster 30 is positioned in the axial direction with the flange 30a sandwiched between the partition member 7 and the adjuster holding member 29, so that the valve case 4 is prevented from coming off while being allowed to rotate in the circumferential direction. And attached to the valve case 4.

したがって、アジャスタ30を回転操作すると、中空軸35は、バルブキャップ40によって周方向回転が規制されているので、螺子部35aと螺子孔30bとでなる送り螺子の要領で、図2中上下方向となる軸方向に移動し、仕切部材7に対して遠近することができるようになっている。   Therefore, when the adjuster 30 is rotated, the rotation of the hollow shaft 35 in the circumferential direction is restricted by the valve cap 40, and therefore, in the manner of a feed screw formed by the screw portion 35a and the screw hole 30b, It is possible to move in the axial direction and to move away from the partition member 7.

また、中空軸35の環状溝35bにおける軸方向幅は、中空軸35がアジャスタ30によって上下方向へ移動せしめられても、仕切部材7の溝7bに対向することができるように設定されており、中空軸35内は、透孔35c、環状溝35b、内周凹部7c、溝7bおよび連通孔25を介してシリンダ1内の圧側室R2へ連通されるとともに、絞り弁8を介して液室Lへ連通されている。つまり、絞り弁8によって圧側室R2と液室Lとが連通されている。そして、絞り弁8は、これを通過する液体の流れを絞って抵抗を与える。 The axial width of the annular groove 35b of the hollow shaft 35 is set so that the hollow shaft 35 can face the groove 7b of the partition member 7 even if the hollow shaft 35 is moved up and down by the adjuster 30. The hollow shaft 35 communicates with the pressure side chamber R2 in the cylinder 1 through the through hole 35c, the annular groove 35b, the inner peripheral recess 7c, the groove 7b, and the communication hole 25, and through the throttle valve 8 to the liquid chamber L. Is communicated to. That is, the pressure side chamber R2 and the liquid chamber L are communicated by the throttle valve 8. The throttle valve 8 provides resistance by restricting the flow of liquid passing through the throttle valve 8.

中空軸35の外周には、仕切部材7の中空部内側の内周に着座する筒状のシャッタ36が摺動自在に装着されており、当該シャッタ36は、中空軸35の外周に摺接する筒部36aと、筒部36aの外周に設けたフランジ状のバルブ支持部36bとを備えて構成されている。   A cylindrical shutter 36 seated on the inner periphery inside the hollow portion of the partition member 7 is slidably mounted on the outer periphery of the hollow shaft 35, and the shutter 36 is a cylinder that is in sliding contact with the outer periphery of the hollow shaft 35. A portion 36a and a flange-like valve support portion 36b provided on the outer periphery of the cylindrical portion 36a are provided.

さらに、このシャッタ36の筒部36aの外周には、仕切部材7の液室L側となる下端に形成された環状弁座34に離着座する環状の弁体37と、弁体37の仕切部材側に積層される環状のチェック弁10と、弁体37の反仕切部材側に積層されるバルブ抑え部材38が摺動自在に装着されている。   Further, on the outer periphery of the cylindrical portion 36 a of the shutter 36, an annular valve body 37 that is attached to and detached from an annular valve seat 34 formed at the lower end on the liquid chamber L side of the partition member 7, and the partition member of the valve body 37 An annular check valve 10 stacked on the side and a valve pressing member 38 stacked on the side of the valve body 37 opposite to the partition member are slidably mounted.

そして、中空軸35の外周であって、シャッタ36よりも反仕切部材側には、シャッタ36と対向する筒状のばね受39が摺動自在に装着されている。このばね受39は、中空軸35の外周に摺動自在に装着された筒部39aと、筒部39aの外周に設けられたフランジ状のばね受部39bとを備え、このばね受39とバルブ抑え部材38との間には、ばね要素としてのコイルばね41が圧縮状態で介装されている。そのため、ばね受39とバルブ抑え部材38はこのコイルばね41によって常に離間するように附勢されており、ばね受39は、中空軸35の規制部35dに当接すると、当該規制部35dによって中空軸35に対するそれ以上の図2中下方側への移動が規制されるので、コイルばね41はバルブ抑え部材38を介してシャッタ36を仕切部材7側へ向けて附勢している。   A cylindrical spring support 39 facing the shutter 36 is slidably mounted on the outer periphery of the hollow shaft 35 and on the side opposite to the partition member from the shutter 36. The spring receiver 39 includes a cylindrical portion 39a slidably mounted on the outer periphery of the hollow shaft 35, and a flange-shaped spring receiver 39b provided on the outer periphery of the cylindrical portion 39a. Between the holding member 38, a coil spring 41 as a spring element is interposed in a compressed state. Therefore, the spring receiver 39 and the valve restraining member 38 are urged so as to be always separated from each other by the coil spring 41. When the spring receiver 39 abuts on the regulating portion 35d of the hollow shaft 35, the spring receiving 39 is hollowed by the regulating portion 35d. Since further movement of the shaft 35 toward the lower side in FIG. 2 is restricted, the coil spring 41 urges the shutter 36 toward the partition member 7 via the valve restraining member 38.

また、シャッタ36と仕切部材7との間には、図2に示すように、チェック弁10を弁体37側へ附勢するばね部42が介装されており、このばね部材42は、シャッタ36と仕切部材7との間で挟持される環状部材42aと、当該環状部材42aの外周から延びてチェック弁10の仕切部材側を弾性支持してチェック弁10を弁体37側へ附勢する複数の腕42bとを備えて構成されている。 Between the shutter 36 and the partition member 7, as shown in FIG. 2, a spring member 42 for biasing the check valve 10 to the valve body 37 side is interposed, the spring member 42, An annular member 42a sandwiched between the shutter 36 and the partition member 7, and an elastic support from the outer periphery of the annular member 42a to the partition member side of the check valve 10 and urging the check valve 10 toward the valve body 37 And a plurality of arms 42b.

さらに、弁体37は、図2に示すように、環状のリーフバルブで構成されており、同一円周上に複数の透孔37aを備えて、この透孔37aは、チェック弁10が弁体37に当接している状態では、チェック弁10によって遮断される。透孔37aの設置数は、チェック弁10の機能上必要とされる開口面積を確保できれば、任意である。   Further, as shown in FIG. 2, the valve body 37 is configured by an annular leaf valve, and includes a plurality of through holes 37 a on the same circumference, and the check valve 10 is formed by the check valve 10. In the state of being in contact with 37, the check valve 10 shuts off. The number of the through holes 37a is arbitrary as long as an opening area required for the function of the check valve 10 can be secured.

上述のように、中空軸35の外周に、ばね部材42、シャッタ36、弁体37、バルブ抑え部材38、コイルばね41およびばね受39を装着して仕切部材に組み付けると、チェック弁10がばね部材42によって弁体37へ向けて附勢されて透孔37aを遮断し、コイルばね41がバルブ抑え部材38を介して弁体37を仕切部材7側へ附勢することになる。 As described above, when the spring member 42, the shutter 36, the valve body 37, the valve holding member 38, the coil spring 41 and the spring receiver 39 are attached to the outer periphery of the hollow shaft 35 and assembled to the partition member 7 , the check valve 10 is The spring member 42 is biased toward the valve body 37 to block the through hole 37a, and the coil spring 41 biases the valve body 37 toward the partition member 7 via the valve restraining member 38.

そして、この場合、弁要素9は、仕切部材7の液室L側に配置されて仕切部材7に形成された圧側室R2と液室Lとを連通するポート33の出口を開閉する弁体37と、弁体37の反仕切部材側に配置される環状のばね受39と、弁体37とばね受39との間に介装されて弁体37を仕切部材7側へ向けて附勢するばね要素としてのコイルばね41とで構成されている。つまり、弁体37は、バルブ抑え部材38を介してコイルばね41の附勢力で環状弁座34へ向けて附勢されて撓んでおり、圧側室R2の圧力が液室Lの圧力よりも高くなり、ポート33を介して作用する圧側室R2の圧力と反仕切部材側となる背面側に作用する液室Lの圧力との差圧が開弁圧に達すると、当該弁体37の外周が図2中下方側へ撓んでポート33を開放し、圧側室R2を液室Lへ連通させつつ通過する液体の流れに抵抗を与える。反対に、この弁要素9は、圧側室R2の圧力が液室Lの圧力よりも高く上記差圧が開弁圧に達しない状態では、弁体37が環状弁座34へ着座したままとなって、液室Lを圧側室R2へ連通させることは無い。   In this case, the valve element 9 is disposed on the liquid chamber L side of the partition member 7 and opens and closes the outlet of the port 33 that communicates the pressure side chamber R2 formed in the partition member 7 and the liquid chamber L. And an annular spring receiver 39 disposed on the side of the valve body 37 opposite to the partition member, and interposed between the valve body 37 and the spring receiver 39 to urge the valve body 37 toward the partition member 7 side. It comprises a coil spring 41 as a spring element. That is, the valve element 37 is bent by being biased toward the annular valve seat 34 by the biasing force of the coil spring 41 via the valve restraining member 38, and the pressure in the pressure side chamber R <b> 2 is higher than the pressure in the liquid chamber L. When the pressure difference between the pressure of the pressure side chamber R2 acting via the port 33 and the pressure of the liquid chamber L acting on the back side which is the side opposite to the partitioning member reaches the valve opening pressure, the outer periphery of the valve element 37 is In FIG. 2, the port 33 is opened by bending downward, and resistance is given to the flow of liquid passing through the pressure side chamber R <b> 2 in communication with the liquid chamber L. On the contrary, in the valve element 9, the valve element 37 remains seated on the annular valve seat 34 when the pressure in the pressure side chamber R 2 is higher than the pressure in the liquid chamber L and the differential pressure does not reach the valve opening pressure. Thus, the liquid chamber L is not communicated with the pressure side chamber R2.

チェック弁10は、弁体37に積層されていて、弁体37の透孔37aを介して液室Lの圧力を受けるとともに、ポート33を介して反仕切部材側となる背面側には圧側室R2の圧力を受けるようになっている。そして、液室Lの圧力が圧側室R2の圧力よりも高くなり、チェック弁10を図2中押し上げる力がばね部材42の附勢力に打ち勝つと、チェック弁10は、弁体37から離れて液室Lを圧側室R2へ連通するが、圧側室R2の圧力が液室Lの圧力よりも高い場合には、弁体37へ押しつけられるので透孔37aを遮断したままとなって圧側室R2と液室Lとを連通させることは無い。   The check valve 10 is stacked on the valve body 37, receives the pressure of the liquid chamber L through the through hole 37 a of the valve body 37, and has a pressure side chamber on the back side which is the side opposite to the partition member through the port 33. The pressure of R2 is received. When the pressure in the liquid chamber L becomes higher than the pressure in the pressure side chamber R2 and the force that pushes up the check valve 10 in FIG. 2 overcomes the urging force of the spring member 42, the check valve 10 moves away from the valve body 37 and is liquid. The chamber L communicates with the pressure side chamber R2, but when the pressure in the pressure side chamber R2 is higher than the pressure in the liquid chamber L, it is pressed against the valve body 37, so that the through-hole 37a remains blocked and the pressure side chamber R2 There is no communication with the liquid chamber L.

このように圧側室R2から液室Lへ向かう液体の流れのみを許容する弁要素9と、液室Lから圧側室R2へ向かう液体の流れのみを許容するチェック弁10は、ポート33に対して並列して設けられている。なお、チェック弁10が弁要素9の弁体37に設けた透孔37aを利用しており、チェック弁10と弁要素9とが不可分とされているが、これらを全く別個に設けるようにしてもよい。しかしながら、上記の如く、弁要素9における上記弁体37に透孔37aを設けて、透孔37aを開閉する環状のチェック弁10を設けることで、チェック弁10をコンパクトに構成できる利点がある。また、上記したところでは、弁要素9におけるばね要素およびチェック弁10におけるばね部材は、それぞれ、金属製のばねとされているが附勢力を発揮できればよいので、上記に限らず広く弾性体を用いてもよい。 Thus, the valve element 9 that allows only the flow of liquid from the pressure side chamber R2 to the liquid chamber L and the check valve 10 that allows only the flow of liquid from the liquid chamber L to the pressure side chamber R2 are connected to the port 33. They are provided in parallel. Note that the check valve 10 uses a through hole 37a provided in the valve element 37 of the valve element 9, and the check valve 10 and the valve element 9 are inseparable. Also good. However, as described above, by providing the valve body 37 in the valve element 9 with the through hole 37a and providing the annular check valve 10 for opening and closing the through hole 37a, there is an advantage that the check valve 10 can be configured compactly. Further, in the above description, the spring element in the valve element 9 and the spring member in the check valve 10 are each made of a metal spring, but it is only necessary to be able to exert a biasing force. May be.

また、シャッタ36の筒部36aの図2中下端が中空軸35に設けた長孔でなる絞り弁8の下端に対向して、絞り弁8の下端側の一部を閉塞するとともに、ばね受39の筒部39aの図2中上端も中空軸35に設けた長孔でなる絞り弁8の上端に対向して、絞り弁8の上端の一部を閉塞している。ここで、アジャスタ30の回動操作で中空軸35を図2中上方側へ引き上げて仕切部材7に対して近づけると、中空軸35の規制部35dがばね受39を上方へ押圧するので、当該ばね受39が図中上方へ移動する。他方、シャッタ36は、仕切部材7に当接しており、当該仕切部材7によって上方への移動が規制されるので、上記アジャスタ30の操作によって中空軸35が仕切部材7へ接近すると、シャッタ36とばね受39とが接近して、シャッタ36の筒部36aの下端とばね受39の筒部39aの上端との間の間隔が狭くなり、絞り弁8がシャッタ36とばね受39とで閉塞される面積が大きくなる。つまり、中空軸35が仕切部材7へ向けて移動すると、絞り弁8のシャッタ36とばね受39で閉塞されない面積である開口面積が減少することになって、絞り弁8が通過する液体の流れに与える抵抗は大きくなる。   Further, the lower end in FIG. 2 of the cylindrical portion 36a of the shutter 36 is opposed to the lower end of the throttle valve 8 which is a long hole provided in the hollow shaft 35, and a part of the lower end side of the throttle valve 8 is closed and a spring bearing is received. 2 also opposes the upper end of the throttle valve 8 which is a long hole provided in the hollow shaft 35 and closes a part of the upper end of the throttle valve 8. Here, when the hollow shaft 35 is pulled upward in FIG. 2 by the turning operation of the adjuster 30 and brought close to the partition member 7, the regulating portion 35d of the hollow shaft 35 presses the spring receiver 39 upward. The spring receiver 39 moves upward in the figure. On the other hand, since the shutter 36 is in contact with the partition member 7 and the upward movement is restricted by the partition member 7, when the hollow shaft 35 approaches the partition member 7 by the operation of the adjuster 30, The distance between the lower end of the cylindrical portion 36 a of the shutter 36 and the upper end of the cylindrical portion 39 a of the spring receiver 39 becomes narrower as the spring receiver 39 approaches, and the throttle valve 8 is closed by the shutter 36 and the spring receiver 39. The area to be increased. That is, when the hollow shaft 35 moves toward the partition member 7, the opening area that is not blocked by the shutter 36 and the spring receiver 39 of the throttle valve 8 decreases, and the flow of liquid that the throttle valve 8 passes through. The resistance given to is increased.

なお、この実施の形態の場合、中空軸35とばね受39との軸方向の位置関係は、中空軸35に移動によっても不変であり、ばね受39と絞り弁8とのラップ面積、つまり、ばね受39が絞り弁8の一部を閉塞する面積は変わらないので、ばね受39が絞り弁8の一部を閉塞していなくともよい。   In the case of this embodiment, the axial positional relationship between the hollow shaft 35 and the spring receiver 39 does not change even when the hollow shaft 35 moves to the hollow shaft 35, that is, the lap area between the spring receiver 39 and the throttle valve 8, that is, Since the area where the spring receiver 39 closes a part of the throttle valve 8 does not change, the spring receiver 39 may not close a part of the throttle valve 8.

また、弁体37は、上述したように、バルブ抑え部材38を介してコイルばね41の附勢力で環状弁座34へ向けて附勢されて撓んでおり、ポート33を介して作用する圧側室R2の圧力と、反仕切部材側となる背面側に作用する液室Lの圧力との差圧が開弁圧に達すると、当該弁体37の外周が図2中下方側へ撓んでポート33を開放するようになっており、差圧が大きくなるほど、弁体37の撓み量が大きくなって環状弁座34と弁体37との間に形成される環状隙間が大きくなる。なお、コイルばね41が上記差圧に負けて縮むと弁体37がバルブ抑え部材38とともに仕切部材7から図2中下方へ後退して、環状弁座34と弁体37との間に形成される環状隙間もより一層大きくなることになる。そして、中空軸35が仕切部材7へ接近すると、ばね受39とシャッタ36の外周に装着されたバルブ抑え部材38との図2中上下方向となる軸方向距離も短くなるので、コイルばね41の圧縮量(初期荷重)が大きくなり、コイルばね41が弁体37を附勢する附勢力がその分大きくなる。このように、中空軸35を仕切部材7へ接近させてコイルばね41の弁体37を附勢する力が大きくなればなるほど、弁体37を環状弁座34から離座させる開弁圧を大きくして、弁要素9を通過する液体に与える抵抗を大きくすることができる。   Further, as described above, the valve body 37 is urged and bent toward the annular valve seat 34 by the urging force of the coil spring 41 via the valve holding member 38 and acts via the port 33. When the differential pressure between the pressure of R2 and the pressure of the liquid chamber L acting on the back side that is the side opposite to the partitioning member reaches the valve opening pressure, the outer periphery of the valve element 37 bends downward in FIG. As the differential pressure increases, the amount of deflection of the valve element 37 increases and the annular gap formed between the annular valve seat 34 and the valve element 37 increases. In addition, when the coil spring 41 contracts due to the above-described differential pressure, the valve body 37 moves backward together with the valve holding member 38 from the partition member 7 in FIG. 2, and is formed between the annular valve seat 34 and the valve body 37. The annular gap becomes even larger. When the hollow shaft 35 approaches the partition member 7, the axial distance in the vertical direction in FIG. 2 between the spring receiver 39 and the valve pressing member 38 attached to the outer periphery of the shutter 36 is also shortened. The amount of compression (initial load) increases, and the biasing force that biases the valve element 37 by the coil spring 41 increases accordingly. In this way, the valve opening pressure for separating the valve body 37 from the annular valve seat 34 increases as the force for energizing the valve body 37 of the coil spring 41 with the hollow shaft 35 approaching the partition member 7 increases. Thus, the resistance given to the liquid passing through the valve element 9 can be increased.

つづいて、アジャスタ30の回動操作で中空軸35を図2中下方側へ押し下げて仕切部材7に対して遠ざけると、ばね受39がコイルばね41によって押し下げられて中空軸35の規制部35dによって規制されつつ図中下方へ移動する。他方、シャッタ36は、コイルばね41によって仕切部材7へ押しつけられているので、上記アジャスタ30の操作によって中空軸35が仕切部材7から遠ざけると、シャッタ36とばね受39とが遠ざかってシャッタ36の筒部36aの上端とばね受39の筒部39aの下端との間の間隔が広くなり、絞り弁8がシャッタ36とばね受39とで閉塞される面積が小さくなる。つまり、中空軸35が仕切部材7から軸方向へ向けて離間すると、絞り弁8のシャッタ36とばね受39で閉塞されない面積である開口面積が拡大することになって、絞り弁8が通過する液体の流れに与える抵抗は小さくなる。   Subsequently, when the hollow shaft 35 is pushed downward in FIG. 2 by the turning operation of the adjuster 30 and moved away from the partition member 7, the spring receiver 39 is pushed down by the coil spring 41 and is regulated by the restricting portion 35 d of the hollow shaft 35. It moves downward in the figure while being regulated. On the other hand, since the shutter 36 is pressed against the partition member 7 by the coil spring 41, when the hollow shaft 35 is moved away from the partition member 7 by the operation of the adjuster 30, the shutter 36 and the spring receiver 39 are moved away from each other. The distance between the upper end of the cylindrical portion 36a and the lower end of the cylindrical portion 39a of the spring receiver 39 is increased, and the area where the throttle valve 8 is closed by the shutter 36 and the spring receiver 39 is reduced. That is, when the hollow shaft 35 is separated from the partition member 7 in the axial direction, the opening area that is not blocked by the shutter 36 and the spring receiver 39 of the throttle valve 8 is enlarged, and the throttle valve 8 passes. The resistance given to the liquid flow is reduced.

また、中空軸35を仕切部材7から遠ざけると、ばね受39とシャッタ36の外周に装着されたバルブ抑え部材38との図2中上下方向となる軸方向距離が長くなるので、コイルばね41の圧縮量(初期荷重)が少なくなり、コイルばね41が弁体37を附勢する附勢力がその分小さくなる。このように、中空軸35を仕切部材7から軸方向へ離間させてコイルばね41の弁体37を附勢する力が小さくなればなるほど、弁体37を環状弁座34から離座させる開弁圧を小さくして、弁要素9を通過する液体に与える抵抗を小さくすることができる。   Further, when the hollow shaft 35 is moved away from the partition member 7, the axial distance in the vertical direction in FIG. 2 between the spring receiver 39 and the valve pressing member 38 attached to the outer periphery of the shutter 36 becomes longer. The amount of compression (initial load) decreases, and the biasing force that biases the valve element 37 by the coil spring 41 decreases accordingly. Thus, as the force for energizing the valve element 37 of the coil spring 41 is reduced by separating the hollow shaft 35 from the partition member 7 in the axial direction, the valve element 37 is opened away from the annular valve seat 34. The pressure applied to the liquid passing through the valve element 9 can be reduced by reducing the pressure.

上記したところから理解できるように、この実施の形態では、アジャスタ30を回動操作することで、中空軸35を軸方向へ移動させて仕切部材7に対して遠近させることで、絞り弁8の開口面積と弁要素9の開弁圧を変更して、両者を通過する液体の流れに与える抵抗を同時に調節することができる。より具体的には、アジャスタ30を一方向へ回転操作すると、絞り弁8の開口面積を減少させて絞り弁8における抵抗を大きくさせつつ弁要素9の開弁圧を大きくして当該弁要素9における上記抵抗を大きくすることができ、反対に、アジャスタ30と他方向へ回転操作すると、絞り弁8の開口面積を増大させて絞り弁8における抵抗を小さくさせつつ弁要素9の開弁圧を小さくして当該弁要素9における上記抵抗を小さくすることができる。   As can be understood from the above, in this embodiment, by rotating the adjuster 30, the hollow shaft 35 is moved in the axial direction to move away from the partition member 7, so that the throttle valve 8. By changing the opening area and the valve opening pressure of the valve element 9, it is possible to simultaneously adjust the resistance applied to the flow of liquid passing through both. More specifically, when the adjuster 30 is rotated in one direction, the opening area of the throttle valve 8 is decreased to increase the resistance in the throttle valve 8 and increase the valve opening pressure of the valve element 9. On the other hand, when the adjuster 30 is rotated in the other direction, the opening area of the throttle valve 8 is increased to reduce the resistance of the throttle valve 8 while reducing the valve opening pressure of the valve element 9. The resistance in the valve element 9 can be reduced by reducing the resistance.

したがって、調整機構11は、本実施の形態では、上記ばね受39を外周に装着した中空軸35に設けたばね受39の反仕切部材側に当接してばね受39の反仕切部材側への移動を規制する規制部35dと、中空軸35を仕切部材7に対して軸方向に遠近させる駆動手段である外部操作可能なアジャスタ30と螺子部35aとでなる送り螺子と、中空軸35の駆動に対し不動とされて中空軸35の駆動に対し上記長孔でなる絞り弁8とのラップ面積を増減させるシャッタ36とを備えて構成されている。   Therefore, in the present embodiment, the adjustment mechanism 11 abuts on the side of the anti-partition member of the spring receiver 39 provided on the hollow shaft 35 with the spring receiver 39 mounted on the outer periphery, and moves the spring receiver 39 toward the anti-partition member side. For regulating the shaft 35, a feed screw composed of an externally-adjustable adjuster 30 that is a driving means for moving the hollow shaft 35 in the axial direction with respect to the partition member 7 and a screw portion 35 a, and driving the hollow shaft 35. On the other hand, the shutter 36 is configured to be immovable and to increase or decrease the lap area with the throttle valve 8 formed of the long hole with respect to the driving of the hollow shaft 35.

つづいて、上述のように構成された車両用液圧緩衝器Dに作用について説明する。まず、図1中でピストン2が上方へ移動する車両用液圧緩衝器Dが伸長する場合、ピストン2の上昇によって伸側室R1が圧縮されて伸側室R1の液体が減衰弁17を介して下方の圧側室R2へ流入する。その際、ピストンロッド3がシリンダ1から退出してシリンダ1内でピストンロッド3が退出する体積分の液体が不足するので、この不足する分の液体は、チェック弁10が開いて液室Lから圧側室R2へ供給され、フリーピストン18が気室Gを膨張させる方向へ移動してシリンダ1内の容積変動を補償する。   Next, the operation of the vehicle hydraulic shock absorber D configured as described above will be described. First, when the vehicle hydraulic shock absorber D in which the piston 2 moves upward in FIG. 1 is extended, the expansion side chamber R1 is compressed by the rise of the piston 2 and the liquid in the expansion side chamber R1 is lowered through the damping valve 17. Into the pressure side chamber R2. At that time, since the piston rod 3 retreats from the cylinder 1 and the volume of liquid in which the piston rod 3 retreats in the cylinder 1 is insufficient, the check valve 10 is opened and the liquid is removed from the liquid chamber L. Supplied to the pressure side chamber R2, the free piston 18 moves in the direction in which the air chamber G is expanded to compensate for volume fluctuations in the cylinder 1.

なお、チェック弁10は、ばね部材42によって附勢されているが、当該附勢力は極弱く設定されており、この場合、液体は殆ど抵抗を受けずにチェック弁10を通過し液室Lから圧側室R2へ移動する。   The check valve 10 is urged by the spring member 42. However, the urging force is set to be extremely weak. In this case, the liquid passes through the check valve 10 with almost no resistance and passes from the liquid chamber L. It moves to the pressure side chamber R2.

したがって、この伸長行程時には、車両用液圧緩衝器Dは、液体がピストン2に設けた減衰弁17を通過する際に生じる伸側室R1と圧側室R2の圧力差に応じた伸側減衰力を発揮する。   Therefore, during this extension stroke, the vehicle hydraulic shock absorber D exerts an extension side damping force corresponding to the pressure difference between the extension side chamber R1 and the compression side chamber R2 generated when the liquid passes through the damping valve 17 provided in the piston 2. Demonstrate.

他方、図1中でピストン2が下方へ移動する車両用液圧緩衝器Dが圧縮する場合、ピストン2の下降によって圧側室R2が圧縮されて当該圧側室R2の液体が減衰弁17を介して上方の伸側室R1へ流入する。その際、ピストンロッド3がシリンダ1内へ侵入してシリンダ1内でピストンロッド3が侵入する体積分の液体が過剰となるので、この過剰分の液体は、弁要素9がポート33を開放して圧側室R2から液室Lへ排出され、フリーピストン18が気室Gを収縮させる方向へ移動してシリンダ1内の容積変動を補償する。   On the other hand, when the vehicle hydraulic shock absorber D in which the piston 2 moves downward in FIG. 1 is compressed, the pressure side chamber R2 is compressed by the lowering of the piston 2, and the liquid in the pressure side chamber R2 passes through the damping valve 17. It flows into the upper extension chamber R1. At that time, since the piston rod 3 enters the cylinder 1 and the volume of liquid into which the piston rod 3 enters in the cylinder 1 becomes excessive, the valve element 9 opens the port 33 for this excess liquid. As a result, the pressure side chamber R2 is discharged to the liquid chamber L, and the free piston 18 moves in a direction in which the air chamber G contracts to compensate for volume fluctuations in the cylinder 1.

そして、弁要素9は、車両用液圧緩衝器Dが圧縮行程におけるピストン速度が所定速度以下では、圧側室R2と液室Lの差圧が小さく開弁せず、液体は、絞り弁8のみを介して圧側室R2から液室Lへ移動するので、図3中、実線aで示すがごとく、車両用液圧緩衝器Dは、絞り弁特有の減衰特性(ピストン速度に対する減衰力の特性)を持って減衰力を発揮する。なお、図3に示した減衰特性は、絞り弁8の開口面積と弁要素9の開弁圧をアジャスタ30の操作で変更し得る上限と下限の中央に設定している状態を示している。   When the piston speed in the compression stroke of the hydraulic shock absorber D for the vehicle is equal to or lower than a predetermined speed, the valve element 9 does not open because the pressure difference between the pressure side chamber R2 and the liquid chamber L is small, and the liquid is only the throttle valve 8. As shown by the solid line a in FIG. 3, the vehicle hydraulic shock absorber D has a damping characteristic peculiar to the throttle valve (a characteristic of the damping force with respect to the piston speed). Demonstrate the damping force. 3 shows a state in which the opening area of the throttle valve 8 and the valve opening pressure of the valve element 9 are set at the center between the upper limit and the lower limit that can be changed by the operation of the adjuster 30.

さらに、車両用液圧緩衝器Dが圧縮行程におけるピストン速度が所定速度以上となって、圧側室R2と液室Lの差圧が開弁圧に達すると、弁要素9が開弁して絞り弁8に並列されるポート33が開放されるので、開弁してからは図3の破線bで示すがごとくに、車両用液圧緩衝器Dの減衰特性は、ピストン速度に対して減衰係数が小さくなる。   Further, when the piston speed in the compression stroke of the vehicle hydraulic shock absorber D exceeds a predetermined speed and the differential pressure between the pressure side chamber R2 and the liquid chamber L reaches the valve opening pressure, the valve element 9 opens and throttles. Since the port 33 in parallel with the valve 8 is opened, the damping characteristic of the vehicular hydraulic shock absorber D is a damping coefficient with respect to the piston speed. Becomes smaller.

そして、さらに、ピストン速度が高速となり、ばね要素としてのコイルばね41が弁体37を仕切部材7へ向けて附勢する附勢力を、圧縮される圧側室R2内の圧力の作用によって弁体37を押す力が打ち勝って、コイルばね41が圧縮して弁体37がバルブ抑え部材38とともに仕切部材7から後退するようになると、弁体37と環状弁座34との間に形成される環状隙間の大きさがより大きくなり、車両用液圧緩衝器Dの減衰特性は、ピストン速度に対して先程よりももっと減衰係数が小さくなる(図3中一点鎖線c)。   Further, the piston speed becomes high, and the urging force that the coil spring 41 as a spring element urges the valve element 37 toward the partition member 7 is applied by the pressure in the compression side chamber R2 to be compressed. When the coil spring 41 is compressed and the valve body 37 is retracted from the partition member 7 together with the valve restraining member 38, the annular clearance formed between the valve body 37 and the annular valve seat 34 is overcome. The damping coefficient of the vehicular hydraulic shock absorber D has a smaller damping coefficient than the previous one with respect to the piston speed (one-dot chain line c in FIG. 3).

このように、弁要素9は、車両用液圧緩衝器Dが圧縮行程におけるピストン速度が所定速度以下では、流路面積を小さく制限するので、圧側室R2内の液体は液室Lへ移動しづらくなって、圧側室R2内の圧力は速やかに増圧されることになる。   In this way, the valve element 9 restricts the flow passage area to a small size when the vehicular hydraulic pressure damper D has a piston speed in the compression stroke equal to or lower than a predetermined speed, so that the liquid in the pressure side chamber R2 moves to the liquid chamber L. It becomes difficult to increase the pressure in the pressure side chamber R2 quickly.

すなわち、車両用液圧緩衝器Dは、圧側室R2内の圧力を速やかに増圧させて、伸側室R1と圧側室R2における圧力場の低下を抑制しつつ圧縮側の減衰力を発揮することができるので、伸長行程から圧縮行程に切換わる初期や、圧縮行程時でピストン速度が低速時において減衰力の立上りが時間的に不足する傾向を解消でき、減衰力発生応答性が向上する。   That is, the vehicle hydraulic pressure buffer D rapidly increases the pressure in the compression side chamber R2, and exhibits a compression-side damping force while suppressing a decrease in the pressure field in the extension side chamber R1 and the compression side chamber R2. Therefore, it is possible to eliminate the tendency that the rising of the damping force is insufficient in the initial stage when switching from the expansion stroke to the compression stroke or when the piston speed is low during the compression stroke, and the damping force generation response is improved.

そして、上記したように、絞り弁8における抵抗を大きくさせつつ弁要素9の開弁圧を大きくして当該弁要素9における上記抵抗を大きくすることができるとともに、絞り弁8における抵抗を小さくさせつつ弁要素9の開弁圧を小さくして当該弁要素9における上記抵抗を小さくすることができるので、絞り弁8の特性による傾きを変更させることができるとともに、弁要素9の開弁タイミングを変更させることができる。したがって、たとえば、アジャスタ30を一方側へ回転させて絞り弁8の開口面積を最小にしつつ弁要素9の開弁圧を最大にする場合には、圧側室R2の圧力上昇の特性(ピストン速度に対する圧側室の圧力上昇の特性)は、図3の特性(図4中線X)から図4中線Yで示すように、絞り弁8を通過する液体に与える抵抗が大きくなって図3中の線aに対応する特性の傾きが大きくなり、絞り弁8における圧力損失が大きくなるのでその分、弁要素9の開弁時期がピストン速度の低速側へシフトし、図3中の線aに対応する特性が弁要素9の開弁時期までそのまま出力される特性へ変更される。また、アジャスタ30を他方側へ回転させて絞り弁8の開口面積を最大にしつつ弁要素9の開弁圧を最小にする場合には、圧側室R2の圧力上昇の特性(ピストン速度に対する圧側室の圧力上昇の特性)は、図3の特性(図4中線X)から図4中線Zで示すように、絞り弁8を通過する液体に与える抵抗が小さくなって図3中の線aに対応する特性の傾きを小さくでき、絞り弁8での圧力損失が低くなる分だけ弁要素9の開弁時期がピストン速度の高速側へシフトするようになり、図3中の線aに対応する特性が弁要素9の開弁時期までそのまま出力されるような特性となる。つまり、アジャスタ30の操作で、図4中線Yに示す特性から線Zに示す特性の範囲で圧側室R2の圧力上昇の特性を調節することができる。   As described above, while increasing the resistance in the throttle valve 8, the valve opening pressure of the valve element 9 can be increased to increase the resistance in the valve element 9, and the resistance in the throttle valve 8 can be decreased. While the valve opening pressure of the valve element 9 can be reduced and the resistance in the valve element 9 can be reduced, the inclination due to the characteristics of the throttle valve 8 can be changed, and the valve opening timing of the valve element 9 can be changed. It can be changed. Therefore, for example, when the adjuster 30 is rotated to one side to minimize the opening area of the throttle valve 8 and the valve opening pressure of the valve element 9 is maximized, the pressure rise characteristic of the pressure side chamber R2 (relative to the piston speed). As shown by the line Y in FIG. 4 from the characteristic in FIG. 3 (line X in FIG. 4), the resistance given to the liquid passing through the throttle valve 8 is increased. The slope of the characteristic corresponding to the line a is increased, and the pressure loss in the throttle valve 8 is increased. Accordingly, the valve opening timing of the valve element 9 is shifted to the low speed side of the piston speed, and corresponds to the line a in FIG. The characteristic to be output is changed to a characteristic that is output as it is until the valve element 9 is opened. When the adjuster 30 is rotated to the other side to maximize the opening area of the throttle valve 8 while minimizing the valve opening pressure of the valve element 9, the pressure rise characteristic of the pressure side chamber R2 (pressure side chamber relative to the piston speed) As shown by the line Z in FIG. 4 from the characteristic in FIG. 3 (line X in FIG. 4), the resistance given to the liquid passing through the throttle valve 8 is reduced and the line a in FIG. 3 can be reduced, and the valve opening timing of the valve element 9 is shifted to the high speed side of the piston speed by the amount that the pressure loss at the throttle valve 8 is reduced, corresponding to the line a in FIG. This characteristic is such that it is output as it is until the valve opening timing of the valve element 9. That is, by operating the adjuster 30, the pressure increase characteristic of the pressure side chamber R2 can be adjusted in the range of the characteristic indicated by the line Y in FIG.

なお、車両用液圧緩衝器Dの減衰特性も、圧側室R2の圧力上昇が上記のごとく補償されるから、図5に示すように、図中の線Y1から線Z1に示す範囲にて、アジャスタ30を回転させることで変化させることができる。   Note that the damping characteristic of the vehicle hydraulic shock absorber D is also compensated for the pressure increase in the compression side chamber R2 as described above. Therefore, as shown in FIG. 5, in the range indicated by the line Y1 to the line Z1 in FIG. It can be changed by rotating the adjuster 30.

このように、絞り弁8と弁要素9の両方を同時に調整可能であるから、絞り弁8のみ、あるいは、弁要素9のみの調整が可能である緩衝器や、双方の調整が可能であっても独立して調整しなければならない緩衝器に比較して、圧側室R2の圧力上昇の特性をより簡単に且つ、より直感的に調節することができ、圧側の減衰力応答性の調節も同様に簡単に行うことができるのである。 In this way, since both the throttle valve 8 and the valve element 9 can be adjusted at the same time, it is possible to adjust only the throttle valve 8 or the shock absorber capable of adjusting only the valve element 9 or both. Compared to a shock absorber that must be adjusted independently, the pressure rise characteristic of the pressure side chamber R2 can be adjusted more easily and intuitively, and the pressure side damping force response can be adjusted in the same manner. It can be done easily.

また、気室内の圧力を高める必要も無いので、車両用液圧緩衝器Dのシリンダ1内の圧力が過剰に高くなることも無く、ピストンロッド3周りをシールするシール部材14の緊迫力が大きくなる心配が無く、車両搭乗者にゴツゴツ感を知覚させ車両における乗り心地を阻害してしまうこともない。   Further, since there is no need to increase the pressure in the air chamber, the pressure in the cylinder 1 of the vehicle hydraulic shock absorber D does not become excessively high, and the tightening force of the seal member 14 that seals around the piston rod 3 is large. There is no worry that the vehicle occupant perceives a jerky feeling and does not disturb the riding comfort of the vehicle.

したがって、本発明の車両用液圧緩衝器Dによれば、車両における乗り心地を損なうことなく圧縮行程初期にあっても応答性良く必要十分な減衰力を発揮することができるのである。なお、弁要素9の流路面積が大きくなる上記所定速度は、車両に適するように任意に決定することができる。   Therefore, according to the vehicle hydraulic shock absorber D of the present invention, the necessary and sufficient damping force can be exhibited with good responsiveness even in the initial stage of the compression stroke without impairing the ride comfort in the vehicle. Note that the predetermined speed at which the flow passage area of the valve element 9 increases can be arbitrarily determined so as to be suitable for the vehicle.

他方、ピストン速度が所定速度を超えると流路面積が大きくなって、抵抗が小さくなって、液体は圧側室R2から液室Lへ差ほど制限されずに移動することができるようになるので、この場合は、従来の単筒型液圧緩衝器と同等の減衰力を発揮することになる。   On the other hand, when the piston speed exceeds a predetermined speed, the flow path area increases, the resistance decreases, and the liquid can move from the pressure side chamber R2 to the liquid chamber L without being limited as much as possible. In this case, the damping force equivalent to that of the conventional single cylinder type hydraulic shock absorber is exhibited.

また、図6に示すように、予め、環状弁座34とシャッタ36におけるバルブ支持部36bとの高低差(図6中上下方向の高低差)によって、リーフバルブでなる弁体37に初期撓みを設ける場合には、弁体37が環状弁座34から離座する開弁圧に達するまでの間に、ポート33を介して作用する圧側室R2の圧力によって、図7に示すように、弁体37の外周が環状弁座34に着座しつつもシャッタ36とともに内周側のみが仕切部材7から浮き上がる状態が生じる。この状態では、シャッタ36が弁体37とともに仕切部材7から浮き上がるため、中空軸35に形成した絞り弁8の開口面積を減少させることになる。そのため、リーフバルブでなる弁体37に初期撓みを設ける場合には、図8に示すように、初期撓みを設けない場合の減衰特性(図8中破線)に対して、初期撓みを設ける場合は、弁要素9が開弁するまで絞り弁8が徐々に開口面積を減じるために、絞り弁8での圧力損失が大きくなり、図8中実線で示すように、ピストン速度に対して減衰力が速やか立ち上がる、つまり、減衰係数を大きくすることができる。   In addition, as shown in FIG. 6, the valve element 37 made of a leaf valve is initially bent due to the height difference between the annular valve seat 34 and the valve support portion 36b of the shutter 36 (the height difference in the vertical direction in FIG. 6). In the case of providing, as shown in FIG. 7, the valve body 37 is caused by the pressure of the pressure side chamber R2 acting through the port 33 until the valve body 37 reaches the valve opening pressure at which the valve body 37 separates from the annular valve seat 34. While the outer periphery of 37 is seated on the annular valve seat 34, only the inner peripheral side together with the shutter 36 is lifted from the partition member 7. In this state, since the shutter 36 is lifted from the partition member 7 together with the valve body 37, the opening area of the throttle valve 8 formed in the hollow shaft 35 is reduced. Therefore, in the case where initial deflection is provided in the valve element 37 made of a leaf valve, as shown in FIG. 8, in the case where initial deflection is provided with respect to the damping characteristic when the initial deflection is not provided (broken line in FIG. 8). The throttle valve 8 gradually reduces the opening area until the valve element 9 is opened, so that the pressure loss at the throttle valve 8 increases, and as shown by the solid line in FIG. It rises quickly, that is, the attenuation coefficient can be increased.

なお、上記したところでは、絞り弁8をオリフィスとしているが、オリフィス以外にもチョークやその他の絞り弁としてもよく、たとえば、環状絞りを設ける場合には、中空軸35の上端を閉塞せずに、中空軸35内に環状弁座を設け、中空軸35内に中空軸35に対して軸方向不動であって環状弁座と対向して環状弁座との間に環状絞りを形成するニードル状などの弁体を設けておき、中空軸35を仕切部材7に接近させると弁体と環状弁座との間の距離も接近し、反対に、中空軸35を仕切部材7から遠ざけると弁体と環状弁座との間の距離も遠ざかるような構造の絞り弁を採用してもよいし、絞り弁8にチョークを採用する場合には、中空軸35内に小径部を設けておき、中空軸3に対して軸方向不動の軸を小径部内に摺動自在に挿入し、中空軸3の小径部の内周に或いは軸の外周にチョークを形成する溝を設けておき、中空軸3を軸方向へ移動させることによって小径部と軸の嵌合長を変更してチョーク長さを変更するような絞り弁の構造を採用することもできる。 In the above description, the throttle valve 8 is an orifice. However, in addition to the orifice, a choke or other throttle valve may be used. For example, when an annular throttle is provided, the upper end of the hollow shaft 35 is not blocked. An annular valve seat is provided in the hollow shaft 35, and a needle shape is formed in the hollow shaft 35 which is axially immovable with respect to the hollow shaft 35 and forms an annular throttle between the annular valve seat and the annular valve seat. When the hollow shaft 35 is moved closer to the partition member 7, the distance between the valve body and the annular valve seat is also approached. Conversely, when the hollow shaft 35 is moved away from the partition member 7, the valve body is moved. A throttle valve having a structure in which the distance between the valve seat and the annular valve seat is also increased may be employed. When a choke is employed for the throttle valve 8, a small diameter portion is provided in the hollow shaft 35 so as to be hollow. slidably inserted in the axial axial immovable with respect to the axis 35 in the small diameter portion Type, the outer circumference of the inner periphery or the axis of the small diameter portion of the hollow shaft 35 may be provided with grooves for forming a choke, the fitting length of the small diameter portion and the shaft by moving the hollow shaft 35 in the axial direction It is also possible to adopt a throttle valve structure that changes the choke length by changing.

また、弁要素9は、弁体37に環状のリーフバルブを採用しているが、ばね要素で附勢される弁体であれば、ポペット弁やその他の弁体を用いることも可能である。   The valve element 9 employs an annular leaf valve as the valve element 37, but a poppet valve or other valve element may be used as long as the valve element is biased by a spring element.

さらに、上記したところでは、シリンダ1の側方に設けたバルブケース4の中空部A内に絞り弁8、弁要素9およびチェック弁10を収容しているので、絞り弁8、弁要素9或いはチェック弁10を交換して、減衰特性をチューニングしたい場合に、車両用液圧緩衝器Dの部品全部を分解する必要がなく、絞り弁8、弁要素9およびチェック弁10をバルブケース4から取り出して交換することで簡単かつ短時間でチューニングを行うことができる。また、絞り弁8、弁要素9およびチェック弁10は、仕切部材7とともにアジャスタ30および中空軸35とによって、各部材がばらけることなく一体的に組みつけられてバルブアッセンブリを構成しているので、アジャスタ保持部材29を取り外せば、バルブケース4からの中空部Aに収容されている絞り弁8、弁要素9およびチェック弁10を簡単に取り出すことが可能であり、また、バルブケース4への組み付けの際も、予め組み立てた上記バルブアッセンブリを中空部Aへ挿入することで簡単に組み付け作業を行うことができる。 Furthermore, since the throttle valve 8, the valve element 9 and the check valve 10 are accommodated in the hollow portion A of the valve case 4 provided on the side of the cylinder 1 in the above-described manner, the throttle valve 8, the valve element 9 or When the check valve 10 is replaced and the damping characteristic is to be tuned, it is not necessary to disassemble all parts of the vehicle hydraulic shock absorber D, and the throttle valve 8, the valve element 9 and the check valve 10 are taken out from the valve case 4. Tuning can be performed easily and in a short time. Further, the throttle valve 8, the valve element 9, and the check valve 10 are assembled together by the adjuster 30 and the hollow shaft 35 together with the partition member 7 so as not to be separated, thereby constituting a valve assembly. If the adjuster holding member 29 is removed, the throttle valve 8, the valve element 9 and the check valve 10 accommodated in the hollow portion A from the valve case 4 can be easily taken out. Also during assembly, the assembly can be easily performed by inserting the previously assembled valve assembly into the hollow portion A.

以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示されまたは説明された詳細そのものには限定されないことは勿論である。   This is the end of the description of the embodiment of the present invention, but the scope of the present invention is of course not limited to the details shown or described.

本発明の車両用液圧緩衝器は、車両の制振用途に利用することができる。   The hydraulic shock absorber for a vehicle according to the present invention can be used for a vibration damping application of a vehicle.

1 シリンダ
1a シリンダフランジ
1b,5b,24 ボルト挿通孔
2 ピストン
3 ピストンロッド
4 バルブケース
5 液室筒
5b 液室筒フランジ
6 附勢手段
7 仕切部材
8 絞り弁
9 弁要素
10 チェック弁
11 調整機構
20b 開口
27 ボルト
29 アジャスタ保持部材
30 アジャスタ
30b 螺子孔
33 ポート
35 中空軸
35a 螺子部
35d 規制部
36 シャッタ
37a 透孔
37 弁体
39 ばね受
41 ばね要素としてのコイルばね
42 ばね部材
A 中空部
D 車両用液圧緩衝器
L 液室
R1 伸側室
R2 圧側室
DESCRIPTION OF SYMBOLS 1 Cylinder 1a Cylinder flange 1b, 5b, 24 Bolt insertion hole 2 Piston 3 Piston rod 4 Valve case 5 Liquid chamber cylinder 5b Liquid chamber cylinder flange 6 Energizing means 7 Partition member 8 Throttle valve 9 Valve element 10 Check valve 11 Adjustment mechanism 20b Opening 27 Bolt 29 Adjuster holding member 30 Adjuster 30b Screw hole 33 Port 35 Hollow shaft 35a Screw part 35d Restriction part 36 Shutter 37a Through hole 37 Valve body 39 Spring receiver 41 Coil spring 42 as spring element Spring member A Hollow part D For vehicle Fluid pressure buffer L Fluid chamber R1 Stretch side chamber R2 Pressure side chamber

Claims (5)

シリンダと、
上記シリンダ内に摺動自在に挿入されるピストンと、
上記シリンダ内に移動自在に挿入されて上記ピストンに連結されるピストンロッドと、
上記シリンダ内に上記ピストンで区画される伸側室と圧側室と、
上記シリンダの側方に設けられて内部に中空部を備えたバルブケースと、
上記シリンダに軸方向に沿って連結されるとともに内部に上記中空部を介して上記圧側室に連通される液室を形成する液室筒と、
上記液室を附勢する附勢手段と
上記中空部内に収容されて上記圧側室と上記液室とを区画する仕切部材と、
上記中空部内に収容されて上記圧側室と上記液室とを連通するとともに通過する液体の流れに抵抗を与える絞り弁と、
上記中空部内に収容されて上記絞り弁に並列して上記圧側室と上記液室とを連通するとともに通過する液体の流れに抵抗を与える弁要素と、
上記中空部内に収容されて上記絞り弁および弁要素に並列して上記液室から上記圧側室へ向かう液体の流れのみを許容するチェック弁と、
上記絞り弁の開口面積と上記弁要素における上記抵抗とを同時に変化させる調整機構とを備え、
上記弁要素は、上記仕切部材の液室側に配置されて上記仕切部材に形成された上記圧側室と上記液室とを連通するポートの出口を開閉する弁体と、上記弁体の反仕切部材側に配置される環状のばね受と、上記弁体と上記ばね受との間に介装されて上記弁体を仕切部材側へ向けて附勢するばね要素とを備え、
上記絞り弁は、有底筒状であって内部が上記圧側室に連通される中空軸の側部に開口して内部を上記液室へ連通する長孔で形成されてなり、
上記調整機構は、上記ばね受を外周に装着した上記中空軸に設けた上記ばね受の反仕切部材側に当接して上記ばね受の反仕切部材側への移動を規制する規制部と、上記中空軸を上記仕切部材に対して軸方向に遠近させる駆動手段と、上記中空軸の駆動に対し不動とされて上記中空軸の駆動に対し上記長孔とのラップ面積を増減させるシャッタとを備え、上記駆動手段の駆動によって、上記絞り弁の開口面積と上記ばね要素の初期荷重とを同時に変化させる
ことを特徴とする車両用液圧緩衝器。
A cylinder,
A piston slidably inserted into said cylinder,
A piston rod movably inserted into the cylinder and coupled to the piston;
An extension side chamber and a pressure side chamber defined by the piston in the cylinder;
A valve case provided on the side of the cylinder and having a hollow inside;
A liquid chamber cylinder that is connected to the cylinder along the axial direction and forms a liquid chamber that communicates with the pressure side chamber through the hollow portion inside;
And biasing means for biasing the liquid chamber,
A partition member housed in the hollow portion and partitioning the pressure side chamber and the liquid chamber;
A throttle valve which is accommodated in the hollow portion and communicates the pressure side chamber and the liquid chamber and provides resistance to the flow of liquid passing therethrough;
A valve element that is accommodated in the hollow portion and communicates the pressure side chamber and the liquid chamber in parallel with the throttle valve and provides resistance to the flow of liquid passing therethrough,
A check valve that is accommodated in the hollow portion and allows only the flow of liquid from the liquid chamber to the pressure side chamber in parallel with the throttle valve and the valve element;
An adjustment mechanism for simultaneously changing the opening area of the throttle valve and the resistance of the valve element ;
The valve element is disposed on the liquid chamber side of the partition member, and opens and closes an outlet of a port communicating the pressure side chamber and the liquid chamber formed in the partition member, and an anti-partition of the valve body An annular spring receiver disposed on the member side, and a spring element that is interposed between the valve body and the spring receiver and biases the valve body toward the partition member side,
The throttle valve has a bottomed cylindrical shape and is formed with a long hole that opens to the side of the hollow shaft that communicates with the pressure side chamber and communicates with the liquid chamber.
The adjusting mechanism is configured to contact a counter-partitioning member side of the spring receiver provided on the hollow shaft having the spring receiver mounted on an outer periphery thereof, and restrict the movement of the spring receiver to the counter-partitioning member side; Drive means for moving the hollow shaft in the axial direction relative to the partition member; and a shutter that is immovable with respect to the drive of the hollow shaft and increases or decreases the lap area with the elongated hole with respect to the drive of the hollow shaft. , by the driving of the drive means, car dual fluid pressure shock absorber characterized by changing the initial load of the opening area and the spring element of the throttle valve at the same time.
シリンダと、A cylinder,
上記シリンダ内に摺動自在に挿入されるピストンと、A piston slidably inserted into the cylinder;
上記シリンダ内に移動自在に挿入されて上記ピストンに連結されるピストンロッドと、A piston rod movably inserted into the cylinder and coupled to the piston;
上記シリンダ内に上記ピストンで区画される伸側室と圧側室と、An extension side chamber and a pressure side chamber defined by the piston in the cylinder;
上記シリンダの側方に設けられて内部に中空部を備えたバルブケースと、A valve case provided on the side of the cylinder and having a hollow inside;
上記シリンダに軸方向に沿って連結されるとともに内部に上記中空部を介して上記圧側室に連通される液室を形成する液室筒と、A liquid chamber cylinder that is connected to the cylinder along the axial direction and forms a liquid chamber that communicates with the pressure side chamber through the hollow portion inside;
上記液室を附勢する附勢手段と、Energizing means for energizing the liquid chamber;
上記中空部内に収容されて上記圧側室と上記液室とを区画する仕切部材と、A partition member housed in the hollow portion and partitioning the pressure side chamber and the liquid chamber;
上記中空部内に収容されて上記圧側室と上記液室とを連通するとともに通過する液体の流れに抵抗を与える絞り弁と、A throttle valve which is accommodated in the hollow portion and communicates the pressure side chamber and the liquid chamber and provides resistance to the flow of liquid passing therethrough;
上記中空部内に収容されて上記絞り弁に並列して上記圧側室と上記液室とを連通するとともに通過する液体の流れに抵抗を与える弁要素と、A valve element that is accommodated in the hollow portion and communicates the pressure side chamber and the liquid chamber in parallel with the throttle valve and provides resistance to the flow of liquid passing therethrough,
上記中空部内に収容されて上記絞り弁および弁要素に並列して上記液室から上記圧側室へ向かう液体の流れのみを許容するチェック弁と、A check valve that is accommodated in the hollow portion and allows only the flow of liquid from the liquid chamber to the pressure side chamber in parallel with the throttle valve and the valve element;
上記絞り弁の開口面積と上記弁要素における上記抵抗とを同時に変化させる調整機構と、An adjustment mechanism for simultaneously changing the opening area of the throttle valve and the resistance of the valve element;
上記液室筒の一端に設けられ複数のボルト挿通孔を有する液室筒フランジと、A liquid chamber cylinder flange provided at one end of the liquid chamber cylinder and having a plurality of bolt insertion holes;
上記シリンダの一端に設けられ且つ上記液室筒フランジに設けたボルト挿通孔と同数のボルト挿通孔を有するシリンダフランジと、A cylinder flange provided at one end of the cylinder and having the same number of bolt insertion holes as the bolt insertion holes provided in the liquid chamber cylinder flange;
上記バルブケースに設けられて上記シリンダの端部と上記液室筒の端部とを閉鎖するとともに上記液室筒フランジに設けたボルト挿通孔と同数のボルト挿通孔を有する閉塞部材とを備え、A closing member that is provided in the valve case and closes the end of the cylinder and the end of the liquid chamber cylinder and has the same number of bolt insertion holes as the bolt insertion holes provided in the liquid chamber cylinder flange;
上記シリンダと上記液室筒との間に上記閉塞部材を介装した状態で、上記シリンダ、上記液室筒および上記閉塞部材は、上記各ボルト挿通孔に挿入されるボルトによって締結されているThe cylinder, the liquid chamber tube, and the closing member are fastened by bolts inserted into the bolt insertion holes in a state where the closing member is interposed between the cylinder and the liquid chamber tube.
ことを特徴とする車両用液圧緩衝器。A hydraulic shock absorber for vehicles.
上記弁要素は、上記仕切部材の液室側に配置されて上記仕切部材に形成された上記圧側室と上記液室とを連通するポートの出口を開閉する弁体と、上記弁体の反仕切部材側に配置される環状のばね受と、上記弁体と上記ばね受との間に介装されて上記弁体を仕切部材側へ向けて附勢するばね要素とを備え、
上記絞り弁は、有底筒状であって内部が上記圧側室に連通される中空軸の側部に開口して内部を上記液室へ連通する長孔で形成されてなり、
上記調整機構は、上記ばね受を外周に装着した上記中空軸に設けた上記ばね受の反仕切部材側に当接して上記ばね受の反仕切部材側への移動を規制する規制部と、上記中空軸を上記仕切部材に対して軸方向に遠近させる駆動手段と、上記中空軸の駆動に対し不動とされて上記中空軸の駆動に対し上記長孔とのラップ面積を増減させるシャッタとを備え、上記駆動手段の駆動によって、上記絞り弁の開口面積と上記ばね要素の初期荷重とを同時に変化させる
ことを特徴とする請求項2に記載の車両用液圧緩衝器。
The valve element is disposed on the liquid chamber side of the partition member, and opens and closes an outlet of a port communicating the pressure side chamber and the liquid chamber formed in the partition member, and an anti-partition of the valve body An annular spring receiver disposed on the member side, and a spring element that is interposed between the valve body and the spring receiver and biases the valve body toward the partition member side,
The throttle valve has a bottomed cylindrical shape and is formed with a long hole that opens to the side of the hollow shaft that communicates with the pressure side chamber and communicates with the liquid chamber.
The adjusting mechanism is configured to contact a counter-partitioning member side of the spring receiver provided on the hollow shaft having the spring receiver mounted on an outer periphery thereof, and restrict the movement of the spring receiver to the counter-partitioning member side; Drive means for moving the hollow shaft in the axial direction relative to the partition member; and a shutter that is immovable with respect to the drive of the hollow shaft and increases or decreases the lap area with the elongated hole with respect to the drive of the hollow shaft. 3. The vehicle hydraulic shock absorber according to claim 2, wherein an opening area of the throttle valve and an initial load of the spring element are simultaneously changed by driving the driving means .
上記バルブケースは、上記中空部に通じる開口と、上記開口を閉塞するアジャスタ保持部材とを備え、
上記駆動手段は、上記中空軸の先端に設けた螺子部と、上記アジャスタ保持部材を貫通して当該アジャスタ保持部材に回転自在に設けられるとともに上記中空軸の螺子部に螺合する螺子孔を有するアジャスタとを備え、上記アジャスタを外部操作可能とした
ことを特徴とする請求項または3に記載の車両用液圧緩衝器。
The valve case includes an opening that communicates with the hollow portion, and an adjuster holding member that closes the opening,
The drive means has a screw portion provided at the tip of the hollow shaft, and a screw hole that passes through the adjuster holding member and is rotatably provided on the adjuster holding member and is screwed into the screw portion of the hollow shaft. and a adjuster, vehicle hydraulic shock absorber according to claim 1 or 3, characterized in that the external operation enables the adjuster.
上記チェック弁は、上記弁体の仕切部材側に積層され、ばね部材によって上記弁体へ向けて附勢されて上記弁体に設けた透孔を開閉する
ことを特徴とする請求項1,3またはに記載の車両用液圧緩衝器。
The check valve is stacked on the partition member side of the valve body, according to claim 1, 3 by the spring member is biased towards the valve body, characterized in that opening and closing a hole provided in the valve body or vehicle hydraulic shock absorber according to 4.
JP2013041393A 2012-03-27 2013-03-04 Hydraulic shock absorber for vehicles Active JP6047035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041393A JP6047035B2 (en) 2012-03-27 2013-03-04 Hydraulic shock absorber for vehicles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012071564 2012-03-27
JP2012071564 2012-03-27
JP2013041393A JP6047035B2 (en) 2012-03-27 2013-03-04 Hydraulic shock absorber for vehicles

Publications (2)

Publication Number Publication Date
JP2013228092A JP2013228092A (en) 2013-11-07
JP6047035B2 true JP6047035B2 (en) 2016-12-21

Family

ID=49675897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041393A Active JP6047035B2 (en) 2012-03-27 2013-03-04 Hydraulic shock absorber for vehicles

Country Status (1)

Country Link
JP (1) JP6047035B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6487784B2 (en) * 2015-06-10 2019-03-20 Kyb株式会社 Shock absorber
JP6417281B2 (en) 2015-06-10 2018-11-07 Kyb株式会社 Shock absorber
JP7212552B2 (en) * 2019-03-04 2023-01-25 Kyb株式会社 buffer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566937A (en) * 1979-06-29 1981-01-24 Kayaba Ind Co Ltd Oil pressure buffer
JPS57116946A (en) * 1981-01-09 1982-07-21 Kayaba Ind Co Ltd Hydraulic shock absorber
FR2528140B1 (en) * 1982-06-03 1985-10-11 Messier Hispano Sa FLUIDIC TYPE SHOCK ABSORBER
JPH02109039U (en) * 1989-02-20 1990-08-30
JPH0341238U (en) * 1989-08-31 1991-04-19
JP2595198Y2 (en) * 1991-09-13 1999-05-24 カヤバ工業株式会社 Position-dependent shock absorber
JPH08159199A (en) * 1994-12-09 1996-06-18 Showa:Kk Free piston of hydraulic shock absorber
JP2003074615A (en) * 2001-08-31 2003-03-12 Hks Co Ltd Single cylinder type hydraulic shock absorber
US8393446B2 (en) * 2008-08-25 2013-03-12 David M Haugen Methods and apparatus for suspension lock out and signal generation
JP2010060083A (en) * 2008-09-05 2010-03-18 Kayaba Ind Co Ltd Single tube type hydraulic shock absorber
JP5555011B2 (en) * 2010-03-04 2014-07-23 カヤバ工業株式会社 Hydraulic shock absorber for vehicles

Also Published As

Publication number Publication date
JP2013228092A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
US8794405B2 (en) Damping force control type shock absorber
JP5639870B2 (en) Hydraulic shock absorber for vehicles
KR102588959B1 (en) buffer
JP6108550B2 (en) Shock absorber
JP5961129B2 (en) Shock absorber
US10029530B2 (en) Pressure damper and damping force generation mechanism
WO2013081004A1 (en) Shock absorber
US11761509B2 (en) Damping force generating mechanism and pressure shock absorber
WO2012128007A1 (en) Damping valve
WO2015041309A1 (en) Damping device
KR102523320B1 (en) buffer
JP2009014012A (en) Shock absorber
JP2018091393A (en) Attenuation force adjustment mechanism
JP6047035B2 (en) Hydraulic shock absorber for vehicles
WO2022009510A1 (en) Shock absorber
WO2020179682A1 (en) Shock absorber
JP5809489B2 (en) Shock absorber
JP6442247B2 (en) valve
CN114585827B (en) Buffer device
JP2009008150A (en) Damping force adjusting structure of hydraulic shock absorber
EP3594529B1 (en) Position-dependent shock absorber
JP4815482B2 (en) Hydraulic shock absorber
JP5667487B2 (en) Damping valve
JP6546453B2 (en) Damping valve and shock absorber
JP2009008149A (en) Damping force adjusting hydraulic shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161118

R151 Written notification of patent or utility model registration

Ref document number: 6047035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350